
Exercise set 10 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, May 15. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 16 at 10h15.

Quiz
(a) Let A ∈ Rm×n with m ≥ n and b ∈ Rm. If A has rank smaller than n then

minx ∥Ax − b∥2 has infinitely many solutions.

□ True □ False

(b) Let R ∈ Rn×n be upper triangular then

∥R−1∥2 ≤ n · max{|r11|−1, . . . , |rnn|−1}.

In particular, this means that ∥R−1∥2 can only be large when R has small diagonal
entries.

□ True □ False

(c) Consider the problem minx ∥Ax − b∥1 with A ∈ Rm×n, m ≥ n, and b ∈ Rm. Then
there is always a minimizer x⋆ such that the residual Ax⋆ − b has at least one zero
entry.

□ True □ False

Exercises
Problem 1. (Python)

(a) Write a function gradient in Python that solves Ax = b using the Gradient method.
Your function should take as inputs

• The symmetric positive definite matrix A ∈ Rn×n

• The right hand side b ∈ Rn

• The tolerance rtol

The function should output

• A vector x̂ ∈ Rn such that ∥Ax̂−b∥2
∥b∥2

< rtol.

• The number of iterations required to achieve a relative error smaller than tol.

• A vector consisting of the norms of the residuals at each iteration ∥r(k)∥2.

(b) Apply your function to the two linear systems Ax = b where

1

(1)

A1 =
(

3 2
2 6

)
, b1 =

(
2

−8

)

(2) A2 ∈ R1024×1024 with right hand side b2 ∈ R1024 generated by the following code
1 import numpy as np
2 import scipy as sp
3
4 n = 32
5 a = sp.sparse.diags([-1, 2, -1], [-1, 0, 1], shape=(n, n))
6 I = sp.sparse.eye(n)
7 A_2 = sp.sparse.kron(I, a) + sp.sparse.kron(a, I)
8
9 def f(x, y):

10 return -(12 * x ** 2 - 6 * x) * y * (y - 1) - 2 * x ** 3 * (x - 1)
11
12 t = np.tile(np.arange(1, n + 1) / (n + 1), (n, 1))
13 x = t.T.flatten()
14 y = t.flatten()
15 b_2 = f(x, y) / ((n + 1) ** 2)

For tol = 10−8 plot the norm of the residuals ∥r(k)∥2 versus k. Compare your method with
the Conjugate Gradient method. You may use the built-in conjugate gradient method
scipy.sparse.linalg.cg/sp.sparse.linalg.cg in Python.1

Problem 2.

Prove Lemma 6.2 in the lecture notes. That is, show that if A ∈ Rm×n has rank n then
A⊤A is symmetric positive definite.

Problem 3. Assume that you are given data t1, . . . , tm ∈ R and y1, . . . , ym ∈ R. Suppose
that x1 and x2 are chosen such that

m∑
i=1

(x1 + x2ti − yi)2

is minimized. Further, define ŷi = x1 + x2ti and ri = yi − ŷi for i = 1, · · · , m. Show
that

(a)
m∑

i=1
ri = 0

(b) Let t̄ = 1
m

m∑
i=1

ti and ȳ = 1
m

m∑
i=1

yi. Then ȳ = x1 + x2t̄.

(c)
m∑

i=1
tiri = 0

(d)
m∑

i=1
ŷiri = 0

1Note that the function scipy.sparse.linalg.cg in Python does not return the norm of the residual
for each iteration. An ugly solution is to call the function multiple times in a loop, increasing the maximum
number of iterations until convergence, and computing by hand the residual norm each time.

2

(⋆) Problem 4.

Let A, P ∈ Rn×n be symmetric and positive definite matrices. Consider the linear sys-
tem

Ax = b (1)

(a) We denote the Cholesky factorisation P = LLT , where L is a lower triangular matrix.

Derive a relation between the solution x of (1) and the solution x̃ to

Ãx̃ = b̃, (2)

where Ã = L−1AL−T and b̃ = L−1b.

(b) Apply the gradient method to the linear system (2) and show that it is equivalent to
an iterative method given by the update

x(k+1) = x(k) + αkP −1(b − Ax(k)). (3)

Starting from the expression for αk given in the lecture notes, derive an expression
for αk that only involves A and P −1. In particular, it should not involve Ã or the
Cholesky factor L.

(c) Define r(k) = b − Ax(k) the residual after the k-th iteration.

Show that
⟨r(k), r(k+1)⟩P −1 = 0, k ≥ 1

where ⟨y, z⟩P −1 = y⊤P −1z.

(d) The method (3) is called the preconditioned gradient method.

Write a Python function gradient(A, b, P) that implements the preconditioned
gradient method for a matrix A, a vector b, and a preconditioning matrix P . Stop the
iteration once the relative error ∥r(k)∥2

∥b∥2
is smaller than 10−6, and return the solution

x(k), the residual norms ∥r(1)∥2, ∥r(2)∥2, . . . , ∥r(k)∥2 and the number of iterations k
executed to reach the solution. Ensure that if no preconditioner is given in the function
arguments then the unpreconditioned gradient method is run.

(e) Run the gradient method for the system given by

A =

 2 −1 0
−1 2 −1
0 −1 2

 , b =

 0
−1
2


without any preconditioning. Clearly print the number of iterations.

(f) On Moodle we provide a matrix A ∈ Rn×n in the file matrix10.npz. Load this
matrix using SciPy sparse’s load_npz (or scipy.sparse.load_npz if you are not
using our provided Jupyter notebook), and define the right-hand side b = [1, 1, . . . , 1]⊤
of appropriate size.

Run the preconditioned gradient method with the preconditioners

• P1 = In×n,

3

• P2 = diag(a11, a22, . . . , ann), and

• P3 = LU .

Plot the residual norms ∥r(i)∥2 for increasing numbers of iterations for the precondi-
tioners P1, P2, and P3. Use a single plot for all three preconditioners.

Hint: Use sps.linalg.spilu to compute the incomplete LU factorisation of the sparse
matrix A (use scipy.sparse.linalg.spilu if you do not want to use the notebooks
on Moodle). This method returns a SuperLU object, meaning you can directly call its
member function solve on a matrix M to compute P −1M .

4

