
MATH240 – Statistiques Prof. Victor Panaretos

Exercices et Solutions à faire chez vous

Exercice 1. Considérons une bôıte contenant 6 boules blanches, 3 boules rouges et une boule
bleue. Nous tirons de façon aléatoire une boule de la bôıte. Soit X une variable aléatoire
prenant la valeur 1 si la boule pigée est blanche, 5 si la boule est rouge et 10 si la boule est
bleue.

(a) Trouver la fonction de masse de X.

(b) Trouver la fonction de répartition de X.

(c) Représenter graphiquement la fonction trouvée en (b).

Solution 1. (a) La probabilité que X égale à 1 est la probabilité qu’on tire une des 6 boules
blanches. Puisqu’il y a 6 + 3 + 1 = 10 boules dans la bôıte, cette probabilité vaut 6/10.
Ainsi P(X = 1) = 6/10. Le même raisonnement nous amène à

fX(x) = P(X = x) =


6
10 x = 1
3
10 x = 5
1
10 x = 10

0 sinon.

(b) Nous trouvons la fonction de répartition gràce à un calcul direct :

FX(x) = P(X ≤ x) =


0 x < 1
6
10 1 ≤ x < 5
6
10 + 3

10 = 9
10 5 ≤ x < 10

1 x ≥ 10.

(c) Voici la représentation graphique de la fonction de répartition. Remarquer la continuité
à droite !

Exercice 2. On tire trois boules (sans remise) au hasard d’une bôıte contenant n1 = 6 boules
rouges et n2 = 4 boules vertes. Soit X la variable aléatoire représentant le nombre de boules
rouges parmi les trois boules pigées. Calculer l’espérance et la variance de X.

Solution 2. Nous utilisons les formules pour un tirage sans remise qui se trouvent au chapitre
2.5 du livre du cours de Probabilités. Évidemment X ne peut prendre que les valeurs 0, 1, 2
et 3, avec

P(X = x) =



(43)(
6
0)

(103 )
= 1

30 x = 0

(42)(
6
1)

(103 )
= 9

30 x = 1

(41)(
6
2)

(103 )
= 15

30 x = 2

(40)(
6
3)

(103 )
= 5

30 x = 3.

1



MATH240 – Statistiques Prof. Victor Panaretos

On voit bien que ces quatre probabilités somment à 1. Calculons

E[X] = 0
1

30
+ 1

9

30
+ 2

15

30
+ 3

5

30
=

54

30
=

9

5
;

E[X2] = 0
1

30
+ 1

9

30
+ 4

15

30
+ 9

5

30
=

114

30
=

19

5
;

et donc Var[X] = E[X2] − (E[X])2 = 14/25. Une autre méthode, sans devoir évaluer E[X2],
serait de calculer

Var[X] = E

[(
X − 9

5

)2
]
= 30−1

(
1

(
0− 9

5

)2

+ 9

(
1− 9

5

)2

+ 15

(
2− 9

5

)2

+ 5

(
3− 9

5

)2
)

=
81 + 9 · 16 + 15 · 1 + 5 · 36

30 · 25
=

14

25
.

Exercice 3. Dénotons respectivement par µ et σ2 > 0, l’espérance et la variance de la variable

aléatoire X. Déterminer E
[
X−µ
σ

]
et E

[(X−µ
σ

)2]
.

Solution 3. Nous appliquons la linéarité de l’espérance pour calculer

E
[
X − µ

σ

]
=

1

σ
E[X − µ] =

1

σ
(E[X]− E[µ]) =

1

σ
(µ− µ) = 0,

car l’espérance de la constante µ égale µ. Aussi

E

[(
X − µ

σ

)2
]
=

1

σ2
E[(X − µ)2] =

1

σ2
Var[X] = 1.

par définition de la variance.
Ainsi, pour n’importe quelle variable aléatoire X de variance finie et non nulle, la variable
aléatoire Z = (X − µ)/σ a une espérance nulle et une variance égale à 1.
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Exercice 4. Soient X et Y deux variables aléatoires indépendantes et soient MX ,MY : R →
R leurs fonctions génératrices de moments respectives. Montrer que la fonction génératrice
des moments de la variable aléatoire Z = X + Y est égale à

MZ(t) = MX(t) ·MY (t).

Solution 4. Puisque X et Y sont indépendantes, exp(tX) et exp(sY ) sont indépendantes
pour chaque s, t ∈ R. Par conséquent E[exp(tX) exp(sY )] = E[exp(tX)] ·E[exp(sY )]. Prendre
s = t pour obtenir

MZ(t) = E[exp(t(X+Y ))] = E[exp(tX) exp(tY )] = E[exp(tX)]·E[exp(tY )] = MX(t)·MY (t) ∈ (0,∞].

Exercice 5. Soit Y une variable aléatoire dont la fonction de densité est donnée par

g(y) =

{
cy2 si −1 < y < 1
0 sinon.

(a) Déterminer la valeur de la constante c afin que g(y) satisfasse les propriétés d’une fonction
de densité.

(b) Trouver la fonction de répartition de Y .

(c) Trouver P(0 < Y < 1), P(0 < Y ≤ 3) et P(Y = 0). Remarque. On peut répondre à cette
question sans calculer aucune intégrale !

(d) Trouver E[Y ] et Var[Y ].

Solution 5. (a) L’intégrale d’une fonction de densité vaut forcément 1. Donc

1 =

∫ ∞

−∞
g(y) dy = c

∫ 1

−1
y2 dy = c

(
1

3
− −1

3

)
=

2c

3
.

Ainsi c = 3/2.

(b) La fonction de répartition FY se trouve en prenant l’intégrale de g. Pour y ∈]− 1, 1[ nous
avons

FY (y) = P(Y ≤ y) =

∫ y

−1
cu2 du = c

(
y3

3
− −1

3

)
=

y3 + 1

2
.

Par conséquent FY (y) = min(1,max(0, (y3 + 1)/2)), c’est-à-dire

FY (y) = P(Y ≤ y) =


0 y ≤ −1
y3+1
2 −1 < y < 1

1 y ≥ 1.

(c) Puisque Y est une variable aléatoire continue, pour chaque y ∈ R, on a P(Y = y) = 0.
Par exemple si y = 0 on a pour ε ∈]0, 1[ que

0 ≤ P(Y = 0) ≤ P(−ε < Y ≤ ε) = P(Y ≤ ε)− P(Y ≤ −ε) =
ε3 + 1

2
− −ε3 + 1

2
= ε3.

En laissant ε → 0 nous voyons effectivement que P(Y = 0) = 0.

Donc P(0 < Y < 1) = P(0 < Y ≤ 1) = FY (1) − FY (0) = 1 − 1/2 = 1/2 et P(0 < Y ≤
3) = FY (3)− FY (0) = 1− 1/2 = 1/2.

En fait la densité de Y est symmétrique et nulle à l’extérieur de [−1, 1], ce qui implique
1 = P(−1 < Y < 1) = 2P(0 < Y < 1).
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(d) On peut noter que l’espérance de Y est nulle puisque c’est une variable aléatoire dont la
densité est symmétrique ; autrement, calculons

E[Y ] =

∫ ∞

−∞
yg(y) dy =

∫ 1

−1
cy3 dy =

3

2

(
14

4
− 14

4

)
= 0;

Var[Y ] = E[Y 2]− (E[Y ])2 = E[Y 2] =

∫ ∞

−∞
y2g(y) dy =

3

2

(
15

5
− (−1)5

5

)
=

3

5
.

Exercice 6. Soit X une variable aléatoire dont la fonction de densité est donnée par

f(x) =

{
1
10 exp

(−x
10

)
si 0 < x < ∞

0 sinon.

(a) Trouver la fonction génératrice des moments MX(t) de X.

(b) En utilisant MX(t) ou RX(t) = ln(MX(t)), déterminer la moyenne et la variance de X.

Solution 6. (a) Calculons

MX(t) = E[exp(tX)] =

∫ ∞

−∞
exp(tx)f(x) dx =

1

10

∫ ∞

0
exp(x(t− 1/10)) dx.

Cette intégrale est certainement infinie si t ≥ 1/10. Dans le cas contraire, nous pouvons
joyeusement conclure que

MX(t) =
1

10

(
1

10
− t

)−1

=
1

1− 10t
; RX(t) = ln(MX(t)) = − ln(1− 10t).

(b) Par les propriétés de la fonction génératrice des moments,

E[X] = M ′
X(0) =

10

(1− 10t)2

∣∣∣∣∣
t=0

= 10; E[X] = R′
X(0) =

10

1− 10t

∣∣∣∣∣
t=0

= 10;

E[X2] = M ′′
X(0) =

200

(1− 10t)3

∣∣∣∣∣
t=0

= 200; Var[X] = R′′
X(0) =

100

(1− 10t)2

∣∣∣∣∣
t=0

= 100;

Var[X] = E[X2]− (E[X])2 = 100.

Remarque. X est une variable aléatoire exponentielle de paramètre λ = 1/10.

Exercice 7. Montrer que si X =
∑n

i=1 Yi où Yi
iid∼ Bern(p), alors X ∼ Bin(n, p).

Solution 7. Puisque les Yi ne prennent que les valeurs 0 et 1, X ne peut prendre comme
valeur que les entiers entre 0 et n. Mais X = x si et seulement si exactement x des Yi
valent 1. Pour chaque I ⊆ {1, . . . , n} de cardinalité x, P(Yi = 1 pour i ∈ I et Yi = 0 pour
i /∈ I) = px(1 − p)n−x, en raison de l’indépendance des Yi. L’événement X = x est donc
l’union (disjointe) sur tous les I de cardinalité x possibles, il y en a donc

(
n
x

)
. Ainsi

P(X = x) =

(
n

x

)
px(1− p)n−x, x = 0, . . . , n.
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On peut aussi utiliser la fonction génératrice des moments. En effet, par l’exercice 4 de la
série 1 et la formule du binôme, on a que

MX(t) = (MY1(t))
n = ((1− p) + pet)n =

n∑
x=0

(
n

x

)
px(1− p)n−xetx.

Cette dernière est par définition E[etZ ] où Z ∼ Binom(n, p). Ainsi X ∼ Binom(n, p).

Exercice 8. Soit {Yi}i≥1 une collection infinie de variables aléatoires, où Yi
iid∼ Bern(p). Soit

T = min{k ∈ N : Yk = 1} − 1, montrer que T ∼ Geom(p).

Solution 8. Il est évident que T ne prend que des valeurs dans {0} ∪ N. Remarquons que
T + 1 = x+ 1 si et seulement si Y1 = Y2 = · · · = Yx = 0 et Yx+1 = 1 et cet événement a une
probabilité (grâce à l’indépendance des Yi)

P(Yx+1 = 1)

x∏
i=1

P(Yi = 0) = (1− p)xp.

Ainsi T ∼ Geom(p).

Exercice 9. Montrer que si X =
∑r

i=1 Yi où Yi
iid∼ Geom(p), alors X ∼ NegBin(r, p).

Solution 9. La fonction génératrice des moments de Yi est

MYi(t) =
p

1− (1− p)et
, t < − log(1− p).

Puisque les Yi sont indépendantes, la fonction génératrice des moments de X =
∑r

i=1 Yi est

MX(t) =

r∏
i=1

MYi(t) =

(
p

1− (1− p)et

)r

=
pr

[1− (1− p)et]r
, t < − log(1− p),

et donc X ∼ NegBin(r, p)

Exercice 10. Soient Xi
iid∼ Poisson(λ). Montrer que Y =

∑n
i=1Xi ∼ Poisson(nλ).

Solution 10. Nous allons montrer que siX ∼ Poisson(λ) et Y ∼ Poisson(µ) sont indépendantes
pour λ, µ ≥ 0 alors X+Y ∼ Poisson(λ+µ). L’énoncé sera donc achevé par récurrence. Pour
x entier on a (car X et Y ne prennent que les valeurs dans {0} ∪ N)

P(X+Y = x) =
x∑

k=0

P(X = k, Y = x−k) =
x∑

k=0

e−λe−µ λkµx−k

k!(x− k)!
= e−(λ+µ) (λ+ µ)x

x!

x∑
k=0

(
x

k

)
λkµx−k

(λ+ µ)x
.

Cette dernière somme vaut 1 par la formule du binôme. Par conséquent X+Y ∼ Poisson(λ+
µ).
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Exercice 11. Soient X∼Poisson(λ) et Y∼Poisson(µ) indépendantes. Montrer que la distri-
bution conditionnelle de X sachant X + Y = k est Bin(k, λ/(λ+ µ)).

Solution 11. Il est clair que les valeurs possibles de X sachant X + Y = k sont 0, 1, . . . , k.
Pour un tel x, en utilisant l’exercice précédent,

P(X = x|X+Y = k) =
P(X = x, Y = k − x)

P(X + Y = k)
= e−λe−µ λxµk−x

x!(k − x)!
eλ+µ k!

(λ+ µ)k
=

(
k

x

)
px(1−p)k−x,

où p = λ/(λ+ µ). L’énoncé est donc demontré.

Exercice 12. Soient X ∼ Exp(λ) et t ≥ 0. Montrer que P[X ≥ x+ t|X > t] = P[X ≥ x].

Solution 12. Nous avons par calcul direct que P(X > t) = e−λt. De plus, lorsque x > 0,
l’événement {X ≥ x+ t} est inclus dans {X > t}. Il s’en suit que

P(X ≥ x+ t|X > t) =
e−λ(x+t)

e−λt
= e−λx = P(X ≥ x).

Si x ≤ 0 l’égalité est évidente, car les deux côtés valent 1.

Exercice 13. Soient X et Y des variables aléatoires indépendantes qui suivent des distribu-
tions exponentielles d’intensité λ1 et λ2 respectivement. Montrer que Z = min{X,Y } est une
variable aléatoire exponentielle d’intensité λ1 + λ2.
Bonus. Montrer que P(Z = X) = λ1/(λ1 + λ2).

Solution 13. Soit x ≥ 0. Grâce à l’indépendence de X et Y ,

P(min(X,Y ) > x) = P(X > x, Y > x) = P(X > x)P(Y > x) = e−λ1xe−λ2x = e−(λ1+λ2)x.

Il en découle que min(X,Y ) ∼ Exp(λ1 + λ2).
Bonus. Nous avons que

P(Z = X) = P(min(X,Y ) = X) = P(X ≤ Y ).

Les variables X et Y étant indépendantes, la densité conjointe de (X, Y ) est donnée par

fX,Y (x, y) = fX(x)fY (y) = λ1e
−λ1xλ2e

−λ2y,

de sorte que

P(X ≤ Y ) =

∫ ∞

0

∫ ∞

x
λ1λ2e

−λ1xe−λ2ydydx

=

∫ ∞

0
λ1e

−λ1x
[
−e−λ2y

]∞
x
dx

=

∫ ∞

0
λ1e

−λ1xe−λ2xdx

=
λ1

λ1 + λ2
.

6
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Exercice 14. Montrer que X ∼ χ2
2 si et seulement si X ∼ Exp(1/2).

Solution 14. La fonction de densité d’une variable aléatoire Gamma(r, λ) pour r = 1 est

λe−λx, x ≥ 0.

Donc la distribution Exp(λ) est la même que la distribution Gamma(1, λ).
La distribution χ2

2 n’est que la distribution Gamma(1, 1/2) qui est donc la même distribution
que Exp(1/2).

Exercice 15. Montrer que les distributions suivantes constituent des familles Exponentielles
(peut-être lorsqu’un de leurs paramètres est fixé) :

(i) La distribution de Poisson.

(ii) La distribution géométrique.

(iii) La distribution binomiale négative.

(iv) La distribution exponentielle.

(v) La distribution gamma.

(vi) La distribution khi carré.

Solution 15. Rappelons qu’une famille de distributions est une famille exponentielle si sa
fonction de masse/densité admet la représentation :

f(x) = exp

{
k∑

i=1

ϕiTi(x)− γ(ϕ1, . . . , ϕk) + S(x)

}
, x ∈ X . (1)

Noter que dans les exemples suivants, les paramétrisations ne sont pas uniques.

(i) Si X ∼ Pois(λ), alors

f(x;λ) =
e−λλx

x!

= exp

(
ln

(
e−λλx

x!

))
= exp (−λ+ x ln(λ)− ln(x!)) .

En posant ϕ = ln(λ), T (x) = x, γ(ϕ) = eϕ et S(x) = − ln(x!) et en notant que le support
de f (donné par X = {0} ∪ N) ne dépend pas de ϕ, nous obtenons bien que f(x;λ) est de la
forme (1).

(ii) Si X ∼ Geom(p), alors

f(x; p) = (1− p)xp

= exp (x ln(1− p) + ln(p)) .

En posant ϕ = ln(1 − p), T (x) = x, γ(ϕ) = − ln(1 − eϕ) et S(x) = 0 et en notant que le
support de f (donné par X = {0} ∪ N) ne dépend pas de ϕ, nous obtenons bien que f(x; p)
est de la forme (1).

7
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(iii) Si X ∼ NegBin(r, p), alors

f(x; r, p) =

(
x+ r − 1

x

)
(1− p)xpr

= exp

(
ln

(
x+ r − 1

x

)
+ x ln(1− p) + r ln(p)

)
.

En fixant r et en posant ϕ = ln(1− p), T (x) = x, γ(ϕ) = −r ln(1− eϕ) et S(x) = ln
(
x+r−1

x

)
et en notant que le support de f (donné par X = {0}∪N) ne dépend pas de ϕ, nous obtenons
bien que f(x; p) est de la forme (1).
Si r est inconnu, la famille binomiale négative n’est pas une famille exponentielle.

(iv) Si X ∼ Exp(λ), alors pour x ≥ 0,

f(x;λ) = λe−λx

= exp (ln(λ)− λx) .

En posant ϕ = λ, T (x) = −x, γ(ϕ) = − ln(ϕ) et S(x) = 0 et en notant que le support de f
(donné par X = [0,∞)) ne dépend pas de ϕ, nous obtenons bien que f(x;λ) est de la forme
(1).

(v) Si X ∼ Gamma(r, λ), alors pour x ≥ 0,

f(x; r, λ) =
λr

Γ(r)
xr−1e−λx

= exp

(
ln

(
λr

Γ(r)

)
+ (r − 1) ln(x)− λx

)
= exp (r ln(λ)− ln(Γ(r)) + r ln(x)− ln(x)− λx)

Noter qu’ici k = 2, contrairement aux exercices précédents où k était égal à 1. En posant
ϕ = (ϕ1, ϕ2) = (λ, r), T1(x) = −x, T2(x) = ln(x), γ(ϕ) = −ϕ2 ln(ϕ1) + ln(Γ(ϕ2)) et S(x) =
− ln(x) et en notant que le support de f (donné par X = [0,∞)) ne dépend pas de ϕ,
nous obtenons bien que f(x; r, λ) est de la forme (1). Noter que nous aurions aussi pu poser
ϕ = (ϕ1, ϕ2) = (λ, r−1), T1(x) = −x, T2(x) = ln(x), γ(ϕ) = −(ϕ2+1) ln(ϕ1)+ ln(Γ(ϕ2+1))
et S(x) = 0.

(vi) Si X ∼ χ2
k, alors X ∼ Gamma(k/2, 1/2). Ainsi, il suffit de poser r = k/2 et λ = 1/2

dans les équations du problème (v), afin d’obtenir que ϕ = k/2, T (x) = ln(x), γ(ϕ) =
−ϕ ln(1/2) + ln(Γ(ϕ)) et S(x) = − ln(x)− x/2 nous donne la représentation (1).

Exercice 16. Soit Y ∼ Unif(0, 1) et soit F une fonction de répartition. Montrer que la
fonction de répartition de la variable aléatoire X = F−1(Y ) est F , où F−1(y) = inf{t ∈ R :
F (t) ≥ y}.

Solution 16. Soit FX la fonction de répartition de X, montrons que FX = F . Nous avons

FX(x) = P(X ≤ x) = P(F−1(Y ) ≤ x).

Il suffit donc de montrer que F−1(Y ) ≤ x ⇐⇒ Y ≤ F (x), car Y ∼ Unif(0, 1) et donc
P(F−1(Y ) ≤ x) = P(Y ≤ F (x)) = F (x).

8
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Si Y ≤ F (x) alors x appartient à l’ensemble {t ∈ R : F (t) ≥ Y } et x est donc plus grand que
l’infimum de cet ensemble, F−1(Y ). Donc Y ≤ F (x) implique que F−1(Y ) ≤ x.
Si Y > F (x) alors, F étant continue à droite, il existe ε > 0 tel que Y > F (x + ε). Ainsi
(puisque F est croissante) F−1(Y ) = inf{t ∈ R : F (t) ≥ Y } ≥ x + ε > x. Donc F−1(Y ) ≤ x
implique que Y ≤ F (x). La démonstration est ainsi achevée.

Exercice 17. Soit X ∼ N(µ, σ2), montrer que la fonction de densité de Y = eX est donnée
par

fY (y) =
1

yσ
√
2π

exp

(
−(ln y − µ)2

2σ2

)
, 0 < y < ∞.

Solution 17. Nous avons Y = g(X) = eX avec X ∼ N(µ, σ2). Par le lemme 1.30 des notes
de cours nous savons que Y = g(X ) = g((−∞,∞)) = (0,∞) et que

fY (y) =

∣∣∣∣ ddy g−1(y)

∣∣∣∣ fX(g−1(y)), y ∈ (0,∞),

où

g−1(y) = ln(y) et donc
d

dy
g−1(y) =

1

y
> 0, puisque y > 0,

et

fX(x) =
1

σ
√
2π

exp

{
−1

2

(
x− µ

σ

)2
}
.

Nous obtenons finalement que

fY (y) =
1

y

1

σ
√
2π

exp

{
−1

2

(
ln(y)− µ

σ

)2
}
, y ∈ (0,∞).

Exercice 18. Prouver le théorème sur les transformations multidimensionnelles (page 45 des
diapositives du cours) en utilisant la formule de changement de variables dans une intégrale.

Solution 18. Pour n’importe quel A ⊂ Yn, on a

P (Y ∈ A) =

∫
A
fY (y) dy.

Mais on a aussi que

P (Y ∈ A) = P (g−1(Y ) ∈ g−1(A)) = P (X ∈ g−1(A))

=

∫
g−1(A)

fX(x) dx

=

∫
A
fX(g−1(y))

∣∣det Jg−1(y)
∣∣ dy,

où on a utilisé la formule de changement de variables dans une intégrale. Donc, pour chaque
A ⊂ Yn, ∫

A
fY (y) dy =

∫
A
fX(g−1(y))

∣∣det Jg−1(y)
∣∣ dy

et on conclut que
fY (y) = fX(g−1(y))

∣∣det Jg−1(y)
∣∣ , ∀y ∈ Yn.

9
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Exercice 19. Soient X ∼ N(µ1, σ
2
1) et Y ∼ N(µ2, σ

2
2) indépendantes. Montrer que X +Y ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Solution 19. D’après le corollaire 1.34, la fonction de densité de X + Y en z ∈ R est

fX+Y (z) =

∫
R

1

σ1
√
2π

exp

[
(z − v − µ1)

2

−2σ2
1

]
1

σ2
√
2π

exp
(v − µ2)

2

−2σ2
2

dv.

Nous allons faire en sorte que l’élément dans l’exponentielle serait −(v − µ)2/2σ2 de sorte à
pouvoir évaluer cette intégrale. On a

−1

2

[
(z − v − µ1)

2

σ2
1

+
(v − µ2)

2

σ2
2

]
= − 1

2σ2
1σ

2
2

[
v2(σ2

1 + σ2
2)− 2v(σ2

2(z − µ1) + σ2
1µ2) + σ2

2(z − µ1)
2 + σ2

1µ
2
2

]
= −σ2

2 + σ2
1

2σ2
1σ

2
2

[
v2 − 2v

σ2
2(z − µ1) + σ2

1µ2

σ2
2 + σ2

1

+
σ2
2(z − µ1)

2 + σ2
1µ

2
2

σ2
2 + σ2

1

]
= −σ2

2 + σ2
1

2σ2
1σ

2
2

[
v − σ2

2(z − µ1) + σ2
1µ2

σ2
2 + σ2

1

]2
− σ2

2 + σ2
1

2σ2
1σ

2
2

[
σ2
2(z − µ1)

2 + σ2
1µ

2
2

σ2
2 + σ2

1

−
(
σ2
2(z − µ1) + σ2

1µ2

σ2
2 + σ2

1

)2
]
.

Donc

fX+Y (z) =
1

2πσ1σ2
exp

{
−σ2

2 + σ2
1

2σ2
1σ

2
2

[
σ2
2(z − µ1)

2 + σ2
1µ

2
2

σ2
2 + σ2

1

−
(
σ2
2(z − µ1) + σ2

1µ2

σ2
2 + σ2

1

)2
]}

×

∫
R
exp

{
−σ2

2 + σ2
1

2σ2
1σ

2
2

[
v − σ2

2(z − µ1) + σ2
1µ2

σ2
2 + σ2

1

]2}
dv.

L’expression dans la dernière intégrale est liée à la densité d’une variable aléatoire normale
d’une certaine moyenne et de variance Σ2 = σ2

1σ
2
2/(σ

2
2 + σ2

1). Elle vaut donc
√
2πΣ2 et on

obtient

fX+Y (z) =
1√

2π(σ2
2 + σ2

1)
exp

{
−σ2

2 + σ2
1

2σ2
1σ

2
2

[
σ2
2(z − µ1)

2 + σ2
1µ

2
2

σ2
2 + σ2

1

−
(
σ2
2(z − µ1) + σ2

1µ2

σ2
2 + σ2

1

)2
]}

=
1√

2π(σ2
2 + σ2

1)
exp

(z − µ1)
2 + µ2

2 − 2(z − µ1)µ2

−2(σ2
2 + σ2

1)
=

1√
2π(σ2

2 + σ2
1)

exp
(z − µ1 − µ2)

2

−2(σ2
2 + σ2

1)
,

qui est bien la densité d’une loi N(µ1 + µ2, σ
2
1 + σ2

2).

Exercice 20. Soit Z1 une variable aléatoire normale standard et Z2 une variable aléatoire
χ2
n où n ≥ 1, tels que Z1 et Z2 sont indépendantes. À l’aide du théorème 1 du cours (le

théorème 1.33 à la page 28 des notes du cours), trouver la densité de la variable aléatoire
T , où T = Z1/

√
Z2/n. Indice : définir g(Z1, Z2) = (T, V ) = (T,Z2) pour trouver la densité

conjointe de T et V . La densité de T se trouve en intégrant par rapport à V (penser à la
distribution Gamma).
Remarque. La loi de T s’appelle la loi t de Student avec n degrés de liberté. Elle est très
utilisée en statistique et on verra plus tard dans le cours pourquoi. Dans la plupart des cas,
n est un nombre entier, mais la distribution est définie pour n’importe quel n réel.
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Solution 20. Soient

Z1 ∼ N (0, 1), Z2 ∼ χ2
n et T =

Z1√
Z2/n

.

Considérons la transformation g : R× R+ \ {0} → R× R+ \ {0}

g : (Z1, Z2) 7→ (T, V ) =

(
Z1√
Z2/n

, Z2

)
.

La fonction inverse est

g−1 : (T, V ) 7→

(
T

√
V

n
, V

)
, T ∈ R, V ∈ R+ \ {0},

ayant pour Jacobian

Jg−1 =

( √
V/n ⋆
0 1

)
⇒ det(Jg−1(t, v)) =

√
v

n
.

L’idée de la preuve est d’utiliser le théorème 1.33 afin de trouver la fonction de densité
conjointe de (T, V ) et d’ensuite obtenir la fonction de densité marginale de T en intégrant
cette densité par rapport à V .
Rappelons que Z1 et Z2 sont des variables aléatoires indépendantes et donc

f(Z1,Z2)(z1, z2) = fZ1(z1)fZ2(z2) =
1

2
n+1
2 π

1
2Γ
(
n
2

)z n
2
−1

2 e−
1
2
(z2+z21).

La fonction de densité conjointe de (T, V ) est alors donnée par

f(T,V )(t, v) = f(Z1,Z2)(g
−1(t, v))|det(Jg−1(t, v))|

=
1

2
n+1
2 π

1
2Γ
(
n
2

)v n
2
−1e−

1
2
(v+v t2

n
) ·
( v
n

) 1
2

=
1

2
n+1
2
√
πnΓ

(
n
2

) · v n−1
2 e−

v
2
(1+ t2

n
).

Nous pouvons maintenant intégrer par rapport à v afin d’obtenir la fonction de densité de T :

fT (t) =
1

2
n+1
2 Γ

(
n
2

)√
nπ

∫ ∞

0
e
− v

2

(
t2

n
+1

)
v

n−1
2 dv.

En posant

y =
v

2

(
t2

n
+ 1

)
,

nous obtenons

v =
2y(

t2

n + 1
) et dv =

2(
t2

n + 1
) ,
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et donc

fT (t) =
1

2
n+1
2 Γ

(
n
2

)√
nπ

·
∫ ∞

0
e−y ·

[
(2y)

(
t2

n
+ 1

)−1
]n−1

2

· 2
(
t2

n
+ 1

)−1

dy

=
1

2
n+1
2 Γ

(
n
2

)√
nπ

·
(
t2

n
+ 1

)−n+1
2

· 2
n+1
2 ·

∫ ∞

0
y

n−1
2 e−y dy

=
Γ
(
n+1
2

)
Γ
(
n
2

) · 1√
nπ

·
(
t2

n
+ 1

)−n+1
2

·
∫ ∞

0

1

Γ
(
n+1
2

) · y n+1
2

−1e−y dy

=
Γ
(
n+1
2

)
Γ
(
n
2

) · 1√
nπ

·
(
t2

n
+ 1

)−n+1
2

.

où l’intégrale de l’avant dernière ligne est égale à 1, car c’est l’intégrale de la fonction de
densité d’une distribution Γ(n/2, 1).

Autre façon de trouver la densité conjointe (portez attention à la nouvelle nota-
tion)
Soient

Z ∼ N (0, 1), V ∼ χ2
n et T =

Z√
V/n

.

L’idée dans ce qui suit est de trouver la fonction de densité conjointe de (T, V ) en utilisant
la densité conditionnelle de T |V = v.
La distribution conditionnelle de T sachant V = v est normale de moyenne 0 et de variance
n/v. Nous pouvons alors calculer la densité conjointe de la façon suivante :

f(T,V )(t, v) =fT |V (t|V = v)fV (v)

=
1√
2π

( v
n

) 1
2
e−

1
2
t2 v

n
1

2
n
2 Γ
(
n
2

)v n
2
−1e−

v
2

=
1

2
n+1
2 Γ

(
n
2

)√
nπ

e
− v

2

(
t2

n
+1

)
v

n−1
2 .

Ensuite l’on procède comme avant pour trouver la densité de T .

*Exercice 21. Montrer que la distribution exponentielle est l’unique distribution sans mémoire.
Plus précisément, soit X une variable aléatoire telle que P(X > 0) > 0 et

P(X > t+ s|X > t) = P(X > s), ∀t, s ≥ 0.

Montrer qu’il existe un λ > 0 tel que X ∼ Exp(λ).
Indice : Soit G(t) = P(X > t). L’absence de mémoire implique que G(t+ s) = G(t)G(s) pour
t, s ≥ 0 (pourquoi ?). Poser g(t) = − lnG(t) et λ = g(1). Montrer que g(t) = tλ pour chaque
t > 0 rationnel. En déduire (avec justification !) que g(t) = tλ pour chaque t ≥ 0. Quel est
le signe de λ ? Enfin, montrer que λ < ∞ en utilisant le fait que G(0) > 0 et la continuité à
droite de G.
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Solution 21. Les hypothèses impliquent que

G(t+ s) = G(t)G(s), ∀t, s ≥ 0,

au moins lorsque G(t) > 0. Or, si G(t) = 0 l’égalité est évidante, car G est décroissante et
nonnegative.
En termes de g(x) = − lnG(x), cette égalité s’écrit

g(t+ s) = g(t) + g(s), ∀t, s ≥ 0.

(À noter que cette égalité tient, et a un sens, même si g = ∞, puisque g(x) ∈ [0,∞] pour
chaque x ≥ 0.)
Soit λ = g(1), alors g(2) = 2λ et par récurrence g(n) = nλ pour n entier. Par récurrence encore
g
(
k
n

)
= kg

(
1
n

)
pour des entiers n, k. En posant k = n nous obtenons λ = g(1) = ng

(
1
n

)
, et

donc g
(
k
n

)
= k

nλ, c’est-à-dire que g(q) = qλ pour chaque q > 0 rationnel. Pour t > 0 réel,
prenons une suite de rationnels qn ↘ t. En utilisant la continuité à droite de g (qui résulte de
celle de G),

g(t) = lim
n→∞

g(qn) = lim
n→∞

qnλ = tλ.

(Nous aurions pu utiliser le fait que G, et par conséquent g, est monotone, sans utiliser la
continuité à droite.)
Ainsi G(t) = exp(−tλ) pour chaque t. Puisque G(t) → 0 lorsque t → ∞, forcément λ > 0 et
la fonction qui vaut 0 pour t < 0 et 1 − G(t) pour t ≥ 0 est bien la fonction de répartition
d’une variable aléatoire exponentielle de paramètre λ. Il est impossible que λ = ∞, puisque
G est continue à droite et G(0) > 0.
Remarque 1. Nous n’avons même pas supposé ni que X soit une variable aléatoire continue,
ni que P(X ≥ 0) = 1 !
Remarque 2. Il existe des fonctions ≪ sans mémoire≫ qui ne sont pas de la formeG(t) = e−λt.
Ces fonctions, évidemment, ne sont pas continues à droite ni monotones. Leur existence
requiert une base de R sur Q dont la construction nécessite (une version faible de) l’axiome
du choix.

Exercice 22. Rappelons que pour un échantillon x1, . . . , xn la moyenne échantillonnale est
définie par

x̄ =
1

n

n∑
i=1

xi

et la médiane échantillonnale par

M =

x(n+1
2 ), si n est impair,

x(n2 )
+x(n2 +1)
2 , sinon.

Montrer que

(i) la fonction f(γ) =
∑n

i=1(xi − γ)2 atteint son minimum (uniquement) en x̄.

(ii) la fonction g(γ) =
∑n

i=1 |xi − γ| atteint son minimum en M . Attention : g n’est pas
dérivable au point γ si γ = xi pour un i quelconque.

13
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Solution 22.

(i) La dérivée de f est

d

dγ
f(γ) = −2

n∑
i=1

(xi − γ).

En la mettant égale à zéro, on trouve

n∑
i=1

xi − nγ = 0 ⇒ γ =
1

n

n∑
i=1

xi = x̄.

Puisque f ′′(γ) = 2n > 0, x̄ est le minimum global de f .

(ii) On peut écrire

g(γ) =
n∑

i=1

|xi − γ| =
n∑

i=1

|x(i) − γ|.

La fonction g est dérivable pour chaque γ ∈ R\{x(1), . . . , x(n)}.
— Quand γ ∈ (−∞, x(1)), on a g(γ) =

∑n
i=1(x(i) − γ) et donc g′(γ) =

∑n
i=1−1 = −n.

— Quand γ ∈ (x(n),∞), on a g(γ) =
∑n

i=1−(x(i) − γ) et donc g′(γ) =
∑n

i=1 1 = n.
— Quand γ ∈ (x(j), x(j+1)), j = 1, . . . , n− 1, on a

g(γ) =

j∑
i=1

−(x(i) − γ) +
n∑

i=j+1

(x(i) − γ)

et donc g′(γ) =
∑j

i=1 1 +
∑n

i=j+1−1 = j − (n− j) = 2j − n.

Distinguons les deux cas suivants :

1. n pair :
— g′(γ) < 0 quand γ ∈ (−∞, x(1)) ou γ ∈ (x(j), x(j+1)) avec j = 1, . . . , n2 − 1.
— g′(γ) = 0 quand γ ∈ (x(n

2 )
, x(n

2
+1)).

— g′(γ) > 0 quand γ ∈ (x(n),∞) ou γ ∈ (x(j), x(j+1)) avec j = n
2 + 1, . . . , n− 1.

Puisque g est continue, chaque point en [x(n
2 )
, x(n

2
+1)] est un minimum de g et en

particulier M =
x(n2 )

+x(n2 +1)
2 est un minimum.

2. n impair :
— g′(γ) < 0 quand γ ∈ (−∞, x(1)) ou γ ∈ (x(j), x(j+1)) avec j = 1, . . . , n+1

2 − 1.

— g′(γ) > 0 quand γ ∈ (x(n),∞) ou γ ∈ (x(j), x(j+1)) avec j = n+1
2 , . . . , n− 1.

Puisque g est continue, M = x(n+1
2 ) est l’unique minimum de g.

Remarque : il est possible que x(k) = x(k+1) pour un certain k (c’est-à-dire qu’on observe la
même valeur plusieurs fois), mais la preuve reste valide même dans ce cas.

Exercice 23.

(i) Calculez la moyenne x̄ et la médiane M des données suivantes :

9.2 11.5 9.7 11.0 8.5
9.8 10.0 12.1 10.5 10.1

14
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(ii) Refaire votre calcul quand la valeur 12.1 est remplacé par 48.6.

(iii) Comparez les valeurs de x̄ et M dans les parties (i) et (ii). Qu’est-ce que vous notez ?
Expliquez vos observations.

Solution 23.

(i) Nous obtenons x̄ = 10.24 et M = 10.05.

(ii) Maintenant nous obtenons x̄ = 13.89 et M = 10.05.

(iii) On observe que dans la partie (i) les valeurs de x̄ et de M sont similaires, tandis que
dans la partie (ii) la valeur de x̄ a beaucoup changé à cause de la valeur atypique 48.6.
En même temps, la valeur de M n’a pas changé. On note que la moyenne x̄ est plus
susceptible aux valeurs aberrantes que la médiane M . En fait, dans la partie (ii), x̄ est
plus grande que chaque observation sauf la valeur extrême 48.6. À cause de cette valeur,
la moyenne n’est pas un très bon résumé de la position de cet échantillon. En revanche,
la médiane n’est pas affectée par cette valeur extrême.

Exercice 24. Soit x1, . . . , xn un échantillon. Est-ce que c’est possible que la moyenne de cet
échantillon est égal la médiane de cet échantillon, mais l’échantillon n’est pas symétrique.
Trouvez un exemple.

Solution 24. Considerons l’échantillon :

−2,−2, 0, 1, 3

La moyenne et la médiane sont égal 0, mais l’échantillon n’est pas symétrique autour de 0.
Remarque pour ceux qui ont besoin d’une définition mathématique formelle de la symétrie.
L’échantillon x1, . . . , xn s’appelle symétrique autour de a ∈ R, si

{x1, . . . , xn} = {−(x1 − a) + a, . . . ,−(xn − a) + a}.

L’égalité est comprise comme l’égalité des ensembles.

Exercice 25 (exercice 17). Montrer qu’une formule équivalente pour la variance empirique
est σ̂2 = 1

n

∑n
i=1 x

2
i − x̄2. Expliquer pourquoi cette formule peut être plus utile.

Solution 25. Nous écrivons :

nσ̂2 =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2i +
n∑

i=1

x̄2 − 2
n∑

i=1

xix̄

=
n∑

i=1

x2i +
n∑

i=1

x̄2 − 2x̄
n∑

i=1

xi

=

n∑
i=1

x2i + nx̄2 − 2nx̄2

=
n∑

i=1

x2i − nx̄2.

Cette formule est plus pratique, car elle demande de calculer les carrés de n + 1 nombres et
une différence, au lieu de devoir calculer n différences, et puis n carrés, comme dans la formule
originale.
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Exercice 26 (exercice 18). Soit un échantillon x1, . . . , xn. Quels sont la médiane M et les
quartiles Q1 et Q3 quand n = 12, 13, 14 ou 15 ?
*Bonus (c’est un peu fastidieux) : trouver des formules générales (pour n quelconque) pour
le premier et troisième quartile, Q1 et Q3. Indice : ces formules seront de la forme

? n ≡ 0 mod 4

? n ≡ 1 mod 4

? n ≡ 2 mod 4

? n ≡ 3 mod 4.

Solution 26. Si n = 12 alors M = (x(6) + x(7))/2, Q1 = x(4) et Q3 = x(9).
Si n = 13 alors M = x(7), Q1 = x(4) et Q3 = x(10).
Si n = 14 alors M = (x(7) + x(8))/2, Q1 = (x(4) + x(5))/2 et Q3 = (x(10) + x(11))/2.
Si n = 15 alors M = x(8), Q1 = (x(4) + x(5))/2 et Q3 = (x(11) + x(12))/2.
Pour n quelconque, on obtient les formules

Q1 =



x(n
4
+1) n ≡ 0 mod 4

x(n−1
4

+1) n ≡ 1 mod 4

1
2

(
x(n−2

4
+1) + x(n−2

4
+2)

)
n ≡ 2 mod 4

1
2

(
x(n−3

4
+1) + x(n−3

4
+2)

)
n ≡ 3 mod 4,

Q3 =



x( 3n
4 )

n ≡ 0 mod 4

x( 3(n−1)
4

+1
) n ≡ 1 mod 4

1
2

(
x( 3(n−2)

4
+1

) + x( 3(n−2)
4

+2
)) n ≡ 2 mod 4

1
2

(
x( 3(n−3)

4
+2

) + x( 3(n−3)
4

+3
)) n ≡ 3 mod 4.

Exercice 27 (exercice 19). Les données suivantes représentent les charges maximales (en
tonnes) supportées par les câbles fabriqués par une usine :

10.1 12.2 9.3 12.4 13.7 11.1 13.3
10.8 11.6 10.1 11.2 11.4 11.8 7.1
12.2 12.6 9.2 14.2 10.5

(i) Représenter les données sous la forme d’un histogramme dont la largeur des intervalles
est égale à h = 1 et l’origine est égale à κ = 10. Refaire l’histogramme avec h = 2 et
κ = 11 et comparer les deux figures.

(ii) Quelle est approximativement la valeur de la charge que les trois quarts des câbles
peuvent supporter ?

(iii) Donner le troisième quartile.

(iv) Tracer une bôıte à moustaches. Parmi les données, y a-t-il des valeurs aberrantes ? Dans
ce diagramme, où visualise-t-on la valeur déterminée au point (ii) ?

Solution 27.
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(i) À gauche : h = 1, κ = 10 ; à droite : h = 2, κ = 11.

Les deux histogrammes donnent plus ou moins le même message : la distribution est
unimodale et légèrement asymétrique à gauche. Le premier histogramme a une plus
grande “résolution”, mais avec plus de variabilité. Par exemple, on peux déduire la
location du mode plus précisément avec le premier histogramme, mais il y a un intervalle
vide entre 8 et 9.

(ii) Il s’agit du premier quartile de l’échantillon, Q1. Ici n = 19 et donc la médiane est M =
x(10). Le premier quartile est donc défini comme étant la médiane du sous-échantillon
x(1), . . . , x(10), il est donc donné par (x(5) + x(6))/2 = 10.3.

(iii) Le troisième quartile est défini comme étant la médiane du sous-échantillon x(10), . . . , x(19),
il est donc donné par (x(14) + x(15))/2 = 12.3.

●7
8

9
10

11
12

13
14

Charge maximale

Q1=10.3

(iv) Voir le graphique ci-dessous. La valeur 7.1 est une valeur aberrante et le premier quartile
Q1 détermine la borne inférieure de la bôıte.

Exercice 28 (exercices 70–71). (Il serait utile de lire la section 6.5 des notes de cours
avant de commencer cet exercice.)

(i) Soit X ∼ Exp(λ) où λ > 0. Montrer que le α−quantile de X est

qα = F−
X (α) = − log(1− α)/λ,
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pour 0 < α < 1.

(ii) Les fonctions quantile déterminent les distributions : soientX et Y des variables aléatoires
quelconques avec des fonctions de répartition FX et FY . Supposons que F

−
X (α) = F−

Y (α)
pour tout α ∈]0, 1[. Montrer que FX = FY .

Solution 28.

(i) La fonction de répartition de la loi exponentielle de paramètre λ est donnée par

FX(x) = 1− exp(−λx), x ≥ 0.

Puisque cette fonction est continue et strictement croissante sur son support [0,∞), nous
obtenons que qα = F−

X (α) = F−1
X (α) et donc

α = FX(qα) = 1− exp(−λqα) =⇒ qα =
− ln(1− α)

λ
.

(ii) Supposons par l’absurde que FY (t) < FX(t) pour un certain t ∈ R. Il existe un ε > 0 tel
que FY (t+ ε) < FX(t), car FY est continue à droite. Il existe un α tel que FY (t+ ε) <
α < FX(t). Visiblement α ∈]0, 1[ et par les définitions de F−

X et F−
Y nous avons

F−
X (α) ≤ t < t+ ε ≤ F−

Y (α),

ce qui contredit l’hypothèse F−
X = F−

Y sur ]0, 1[. En supposant qu’il existe un t ∈ R tel
que FX(t) < FY (t), on arrive à une contradiction semblable.

Exercice 29 (exercice 20). Le tableau suivant contient les résultats des matchs de rugby à
XV des onzième et douzième journées (novembre 2014) du championnat français de rugby de
première (“Top 14”) et deuxième (“Pro D2”) division. L’équipe jouant à domicile est celle
notée à gauche du tiret.

Top 14 D2

Montpellier – Brive 10–25 Albi – Agen 22–9
Castres – Toulon 22–14 Béziers – Aurillac 14–19
Clermont – Stade Français 51–9 Colomiers – Pau 50–10
Grenoble – Lyon 34–30 Montauban – Tarbes 31–13
Oyonnax – La Rochelle 37–9 Biarritz – Massy 21–3
Racing Métro – Bayonne 27–10 Dax – Narbonne 12–3
Bordeaux Bègles – Toulouse 20–21 Perpignan – Bourgoin 42–0

Carcassonne – Mont-de-Marsan 17–28
Toulon – Clermont 27–19 Biarritz – Agen 42–18
Castres – Racing Métro 9–14 Albi – Carcassonne 34–22
La Rochelle – Bayonne 19–19 Aurillac – Colomiers 20–13
Lyon – Montpellier 23–20 Bourgoin – Montauban 14–20
Oyonnax – Bordeaux Bègles 28–23 Massy – Dax 50–13
Toulouse – Grenoble 22–25 Mont-de-Marsan – Béziers 32–18
Stade Français – Brive 20–17 Narbonne – Tarbes 36–23

Pau – Perpignan 22–19
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(i) Nous voulons comparer le comportement des équipes en première et en deuxième divi-
sion. Pour ce faire, calculer pour chacune des divisions quelques statistiques pertinentes
(la moyenne, la médiane, les quartiles et l’écart interquartile) pour la différence de points
entre le club jouant à domicile et le club visiteur et pour le somme des points par match.

(ii) Représenter côte à côte, sous forme de deux bôıtes à moustaches, la somme de points
par match en première et en deuxième divison. Faire de même pour la différence de
points. Quelles conclusions peut-on en tirer ?

Solution 29. (i) Voici les tables :

Différence de points Nombre total de points

Top 14 D2

Moyenne 6.7 14.2
Médiane 3.5 13
Q1 −0.5 7
Q3 8 18
EIQ 8.5 11
W1 −5 −6
W2 17 24

Top 14 D2

Moyenne 43.1 43.1
Médiane 42 43
Q1 37 33
Q3 46.5 56
EIQ 9.5 23
W1 23 15
W2 60 63

(ii) Voici les graphiques :

●

●

●

●

●

●

●
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En regardant le premier graphique ci-dessus, il semble que dans les deux ligues l’équipe
jouant à domicile gagne plus souvent. En plus, l’avantage du terrain est nettement plus
prononcé en D2. Il y a une proportion importante de valeurs aberrantes (4 sur 16, 3 sur
14), ce qui pourrait suggérer que les ligues ne sont pas équilibrées.

En regardant le second graphique, on ne peut pas dire qu’une certaine ligue est plus
défensive que l’autre. En revanche, la variation entre les matchs semble être plus grande
en D2. Il est intéressent de noter que la valeur aberrante correspond au match Grenoble–
Lyon, un classique du championnat de France, d’autant plus que la plupart des équipes
de rugby à XV viennent du sud de la France.
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Exercice 30 (exercice 21). Soient X1, . . . , Xn
iid∼ Unif(0, θ). Montrer que T (X1, . . . , Xn) =

X(n) est une statistique exhaustive pour θ, et trouver sa distribution d’échantillonage.

Solution 30. Pour chaque i, la fonction de densité de Xi est

fXi(xi; θ) =
1

θ
1{xi ∈ [0, θ]}.

Ainsi, les Xi étant indépendantes, la fonction de densité conjointe est

fX1,...,Xn(x1, . . . , xn; θ) =
1

θn

n∏
i=1

1{xi ∈ [0, θ]} =
1

θn
1{x(n) ≤ θ}1{x(1) ≥ 0}.

Par le théorème 2.3 (p. 48), nous avons que T (X1, . . . , Xn) = X(n) est une statistique exhaus-
tive pour θ.
Il est évident que P(X(n) ≤ 0) = 0 et P(X(n) ≤ θ) = 1. Pour 0 < t < θ,Xi étant indépendantes,
on a

FT (t; θ) = P
(
X(n) ≤ t

)
= P

(
n⋂

i=1

{Xi ≤ t}

)
=

n∏
i=1

P(Xi ≤ t) =

(
t

θ

)n

.

En prenant la dérivée, il s’en suit que T = X(n) est une variable aléatoire continue avec densité

fT (t; θ) = n
tn−1

θn
, t ∈ [0, θ].

Exercice 31 (exercice 22). Soient X1, . . . , Xn
iid∼ Pois(λ). Montrer que T (X1, . . . , Xn) =∑n

i=1Xi est une statistique exhaustive pour λ, et trouver sa distribution d’échantillonage.

Solution 31. Pour chaque i, la fonction de masse de Xi est

fXi(xi;λ) =
λxi

xi!
e−λ1{xi ∈ X}, X = {0, 1, 2, . . . }.

Ainsi, les Xi étant indépendantes, la fonction de masse conjointe est

fX1,...,Xn(x1, . . . , xn;λ) =
n∏

i=1

λxi

xi!
e−λ1{xi ∈ X} = λ

∑n
i=1 xie−nλ

(
n∏

i=1

1

xi!

)
1{xi ∈ X ∀i}.

Par le théorème 2.3 (p. 48), nous avons que T (X1, . . . , Xn) =
∑n

i=1Xi est une statistique
exhaustive pour λ.
D’après l’exercice 4, série 1, la distribution de T est Poisson(nλ), c’est-à-dire fT (t;λ) =
e−nλ(nλ)t/t! pour t = 0, 1, 2, . . . .

Exercice 32 (le théorème 2.9 (p. 54) du livre). Prouver que si X1, . . . , Xn
iid∼ N(µ, σ2), alors

X̄ − µ

S/
√
n

∼ tn−1

où tn−1 représente la distribution de Student avec n− 1 degrés de libérte.
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Solution 32. Let

T =
X̄ − µ

S/
√
n

We need to show that fT (t), the density function of T , is as in Definition 2.10 (p.54). Observe
that T can be written as a function of two independent random variables Z = (X̄−µ)/(σ/

√
n)

and V = (n− 1)S2/σ2 (by Proposition 2.7, p.51) :

T =
Z√
V

n−1

Since,

fZ,V (z, v) = fZ(z)fV (v) =
1

2
n
2 π

1
2Γ(n−1

2 )
v

n−1
2

−1e−
1
2
(v+z2)

we can apply Theorem 1.33 (p.28) to the transformation

g : (Z, V ) 7→ (T, V ) =

(
Z√

V/(n− 1)
, V

)
to get

fT,V (t, v) =
1

2n/2
√
π(n− 1)Γ(n−1

2 )
· v

n−2
2 e−

v
2
(1+ t2

n−1
)

And as a consequence,

fT (t) =
1

2n/2
√

π(n− 1)Γ(n−1
2 )

·
∫ ∞

0
v

n−2
2 e

− v
2

(
1+ t2

n−1

)
dv

Substitute

y =
v

2

(
t2

n− 1
+ 1

)
for v and integrate to obtain the marginal distribution of T . The conclusion follows.

Exercice 33 (Une preuve alternative de la proposition 2.7, p. 51). Soient X1, . . . , Xn
iid∼

N(µ, σ2). Définir

a1 =
1√
n
(1, 1, . . . , 1)′,

a2 =
1√
2
(1,−1, 0, . . . , 0)′,

a3 =
1√
6
(1, 1,−2, 0, . . . , 0)′,

...

an =
1√

n(n− 1)
(1, 1, . . . , 1,−(n− 1))′.

(i) Définir la n × n matrice A = [a1 : a2 : . . . : an]. Montrer que A est un matrice
orthogonale, c’est-à-dire ATA = AAT = In, où In est la n× n matrice d’identité.
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(ii) Définir la transformation Yi = a′i(X −m), i = 1, 2, . . . , n, où X = (X1, X2, . . . , Xn)
′ et

m = (µ, µ, . . . , µ)′. Trouvez la densité conjointe de Y1, Y2, . . . , Yn. Sont-ils indépendants ?
Quelle est la distribution de Yi pour chaque i ?

(iii) Montrer que

Y1 =
√
n(X̄ − µ) &

n∑
i=2

Y 2
i = (n− 1)S2.

Indice : Puisque A est une matrice orthogonale,
∑n

i=1 Y
2
i =

∑n
i=1(Xi − µ)2.

(iv) Utilisez la partie (iii) pour montrer que X̄ et S2 sont indépendants. Montrer aussi que
X̄ ∼ N(µ, σ2/n) et (n− 1)S2/σ2 ∼ χ2

n−1.

Solution 33.

(i) It is easy to show that a′1a1 = 1. Observe that for any 2 ≤ j ≤ n, the lth term of aj
equals [j(j − 1)]−1/2 if l = 1, 2, . . . , (j − 1), equals −[(j − 1)/j]1/2 if l = j, and equals 0
if l > j. So, direct calculation shows that

a′jaj = 1 & a′ja1 = [nj(j − 1)]−1/2

{
j−1∑
l=1

1− (j − 1)

}
= 0

for all j = 2, 3, . . . , n. Further, for any 2 ≤ j < k ≤ n,

a′jak = [jk(j − 1)(k − 1)]−1/2

{
j−1∑
l=1

1− (j − 1)

}
= 0.

Thus, ATA = In. Since A is a n × n matrix, this also implies that AT = A−1 and
AAT = In.

(ii) In matrix notation, Y = AT (X − m), where Y = (Y1, Y2, . . . , Yn)
′. Thus, the inverse

transformation is given by X = AY + m, which is a linear transformation. So, Xi =
b′
iY + µ for all i = 1, 2, . . . , n, where b′

i is the ith row of A. Also, the Jacobian of
the inverse transformation is A. Since A is an orthogonal matrix, |det(A)| = 1. Define
y = (y1, y2, . . . , yn)

′. The joint distribution of Y1, Y2, . . . , Yn is given by

fY1,Y2,...,Yn(y1, y2, . . . , yn) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(b′
iy + µ− µ)2

}
× |det(A)|

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

y′bib
′
iy

}

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2
y′

(
n∑

i=1

bib
′
i

)
y

}

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2
y′ (ATA

)
y

}
=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2
y′y

}
=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

y2i

}
.
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So,

fY1,Y2,...,Yn(y1, y2, . . . , yn) =
n∏

i=1

(
1

2πσ2

)1/2

exp

{
− y2i
2σ2

}
,

which implies that Y1, Y2, . . . , Yn are independent random variables. Further, Yi ∼
N(0, σ2) for each i = 1, 2, . . . , n.

(iii) By definition of Y1, it follows that Y1 = n−1/2
∑n

i=1(Xi − µ) =
√
n(X̄ − µ).

Observe that

n∑
i=1

Y 2
i = Y′Y = (X−m)′AAT (X−m) = (X−m)′(X−m) =

n∑
i=1

(Xi − µ)2.

Thus,

n∑
i=2

Y 2
i =

n∑
i=1

Y 2
i − Y 2

1 =
n∑

i=1

(Xi − µ)2 − n(X̄ − µ)2 =
n∑

i=1

(Xi − X̄)2 = (n− 1)S2.

(iv) Note that X̄ is a function of Y1 only and S2 is a function of Y2, Y3, . . . , Yn. Since Y1 is
independent of Y2, Y3, . . . , Yn, it follows that X̄ and S2 are independent.

Since Y1 ∼ N(0, σ2), it follows that X̄ ∼ N(µ, σ2/n). Further, (n−1)S2/σ2 =
∑n

i=2(Yi/σ)
2.

As Yi/σ
iid∼ N(0, 1) for i = 2, 3, . . . , n, the latter sum is that of (n − 1) independent χ2

1

random variables. So, (n− 1)S2/σ2 ∼ χ2
n−1.

Exercice 34. Soient X1, X2, . . . , Xn
iid∼ N(0, 1). Montrer que X2

i /
∑n

j=1X
2
j et

∑n
j=1X

2
j sont

indépendants pour chaque i = 1, 2, . . . , n.

Solution 34. First observe that the random variables Yi = X2
i , i = 1, 2, . . . , n, are inde-

pendent, and each one of them have a χ2
1 distribution. So, the joint density of Y1, Y2, . . . , Yn

is given by

fY1,Y2,...,Yn =
cn exp {−

∑n
i=1 yi/2}

(y1y2 . . . yn)1/2
,

where cn is a constant depending on n.
Define the transformation Z1 =

∑n
i=1 Yi, Z2 = Y2/Z1, . . . , Zn = Yn/Z1. The inverse transfor-

mation is given by Y1 = Z1(1 −
∑n

i=2 Zi), Y2 = Z1Z2, . . . , Yn = Z1Zn. The Jacobian of the
inverse transformation is given by

1−
∑n

i=2 zi −z1 −z1 −z1 . . . −z1
z2 z1 0 0 . . . 0
z3 0 z1 0 . . . 0
...

...
...

... . . .
...

zn 0 0 0 . . . z1

 =

[
1−

∑n
i=2 zi a′

b z1In−1

]
,

where a = (−z1,−z1, . . . ,−z1)
′ and b = (z2, z3, . . . , zn)

′. Using the formula for the determi-
nant of a partitioned matrix, it follows that the determinant of the Jacobian of the inverse
transformation is det(z1In−1)× {1−

∑n
i=2 zi − a′z−1

1 In−1b} = zn−1
1 .
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So, the joint density of Z1, Z2, . . . , Zn is given by

fZ1,Z2,...,Zn(z1, z2, . . . , zn) =
cn exp{−z1/2}zn−1

1

(zn1 [1−
∑n

i=2 zi]z2z3 . . . zn)
1/2

=
cn z

n/2−1
1 exp{−z1/2}

([1−
∑n

i=2 zi]z2z3 . . . zn)
1/2

.

Thus, Z1 is independent of Z2, Z3, . . . , Zn. Since Y1/Z1 = 1 −
∑n

i=2 Yi/Z1 = 1 −
∑n

i=2 Zi, it
follows that Y1/Z1 is also independent of Z1.

Exercice 35 (exercice 23). Soient X1, . . . , Xn
iid∼ f , où f est de la forme d’une famille expo-

nentielle, exprimée dans la paramétrisation usuelle comme f(x) = exp [η(θ)T (x)− d(θ) + S(x)],
θ ∈ Θ ⊆ R ouvert. Montrer que :

(i) Si η est k-fois continûment dérivable (k ≥ 1) et inversible avec la dérivée jamais nulle,
alors d est aussi k-fois continûment dérivable.

(ii) Si η est deux fois continûment dérivable et inversible avec la dérivée jamais nulle, alors

E[τ(X1, . . . , Xn)] = n
d′(θ)

η′(θ)
& Var[τ(X1, . . . , Xn)] = n

d′′(θ)η′(θ)− d′(θ)η′′(θ)

[η′(θ)]3
,

où τ(X1, . . . , Xn) =
∑n

i=1 T (Xi).

Indice : utiliser le théorème de la fonction inverse (théorème 6.2, p. 162).

Solution 35.

(i) Nous avons que f(x) = exp [η(θ)T (x)− d(θ) + S(x)] = exp [ϕT (x)− γ(ϕ) + S(x)] où
η(θ) = ϕ et γ(ϕ) = γ(η(θ)) = d(θ) avec d = γ ◦ η. Puisque η(θ) est dérivable k fois par
l’hypothèse, d le sera aussi, à condition que γ soit suffisamment dérivable. D’après la
proposition 2.11 (p. 57), il suffit d’établir que

Φ = η(Θ) = {ϕ ∈ R : il existe un θ ∈ Θ tel que ϕ = η(θ)}

est un ouvert ; il en résulte que γ est infiniment dérivable.

Pour ce faire, nous devons montrer que pour chaque ϕ0 ∈ Φ, il existe un δ > 0 tel que

]ϕ0 − δ, ϕ0 + δ[ ⊆ Φ = η(Θ).

On remarque tout d’abord que, puisque ϕ0 ∈ Φ, forcément ϕ0 = η(θ0) pour un certain
θ0 ∈ Θ. Maintenant, on va utiliser les deux faits suivants :

(i) Sous l’hypothèse Θ est ouvert, il existe donc ϵ > 0 tel que ]θ0 − ϵ, θ0 + ϵ[ ⊆ Θ.

(ii) La dérivée η′ est continue et η′(θ0) ̸= 0. Le théorème de fonction inverse implique
que η−1 est continue (en fait, continûment dérivable) sur un intervalle ouvert I
contenant ϕ0 = η(θ0).

Ceci montre que η est un homéomorphisme local et donc η est une application ouverte,
et la preuve est achevée. Ceux qui n’aiment pas la topologie devraient se contenter de
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l’argument élémentaire suivant : η−1 étant continue sur I ∋ η(θ0) = ϕ0, il existe un
δ > 0 tel que

|ϕ− ϕ0| < δ =⇒ | η−1(ϕ)︸ ︷︷ ︸
=θ (disons)

− η−1(ϕ0)︸ ︷︷ ︸
=θ0

| < ϵ

de sorte que ]ϕ0 − δ, ϕ0 + δ[ ⊆ I et ϵ est défini par (i).

Pour résumer : il existe un δ > 0 tel que pour chaque ϕ ∈ ]ϕ0 − δ, ϕ0 + δ[ il existe
θ ∈ ]θ0 − ϵ, θ0 + ϵ[ ⊆ Θ pour lequel ϕ = η(θ), et donc ]ϕ0 − δ, ϕ0 + δ[ ⊆ Φ = η(Θ). Or ϕ0

est arbitraire ; ceci montre donc que Φ est ouvert et donc γ est infiniment dérivable. Il
s’en suit que si η est k fois dérivable, alors d = γ ◦ η l’est aussi.

Remarque. La fonction η(θ) = θ3 est bijective et dérivable, mais sa dérivée s’annule
en zéro.

(ii) Par la proposition 2.11, nous savons que E[τ(X1, . . . , Xn)] = nγ′(ϕ) où

γ′(ϕ) = γ′(η(θ)) =
(γ ◦ η)′(θ)

η′(θ)
=

d′(θ)

η′(θ)
,

car (f ◦ g)′(x) = f ′(g(x))g′(x). Ainsi, E[τ(X1, . . . , Xn)] = nd′(θ)
η′(θ) .

Par la proposition 2.11, nous savons aussi que Var[τ(X1, . . . , Xn)] = nγ′′(ϕ) où

γ′′(ϕ) = γ′′(η(θ)) =
(γ′(η(θ)))′

η′(θ)
=

(
d′(θ)

η′(θ)

)′ 1

η′(θ)
=

d′′(θ)η′(θ)− d′(θ)η′′(θ)

[η′(θ)]3
.

Ainsi, Var[τ(X1, . . . , Xn)] = nd′′(θ)η′(θ)−d′(θ)η′′(θ)
[η′(θ)]3 .

Exercice 36 (loi des événements rares, exercice 24). Soit {Xn}n≥1 une séquence de variables
aléatoires Bin(n, pn), telle que pn = λ/n, pour une certaine constante λ > 0. Montrer que

Xn
d−→ Y, où Y ∼ Poisson(λ).

Indice : (1) montrer que pour k ∈ N ∪ {0}, P(Xn = k) → P(Y = k). (2) Déduire que
P(Xn ≤ k) → P(Y ≤ k). (3) Conclure.

Solution 36. Suivant l’indice, montrons que fXn(x)
n→∞−→ fY (x),∀x ∈ {0} ∪ N. Rappelons

que (pour n ≥ λ)

fY (x) = e−λλ
x

x!
et fXn(x) =

(
n

x

)
pxn(1− pn)

n−x =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x

.

Nous pouvons réécrire fXn(x) de la façon suivante :

fXn(x) =
n!

x!(n− x)!

λx

nx

(
1− λ

n

)n(
1− λ

n

)−x

=
n(n− 1) · . . . · (n− x+ 1)

nx

λx

x!

(
1− λ

n

)n(
1− λ

n

)−x

=

(
n

n

n− 1

n
· . . . · n− x+ 1

n

)(
1− λ

n

)−x λx

x!

(
1− λ

n

)n

.
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Le terme dans la première parenthèse contient le produit d’un nombre fixe x < ∞ de termes
qui convergent vers 1 lorsque n → ∞, il converge donc vers 1. La deuxième parenthèse
converge aussi vers 1, puisque x est constant. Finalement, la troisième parenthèse converge
vers e−λ. Nous obtenons donc que(

n

x

)(
λ

n

)x(
1− λ

n

)n−x
n→∞−→ e−λλ

x

x!
, ∀x ∈ {0} ∪ N.

Ensuite, on remarque que pour k ∈ N ∪ {0},

P(Xn ≤ k) =
k∑

x=0

P(Xn = x) →
k∑

x=0

P(Y = x) = P(Y ≤ k), n → ∞.

Les deux égalités viennent du fait que Xn ainsi que Y prennent des valeurs uniquement dans
N ∪ {0}.
Pour t < 0, P(Xn ≤ t) = 0 = P(Y ≤ t). Pour t ≥ 0, posons k = [t] = max{n ∈ Z : n ≤ t}.
Alors

P(Xn ≤ t) = P(Xn ≤ k) → P(Y ≤ k) = P(Y ≤ t), n → ∞.

Par définition, on a donc Xn
d→ Y .

Exercice 37 (de la distribution exponentielle à la géométrique et inversement).

(i). Soit X ∼ Exp(λ) pour λ > 0. Montrer que ⌊X⌋ ∼ Geom(p) pour un p approprié à
trouver. (On définit ⌊t⌋ = max{n ∈ Z : n ≤ t}, pour t ∈ R.)

(ii). Soit {Xn}∞n=1 une suite de variables aléatoires avec Xn ∼ Geom
(
λ
n

)
et soit Z ∼ Exp(λ),

pour un certain λ > 0. Montrer que Xn
n

d→ Z, lorsque n → ∞.

Solution 37.

(i). Soit Y = ⌊X⌋, où X ∼ Exp(λ). Alors, on calcule, pour chaque k ∈ N ∪ {0} :

P(Y = k) = P(k ≤ X < k + 1)

=

∫ k+1

k
λe−λxdx

=
[
−e−λx

]k+1

k

= e−λk − e−λ(k+1)

= e−λk(1− e−λ)

= (1− p)kp

où on a défini p = 1− e−λ. Nous avons que p ∈ (0, 1), car λ > 0. Alors Y ∼ Geom(p).
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(ii). Pour montrer la convergence en loi, il faut calculer la fonction de répartition de Xn/n.
Pour chaque t ∈ R, t ≥ 0, nous avons :

P
(
Xn

n
> t

)
= P(Xn > nt)

=

∞∑
k=⌊nt⌋+1

(
1− λ

n

)k λ

n

=
λ

n

(
1− λ

n

)⌊nt⌋+1

1−
(
1− λ

n

)
=

(
1− λ

n

)nt(
1− λ

n

)rn

, rn = ⌊nt⌋+ 1− nt,

où 0 < rn ≤ 1 pour tout n ∈ N.
Puisque

(
1− λ

n

)
≤ 1, on a que

(
1− λ

n

)
≤
(
1− λ

n

)rn ≤ 1 pour tout n ∈ N, et donc(
1− λ

n

)rn → 1 lorsque n → ∞ (on utilise le théorème de deux gendarmes). Puis,(
1− λ

n

)nt → e−λt, lorsque n → ∞, parce que t ∈ R est fixé.

En résumé, nous avons montré que pour tout t ∈ R,

FXn/n(t) = 1− P
(
Xn

n
> t

)
→ 1− e−λt

lorsque n → ∞ (c’est évident quand t < 0). Le membre à droite est la fonction de

répartition d’une variable aléatoire Exp(λ), et donc Xn/n
d→ Z, où Z ∼ Exp(λ).

Exercice 38 (exercice 25). On dit qu’une suite de variables aléatoires Xn converge vers une
variable aléatoire Y en probabilité (p. 60) si

∀ϵ > 0 lim
n→∞

P[|Xn − Y | > ϵ] = 0.

Dans ce cas on écrit Xn
p→ Y .

Soit {Xn}∞n=1 une suite de variables aléatoires avec

Xn = (−1)nX, P(X = −1) = P(X = 1) =
1

2
.

Montrer que Xn
d→ X, mais que Xn

p↛ X.

Solution 38. La variable aléatoire X est discrète avec fonction de masse :

fX(x) = P(X = x) =


1/2 si x = 1
1/2 si x = −1
0 sinon.

Si n est pair, nous avons que Xn = X et donc fXn = fX . Si n est impair nous avons :

fXn(x) = P(Xn = x) = P(−X = x) = P(X = −x) =


1/2 si x = 1
1/2 si x = −1
0 sinon.

27



MATH240 – Statistiques Prof. Victor Panaretos

Nous avons donc montré que fXn = fX , quelque soit n. Il s’en suit que Xn
d→ X.

Notons que pour n pair, nous avons que ∀ϵ > 0 :

P(|Xn −X| > ϵ) = P(0 > ϵ) = 0.

Par contre, si n est impair, nous avons que

P(|Xn −X| > ϵ) = P(| − 2X| > ϵ) = P(2 > ϵ) = 1,

pour 0 < ϵ < 2. Ainsi la séquence {P(|Xn −X| > ϵ)}n≥1 est de la forme {0, 1, 0, 1, . . .}, elle
ne converge donc pas et on peut conclure que Xn

p↛ X.

Exercice 39 (exercise 27). Soient X1, . . . , Xn
iid∼ Pois(λ), où λ ∈ (0,∞)\{1} et considérons

la probabilité π = P(Xi = 1) = λe−λ. Nous voulons estimer π par π̂n = λ̂ne
−λ̂n où λ̂n =

1
n

∑n
i=1Xi. Montrer que √

n(π̂n − π)√
λ̂ne−λ̂n(1− λ̂n)

d−→ Y,

où Y ∼ N (0, 1). Indication : vous aurez besoin du théorème limite central, de la méthode
delta, de la loi faible des grands nombres ainsi que du théorème de Slutsky.

Solution 39. Puisque les variables aléatoires X1, . . . , Xn sont iid de moyenne E[Xi] = λ et
Var[Xi] = λ < ∞, nous avons par le théorème limite central que

√
n(λ̂n − λ)

d−→ Y,

avec Y ∼ N(0, λ). Définissons g : R → R par g(x) = xe−x. Par la méthode delta, nous
obtenons que

√
n(g(λ̂n)− g(λ))

d−→ Y · g′(λ),
où g(λ̂n) = π̂n, g(λ) = π et g′(λ) = e−λ(1− λ). Ainsi,

√
n(π̂n − π)

d−→ Y1,

avec Y1 ∼ N(0, λe−2λ(1− λ)2).

De plus, par la loi faible des grands nombres, nous savons que λ̂n
p−→ λ. Soit h : R×R+ → R

une fonction définie telle que h(x, y) = x√
ye−y(1−y)

. Par le théorème de Slutsky, nous obtenons
que √

n(π̂n − π)√
λ̂ne−λ̂n(1− λ̂n)

= h(
√
n(π̂n − π), λ̂n)

d−→ h(Y1, λ) =
Y1√

λe−λ(1− λ)
= W,

avec W ∼ N(0, 1), ce qui conclut la preuve.

Exercice 40 (exercice 28). Soient x1, . . . , xn des réalisations indépendantes d’une variable
aléatoire X ayant une fonction de densité f continue. Soit y ∈ R, montrer que la fonction
histx1,...,xn(y) converge en probabilité vers f(y), lorsque n → ∞, hn → 0 et nhn → ∞. Indica-
tion : le nombre d’observation tombant dans l’intervalle Ijn , donné par Nn =

∑n
i=1 1{xi∈Ijn},

suit une loi Bin(n, pn) où pn =
∫
Ijn

f(x)dx. Vous aurez besoin d’utiliser le fait que∣∣∣∣ Nn

nhn
− f(y)

∣∣∣∣ ≤ ∣∣∣∣ Nn

nhn
− pn

hn

∣∣∣∣+ ∣∣∣∣pnhn − f(y)

∣∣∣∣ ,
ainsi que l’inégalité de Chebyshev (lemme 6.4, p. 163).
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Solution 40. Supposons sans perte de généralité que y ∈ Ijn et dénotons
∑n

i=1 1{xi∈Ijn} par
Nn ∼ Binom(n, pn). Nous avons alors

|histx1,...,xn(y)− f(y)| =

∣∣∣∣ Nn

nhn
− f(y)

∣∣∣∣
≤

∣∣∣∣ Nn

nhn
− pn

hn

∣∣∣∣+ ∣∣∣∣pnhn − f(y)

∣∣∣∣ , (2)

où pn =
∫
Ijn

f(x)dx. Notons que puisque f est continue, nous avons que ∀δ > 0, ∃ρ > 0 tel

que |f(x)− f(y)| ≤ δ si |x− y| ≤ ρ. Puisque hn → 0 il existe Nδ tel que pour n > Nδ, hn ≤ ρ.
La longueur de Ijn est hn, donc pour chaque n > Nδ on a

hn(f(y)− δ) =

∫
Ijn

(f(y)− δ) dx ≤
∫
Ijn

f(x) dx ≤
∫
Ijn

(f(y) + δ) dx = hn(f(y) + δ).

Ainsi, pour chaque n > Nδ on a |pn/hn − f(y)| ≤ δ. Ceci est vrai pour chaque δ > 0, et on
conclut que le deuxième terme de l’expression (2) converge vers 0 lorsque n → ∞.
De plus, par l’inégalité de Chebyshev (lemme 6.4, p. 163 du livre),

P
(∣∣∣∣ Nn

nhn
− pn

hn

∣∣∣∣ > ϵ

)
= P(|Nn − npn| > nhnϵ) ≤

npn(1− pn)

(nhnϵ)2
=

pn(1− pn)

nh2nϵ
2

.

Nous obtenons donc

lim
n→∞

P(|histx1,...,xn(y)− f(y)| > ϵ) ≤ lim
n→∞

[
P
(∣∣∣∣ Nn

nhn
− pn

hn

∣∣∣∣ > ϵ

2

)
+ P

(∣∣∣∣pnhn − f(y)

∣∣∣∣ > ϵ

2

)]
≤ lim

n→∞

4pn(1− pn)

nh2nϵ
2

= 4 lim
n→∞

pn
hn

· lim
n→∞

1− pn
nhnϵ2

= 0.

*Exercice 41 (exercice 26). Prouver le lemme 2.20 (p. 60) du livre.
(L’étoile est la notation standard dans les livres de mathématiques pour des exercices plus
difficiles.)

Solution 41.
(⇒) Notons tout d’abord que Xn

d−→ c signifie que ∀x ̸= c

P(Xn ≤ x)
n→∞−→ P(c ≤ x) =

{
1 si x ≥ c
0 si x < c.

Nous pouvons maintenant calculer :

P(|Xn − c| > ϵ) = P(Xn > c+ ϵ) + P(Xn < c− ϵ)

≤ 1− P(Xn ≤ c+ ϵ) + P(Xn ≤ c− ϵ)
n→∞−→ 1− P(c ≤ c+ ϵ) + P(c ≤ c− ϵ)

= 1− 1 + 0

= 0.
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Nous venons de montrer que Xn
p−→ c.

(⇐) Rappelons tout d’abord que lorsque A ⊆ B, alors P(A) ≤ P(B). Soit ϵ > 0 et x ̸= c,
nous avons :

P(Xn ≤ x) = P(Xn ≤ x, |Xn − c| > ϵ) + P(Xn ≤ x, |Xn − c| ≤ ϵ)

≤ P(|Xn − c| > ϵ) + P(c ≤ x+ ϵ)
n→∞−→ P(c ≤ x+ ϵ). (3)

L’inégalité vient du fait que l’événement {Xn ≤ x, |Xn − c| > ϵ} est inclus dans l’événement
{|Xn − c| > ϵ} et que l’événement {Xn ≤ x, |Xn − c| ≤ ϵ} est inclus dans l’événement

{c ≤ x+ ϵ}. Quant à elle la dernière ligne est une conséquence du fait que Xn
p−→ c.

De façon similaire nous obtenons que :

P(c ≤ x− ϵ) = P(c ≤ x− ϵ, |Xn − c| > ϵ) + P(c ≤ x− ϵ, |Xn − c| ≤ ϵ)

≤ P(|Xn − c| > ϵ) + P(Xn ≤ x),

ce qui implique

P(Xn ≤ x) ≥ P(c ≤ x− ϵ)− P(|Xn − c| > ϵ)
n→∞−→ P(c ≤ x− ϵ). (4)

En combinant les équations (3) et (4) et le fait que ϵ soit arbitraire, nous obtenons finalement

que Xn
d−→ c.

Exercice 42 (exercise 29). Nous allons traiter la question de l’existence d’estimateurs non
biaisés.
Soit Y∼Bin(n, p), où p ∈ ]0, 1[ .

(i) Montrer que Y/n est un estimateur non biaisé pour p.

(ii) Montrer qu’il n’existe pas d’estimateur non biaisé pour 1/p.

(iii) Montrer qu’il n’existe pas d’estimateur non biaisé pour le paramètre naturel ϕ = log
(

p
1−p

)
.

Remarque : ϕ s’appelle le log odds ratio ou de manière moins anglophone le log du rap-
port des chances.

Solution 42.

(i) L’estimateur Y/n est non-biaisé car

E
(
Y

n

)
=

np

n
= p.

(ii) On cherche une fonction U telle que

1

p
= Ep[U(Y )] =

n∑
k=0

(
n

k

)
U(k)pk(1− p)n−k, ∀p ∈ ]0, 1[.

Or, le membre droite de l’équation est un polynôme alors que le membre gauche ne l’est
pas. Ainsi, une telle fonction U ne peut pas exister. (Un autre raisonnement serait de
dire que la limite du membre gauche de l’équation lorsque p ↘ 0 est ∞.)
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(iii) Pareil qu’en (ii) : supposons que V (Y ) soit un estimateur non biaisé de ϕ, c’est-à-dire
que Ep(V (Y )) = ϕ. Nous avons alors

n∑
k=0

(
n

k

)
V (k)pk(1− p)n−k = Ep[V (Y )] = ϕ = log

(
p

1− p

)
.

Le polynôme ci-dessus est de degré inférieur ou égale à n, tandis que ϕ n’est pas un
polynôme de degré fini, nous obtenons donc une contradiction.

Exercice 43. Soient X1, . . . , Xn
iid∼ Poisson(λ). Définissons les estimateurs λ̂n = Xn =∑n

i=1Xi/n et S2
n = (n− 1)−1

∑n
i=1(Xi −Xn)

2.

Montrer que VarS2
n ≥ Var λ̂n.

Indice : la borne de Cramér–Rao peut s’averer utile.

Solution 43. Remarquons que Xn est un estimateur non biaisé pour λ, puisque

Eλ(Xn) =
nλ

n
= λ.

On va montrer que Xn atteint la borne de Cramér-Rao. Il suffit de calculer le logarithme de
la loi de probabilité de Poisson, et de dériver :

I(λ) = E
(
∂ log fλ(X)

∂λ

)2

= E
(
X

λ
− 1

)2

=
EX2

λ2
− 2

EX

λ
+ 1 =

λ2 + λ− 2λ2 + λ2

λ2
=

1

λ
.

Ainsi I(λ) = 1/λ. Comme Xn est un estimateur non biaisé de λ, la borne de Cramér–Rao est

Varλ(Xn) ≥
1

nI(λ)
=

λ

n
.

Or Varλ(Xn) = Var(X)/n = λ/n, donc Xn atteint cette borne.
Pour S2

n, on effectue la manipulation suivante (voir l’exercice 4, série 3) :

S2
n =

1

n− 1

n∑
i=1

X2
i − 2XiX + (X)2

=
1

n− 1

(
n∑

i=1

X2
i − n(X)2

)

=
1

n− 1

(
n∑

i=1

X2
i −

(
∑n

i=1Xi)
2

n

)
.

Puisque Xi ∼ Poi(λ),

Eλ(X
2
i ) = Varλ(Xi) + (Eλ(Xi))

2 = λ+ λ2.

D’après exercice 2, série 4 (exercice 22 du livre), on sait que Z =
∑n

i=1Xi ∼ Poi(nλ), et donc
Eλ(Z

2) = Varλ(Z) + (Eλ Z)2 = nλ+ (nλ)2.
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Par la linéarité de l’espérance, on écrit

Eλ(S
2
n) =

1

n− 1

 n∑
i=1

Eλ(X
2
i )−

1

n
Eλ

(
n∑

i=1

Xi

)2


=
1

n− 1

(
n(λ+ λ2)− nλ+ n2λ2

n

)
=

1

n− 1

(
(n− 1)λ+ nλ2 − nλ2

)
= λ.

Autrement dit, S2
n est lui aussi un estimateur non biaisé pour λ. Puisque Xn atteint la borne

de Cramér-Rao, on sait que
Var λ̂n ≤ VarS2

n.

Un calcul exacte de la variance de S2
n est possible, en utilisant VarS2

n = E[S2
n]

2− [ES2
n]

2, mais
fastidieux.

Exercice 44. Soient X1, . . . , Xn
iid∼ Exp(λ), où n > 2.

(i) Montrer que l’estimateur λ̂n = (X)−1 est consistent pour λ.

(ii) Montrer que Eλ(λ̂n) = λn
/
(n− 1), et trouver un estimateur λ̂NB

n non biaisé de λ.

Indice : utiliser le fait que Z =
∑n

i=1Xi ∼ Gamma(n, λ).

(iii) Montrer que Varλ(λ̂n) = n2 λ2
/(

(n− 1)2 (n− 2)
)
.

(iv) L’estimateur λ̂NB
n atteint-il la borne inférieure de Cramér–Rao ?

Solution 44.

(i) On a que Xi, i = 1, . . . , n sont i.i.d, et Eλ(Xi) =
1
λ . Donc, par la loi des grands nombres,

X =
1

n
Xi

p→ 1

λ
.

En utilisant la theoréme de l’application continue avec la fonction g(x) = 1
x , on a

X
−1 p→ λ,

ce qui dit justement que λ̂n = X
−1

est consistent pour λ.

(ii) On utilise le fait que Z =
∑n

i=1Xi ∼ Gamma(n, λ), et on écrit λ̂n = n/Z. Ainsi

Eλ(λ̂n) = n

∫ ∞

0

1

z
fλ,n(z)dz = n

∫ ∞

0

1

z
· 1

Γ(n)
λe−λz(λz)n−1dz

=
nΓ(n− 1)

Γ(n)
λ

∫ ∞

0

1

Γ(n− 1)
λe−λz(λz)n−2dz =

n

n− 1
λ.

L’estimateur λ̂NB
n = n−1

n λ̂n est donc non biaisé. La dernière égalité vient du fait que
l’intégrale vaut 1, et que Γ(x) = (x− 1)Γ(x− 1) pour tout x > 1.
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(iii) Calculons

Eλ(λ̂
2
n) = n2

∫ ∞

0

1

z2
fλ,n(z)dz = n2

∫ ∞

0

1

z2
· 1

Γ(n)
λe−λz(λz)n−1dz

=
n2Γ(n− 2)

Γ(n)
λ2

∫ ∞

0

1

Γ(n− 2)
λe−λz(λz)n−3dz =

n2

(n− 1)(n− 2)
λ2.

Ainsi

Varλ(λ̂n) = Eλ(λ̂
2
n)− [Eλ(λ̂n)]

2

=
n2

(n− 1)(n− 2)
λ2 − n2

(n− 1)2
λ2

=
n2

(n− 1)2(n− 2)
λ2.

(iv) L’information de Fisher I(λ) est

I(λ) = E

[{
∂

∂λ
log (λ exp (−λX1))

}2
]

= E

[{
1

λ
−X1

}2
]

= E
[
1

λ2
− 2

λ
X1 +X2

1

]
=

1

λ2
,

car X1 ∼ Exp(λ) dont l’éspérance est 1/λ et la variance 1/λ2. La borne de Cramér–Rao
est donc (nI(λ))−1 = λ2/n.

Comme Varλ(λ̂
NB
n ) = λ2/(n− 2) > λ2/n, l’estimateur λ̂NB

n n’atteint (tout juste) pas la
borne de Cramér-Rao.

Exercice 45. Soient X1, . . . , Xn
iid∼ Poisson(λ).

(i) Montrer que l’estimateur du maximum de vraisemblance λ̂n de λ est consistant et non-
biaisé.

(ii) Donner un estimateur (par exemple une simple modification de λ̂n) qui est consistant,
mais néanmoins biaisé.

Solution 45.

(i) On a λ̂n = n−1
∑n

i=1Xi. Par la loi faible des grands nombres, λ̂n
p→ EX1 = λ et donc

λ̂n est consistant. Puisque E[λ̂n] = λ, λ̂n est en plus non-biaisé.

(ii) L’estimateur λ̃n = λ̂n+
1
n est un exemple d’estimateur biaisé mais consistant. L’estima-

teur n+1
n λ̂n en est un autre.

Exercice 46 (exercice 31). Soient X1, . . . , Xn
iid∼ Exp(λ), où n > 2.

(i) Trouver l’estimateur du maximum de vraisemblance λ̂n.
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(ii) Déterminer l’estimateur du maximum de vraisemblance θ̂MV
n et la borne de Cramér–Rao

associés au paramètre θ = 1/λ. Peut-on utiliser la proposition 3.17 ?

(iii) Comparer λ̂n et θ̂MV
n avec les bornes de Cramér–Rao correspondantes. Attention : quand

l’estimateur est biaisé, le nominateur de la borne de Cramér–Rao n’est pas 1.

Solution 46.

(i) En dérivant la fonction de log vraisemblance (par rapport à λ)

ℓn(λ) = log(λne−λ
∑n

i=1 xi) = n log λ− λ
n∑

i=1

xi,

et en la posant égale à zéro, nous obtenons

λ̂n =
n∑n
i=1 xi

=
1

Xn

.

La fonction ℓn étant concave, il s’agit bien d’un maximum.

(ii) Nous pouvons en effet utiliser la proposition 3.17, puisque λ 7→ θ = 1
λ sur ]0,∞[ est une

fonction bijective de λ. Donc θ̂MV
n = 1/λ̂n = X̄n. C’est un estimateur non biaisé de θ.

(iii) Nous savons que

Eλ(λ̂n) =
n

n− 1
λ =⇒ β(λ) = Eλ λ̂n − λ =

λ

n− 1
.

L’information de Fisher I(λ) est

I(λ) = E

[{
∂

∂λ
log (λ exp (−λX1))

}2
]

= E

[{
1

λ
−X1

}2
]

= E
[
1

λ2
− 2

λ
X1 +X2

1

]
=

1

λ2
,

car X1 ∼ Exp(λ) dont l’espérance est 1/λ et la variance 1/λ2. La borne de Cramér–Rao
est donc

(β′(λ) + 1)2

nI(λ)
=

(1 + 1/(n− 1))2

n/λ2
=

n2λ2

n(n− 1)2
=

nλ2

(n− 1)2
.

(Au fait, la borne de Cramér–Rao correspondante à aT est a2 fois la borne de Cramér–
Rao correspondante à T , si a ∈ R ; on aurait donc pu utiliser le fait que la borne de
Cramér–Rao pour λ̂NB

n = (n− 1)λ̂n/n est λ2/n.)

Or

Varλ(λ̂n) =
n2

(n− 1)2(n− 2)
λ2 =

nλ2

(n− 1)2
n

n− 2
>

nλ2

(n− 1)2
.

L’estimateur λ̂n n’atteint donc (tout juste) pas la borne de Cramér-Rao.
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Quant à θ, l’information de Fisher I(θ) est

I(θ) = E

[{
∂

∂θ
log

(
1

θ
exp

(
−1

θ
X1

))}2
]

= E

[{
X1

θ2
− 1

θ

}2
]

=
1

θ2
E
[
X2

1

θ2
− 2

θ
X1 + 1

]
=

1

θ2
.

La borne de Cramér–Rao est donc θ2/n = Varθ(θ̂
MV
n ), donc θ̂MV

n atteint la borne de
Cramér-Rao.

Exercice 47 (exercice 33). Un malheureux époux bavarde souvent à son téléphone portable
afin d’oublier ses misères. On sait que la longueur de ses jasettes téléphoniques suit une
loi exponentielle de paramètre λ > 0. Longtemps gênée par les conversation de son époux,
la femme de ce monsieur malchanceux se mit à mesurer la longueur de celles-ci ; ayant un
nombre infini d’observations, elle connâıt la valeur précise du paramètre λ.
Lors d’une dispute avec son mari et afin d’avoir un argument plus concret, la femme montra
à son époux un échantillon t1, . . . , tn des longueurs de n de ses conversations téléphoniques,
et ce, afin de lui prouver qu’il placote au téléphone de manière excessive.
L’homme, tout méfiant, ne croit guère sa femme ; connaissant celle avec laquelle il vit déjà de-
puis quelques décennies, il la soupçonne d’avoir choisi l’échantillon de manière aléatoire, mais
uniquement à partir des conversations qui duraient plus longtemps que la moyenne (théorique)
de la longueur des conversations. En supposant ceci, le bavard s’attaque au problème d’estimer
le paramètre λ, dont seule son épouse connâıt la valeur véritable.
Trouver l’estimateur de maximum de vraisemblance de λ à partir de l’échantillon t1, . . . , tn,
mais sous l’hypothèse que le monsieur a raison. Attention : comme à l’exemple 3.20 (du livre),
le support de la distribution dépend de l’état de la nature, c’est-à-dire de la vraie valeur de
λ.

Solution 47. L’espérance de la durée des conversations est 1/λ. Lorsque les soupçons du
monsieur sont justifiés, la fonction de répartition de la distribution qui génère l’échantillon
t1, . . . , tn est

FT (t) = P
[
Y ≤ t|Y >

1

λ

]
, t ≥ 1

λ
,

où Y ∼ Exp(λ). Grâce à l’absence de mémoire de la distribution exponentielle (cf. exercice 6,
série 1), on a pour t ≥ λ−1

FT (t) = 1− P
[
Y > t|Y >

1

λ

]
= 1− P

[
Y > t− 1

λ

]
= 1− e−λ(t−1/λ) = 1− e1−λt.

La densité de la variable aléatoire T est donc f(t;λ) = λe1−λt1{t ≥ λ−1}. La vraisemblance
à partir d’un échantillon t1, . . . , tn s’écrit

Ln(λ; (ti)) =

n∏
i=1

f(ti;λ) = λnen−λ
∑n

i=1 ti

n∏
i=1

1{ti ≥ 1/λ}

= λnen−λ
∑n

i=1 ti1{λ ≥ 1/t(1)}, t(1) = min{t1, . . . , tn},
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puisque
∏n

i=1 1{ti ≥ 1/λ} = 1 si et seulement si t(1) ≥ 1/λ si et seulement si λ ≥ 1/t(1).
Afin de maximiser cette fonction, faisons comme si la fonction indicatrice n’était pas là et
dérivons ℓn(λ; (ti)) = n log(λ) + n− nλt :

∂ℓn
∂λ

=
n

λ
− nt.

En posant cette dernière équation égale à zéro, nous obtenons :

∂ℓn
∂λ

= 0 ⇐⇒ λ̂ =
1

t
.

Malheureusement, puisque t > t(1),
1
t
< 1

t(1)
; notre solution ne satisfait donc pas à la condi-

tion λ ≥ 1/t(1) et la vraisemblance vaut zéro. Puisque ℓn (et donc Ln) est décroissante sur
[1/t(1),∞[, le maximum sera atteint au premier point où la vraisemblance ne s’annule pas

(voir le graphique ci-dessous). L’estimateur est donc λ̂n = 1/t(1).
Remarque. Il se peut que t = t(1), mais même dans ce cas l’estimateur sera 1/t(1) = 1/t.
Cette particularité n’arrive cependant qu’avec probabilité zéro, à moins que n = 1.

Exercice 48 (exercice 35). Soient X1, . . . , Xn
iid∼ N(µ, σ2) où les deux paramètres sont in-

connus (n > 1). On peut estimer σ2 par

S2
n =

1

n− 1

n∑
i=1

(Xi −X)2,

ou bien par l’estimateur de maximum de vraisemblance σ̂2
n = (n− 1)S2

n/n (cf. l’exemple 3.16,
p. 75).

(i) Lequel de ces estimateurs est meilleur au sens de l’erreur quadratique moyenne ?

Indication : on a (n− 1)S2
n/σ

2 ∼ χ2
n−1 (cf. proposition 2.7, p. 51).

(ii) Considérons les estimateurs de la forme aS2
n où a ∈ R. Quelle est la meilleure valeur de

a au sens de l’erreur quadratique moyenne ?

Solution 48.
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(i) Puisque l’espérance d’une variable aléatoire χ2
n−1 est n − 1 et sa variance est 2(n − 1),

E[S2
n] = σ2 et EQM(S2

n, σ
2) = Var[S2

n] = 2σ4/(n− 1).

Puisque σ̂2
n = (n− 1)S2

n/n, nous avons E[σ̂2
n] = (n− 1)σ2/n et Var[σ̂2

n] = 2(n− 1)σ4/n2.
Ainsi

EQM(σ̂2
n, σ

2) =

(
n− 1

n
σ2 − σ2

)2

+
2(n− 1)

n2
σ4 =

2n− 1

n2
σ4 <

2

n− 1
σ4,

puisque σ4 > 0 et (2n − 1)/n2 < 2/n < 2/(n − 1). On remarque que même si σ̂2
n est

biaisé et S2
n ne l’est pas, ce dernier a une erreur quadratique moyenne plus élevée.

(ii) Ici l’espérance est aσ2 et la variance 2a2σ4/(n − 1) de sorte que l’erreur quadratique
moyenne vaille

(aσ2 − σ2)2 +
2a2

n− 1
σ4 = σ4

(
(a− 1)2 +

2a2

n− 1

)
=

σ4

n− 1

(
(a2 − 2a+ 1)(n− 1) + 2a2

)
.

C’est une parabole convexe en fonction de a dont l’unique minimum est la racine de
l’équation

0 = 2a(n− 1) + 4a− 2(n− 1) = 2a(n+ 1)− 2(n− 1) =⇒ a =
n− 1

n+ 1
.

Ainsi le meilleur estimateur de cette forme est

n− 1

n+ 1
S2
n =

1

n+ 1

n∑
i=1

(Xi −X)2.

Exercice 49. Soient X1, . . . , Xn
iid∼ Unif(0, θ), où θ > 0. Soit θ̂n l’estimateur de maximum

de vraisemblance. Trouver θ̂n et montrer que n(θ − θ̂n) converge en distribution vers une
distribution à trouver.

Solution 49. L’estimateur de maximum de vraisemblance est θ̂n = X(n) (cf. l’exemple 3.20,
p. 77). On trouve pour x ≥ 0,

P(n(θ − θ̂n) ≤ x) = P
(
X(n) ≥ θ − x

n

)
= 1− 1{x ≤ nθ}

(
1− x

θn

)n
→ 1− exp

(
−x

θ

)
, n → ∞.

Ainsi n(θ − θ̂n)
d→ Exp(1/θ).

Exercice 50 (exercices 36 et 37).

(i) Considérons la représentation usuelle d’une famille exponentielle

f(x; θ) = exp(η(θ)T (x)− d(θ) + S(x)), x ∈ X , θ ∈ Θ,

où Θ ⊆ R est un ouvert et η est deux fois continûment dérivable et inversible avec la

dérivée jamais nulle. Soient X1, . . . , Xn
iid∼ f(x; θ). Montrer que

E
[
∂

∂θ
log f(X1, . . . , Xn; θ)

]
= 0, et
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E

[(
∂

∂θ
log f(X1, . . . , Xn; θ)

)2
]
= −E

[
∂2

∂θ2
log f(X1, . . . , Xn; θ)

]
. (5)

Indication : ce n’est pas pour rien qu’on a fait l’exercice 35.

(ii) * Soit f(x; θ) un modèle paramétrique régulier (pas forcément une famille exponentielle !)
tel que

X = {x ∈ R : f(x; θ) > 0}

ne dépend pas de θ, et que f est doublement dérivable par rapport à θ. Soient en

plus X1, . . . , Xn
iid∼ f(x; θ). Montrer que l’égalité (5) est équivalente à une condition de

régularité qui dit que l’on peut interchanger la dérivée et l’intégrale.

Indication : il faut absolument se rendre compte que pour chaque fonction g : Rn → R,

E[g(X)] =

∫
Xn

g(x⃗)f(x⃗; θ) dx⃗ quand cette intégrale existe (x⃗ = (x1, . . . , xn) ∈ Rn).

Solution 50.

(i) Remarquons que

ℓn(θ) = log f(X1, . . . , Xn; θ) = η(θ)

n∑
i=1

T (Xi)− nd(θ) +

n∑
i=1

S(Xi);

ℓ′n(θ) = η′(θ)

n∑
i=1

T (Xi)− nd′(θ) = n(η′(θ)T − d′(θ));

ℓ′′n(θ) = η′′(θ)

n∑
i=1

T (Xi)− nd′′(θ) = n(η′′(θ)T − d′′(θ)).

Par l’exercice 35, E[ℓ′n(θ)] = n(η′(θ)E[T ]− d′(θ)) = 0 et

E[(ℓ′n(θ))2] = Var[ℓ′(θ)] = n2(η′(θ))2Var[T ] = n
d′′(θ)η′(θ)− d′(θ)η′′(θ)

η′(θ)
;

E[ℓ′′n(θ)] = n(η′′(θ)E[T ]− d′′(θ)) = n

(
η′′(θ)

d′(θ)

η′(θ)
− d′′(θ)

)
= n

d′(θ)η′′(θ)− d′′(θ)η′(θ)

η′(θ)
,

tel que requis.

(ii) Soit ℓn(θ;X1, . . . , Xn) = log f(X1, . . . , Xn; θ). Afin d’alléger la notation (souvent quelque
peu fastidieuse en statistiques), nous allons simplement écrire f et ℓn. Lorsqu’on prend
une dérivée, cela se fait toujours par rapport à θ. (En fait il n’a souvent pas de sens de
dériver par rapport à x, par exemple lorsque l’espace X est discret.) Avec cette notation,
la question est : est-ce que E[ℓ′′n] = −E[(ℓ′n)2] ?
Dérivons : ℓ′n = f ′/f et ℓ′′n = (f ′′f − f ′f ′)/f2. Par conséquent, E[(ℓ′n)2] = −E[ℓ′′n] si et
seulement si∫

Xn

(f ′)2

f
dx⃗ =

∫
Xn

(ℓ′n)
2f dx⃗ = E[(ℓ′n)2] = −E[ℓ′′n]

= −
∫
Xn

(
f ′′

f
− (f ′)2

f2

)
f dx⃗ =

∫
Xn

(f ′)2

f
dx⃗−

∫
Xn

f ′′ dx⃗.
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De manière équivalente, 0 =
∫
Xnf

′′ dx⃗ ou bien :

∂2

∂θ2

∫
Xn

f(x⃗; θ) dx⃗ =
∂2

∂θ2
1 = 0 =

∫
Xn

f ′′ dx⃗ =

∫
Xn

∂2

∂θ2
f dx⃗,

car f(x⃗; θ) est une fonction de densité pour n’importe quel θ. En d’autres mots, E[ℓ′′n(θ)] =
−E[(ℓ′n(θ)2)] est équivalent au fait de pouvoir interchanger la dérivée seconde et l’intégrale
comme le font nos amis les physiciens.

Exercice 51. Soit la variable aléatoire X, dont la densité est donnée par

f(x; θ) =

{
θxθ−1, si 0 < x ≤ 1 ;
0, sinon,

où θ > 0 est un paramètre inconnu. Trouver, sans calculer aucune intégrale, E[logX] et
E[(logX)2].
Remarque. Cette méthode est beaucoup moins laborieuse que de calculer explicitement∫ 1

0
θxθ−1 log x dx et

∫ 1

0
θxθ−1(log x)2 dx.

Solution 51. Il s’agit bien d’une famille exponentielle, où

ℓ1(θ) = log θ + (θ − 1) logX;

ℓ′1(θ) =
1

θ
+ logX;

ℓ′′1(θ) = − 1

θ2
.

Or, E[ℓ′1(θ)] = 0, et par conséquent E[logX] = −1/θ. De plus, d’après l’exercice 1,

1

θ2
= −E[ℓ′′1(θ)] = E[(ℓ′1(θ))2] =

1

θ2
+

2E[logX]

θ
+ E[(logX)2] =

1

θ2
− 2

θ2
+ E[(logX)2],

donc E[(logX)2] = 2θ−2.

Exercice 52. Soit X ∼ Exp(λ), où λ > 0. Montrer que Y = aX ∼ Exp(λ/a) pour a > 0.

Solution 52. La densité de X est fX(x) = λe−λx1{x ≥ 0} et grâce au corollaire 1.31 (p. 27)
la densité de aX est a−1fX(x/a) = (λ/a)e−(λ/a)x1{x ≥ 0}. Par miracle, il s’agit de la densité
d’une variable aléatoire exponentielle de paramètre λ/a.

Exercice 53. Nous avons montré une sorte de théorème centrale limite pour les familles
exponentielles (théorème 3.23, p. 81 ; corollaire 3.27, p. 84). Nous verrons dans cet exercice
deux exemples de ce qui se passe en dehors du cadre des familles exponentielles.
Considérons λ̂n, l’estimateur de l’exercice 47. Trouver une suite de nombres réels an telle que
an(λ− λ̂n) converge en distribution vers une distribution non dégénérée.
Indication : utiliser l’exercice 13 et l’exercice 52.

39



MATH240 – Statistiques Prof. Victor Panaretos

Solution 53. L’estimateur de maximum de vraisemblance est λ̂n = 1/t(1) (cf. exercice 47).
Or t(1) − 1/λ = t̃(1) ∼ Exp(nλ), où t̃ = t− 1/λ ∼ Exp(λ) (cf. exercice 50).

Solution ≪ intélligente ≫. Par l’exercice 52, n(t(1)−1/λ) ∼ Exp(λ). Appliquons la méthode
delta avec g(t) = −1/t et encore une fois l’exercice 3 pour conclure

n(λ− λ̂n) = n(λ− 1/t(1)) = n(g(t(1))− g(1/λ))
d→ Exp(λ)λ2 ∼ Exp(1/λ).

Solution ≪ brute-force ≫. On peut calculer la distribution exacte de an(λ − λ̂n), puisque
c’est une fonction de t(1) − 1/λ dont on connâıt la distribution : soit x ≥ 0.

P
(
an(λ− λ̂n) ≤ x

)
= P

(
λ̂n ≥ λ− x

an

)
= P

(
t(1) ≤

an
anλ− x

)
= P

(
t(1) −

1

λ
≤ x

λ(anλ− x)

)
= 1− exp

(
−nx

anλ− x

)
, ou 1 si x ≥ anλ.

On aimerait que la limite de cette probabilité soit une fonction qui dépend de x. Si an/n → 0
l’exponentielle converge vers 0 et donc la probabilité converge vers 1, et ce, quelque soit la
valeur de x. Il faut donc que an ≥ O(n) et en particulier an → ∞, ce qui implique que pour
x fixé, x < anλ pour n suffisamment grand. On a

lim
n→∞

1− exp

(
−nx

anλ− x

)
= 1− exp

(
lim
n→∞

−nx

anλ− x

)
= 1− exp

(
−x

λ
lim
n→∞

n

an

)
,

car an → ∞ donc λx devient négligeable lorsque n → ∞. Si an/n → ∞ la limite est 0 qui ne
dépend pas de x. Il faut donc que lim an/n ∈ ]0,∞[ , et on peut choisir par exemple an = n.
Remarque. Puisque λ ≥ λ̂n, nous ne pouvons pas nous attendre à ce que la distribution
limite de an(λ− λ̂n) soit normale ; en effet, n’importe quelle distribution limite est forcément
non-négative ! De même pour an(θ − θ̂n).

Exercice 54. (i). Soit X = (x1, . . . , xn)
T une image de dimension 1. Supposons que l’on

puisse uniquement observer une version de cette image sur laquelle il y a du bruit
numérique, i.e, que l’on observe Y = (y1, . . . , yn)

T , où chaque pixel s’écrit comme

yi = xi + εi,

où εi
iid∼ N (0, σ2). Trouver une estimation de l’image originale X par la méthode du

maximum de vraisemblance.

(ii). Supposons maintenant que l’on vous donne une information supplémentaire sur l’allure
de l’image : l’image est en fait une ligne, où chaque pixel satisfait la relation

yi = a+ bxi + εi.

Calculer l’estimateur du maximum de vraisemblance des paramètres a et b.
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Solution 54. (i). Etant donné l’image originale xi, les yi suivent la distribution du bruit,
et donc yi ∼ N(xi, σ

2). La log-vraisemblance de {xi} est donc donnée par

ℓn(xi; yi, σ
2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − xi)
2.

En posant les dérivés de la log-vraisemblance égales à zéro, nous obtenons

x̂i = yi.

Alors, nous avons montré que si on a une seule observation yi par pixel, la vraisemblance
ne nous donne aucune d’information supplémentaire sur l’image.

(ii). Maintenant, les yi sont indépendants et sont distribués comme

yi ∼ N (a+ bxi, σ
2).

La log-vraisemblance de {a, b} est donc

ℓn(a, b; y) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − a− bxi)
2

avec les derivées partielles

∂ℓn
∂a

= −2
∑
i

(yi − a− bxi)

σ2

∂ℓn
∂b

= −2
∑
i

(yi − a− bxi)

σ2
xi.

En posant les dérivés de égales à zéro, nous obtenons

∂ℓn
∂a

= 0 ⇔
∑
i

yi
σ2

− na

σ2
− b

σ2

∑
i

xi = 0

∂ℓn
∂b

= 0 ⇔
∑
i

xiyi
σ2

− a
∑
i

xi
σ2

− b
∑
i

x2i
σ2

= 0.

Soit x = n−1
∑n

i=1 xi, et soient x2, y et xy definis de la même maniére. On trouve
finalement que

â =
x2y − x · xy
x2 − x2

b̂ =
xy − x · y
x2 − x2

Finalement, observez que (â, b̂) minimisent la somme des carrés résiduels
∑

i(yi − a −
bxi)

2, et donc nous les appelons aussi les estimateurs des moindres carrés.
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Exercice 55. Soient x1, . . . , xn
iid∼ Gamma(r, 1). Trouver l’estimateur des moments r̂mom de

r, et la loi limite de
√
n

(
r̂mom − (log Γ(·))′(r̂mom)− logX

(log Γ(·))′′(r̂mom)
− r

)
où logX = n−1

∑
log xi.

Solution 55. On trouve r̂mom en résolvent l’équation

xn = Er̂momx1 = r̂mom.

Grâce au théorème limit centrale,
√
n(r̂mom − r) → N(0,Var(x1)) = N(0, r). En définissant

βn = r̂mom − ℓ′n(r̂
mom)

ℓ′′n(r̂
mom)

= r̂mom − (log Γ)′(r̂mom)− logX

(log Γ)′′(r̂mom)
,

et remarquant que Γ est suffisamment régulière, on obtient

√
n(βn − r) → N

(
0,

1

I(r)

)
= N

(
0,

1

(log Γ)′′(r)

)
.

Exercice 56. Soit X1, . . . , Xn un échantillon i.i.d. tiré d’une distribution de densité

f(x; θ) =

{
3θ3x−4, si x ≥ θ,

0, sinon,

où θ > 0.

(i) Trouver l’estimateur θ̂MoM
n de θ par la méthode des moments.

(ii) Trouver l’estimateur du maximum de vraisemblance θ̂MV
n de θ.

(iii) Montrer que θ̂MoM
n est non-biaisé, tandis que θ̂MV

n est un estimateur biaisé.

(iv) Calculer l’erreur quadratique moyenne de θ̂MoM
n et de θ̂MV

n . Quel estimateur est le
meilleur au sens de l’erreur quadratique moyenne ?

Solution 56.

(i) On a

E[X1] = m(θ) =

∫ ∞

θ
3θ3x−3 dx =

3

2
θ.

On obtient donc l’équation et la solution suivantes :

3

2
θ̂MoM
n =

1

n

n∑
i=1

Xi ⇐⇒ θ̂MoM
n =

2

3n

n∑
i=1

Xi.

(ii) La vraisemblance de θ est

Ln(θ) =

n∏
i=1

3θ3X−4
i 1{Xi ≥ θ} = 3nθ3n

n∏
i=1

X−4
i 1{X(1) ≥ θ}.

Pour θ ∈ ]0, X(1)], la vraisemblance est une fonction strictement croissante et pour

θ ∈ ]X(1),∞[ , Ln(θ) = 0. Il s’en suit que θ̂MV
n = X(1) = min(X1, . . . , Xn).
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(iii) Pour θ̂MoM
n , on a

E
[
θ̂MoM
n

]
=

2

3n

n∑
i=1

E[Xi] =
2

3n
· n · 3

2
θ = θ

et θ̂MoM
n est donc non-biasié.

Pour trouver l’espérance de θ̂MV
n = X(1), il faut tout d’abord trouver la distribution de

X(1) : pour t ≥ θ,

P(X(1) ≤ t) = 1−P(X(1) > t) = 1−
n∏

i=1

P(Xi > t) = 1−
n∏

i=1

∫ ∞

t
3θ3x−4 dx = 1−

(
θ

t

)3n

.

Pour t < θ cette probabilité vaut 0. Ainsi, la fonction de densité de X(1) est

fX(1)
(t) =

d

dt

(
1−

(
θ

t

)3n
)

= 3nθ3nt−3n−1, t ∈ [θ,∞),

et on obtient

E
[
θ̂MV
n

]
= E[X(1)] =

∫ ∞

θ
3nθ3nt−3n dt =

3n

3n− 1
θ.

Le biais de θ̂MV
n est donc biais

[
θ̂MV
n

]
= E

[
θ̂MV
n

]
− θ = 1

3n−1θ ̸= 0.

(iv) On a

E[X2
1 ] =

∫ ∞

θ
3θ3x−2 dx = 3θ2,

de sorte que Var[X1] = E[X2
1 ]− E[X1]

2 = 3
4θ

2. Puisque les Xi sont iid, on a

Var
[
θ̂MoM
n

]
=

4

9n2

n∑
i=1

Var[Xi] =
1

3n
θ2

et l’erreur quadratique moyenne est

EQM
[
θ̂MoM
n

]
= Var

[
θ̂MoM
n

]
=

1

3n
θ2,

où on a utilisé le fait que θ̂MoM
n est non-biaisé.

Pour X(1), on obtient

E[X2
(1)] =

∫ ∞

θ
3nθ3nt−3n+1 dt =

3n

3n− 2
θ2.

Donc

Var
[
θ̂MV
n

]
= E[X2

(1)]− E[X(1)]
2 =

3n

3n− 2
θ2 −

(
3n

3n− 1

)2

θ2

et on obtient

EQM
[
θ̂MV
n

]
= biais

[
θ̂MV
n

]2
+Var

[
θ̂MV
n

]
=

1

(3n− 1)2
θ2 +

3n

3n− 2
θ2 −

(
3n

3n− 1

)2

θ2

=
2

(3n− 1)(3n− 2)
θ2.
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Par un calcul standard, on obtient que

EQM
[
θ̂MV
n

]
< EQM

[
θ̂MoM
n

]
⇐⇒ n ≥ 2.

De plus, quand n = 1, on a EQM
[
θ̂MV
n

]
> EQM

[
θ̂MoM
n

]
. Donc, pour n = 1, l’estimateur

θ̂MoM
n est meilleur que θ̂MV

n , mais pour chaque n ≥ 2 l’estimateur de maximum de
vraisemblance est meilleur.

Exercice 57. Soit X1, . . . , Xn un échantillon i.i.d. tiré de la distribution uniforme sur [0, θ]
où le paramètre θ > 0 est inconnue. Dans les exercices précédentes on a trouvé l’estimateur
du maximum de vraisemblance θ̂MV

n = X(n).

(i) Trouver l’estimateur θ̂MoM
n de θ par la méthode des moments. Montrer qu’il est non-

biaisé.

(ii) Modifier l’estimateur θ̂MV
n , par example en multipliant par un constant, pour le rendre

non-biaisé. Dénoter cet estimateur θ̂MV,modif
n .

(iii) Calculer l’erreur quadratique moyenne de θ̂MoM
n et de θ̂MV,modif

n . Quel estimateur est le
meilleur au sens de l’erreur quadratique moyenne ?

(iv) Commenter la vitesse de convergence de l’erreur quadratique moyenne de ces deux esti-
mateur.

Solution 57. (i) Selon la définition du méthode des moments :

X1 + · · ·+Xn

n
=

θ̂MoM
n

2

Alors, θ̂MoM
n = 2X̄. De plus, E[2X̄] = 2 · nθ

n = θ, donc l’estimateur est non-biaisé.

(ii) Rappelle que la fonction de répartition de X(n), c’est FX(n)
(x) = (x/θ)n pour x ∈ [0, θ].

Donc, fX(n)
(x) = n

θ (x/θ)
n−1 pour x ∈ [0, θ]. Calculer l’espérance :

E[θ̂MV
n ] = E[X(n)] =

∫ θ

0
x
n

θ

(x
θ

)n−1
dx =

nθ

n+ 1

Alors on peut mettre, θ̂MV,modif
n =

(
1 + 1

n

)
X(n).

(iii) Les deux estimateur sont non-biaisés, alors :

MSE
[
θ̂MV,modif
n

]
= Var

[
θ̂MV,modif
n

]
= E

[(
θ̂MV,modif
n

)2]
− θ2

=

∫ θ

0

[(
1 +

1

n

)
x

]2 n
θ

(x
θ

)n−1
dx− θ2

=
θ2

n(n+ 2)

MSE
[
θ̂MoM
n

]
= Var

[
θ̂MoM
n

]
=

4

n2
· nVar [X1]

=
4

n2
· n

[∫ θ

0
x2
(
1

θ

)
dx−

(
θ

2

)2
]

=
θ2

3n

44



MATH240 – Statistiques Prof. Victor Panaretos

(iv) L’erreur quadratique moyenne de l’EMV, MSE
[
θ̂MV,modif
n

]
, converge vers 0 avec la vi-

tesse quadratique grâce à n−2. Au contraire, l’erreur quadratique moyenne de l’estima-

teur par le méthode des moments, MSE
[
θ̂MoM
n

]
, converge vers 0 avec la vitesse linéaire

(grâce à n−1).

Exercice 58. Soit X1, . . . , Xnun échantillon i.i.d. tiré de la distribution binomial avec les
deux paramètres m et p inconnues. Trouver m̂, p̂ les estimateurs des m et p par la méthode
des moments. Montrer que cela peut arriver que m̂ /∈ {0, 1, . . . } ou p̂ /∈ (0, 1).

Solution 58. Le système des equations pour les deux premiers moments :

X̄ = mp,
1

n

n∑
i=1

X2
i = mp(1− p) +m2p2.

Donc :

p̂ =
X̄

m̂
, m̂ =

(X̄)2

X̄ − 1
n

∑n
i=1(Xi − X̄)2

.

Si la moyenne échantillonnale est plus petite que la variance échantillonnale, m̂ et p̂ sont
négatives.

*Exercice 59. (un exercice théorétique) Soit f(x; θ) = exp(T (x)η(θ)− d(θ) + S(x)) une fa-
mille exponentielle non dégénérée, où l’espace des paramètres Θ est ouvert, et soit x1, x2, . . . , xn
un échantillon iid tiré de f(x; θ0) pour un certain θ0. Soit αn n’importe quel estimateur tel
que

√
n(αn − θ0) → V pour une variable aléatoire V . Imaginons qu’on cherche à approximer

l’estimateur de maximum de vraisemblance θ̂n avec une seule itération de Newton–Raphson,

βn = αn − ℓ′n(αn)

ℓ′′n(αn)
.

En supposant que η ∈ C3(Θ), montrer que

√
n(βn − θ0) → N

(
0,

1

I(θ0)

)
,

où I(θ0) est l’information de Fisher, et commenter ce résultat.
Indice : faire une développement de Taylor d’ordre 2 de ℓ′n autour de θ0, et remarque que
cette fonction (aléatoire !) est une somme de variables aléatoires iid.

Solution 59. On écrit

ℓ′n(αn) = ℓ′n(θ0) + (αn − θ0)ℓ
′′
n(θ0) +

1

2
(αn − θ0)

2ℓ′′′n (α
∗
n),

où |α∗
n − θ0| ≤ |αn − θ0|, de sorte que

√
n(βn − θ0) =

√
n(αn − θ0) +

√
n(βn − αn)

= −n−1/2ℓ′n(θ0)

n−1ℓ′′n(αn)
+
√
n(αn − θ0)

(
1− n−1ℓ′′n(θ0)

n−1ℓ′′n(αn)
− 1

2
(αn − θ0)

n−1ℓ′′′n (α
∗
n)

n−1ℓ′′n(αn)

)
.
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Le fait que
√
n(αn − θ0)

d→ V implique que αn
p→ θ0 (voir le corollaire 3.26, p 84), et donc

aussi α∗
n

p→ θ0. Rappelons que :

ET (X1) =
d′(θ0)

η′(θ0)

Var(T (X1)) =
d′′(θ0)η

′(θ0)− d′(θ0)η
′′(θ0)

[η′(θ0)]3
> 0

I(θ0) =
d′′(θ0)η

′(θ0)− d′(θ0)η
′′(θ0)

η′(θ0)
> 0

Puisque η ∈ C3(R), l’exercice 35 montré que d ∈ C3(R). Donc, la loi faible des grands
nombres, les théorèmes de Slutsky, de l’application continue, et centrale limite impliquent les
convergences (en distribution) suivantes :

n−1/2ℓ′n(θ0) = n1/2
(
η′(θ0)Tn − d′(θ0)

)
→ N

(
0, [η′(θ0)]

2Var(T (X1))
)
= N (0, I(θ0)) ;

n−1ℓ′′n(θ0) = η′′(θ0)Tn − d′′(θ0) → η′′(θ0)
d′(θ0)

η′(θ0)
− d′′(θ0) = −I(θ0) < 0;

n−1ℓ′′n(αn) = η′′(αn)Tn − d′′(αn) → η′′(θ0)
d′(θ0)

η′(θ0)
− d′′(θ0) = −I(θ0);

n−1ℓ′′′n (α
∗
n) = η′′′(α∗

n)Tn − d′′′(α∗
n) → −η′′′(θ0)

d′(θ0)

η′(θ0)
− d′′′(θ0).

On en déduit, avec l’aide du théorème de Slutsky

−n−1/2ℓ′n(θ0)

n−1ℓ′′n(αn)
→ N(0, I(θ))

I(θ)
= N

(
0,

1

I(θ)

)
;

1− n−1ℓ′′n(θ0)

n−1ℓ′′n(αn)
→ 1− −I(θ0)

−I(θ0)
= 0;

1

2
(αn − θ0)

n−1ℓ′′′n (α
∗
n)

n−1ℓ′′n(αn)
→ 1

2
· 0 ·

−η′′′(θ0)
d′(θ0)
η′(θ0)

− d′′′(θ0)

−I(θ)
= 0;

√
n(αn − θ0)

(
1− n−1ℓ′′n(θ0)

n−1ℓ′′n(αn)
− 1

2
(αn − θ0)

n−1ℓ′′′n (α
∗
n)

n−1ℓ′′n(αn)

)
→ V · (0− 0) = 0.

et encore une fois par Slutsky
√
n(βn − θ0)

d→ N(0, 1/I(θ0)). Ainsi, βn a la même loi asymp-
totique que l’estimateur du maximum de vraisemblance (donc quasiment optimale), même si
on a utilisé une seule itération de Newton–Raphson !

Exercice 60 (exercice 40). Pour chacun des scénarios suivants, trouver les hypothèses à
tester ainsi que les deux types d’erreurs qu’on peut commettre. Sur la base de ces informations,
décider quelle hypothèse devrait être l’hypothèse nulle H0 et laquelle devrait être l’alternative
H1.

(i) Une physicienne travaille sur une expérience dont le but est de détecter des particules
de matières noires. Elle aimerait tester si ses données indiquent la présence de matière
noire.
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(ii) Un fêtard voudrait savoir s’il est en mesure de conduire après un apéro. Il aimerait donc
tester si le taux d’alcool dans son sang est supérieur à celui autorisé par la loi.

(iii) Barack Obama et Mitt Romney étaient les deux candidats principaux à l’élection
présidentielle de 2012 aux États-Unis. Le directeur de campagne de M. Obama aimerait
savoir si M. Obama est en tête dans l’état d’Iowa afin de décider s’il doit allouer ou non
plus de ressources financières pour la campagne dans cet état. Il faut donc tester si M.
Obama est en tête dans l’état d’Iowa. De quelle façon le test changerait-il si on était à
la place du directeur de campagne de M. Romney ?

(iv) Un scientifique travaillant pour une compagnie pharmaceutique a pu développer un
nouveau médicament afin de réduire la pression artérielle trop élevée. Il voudrait tester
si le médicament produit l’effet attendu.

Solution 60. À noter que le choix des hypothèses nulles dans cette exercice est quelque peu
subjectif. Les choix ci-dessous reflètent cependant ce qui est habituellement fait en pratique
dans les domaines considérés.

(i) Les expériences concernant la matière noire sont habituellement des expériences de
décompte modélisés par des lois de Poisson. Soient µ le nombre moyen de particules
dénombrées pendant l’expérience, b le nombre moyen de particules dénombrées pendant
l’expérience lorsqu’il n’y a pas présence de matières noires et s le nombre moyen de
particules de matières noires dénombrées lors de l’expérience. Les deux hypothèses sont
µ = b, i.e. qu’il n’y pas d’indication de la présence de matière noire et µ = b+ s, c’est-à-
dire qu’il y a une indication de matière noire. On fait une fausse découverte si on affirme
qu’il y a présence de matière noire lorsqu’en fait il n’y en a pas. On peut ≪rater une
découverte≫ si on affirme qu’il n’y a pas d’indication de la présence de matière noire
lorsqu’en fait il y en a une. Faire une fausse découverte est considéré comme une très
grave erreur (cf. l’affaire des ≪faster-than-light neutrinos≫ au CERN, qui a provoqué la
démission du chairman de l’expérience OPERA 1). On teste donc :

H0 : µ = b

H1 : µ = b+ s

(ii) Soient µ le vrai taux d’alcool dans le sang et µ0 la limite légale. Les hypothèses à tester
sont µ ≤ µ0, c’est-à-dire qu’on peut conduire en toute légalité, et µ > µ0, c’est-à-dire
qu’on n’est pas autorisé à conduire. Si on pense que µ > µ0 lorsqu’en fait µ ≤ µ0,
on peut décider inutilement de ne pas conduire et de rentrer chez soi en transport en
commun/taxi/à pied. Si on pense que µ ≤ µ0 lorsqu’en fait µ > µ0, on va conduire sous
l’influence d’alcool et ainsi risquer d’avoir une amende ; ou pire encore, de provoquer un
accident. Il est clair que la dernière erreur peut avoir des conséquences beaucoup plus
sérieuses que la première, ainsi on devrait tester :

H0 : µ > µ0

H1 : µ ≤ µ0

(iii) Soit O le nombre d’habitants d’Iowa qui ont l’intention de voter pour M. Obama et soit
R le nombre d’habitants d’Iowa qui ont l’intention de voter pour M. Romney. Les deux

1. http://www.lescienze.it/news/2012/03/30/news/opera ereditatos point of view-938232/
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hypothèses sont O > R, c’est-à-dire que M. Obama est en tête, et O ≤ R, c’est-à-dire que
M. Obama est en train de perdre (ou qu’il y a égalité). Si le directeur de campagne de
M. Obama pense que M. Obama est en train de perdre lorsqu’en fait O > R, il décidera
de dépenser inutilement plus d’argent dans l’Iowa. S’il pense que M. Obama est en tête
alors qu’en fait O ≤ R, il décidera de ne pas dépenser d’argent supplémentaire dans
l’Iowa, ce qui peut avoir pour conséquence la défaite de M. Obama dans cet état. Cette
dernière erreur est certainement la plus grave, on devrait donc tester :

H0 : O ≤ R

H1 : O > R

Pour le directeur de campagne de M. Romney, les hypothèses seront inversées :

H0 : R ≤ O

H1 : R > O

(iv) Afin de vérifier l’efficacité du médicament, on devra faire une étude clinique avec des
patients souffrant de pression artérielle élevée (il ne sera certainement pas difficile d’en
trouver, puisqu’on estime que plus que 20% de la population a une pression artérielle
élevée). Dans cette étude, il y aura un groupe appelé ≪traitement≫ à qui on adminis-
trera le nouveau médicament et un groupe appelé ≪contrôle≫ à qui on administrera
un placebo. Soit pT la moyenne des pressions artérielles du groupe traitement et soit
pC la moyenne des pressions artérielles du groupe contrôle. Les deux hypothèses sont
pT = pC , c’est-à-dire que le médicament ne fonctionne pas, et pT < pC , i.e. que le
médicament réduit la pression artérielle. Lorsque pT = pC on pourra déclarer, à tort,
que le médicament fonctionne et lorsque pT < pC , on pourra penser à tort que le
médicament n’est pas efficace. Dans le premier cas, un médicament inefficace pourrait
se retrouver sur le marché, entrainant potentiellement d’important effets secondaires
tandis que dans le deuxième cas, le développement d’un médicament efficace pourrait
être arrêté. Puisque nous voulons être certains que les médicaments que nous utilisons
sont efficaces à traiter les maladies, nous devrions choisir :

H0 : pT = pC

H1 : pT < pC

Exercice 61 (tests d’hypothèses intuitifs, exercice 48). Le but de cet exercice est de
donner une motivation intuitive aux tests d’hypothèses. Soient X1, . . . , Xn iid avec la fonction
de densité

fX(x) =
1

48
λ5x3/2e−λ

√
x, x > 0,

où λ > 0 est un paramètre. On aimerait tester l’hypothèse H0 : λ = λ0 vs. H1 : λ = λ1, où
λ0 > λ1.

(i) Trouver l’estimateur du maximum de vraisemblance λ̂n.

(ii) Comme expliqué au chapitre 3 du livre, λ̂n est un bon estimateur. Ainsi, il est en un
certain sens naturel de rejeter H0 si λ0 n’est pas ≪ compatible ≫avec λ̂n. Dans notre cas,
cela voudrait dire : rejeterH0 lorsque λ̂n est petit. (Si λ̂n > λ0, on préferera certainement
H0 et nonH1.) Quelle forme prendra donc la fonction de test ? Donner-la à une constante
D près.
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(iii) Maintenant, il faut trouver la fonction de test précise. Pour cela, il faudrait choisir une
borne en dessous de laquelle on juge λ̂n suffisamment petit pour rejeter H0. Pour un
seuil α ∈ ]0, 1[ donné, on voudrait que la probabilité de commettre une erreur de type I
soit α. À partir de là, décrire la relation entre α et D.

(iv) Nous voilà un test au niveau α. On peut ensuite se demander s’il est le meilleur test.
Aurons-nous pu faire mieux, c’est-à-dire trouver un test au niveau α mais plus puissant ?
Montrer que la réponse est négative, en montrant que notre fonction de test est exacte-
ment la même que celle décrite par le lemme de Neyman–Pearson. (On peut supposer
que la valeur Q du lemme existe ; ce résultat sera démontrée ultérieurement.)

(v) Trouver une formule, la plus simple possible, pour la fonction de test δ(X1, . . . , Xn).
Indice : λ̂n contient une somme dont chaque élément suit une distribution qu’on a déjà
vu.

Solution 61. (i) On procède comme d’habitude :

Ln(λ) = (48)−nλ5n exp

(
−λ

n∑
i=1

√
Xi

)(
n∏

i=1

Xi

)3/2

ℓn(λ) = 5n log λ− λ
n∑

i=1

√
Xi +

3

2

n∑
i=1

logXi − n log 48

ℓ′n(λ) =
5n

λ
−

n∑
i=1

√
Xi, ℓ′′n(λ) =

−5n

λ2
< 0,

d’où on trouve aisément

λ̂n =
5n∑n

i=1

√
Xi

.

(ii) Par définition, on rejette H0 si et seulement si la fonction de test δ(X1, . . . , Xn) est
égale à 1. L’énoncé suggère qu’on la rejette si et seulement si λ̂n est inférieur à un seuil
quelconque, D. Ainsi, la fonction de test est de la forme δ(X1, . . . , Xn) = 1{λ̂n ≤ D}.

(iii) La probabilité de commettre une erreur de type I est la probabilité de rejeter H0 lors-
qu’elle est vraie. Ainsi, on obtient l’équation suivante :

α = Pλ0(δ(X1, . . . , Xn) = 1) = Pλ0(λ̂n ≤ D),

où les probabilités (qui dépendent bien sûr de λ !) sont calculées pour λ = λ0. Si Gn est
la fonction de distribution de la variable aléatoire λ̂n quand λ = λ0, alors la solution
est le α-quantile de Gn : D = G−

n (α) = G−1
n (α) car Gn est strictement croissante et

continue.

(iv) Le rapport de vraisemblance est

Λn(X1, . . . , Xn) =
Ln(λ1)

Ln(λ0)
=

(
λ1

λ0

)5n

exp

[
(λ0 − λ1)

n∑
i=1

√
Xi

]
.

Puisque λ0 > λ1, on voit que

1 {Λn ≥ Q} = 1


n∑

i=1

√
Xi ≥

log

[
Q
(
λ0
λ1

)5n]
λ0 − λ1

 = 1

λ̂n ≤ 5n(λ0 − λ1)

log

[
Q
(
λ0
λ1

)5n]
 .
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Ce qui est important ici n’est pas ces expressions atroces, mais le fait que la fonction
de test du rapport de vraisemblance est elle aussi de la forme 1{λ̂n ≤ D′}, qui est
exactement la même forme de δ. Par le lemme de Neyman–Pearson, Q (et donc D′) est
tel que

α = Pλ0(Λn ≥ Q) = Pλ0(λ̂n ≤ D′).

Il s’en suit que D′ = G−1
n (α) = D et donc 1{Λn ≥ Q} = δ. Ainsi, notre test intuitif est

optimal !

(v) À l’expression de λ̂n ainsi qu’à celle de Λn, le seul élément aléatoire est
∑√

Xi. Essayons
donc de trouver la fonction distribution de Y =

√
X1. C’est une tranformation de X1

dont l’inverse est X1 = Y 2. Ainsi

fY (y) = fX(y2)2y =
1

48
λ5y3e−λy2y =

1

24
λ5y4e−λy.

Même si on ne se souvient pas que Γ(5) = (5 − 1)! = 24, on reconnâıt ici la loi
Gamma(5, λ). (D’ici, on peut déduire que soit Γ(5) = 24, soit ceux qui ont écrit cet
exercice se sont trompés.) Il s’en suit que

∑n
i=1

√
Xi ∼ Gamma(5n, λ) (on peut voir

cela en utilisant la fonction génératrice des moments). Sous H0, λ = λ0. À partir de
là on peut trouver les valeurs de D et Q, mais on peut se simplifier la vie en remar-
quant que la fonction de test est également de la forme 1{

∑√
Xi ≥ D′′}. Pour que

Pλ0(
∑√

Xi ≥ D′′) = α, il faudrait que D′′ soit le (1− α)-quantile de la distribution de∑√
Xi sous H0, à savoir Gamma(5n, λ0). Ainsi, la fonction de test optimal au seuil α

est

1

{
n∑

i=1

√
Xi ≥ Gamma5n,λ0,1−α

}
.

Le message à retenir ici est que ce qui est important est la fonction de test, et non
pas sa représentation. Par exemple, si on observe X1, . . . , X10 et on veut tester H0 :
λ = 1 vs. H1 : λ = 0.5, il est plus simple d’utiliser 1{

∑√
Xi ≥ 62.17} que d’utiliser

1{50/
∑√

Xi ≤ 0.804} !

Exercice 62 (exercice 41). Soit X1, . . . , Xn un échantillon iid provenant d’une distribution
N(µ, 1). On va tester l’hypothèse nulle H0 : µ = 0 vs. l’hypothèse alternative H1 : µ ̸= 0 en
utilisant la statistique de test

Tn(X1, . . . , Xn) = X̄n =
1

n

n∑
i=1

Xi,

et la fonction de test

δ(X1, . . . , Xn) =

{
1, si |Tn(X1, . . . , Xn)| ≥ Q,

0, sinon,

où Q > 0.

(i) Trouver la probabilité de commettre une erreur de type I.

(ii) Trouver la probabilité de commettre une erreur de type II.

(iii) Comment se comportent ces deux probabilités lorsqu’on augmente la valeur de Q ?
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(iv) Trouver la plus petite valeur de Q pour laquelle le seuil de signification du test est
α ∈ ]0, 1[. Quelle est cette valeur lorsque α = 0.05 et n = 10 ? Trouver le supremum de
la probabilité de commettre une erreur de type II pour cette valeur de Q.

Solution 62.

(i) En utilisant la proposition 2.7 (p. 51), on trouve que sous H0 la statistique de test
Tn = Tn(X1, . . . , Xn) suit une loi N(0, 1/n). Ainsi,

√
nTn ∼ N(0, 1) et la probabilité de

commettre une erreur de type I est

P0(δ = 1) = P0(|Tn| ≥ Q) = P0(Tn ≤ −Q) + P0(Tn ≥ Q)

= P0(
√
nTn ≤ −

√
nQ) + P0(

√
nTn ≥

√
nQ) = 2Φ(−

√
nQ),

où P0 est la probabilité sous H0 et Φ est la fonction de répartition de N(0, 1), et on a
utilisé Φ(−z) = 1−Φ(z). Le graphique 1 donne cette probabilité en fonction de Q pour
n = 10.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Q

P
0
(δ

 =
 1

)

Probabilite de commettre une erreur de type I

Figure 1 – La probabilité de commettre une erreur de type I en fonction de Q pour n = 10.

(ii) En utilisant la même proposition 2.7, on trouve que sous H1 la statistique de test Tn

suit la loi N(µ, 1/n), où µ ̸= 0. Il s’en suit que
√
n(Tn − µ) ∼ N(0, 1) et la probabilité

de commettre une erreur de type II est

g(µ) = Pµ(δ = 0) = Pµ(|Tn| < Q) = Pµ(−Q < Tn < Q)

= Pµ(
√
n(−Q− µ) <

√
n(Tn − µ) <

√
n(Q− µ))

= Φ(
√
n(Q− µ))− Φ(

√
n(−Q− µ))

avec µ ̸= 0.

(iii) On remarque que Φ est continue, strictement croissante et tend vers 0 lorsque z → −∞,
vers 1 lorsque z → ∞.

On en déduit que, en fonction de Q, la probabilité de commettre une erreur de type I est
une fonction strictement décroissante tandis que la probabilité de commettre une erreur
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de type II est une fonction strictement croissante. Cela veut dire qu’en réduisant l’erreur
de type I, on va forcément augmenter l’erreur de type II. Par ailleurs ces probabilités
convergent vers 0 et 1 lorsque Q → ∞.

(iv) Comme la probabilité de commettre une erreur de type I est une fonction continue et
strictement décroissante, la valeur de Q demandée est la solution de l’équation

α = P0(δ = 1) = 2Φ(−
√
nQ).

La solution est Q = − 1√
n
Φ−1(α2 ) = − 1√

n
zα/2 = 1√

n
z1−α/2, où zβ = Φ−1(β) est le

β-quantile de N(0, 1). Donc, pour α = 0.05 et n = 10, on trouve

Q =
1√
10

z0.975 ≈ 0.62.

Cela veut dire que l’on rejette H0 au niveau 0.05 si |T | ≥ 0.62.

Le dérivée de g(µ) (par rapport à µ) est

g′(µ) = −
√
nΦ′(

√
n(Q−µ))+

√
nΦ′(

√
n(−Q−µ)) = −

√
nϕ(

√
n(Q−µ))+

√
nϕ(

√
n(−Q−µ)),

où ϕ est la fonction de densité de N(0, 1). En mettant la dérivée egale à zero, on trouve

ϕ(
√
n(Q− µ)) = ϕ(

√
n(−Q− µ))

⇐⇒ 1√
2π

exp
(
−n

2
(Q− µ)2

)
=

1√
2π

exp
(
−n

2
(−Q− µ)2

)
⇐⇒ (Q− µ)2 = (−Q− µ)2

⇐⇒ µ = 0.

Il est aisé de voir que ceci correspond à un maximum. Ainsi, supµ ̸=0 g(µ) = g(0) =
Φ(

√
nQ)−Φ(−

√
nQ) = 1− 2Φ(−

√
nQ) = 1−α = 0.95. La fonction g(µ) avec Q = 0.62

et n = 10 est illustrée dans le figure 2.
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Probabilite de commettre une erreur de type II, Q = 0.62

Figure 2 – La probabilité de commettre une erreur de type II en fonction de µ avec Q = 0.62.
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Exercice 63 (exercice 45). Soient X1, . . . , Xn
i.i.d.∼ N(µ, σ2) avec σ2 > 0 connue. Trouver le

test le plus puissant pour tester H0 : µ = µ0 vs. H1 : µ = µ1 avec µ0 < µ1 à un seuil de
signification α ∈ (0, 1).

Solution 63. La loi gaussienne avec une variance connue fait partie d’une famille exponen-
tielle à 1-paramètre avec η(µ) = µ/σ2 et T (x) = x. Puisque η est croissante, on peut utiliser
l’exemple 4.14 (p. 108) pour déduire que la fonction de test pour le test le plus puissant est

δ = 1{τn > q1−α},

avec τn =
∑n

i=1Xi et q1−α le (1−α)-quantile de τn sous H0. Lorsque µ = µ0, nous avons que
τn ∼ N (nµ0, nσ

2), ce qui implique

Z =
τn − nµ0√

nσ2
∼ N(0, 1).

Puisque τn est une variable aléatoire continue, nous pouvons calculer q1−α à partir de

1− α = Pµ0 (τn ≤ q1−α)

= Pµ0

(
τn − nµ0√

nσ2
≤ q1−α − nµ0√

nσ2

)
= Pµ0

(
Z ≤ q1−α − nµ0√

nσ2

)
= Φ

(
q1−α − nµ0√

nσ2

)
.

Nous obtenons alors

q1−α =
√
nσ2Φ−1(1− α) + nµ0 =

√
nσ2z1−α + nµ0,

où z1−α est le (1− α)-quantile d’une loi N(0, 1). La fonction de test est donc donnée par

δ = 1{τn > q1−α} = 1

{
τn − nµ0√

nσ2
> z1−α

}
= 1

{
X̄ − µ0

σ/
√
n

> z1−α

}
.

Exercice 64 (exercice 46). Pour un échantillon X1, . . . , Xn
i.i.d.∼ Bernoulli(p), on veut tester

H0 : p = 0.49 vs H1 : p = 0.51.

Déterminez approximativement la taille de l’échantillon pour laquelle la probabilité de com-
mettre une erreur de type I et la probabilité de commettre une erreur de type II sont approxi-
mativement égales à 0.01. Utilisez une fonction de test qui rejette H0 si

∑
iXi est grande.

Indice : Utilisez le théorème centrale limite pour approximer la distribution de n−1
∑n

i=1Xi

par une loi normale. Vous avez aussi besoin du fait que z0.99 ≈ 2.33, où z0.99 est le 0.99-
quantile de la loi N(0, 1).

Solution 64. Nous utilisons la statistique de test τn =
∑n

i=1Xi ∼ Bin(n, p). Nous allons
utiliser l’approximation normale de la loi binomiale, i.e. que nous approximons la distribution
de Z = τn−np√

np(1−p)
par une loi N (0, 1). Nous voulons n et Q tel que

Pp0(τn > Q) = α

Pp1(τn > Q) = 1− α,
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où α = 0.01. Les deux dernières équations sont équivalentes à

P
(
Z >

Q− n · 0.49√
n · 0.49 · 0.51

)
= 0.01

P
(
Z >

Q− n · 0.51√
n · 0.51 · 0.49

)
= 0.99,

i.e. que nous devons résoudre

Q− n · 0.49√
n · 0.49 · 0.51

= 2.33

Q− n · 0.51√
n · 0.51 · 0.49

= −2.33,

ce qui nous donne n = 13567 et Q = 6783.5.

Exercice 65 (exercice 47). Soient X1, . . . , Xn
i.i.d.∼ Unif(0, θ) et considérez H0 : θ = θ0 et

H1 : θ = θ1 avec θ1 < θ0.

(i) Trouvez le test le plus puissant de H0 vs. H1 à un seuil de signification α = (θ1/θ0)
n.

Considérez le comportement de ce seuil, comme fonction de θ0, θ1 et n. Quelle est la
puissance de ce test ? Est-ce qu’on peut définir un test optimal de type Neyman–Pearson
pour d’autres valeurs de α ?

(ii) Considérez un test (pas nécessairement optimal) de seuil de signification α < (θ1/θ0)
n

qui rejette H0 quand X(n) < k. Trouvez la valeur appropriée de k. Quelle est la puissance
de ce test ?

Solution 65.

(i) La vraisemblance est

Ln(θ;X1, . . . , Xn) =

n∏
i=1

1

θ
1{0 ≤ Xi ≤ θ} =

1

θn
1{X(n) ≤ θ}.

Grâce au lemme de Neyman-Pearson (lemme 4.11, p. 106), nous savons que la statistique
de test optimale pour un seuil α est

Λn(X) =
Ln(θ1)

Ln(θ0)
=

(
θ0
θ1

)n

1{X(n) ≤ θ1} =

{(
θ0
θ1

)n
X(n) ≤ θ1

0 X(n) > θ1,

lorsqu’il existe une valeur Q > 0 satisfaisant Pθ0(Λn ≥ Q) = α. Lorsque X(n) ≤ θ1,

Λn(X) =
(
θ0
θ1

)n
, sinon Λn(X) = 0. Ainsi, pour chaque Q ∈ ]0, (θ0/θ1)

n] (par exemple

Q = 1) nous avons Λn ≥ Q si et seulement si X(n) ≤ θ1. Rejeter H0 lorsque Λn ≥ Q
est donc équivalent à la rejeter lorsque X(n) ≤ θ1, et la fonction de test devient donc
δ = 1{X(n) ≤ θ1}. La probabilité de commettre une erreur de type I est alors

Pθ0(δ = 1) = Pθ0(X(n) ≤ θ1) =

(
θ1
θ0

)n

= α.
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C’est exactement le seuil demandé, ainsi nous avons bien défini un test le plus puissant
au seuil α = (θ1/θ0)

n. Ce seuil est croissant en tant que fonction de θ1 et décroissant en
tant que fonction de θ0 et de n. La puissance est Pθ1(δ = 1) = Pθ1(X(n) ≤ θ1) = 1. De
plus, il n’est pas possible d’utiliser le lemme de Neyman–Pearson afin de créer des tests
PP pour d’autres valeurs de α.

(ii) Nous cherchons la valeur de k telle que

α = Pθ0(X(n) ≤ k) =

(
k

θ0

)n

,

ce qui donne k = θ0α
1/n < θ1.

La puissance de ce test est

Pθ1(X(n) ≤ θ0α
1/n) = α

(
θ0
θ1

)n

< 1.

Il est possible de montrer que ce test est en fait un test PP pour α < (θ1/θ0)
n.

Remarque : il est naturel de baser le test sur X(n), puisque c’est une statistique ex-
haustive pour θ.

Exercice 66 (exercice 49). Un laboratoire de traitement d’images a développé une nouvelle
méthode pour scanner le cerveau. Le laboratoire prétend qu’ils sont capables de scanner le
cerveau en moins de 20 minutes. Voici un échantillon de temps de 12 scans de cerveau :

X = {21, 18, 19, 16, 18, 24, 22, 19, 24, 26, 18, 21}.

(i) Supposons que la durée de scan suit N (µ, 32). Testez si la durée moyenne de scan est
moins de 20 minutes, i.e., testez H0 : µ ≤ µ0 vs H1 : µ > µ0 avec µ0 = 20 à un seuil
de signification α = 0.05.

(ii) Pourriez-vous faire la même analyse sachant que la variance de la loi normale est incon-

nue ? Indice : Utilisez δ = 1
(√

n(X̄−µ0)
S ≥ tn−1,1−α

)
comme fonction de test. Ici tn−1,1−α

est le 1− α quantile de la loi Student avec n− 1 degrés de liberté.

Solution 66.

(i) En utilisant le théorème 4.16 (p. 112), nous rejetons H0 lorsque τ =
∑

iXi est grand, i.e.
lorsque τ ≥ q1−α, où q1−α est le (1−α)-quantile de la distribution de τ avec µ = µ0 = 20.
En utilisant le même raisonnement que dans l’exercice 1, on arrive à la fonction de test

δ = 1{τ ≥ q1−α} = 1

{
X̄ − µ0

σ/
√
n

≥ z1−α

}
.

La fonction précédente évaluée aux valeurs données dans l’énoncé nous donne

δ = 1{0.577 ≥ 1.645} = 0.

Il n’y a donc pas d’évidence, à un seuil de signification de 5%, nous permettant de rejeter
l’affirmation de la compagnie.
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(ii) Pour n = 12 et α = 0.05, tn−1,1−α = 1.796. Nous rejetons donc si

τ =
X̄ − µ0

S/
√
n

≥ 1.796,

où S2 =
∑n

i=1(Xi − X̄)2/(n− 1). Dans notre cas, la valeur de τ est

τ =
20.5− 20

3.03√
12

= 0.572,

nous ne pouvons donc pas rejeter H0.

Exercice 67 (exercice 50). Soient Y1, . . . , Y4 des variables aleatoires independantes et iden-
tiquement distribues selon une loi normale N (µ, 42). On veut montrer que µ est plus grand
que µ0 = 10 . Par conséquent, on effectue un test au niveau α = 5% de l’hypothèse nulle
H0 : µ ≤ 10.

(i) Calculez la puissance du test pour des vraies valeurs de µ égales à 13 et 11.

(ii) Si la vraie valeur de µ est égale à 13 , quelle chance a-t-on de la détecter ?

(iii) Pour augmenter la chance de détection, déterminez le nombre d’observations nécessaires
pour obtenir une puissance de 90% dans le cas µ = 13.

Solution 67.

(i) En utilisant le même test que dans l’exercice précédent, on trouve que la puissance vaut :

β(µ) = Pµ

(
Ȳ − µ0

σ/
√
n

≥ z1−α

)
= Pµ

(
Ȳ − µ

σ/
√
n

≥ z0.95 +
µ0 − µ

σ/
√
n

)
= 1− Φ

(
z0.95 +

µ0 − µ

σ/
√
n

)
, µ > µ0.

Ce qui nous donne les valeurs suivantes :

µ 13 11

β(µ) 0.44 0.12

(ii) On cherche n tel que 1− Φ
(
z0.95 +

µ0 − µ

σ/
√
n

)
= 0.9 ; c’est-à-dire :

n =
16

9

(
z0.95 − z0.10

)2

Dans notre cas, n = 15.22 . Il faut donc 16 observations.

Exercice 68 (exercice 51, test apparié). Une compagnie pharmaceutique veut vérifier si son
nouveau produit amaigrissant ABALGRA est efficace. Pour ce faire, le poids (en kilo) de 10
hommes choisis de façon aléatoire a été recueilli juste avant la première prise du médicament
ainsi qu’à la fin du traitement, 7 semaines plus tard. Soit Xi le poids du ie homme avant le
traitement et soit Yi son poids à la fin du traitement. On peut donc supposer que Xi sont
iid, puisque les différentes personnes ont été choisies au hasard. De même pour Yi, car chaque
personne a reçu le même traitement. Soient µ1 = EXi et µ2 = EYi.
On s’intéresse donc aux différences di = Yi −Xi. Celles-ci sont indépendantes et on suppose
qu’elles suivent une loi normaleN (µ2−µ1, 5). Tester à l’aide des données du tableau ci-dessous
si le médicament semble entrâıner une perte de poids au seuil α = 0.05.
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i 1 2 3 4 5 6 7 8 9 10

Xi 55.5 75 63.8 54.7 62.7 71 68.3 56 74.4 65

Yi 52.8 73.7 62.7 55 59.3 70.2 67.1 55.4 71.9 65.2

Remarque. Puisque X1 et Y1 proviennent de la même personne, il est irréaliste de les
supposer indépendantes. Dans ce contexte, on parle d’un test apparié (angl. ≪ paired test ≫).
Bonus. Expliquer le nom ABALGRA.

Solution 68. Nous voulons tester H0 : µ2 − µ1 ≥ 0 contre H1 : µ2 − µ1 < 0. En po-
sant µ = µ2 − µ1, nous obtenons un test unilatéral classique avec µ0 = 0. Nous savons
donc par le théorème 10 (p. 96) que le test uniformément le plus puissant est de la forme
1{τn(d1, . . . , dn) < qα}, où τn(d1, . . . , dn) =

∑n
i=1 di et

α = Pµ0(τn < qα) = P
(
τn/n− µ0

σ/
√
n

<
qα/n− µ0

σ/
√
n

)
.

Le terme de gauche de la deuxième égalité suit une loi N (0, 1) sous H0. Ainsi

qα/n− µ0

σ/
√
n

= zα.

Nous obtenons finalement

1{τn(d1, . . . , dn) < qα} = 1

{
dn − µ0

σ/
√
n

< zα

}
.

Dans notre cas, dn = −1.31, σ2 = 5, n = 10, α = 0.05 et z0.05 = −1.645, ce qui donne la
fonction de test

1

{
−1.31√
5/10

< −1.645

}
= 1{−1.85 < −1.645} = 1.

On rejette donc l’hypothèse nulle.

Exercice 69 (exercice 52, test de variance pour la loi gaussienne).

(i) Soit X1, . . . , Xn un échantillon iid tiré d’une distribution normale N (µ, σ2), où les pa-
ramètres µ et σ2 sont inconnus. Montrer que la fonction de test du test du rapport de
vraisemblance pour les hypothèses H0 : σ2 = σ2

0 et H1 : σ2 ̸= σ2
0 à un seuil α est de la

forme 1{W > c1}+ 1{W < c2}, où W = (1/σ2
0)
∑n

i=1(Xi − X̄)2 et où c1 et c2 sont tels
que c−n

1 ec1 = c−n
2 ec2 .

Indice : écrire le rapport de vraisemblance comme une fonction de W et étudier la forme
de cette fonction.

(ii) En pratique, on choisit c1 et c2 tel que PH0(W > c1) = PH0(W < c2) = α/2. (Le test
obtenu n’est donc pas un test du rapport de vraisemblance.) Trouver les valeurs de c1
et c2 lorsque α = 0.05, et effectuer ce test pour σ2

0 = 4 sur les données suivantes :

0.449, −3.421, −2.841, 0.829, −0.941, 1.789, 0.889, 1.109, 0.969, 1.169

(Noter que X̄ = 0.)
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Solution 69.

(i) Les hypothèses du test sont H0 : (µ, σ2) ∈ Θ0 vs. H1 : (µ, σ2) ∈ Θ1, où Θ0 = {(µ, σ2) :
µ ∈ R, σ2 = σ2

0} et Θ1 = {(µ, σ2) : µ ∈ R, σ2 > 0, σ2 ̸= σ2
0}. Nous obtenons donc que

sup
(µ,σ2)∈Θ1

Ln(µ, σ
2) = Ln(µ̂n, σ̂

2
n),

où (µ̂n, σ̂
2
n) = (Xn, n

−1
∑n

i=1(Xi−Xn)
2) est l’estimateur du maximum de vraisemblance

de (µ, σ2) et
sup

(µ,σ2)∈Θ0

Ln(µ, σ
2) = Ln(µ̂n, σ

2
0),

où µ̂n = Xn est l’estimateur du maximum de vraisemblance de µ lorsque la variance est
connue. Le rapport de vraisemblance est

Λn(X1, . . . , Xn) =
Ln(µ̂n, σ̂

2
n)

L(µ̂n, σ2
0)

=

(
nσ2

0∑n
i=1(Xi −Xn)2

)n/2

exp

(∑n
i=1(Xi −Xn)

2

2σ2
0

− n

2

)
=

( n

W

)n/2
exp

(
−n

2
+

W

2

)
=

√(n
e

)n
W−neW ,

où W = (1/σ2
0)
∑n

i=1(Xi −Xn)
2 ∼ χ2

n−1 sous H0. Nous avons donc

Λn(X1, . . . , Xn) > Q ⇔
√(n

e

)n
W−neW > Q ⇔ W−neW > Q′,

où Q′ est tel que PH0(W
−neW > Q′) = α. Posons f(w) = w−new, et analysons cette

fonction. Nous avons

f ′(w) = w−n−1ew (w − n)


< 0 0 < w < n

= 0 w = n

> 0 w > n

Nous obtenons donc que Λn(X1, . . . , Xn) > Q ⇔ W > c1 ou W < c2, où c1 et c2 sont
telles que f(c1) = f(c2) et telles que PH0(W > c1)+PH0(W < c2) = α (voir graphique).
Ceci nous donne un système à deux équations deux inconnus compliqué à résoudre.

(ii) En supposant que c1 et c2 sont telles que

PH0(W > c1) = α/2 et PH0(W < c2) = α/2,

nous obtenons que c1 = χ2
n−1,1−α/2 et c2 = χ2

n−1,α/2, puisque W ∼ χ2
n−1 sous H0.

Lorsque α = 0.05, nous obtenons c1 = 19 et c2 = 2.7. Les données nous donnent
W = 7.27. Nous ne rejetons pas l’hypothèse nulle puisque δ(X1, . . . , X10) = 1{7.27 >
19}+ 1{7.27 < 2.7} = 0.

Exercice 70. La brasserie québécoise Unibroue produit des bières mondialement reconnues 2.
Elle souhaite vérifier si les bouteilles de bière qu’elle produit contiennent bien 341 ml, comme
indiqué à l’étiquette. En effet, si la quantité était inférieure à 341 ml, la brasserie risquerait

2. http ://www.unibroue.com/fr/unibroue/medals

58



MATH240 – Statistiques Prof. Victor Panaretos

w

f(
w

)

Q

c2 c1

un mécontentement de la part de sa fidèle clientèle, ainsi que des problèmes juridiques. En
revanche, une quantité supérieure à 341 entrainerait des pertes financières. Afin d’effectuer
cette vérification, la quantité de bière dans n = 100 bouteilles a été mesurée, et les valeurs
x1, . . . , xn ont été observées. On suppose que les observations xi sont indépendantes et tirées
d’une loi normale N (µ, σ2) dont les deux paramètres sont inconnus. Les observations obtenues
sont de moyenne x̄ = 337 et de variance échantillonnale S2 = 40. Tester à un niveau α = 0.05
si les bouteilles produites contiennent en moyenne 341 ml.
Indice : consulter l’exemple 4.22 (p. 119).
Est-ce que la conclusion changerait si n était égal à 10 ?

Solution 70. Nous voulons faire le test bilatéral H0 : µ = 341 contre H1 : µ ̸= 341. Puisque
les données sont tirées d’une loi normale, il suffit d’appliquer le résultat trouvé à l’exemple
4.22. La fonction de test est donc

δ(X1, . . . , Xn) = 1

{
|337− 341|√

40/100
> t99,0.975

}
= 1

{√
40 > 1.984

}
= 1.

Nous rejetons donc l’hypothèse nulle au niveau 0.05.
Par contre, si l’échantillon était de taille 10, la fonction de test serait

δ(X1, . . . , Xn) = 1

{
|337− 341|√

40/10
> t9,0.975

}
= 1 {2 > 2.262} = 0,

on ne rejetterait donc pas l’hypothèse nulle.

Exercice 71 (exercice 54).

(i) Soit X1, . . . , Xn un échantillon tiré d’une distribution de Poisson de paramètre θ. Nous
voulons tester H0 : θ = θ0 vs. H1 : θ ̸= θ0. Trouver un test du rapport de vraisemblance
approximatif permettant de tester ces deux hypothèses.

Indice : utiliser le théorème 4.23.
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(ii) Supposons que nous ayons observé n = 100 observations de moyenne x̄ = 2.1. Tester à
un seuil de signification α = 0.05 les hypothèses H0 et H1 définies ci-dessus pour θ0 = 2.

Solution 71.

(i) La fonction de vraisemblance

Ln(θ) =
e−nθθ

∑n
i=1 Xi∏n

i=1Xi!
,

est maximisée en θ̂n = Xn. Le rapport de vraisemblance est donc

Λn(X1, . . . , Xn) =
Ln(Xn)

Ln(θ0)
= en(θ0−Xn)

(
Xn

θ0

)∑n
i=1 Xi

.

Par le théorème 4.23, nous savons que

2n

(
θ0 −Xn +Xn log

Xn

θ0

)
= 2 log Λn(X1, . . . , Xn)

d→ χ2
1,

sous H0. Un test approximatif peut donc être défini par la fonction de test

1{2 log Λn(X1, . . . , Xn) > χ2
1,1−α} = 1

{
2n

(
θ0 −Xn +Xn log

Xn

θ0

)
> χ2

1,1−α

}
.

(ii) Nous avons

1

{
2 · 100

(
2− 2.1 + 2.1 log

2.1

2

)
> χ2

1,0.95

}
= 1{0.49 > 3.84} = 0,

nous ne rejetons donc pas l’hypothèse nulle.

Exercice 72 (exercice 55). Soit un échantillon iid X1, . . . , Xn issu d’une loi N(0, σ2) où la
variance σ2 est inconnue. Construire un test de Wald approximatif (de niveau α) afin de tester
l’hypothèse H0 : σ2 = σ2

0 versus H1 : σ2 ̸= σ2
0 pour σ2

0 > 0 fixé. Comparer avec le test du
rapport de vraisemblance.

Solution 72. La fonction de densité s’écrit

f(x;σ2) = exp

{
−1

2
ln(2πσ2)− x2

2σ2

}
; θ = σ2 > 0, x ∈ R,

de sorte que η(θ) = −1/(2θ) et d(θ) = 1
2 ln(2πθ). L’estimateur du maximum de vraisemblance

est σ̂2
n = θ̂n = n−1

∑n
i=1X

2
i . Le calcul

η′(θ) =
1

2θ2
; η′′(θ) = − 1

θ3
; d′(θ) =

1

2θ
; d′′(θ) = − 1

2θ2
,

implique que

Ĵn = n
d′′(θ̂n)η

′(θ̂n)− d′(θ̂n)η
′′(θ̂n)

η′(θ̂n)
= nθ̂−2

n /2.
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Afin de tester l’hypothèse nulle H0 : σ
2 = σ2

0, M. Wald vérifiera si

Q < Ĵn(θ̂n − θ0)
2 =

n

2

(
1− σ2

0

σ̂2
n

)2

.

D’après le théorème 4.26, la distribution approximative du membre à droite est χ2
1 sous H0.

Ainsi (voir la remarque 4.27), le test de Wald approximatif rejette H0 si et seulement si

n

2

(
1− σ2

0

σ̂2
n

)2

> χ2
1,1−α.

Remarque. On connâıt la loi exacte de Ĵn(θ̂n−θ0)
2 sous H0. En effet, nσ̂2

n/σ
2
0 ∼ χ2

n. À partir
de là on peut trouver le test exacte, mais il n’aura pas une forme explicite ; cela ressemble à
ce qui se passe dans l’exercice 4 de la série 10.
Rapport de vraisemblance. Puisque la moyenne µ = 0 est connue, l’estimateur du maxi-
mum de vraisemblance est différent qu’à l’exercice 1 de cette série et il faut refaire le calcul :

Ln(σ
2) =

(
1

2πσ2

)n/2

exp

(
−
∑n

i=1X
2
i

2σ2

)
ℓn(σ

2) = −n

2
log 2πσ2 −

∑n
i=1X

2
i

2σ2

ℓ′n(σ
2) = − n

2σ2
+

∑n
i=1X

2
i

2σ4
=⇒ σ̂2

n =
1

n

n∑
i=1

X2
i

ℓ′′n(σ̂
2
n) =

n

2σ̂4
n

−
∑n

i=1X
2
i

σ̂6
n

= −n

2
σ̂4
n < 0.

Le rapport de vraisemblance est

Λn =
Ln(σ̂

2
n)

Ln(σ2
0)

=

(
σ2
0

σ̂2
n

)n/2

exp

(
n

2

σ̂2
n

σ2
0

)
exp

(
−n

2

)
.

Quand H0 est vraie 2 log Λn
d→ χ2

1 (théorème 4.23).
Le test approximatif est donc (voir la remarque 4.24)

n

[
σ̂2
n

σ2
0

− log
σ̂2
n

σ2
0

− 1

]
> χ2

1,1−α.

En faisant l’approximation de Taylor log x ≈ log 1 + (x− 1)− (x− 1)2/2 pour x ≈ 1 on voit
que les deux tests sont proches.

Exercice 73 (exercice 56). Soit un échantillon iid X1, . . . , Xn issu d’une loi Bernoulli de
paramètre p inconnu. Construire un test de Wald approximatif (de niveau α) afin de tester
l’hypothèse H0 : p = p0 versus H1 : p ̸= p0 pour p0 ∈]0, 1[ fixé. Comparer avec le test de
rapport du vraisemblance.
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Solution 73. La fonction de masse s’écrit

f(x; p) = exp{x ln p+ (1− x) ln(1− p)} = exp{x[ln p− ln(1− p)] + ln(1− p)}, x ∈ {0, 1},

de sorte que η(p) = ln p − ln(1 − p) et d(p) = − ln(1 − p). L’estimateur du maximum de
vraisemblance est p̂n = n−1

∑n
i=1Xi = Xn et nXn ∼ Binom(n, p). Calculons

η′(p) =
1

p(1− p)
; η′′(p) =

2p− 1

p2(1− p)2
; d′(p) =

1

1− p
; d′′(p) =

1

(1− p)2
,

d’où

Ĵn = n
d′′(θ̂n)η

′(θ̂n)− d′(θ̂n)η
′′(θ̂n)

η′(θ̂n)
=

n

p̂n(1− p̂n)
.

Le test de Wald rejette l’hypothèse H0 : p = p0 si et seulement si

Q <
n

p̂n(1− p̂n)
(p̂n − p0)

2 d→ χ2
1 (sous H0, théorème 4.26).

Le test de Wald approximatif est donc (remarque 4.27)

n
(p̂n − p0)

2

p̂n(1− p̂n)
> χ2

1,1−α.

Le test du rapport de vraisemblance rejette si (p̂n/p0)
np̂n [(1 − p̂n)/(1 − p0)]

n−np̂n est grand,
et 2 fois le logarithme de cette quantité converge en distribution vers une variable aléatoire
χ2
1 quand H0 est vraie (théorème 4.23).

Le test approximatif est donc (remarque 4.24)

2n

[
p̂n log

p̂n
p0

+ (1− p̂n) log
1− p̂n
1− p0

]
> χ2

1,1−α.

Exercice 74 (exercice 53, test non apparié). Soit un échantillon X1, . . . , Xn, Y1, . . . , Ym

de n+m variables aléatoires indépendantes, où Xi
iid∼ N (µ1, σ

2) et Yi
iid∼ N (µ2, σ

2), où σ2 est
inconnue (mais la même pour les X et les Y ). Le but de cet exercice est de trouver le test du
rapport de vraisemblance permettant de tester H0 : µ1 = µ2 contre H1 : µ1 ̸= µ2.

(i) Définir la fonction de vraisemblance du paramètre θ = (µ1, µ2, σ
2).

(ii) En remarquant que Θ0 = {(µ, µ, σ2) : −∞ < µ < ∞, 0 < σ2 < ∞} et que Θ1 =
{(µ1, µ2, σ

2) : −∞ < µ1 ̸= µ2 < ∞, 0 < σ2 < ∞}, montrer que

sup
θ∈Θ0

L(θ) =

(
e−1

2πσ̂2
Θ0

)(m+n)/2

,

où σ̂2
Θ0

= 1
n+m

(∑n
i=1(Xi − µ̂)2 +

∑m
j=1(Yj − µ̂)2

)
, avec µ̂ = 1

n+m

(∑n
i=1Xi +

∑m
j=1 Yj

)
.

Montrer aussi que

sup
θ∈Θ1

L(θ) =

(
e−1

2πσ̂2
Θ1

)(m+n)/2

,

où σ̂2
Θ1

= 1
n+m

(∑n
i=1(Xi − X̄)2 +

∑m
j=1(Yj − Ȳ )2

)
.
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(iii) En utilisant le fait que
∑n

i=1(Xi− µ̂)2 =
∑n

i=1(Xi− X̄)2+ nm2(X̄−Ȳ )2

(n+m)2
et que

∑m
j=1(Yj −

µ̂)2 =
∑m

j=1(Yj − Ȳ )2 + mn2(X̄−Ȳ )2

(n+m)2
, montrer que

Λ(X1, . . . , Xn, Y1, . . . , Ym) =

(
1 +

t2

m+ n− 2

)(n+m)/2

,

où

t =

√
nm
n+m(X̄ − Ȳ )√

1
n+m−2 [(n− 1)S2

X + (m− 1)S2
Y ]

,

avec S2
X = 1

n−1

∑n
i=1(Xi − X̄)2 et S2

Y = 1
m−1

∑m
j=1(Yj − Ȳ )2.

(iv) En utilisant le fait que le test de niveau α dont la fonction de test est donnée par
1{Λ(X1, . . . , Xn, Y1, . . . , Ym) > Q} est le même que celui dont la fonction de test est
1{|t| > Q′} où Q′ est tel que supθ∈Θ0

Pθ(|t| > Q′) = α, énoncer le test du rapport de
vraisemblance, i.e. trouver la loi de t sous H0 et par le fait même la valeur de Q′.

Indice : si A ∼ χ2
a et B ∼ χ2

b sont indépendantes, alors A+B ∼ χ2
a+b.

Solution 74.

(i) La fonction de vraisemblance est

L(µ1, µ2, σ
2) =

n∏
i=1

f(Xi;µ1, σ
2)

m∏
j=1

f(Yj ;µ2, σ
2)

=

(
1

2πσ2

)(n+m)/2

exp

− 1

2σ2

 n∑
i=1

(Xi − µ1)
2 +

m∑
j=1

(Yj − µ2)
2

 .

(ii) Lorsque θ ∈ Θ0, nous sommes dans la situation bien connue d’un échantillon iid, de
taille n+m, tiré d’une N (µ, σ2). Nous avons donc que le supremum de L(θ) est atteint
en

θ̂ = (µ̂, µ̂, σ̂2
Θ0

) =

nX +mY

n+m
,
nX +mY

n+m
,

1

n+m

 n∑
i=1

(Xi − µ̂)2 +

m∑
j=1

(Yj − µ̂)2

 ,

il est donc égal à

L(µ̂, µ̂, σ̂2
Θ0

) =

(
1

2πσ̂2
Θ0

)(n+m)/2

exp

− 1

2σ̂2
Θ0

 n∑
i=1

(Xi − µ̂)2 +
m∑
j=1

(Yj − µ̂)2


=

(
1

2πσ̂2
Θ0

)(n+m)/2

exp

(
−n+m

2

)

=

(
e−1

2πσ̂2
Θ0

)(n+m)/2

.
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Lorsque θ ∈ Θ1, nous devons maximiser la fonction de vraisemblance trouvée en (i)
par rapport à (µ1, µ2, σ

2). En dérivant la fonction de log-vraisemblance par rapport à
chacun des paramètres et en posant les 3 expressions obtenues égales à 0, nous obtenons
que le supremum de L(θ) est atteint en

θ̂ = (µ̂1, µ̂2, σ̂
2
Θ1

) =

X,Y ,
1

n+m

 n∑
i=1

(Xi −X)2 +

m∑
j=1

(Yj − Y )2

 ,

il est donc égal à

L(µ̂1, µ̂2, σ̂
2
Θ1

) =

(
1

2πσ̂2
Θ1

)(n+m)/2

exp

− 1

2σ̂2
Θ1

 n∑
i=1

(Xi −X)2 +
m∑
j=1

(Yj − Y )2


=

(
1

2πσ̂2
Θ1

)(n+m)/2

exp

(
−n+m

2

)

=

(
e−1

2πσ̂2
Θ1

)(n+m)/2

.

(La matrice hessienne évaluée en (µ̂1, µ̂2, σ̂
2
Θ1

) est diagonale et définie négative.)

(iii) Remarquons tout d’abord qu’utilisant les deux identités fournies dans la question, nous
obtenons que σ̂2

Θ0
peut s’écrire de la façon suivante :

σ̂2
Θ0

= σ̂2
Θ1

+
mn(X − Y )2

(m+ n)2
.

Le rapport de vraisemblance est donc

Λ(X1, . . . , Xn, Y1, . . . , Ym) =
L(µ̂1, µ̂2, σ̂

2
Θ1

)

L(µ̂, µ̂, σ̂2
Θ0

)
=

(
σ̂2
Θ0

σ̂2
Θ1

)(n+m)/2

=

(
1 +

mn(X − Y )2

σ̂2
Θ1

(m+ n)2

)(n+m)/2

= (1 + s)(n+m)/2 ,
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où

s =
mn(X − Y )2

σ̂2
Θ1

(m+ n)2

=
mn(X − Y )2

(m+ n)
[∑n

i=1(Xi −X)2 +
∑m

j=1(Yj − Y )2
]

=

mn(X−Y )2

(m+n)

n+m−2
n+m−2

[∑n
i=1(Xi −X)2 +

∑m
j=1(Yj − Y )2

]

=

( √
mn

(m+n)
(X−Y )√

1
n+m−2 [

∑n
i=1(Xi−X)2+

∑m
j=1(Yj−Y )2]

)2

n+m− 2

=

( √
nm
n+m

(X−Y )√
1

n+m−2
[(n−1)S2

X+(m−1)S2
Y ]

)2

n+m− 2
.

(iv) Nous devons trouver la distribution de t sous H0, c’est-à-dire lorsque µ1 = µ2 = µ. Pour
ce faire, nous allons réécrire t de la façon suivante :

t =

1
σ

√
nm
n+m(X − Y )√

1
n+m−2

[
(n−1)S2

X
σ2 +

(m−1)S2
Y

σ2

] =
Z1√
Z2

n+m−2

,

où σ2 est la variance inconnue de notre échantillon.

Analysons premièrement Z1. Nous savons que sous H0, X ∼ N (µ, σ2/n) et Y ∼
N (µ, σ2/m), puisque ces deux variables aléatoires sont indépendantes,X−Y ∼ N (0, σ2(n+
m)/nm). Ainsi Z1 ∼ N (0, 1).

Analysons maintenant le dénominateur. Nous savons par la proposition 2.7 que (n −
1)S2

X/σ2 ∼ χ2
n−1 et que (m − 1)S2

Y /σ
2 ∼ χ2

m−1. En utilisant l’indice fourni dans la
question, nous obtenons que Z2 = (n − 1)S2

X/σ2 + (m − 1)S2
Y /σ

2 ∼ χ2
n+m−2, puisque

les deux variables aléatoires sont indépendantes. La proposition 2.7 nous dit également
que Z1 et Z2 sont indépendantes, et d’après l’exercice 6 de la série 2, t ∼ tn+m−2. Le
test du rapport de vraisemblance est donc défini par la fonction de test suivante :

δ(X1, . . . , Xn, Y1, . . . , Ym) = 1{|t| > tn+m−2,1−α/2}.

Exercice 75 (*exercice 57). Soient X1, . . . , Xn
iid∼ f(x; θ). Supposons que l’on veut tester

H0 : θ = θ0 versus H1 : θ ̸= θ0 en utilisant la fonction de test δα de la forme

δα(T (X1, . . . , Xn)) = 1{T (X1, . . . , Xn) > q1−α} ou δα(T (X1, . . . , Xn)) = 1{T (X1, . . . , Xn) < qα},

où qα est le α-quantile de G0, la fonction de distribution de T (X1, . . . , Xn) quand θ = θ0.
Supposons que G0 est une fonction continue. Montrer que sous H0, la valeur-p suit la distri-
bution uniforme sur [0, 1].
Indice : utiliser le lemme 4.30.
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Solution 75. D’après le lemme 4.30, il suffit de montrer que G0(T (X1, . . . , Xn)) ∼ U [0, 1]
sous H0. Or, sous H0, G0 est la fonction de distribution de T (X1, . . . , Xn), supposée continue.
Lorsque Z est une variable aléatoire avec fonction de distribution continue G (cf. l’exercice
2, série 2)

P(G(Z) ≥ u) = P(Z ≥ G−1(u)) = 1−G(G−1(u)) = 1− u, u ∈]0, 1[,

où G−1(u) = inf{t : G(t) ≥ u} et les deux dernières égalités découlent de la continuité de G.
Ainsi G0(T (X1, . . . , Xn)) ∼ U [0, 1] et 1−G0(T (X1, . . . , Xn)) ∼ U [0, 1] si H0 est vraie.

Exercice 76 (exercice 60, intervalle bilatéral optimal). Afin de construire un intervalle de
confiance bilatéral pour la moyenne d’une distribution normale (dont la variance est connue),
nous avons choisi zα/2 et z1−α/2 comme bornes de l’intervalle (cf. exemple 5.3). L’on peut se
demander pourquoi ne pas choisir par exemple zα/3 et z1−2α/3.
Il est vrai qu’on aime les intervalles plus ≪ naturels ≫ ou symétriques, mais la raison de ce
choix est la suivante :

(i) Soient Z ∼ N(0, 1) et α ∈ ]0, 1[ . Montrer que l’intervalle I = [L,U ] ayant la plus petite
longueur et tel que P(I ∋ Z) ≥ 1− α est donné par L = zα/2 et U = z1−α/2.

(ii) Soient X1, . . . , Xn
iid∼ N(µ, σ2) où la variance σ2 est connue. Trouver l’intervalle In =

[An, Bn] ayant la plus petite longueur et tel que P(In ∋ µ) ≥ 1− α.

(iii) *Peut-on généraliser ce résultat ?

Solution 76. (i) Il faut résoudre le problème suivant :

minU − L t.q. Φ(U)− Φ(L) ≥ 1− α (U,L ∈ R).

Puisque Φ est une fonction croissante, la contrainte peut s’écrire U ≥ Φ−1(1−α+Φ(L)).
Pour un L donné, il faut choisir le U le plus petit qui satisfait la contrainte. Ainsi, notre
problème se réduit à trouver

min g(L) = Φ−1(1− α+Φ(L))− L, L ∈ R.

Notons cependant que Φ(L) ≤ Φ(U)− 1+α < α et le domaine de g est ]−∞,Φ−1(α)[.
De plus, g(L) → ∞ lorsque L → −∞ ou lorsque L → Φ−1(α), et g ≥ 0. Le minimum
de g sera donc atteint à un point intérieur du domaine de g. Celle-ci est dérivable
par le théorème de la fonction inverse (car Φ est strictement croissante et continûment
dérivable).

La dérivée de g s’annule si et seulement si

1 =
Φ′(L)

Φ′(Φ−1(1− α+Φ(L)))
=

Φ′(L)

Φ′(U)
=

exp(−L2/2)

exp(−U2/2)
,

c’est-à-dire lorsque L = ±U . Or, Φ est croissante et Φ(U) − Φ(L) = 1 − α > 0, donc
forcément L < U . On a donc L = −U et par symétrie Φ(U) = 1− Φ(L), donc

1− α = Φ(U)− Φ(L) = 1− 2Φ(L) =⇒ Φ(L) =
α

2
=⇒ Φ(U) = 1− α

2
.

66



MATH240 – Statistiques Prof. Victor Panaretos

Le but de la discussion ci-dessus était de montrer qu’il s’agit d’un minimum sans devoir
calculer la dérivée seconde de g . À noter qu’il est facile dans ce cas de montrer que
g′′(Φ−1(α/2)) > 0 et donc qu’il s’agit bel et bien d’un minimum.

Remarque. Le choix L = Φ−1(α) correspond à U = ∞ et donne l’intervalle de confiance
unilatéral à gauche. Le choix L = −∞ correspond à U = Φ−1(1−α) et donne l’intervalle
unilatéral à droite.

(ii) Comme dans l’exemple 5.3, posons Zn =
√
n(Xn − µ)/σ ∼ N(0, 1) et remarquons que

P[An ≤ µ ≤ Bn] = P(Xn−Bn ≤ Xn−µ ≤ Xn−An) = P
[√

n

σ
(Xn −Bn) ≤ Zn ≤

√
n

σ
(Xn −An)

]
.

Il faut minimiser Bn−An, ce qui équivaut à minimiser (
√
n/σ)(Xn−An)−(

√
n/σ)(Xn−

Bn), mais sous la contrainte que cette probabilité soit au moins 1−α. Par la partie (i),
la solution est[√

n

σ
(Xn −Bn),

√
n

σ
(Xn −An)

]
= [zα/2, z1−α/2] = [−z1−α/2, z1−α/2].

Ainsi, la solution de notre problème est

[An, Bn] =

[
Xn − z1−α/2

σ√
n
,Xn + z1−α/2

σ√
n

]
,

qui est donc l’intervalle de confiance basé sur Xn de seuil (supérieure ou égale à) (1−α)
ayant la plus petite longueur.

(iii) Le même résultat est valable lorsque Z suit une loi ayant une densité symétrique f , qui
est strictement décroissante sur R+. C’est-à-dire, le résultat est valable si
— pour chaque x ∈ R, f(x) = f(−x) ;
— pour chaque 0 < x < y, f(x) > f(y).
Par exemple, ceci est bien le cas si Z ∼ tk pour k > 0. Ainsi, même si la variance σ2 est
inconnue, en la remplaçant par l’estimateur S2, on obtiendra l’intervalle de confiance
ayant la plus petite longueur.

Remarque. Sous ces conditions, on peut montrer que l’intervalle [L,U ] est l’ensemble
(mesurable) F ayant la mesure de Lebesgue la plus petite et tel que P(F ∋ Z) ≥ 1− α.
Il est donc inutile de chercher (par exemple) une union d’intervalles.

Exercice 77 (exercice 61, différence de moyennes).

(i) SoientX1, . . . , Xn
iid∼ N(µX , σ2) et Y1, . . . , Yn

iid∼ N(µY , σ
2) deux échantillons indépendants,

où µX , µY et σ2 sont inconnus. Trouver un intervalle de confiance bilatéral pour le pa-
ramètre θ = µX − µY avec un seuil de confiance 1− α.

(ii) On veut comparer la durée d’efficacité de deux nouveaux médicaments,M1 etM2, contre
la lombalgie 3. On a donc administré chaque médicament à un groupe de 15 patients, et
ensuite mesuré (en heures) la période sans douleur après la prise du médicament. On
obtient la moyenne du temps d’efficacité X1 = 7.5 pour M1 et X2 = 6.3 pour M2. On

3. C’est ce qu’a eu Pierre Brochant dans le film le d̂ıner des cons. Il n’est pas le seul : on estime qu’entre
40 et 70% de la population en sera touché au cours de la vie.
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a aussi les écart-types estimés S1 = 1.1 et S2 = 1.3 pour M1 et M2 respectivement. En
supposant que les observations des groupes 1 et 2 sont indépendantes et suivent des lois
N(µ1, σ

2) et N(µ2, σ
2) respectivement, donner l’intervalle de confiance à 95% pour la

différence µ1 − µ2. Que peut-on constater sur l’efficacité relative de M1 et M2 ?

Solution 77. (i) D’après l’exercice 74 (avec n = m), la variable aléatoire

T =

√
n2

n+n

(
X − µX − Y + µY

)√
1

n+n−2 [(n− 1)S2
X + (n− 1)S2

Y ]
=

√
n
(
X − Y − θ

)√
S2
X + S2

Y

=
X − Y − θ√
1
n(S

2
X + S2

Y )

suit une loi t2n−2 pour chaque θ ∈ R. (Parce que S2
X = S2

X−c pour chaque constante
c ∈ R.) Ainsi, T = g(X1, . . . , Xn, Y1, . . . , Yn, θ) est un pivot (la continuité par rapport à
θ est évidente). À partir de là, on n’a qu’à faire les manipulations habituelles :

1− α = Pθ

t2n−2,α/2 ≤
X̄ − Ȳ − θ√
1
n(S

2
X + S2

Y )
≤ t2n−2,1−α/2


= Pθ

[
t2n−2,α/2

√
1

n
(S2

X + S2
Y ) ≤ X̄ − Ȳ − θ ≤ t2n−2,1−α/2

√
1

n
(S2

X + S2
Y )

]

= Pθ

[
X̄ − Ȳ − t2n−2,1−α/2

√
1

n
(S2

X + S2
Y ) ≤ θ ≤ X̄ − Ȳ − t2n−2,α/2

√
1

n
(S2

X + S2
Y )

]

= Pθ

[
X̄ − Ȳ − t2n−2,1−α/2

√
1

n
(S2

X + S2
Y ) ≤ θ ≤ X̄ − Ȳ + t2n−2,1−α/2

√
1

n
(S2

X + S2
Y )

]
.

On conclut que
[
X̄ − Ȳ − t2n−2,1−α/2

√
1
n(S

2
X + S2

Y ), X̄ − Ȳ + t2n−2,1−α/2

√
1
n(S

2
X + S2

Y )
]

est un intervalle de confiance pour θ = µX − µY avec un seuil 1− α.

Remarque. On peut définir Zi = Xi − Yi
iid∼ N(θ, 2σ2) (ce qui par ailleurs aurait été

plus compliqué si m ̸= n, c’est-à-dire si le nombre de Xi n’était pas égal au nombre de
Yi) de sorte que

X − Y − θ√
1
nS

2
Z

=
√
n
Z − θ√

S2
Z

=

√
n

2σ2 (Z − θ)√
1

n−1

√
(n−1)S2

Z
2σ2

∼ tn−1, S2
Z =

n∑
i=1

(Zi − Z)2,

car le nominateur suit une loi N(0, 1) et le dénominateur est V/
√
n− 1 où V ∼ χ2

n−1,
et les deux sont indépendantes. Ainsi on obtient l’intervalle de confiance[

X̄ − Ȳ − tn−1,1−α/2

√
1

n
S2
Z , X̄ − Ȳ + tn−1,1−α/2

√
1

n
S2
Z

]
.

Cet intervalle sera probablement plus grand que celui d’avant : puisque S2
Z → 2σ2 et

S2
X + S2

Y → 2σ2, on s’attend à ce que les deux aient une taille similaire (ils ont en tous
cas la même espérance et la même variance). Or pour β fixé, la fonction k 7→ tk,β est
décroissante. Notre deuxième intervalle aura donc tendance à être plus grand, puisqu’on
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utilise tn−1 au lieu de t2n−2. Intuitivement, on a utilisé n données (les différences Xi−Yi)
au lieu d’en utiliser 2n.

En revanche, le premier intervalle est moins général que le deuxième : ce dernier suppose
uniquement que les différences Zi sont iid, alors que dans le premier cas on a supposé
que toutes les Xi sont indépendantes de toutes les Yi, une supposition plus forte. Dans
le cas apparié (exercice 6, série 10), on ne peut utiliser que le deuxième intervalle !

(ii) En utilisant le résultat de la partie a), on obtient l’intervalle de confiance à 95% :[
X1 −X2 − t28,0.975

√
1

15
(S2

1 + S2
2), X1 −X2 + t28,0.975

√
1

15
(S2

1 + S2
2)

]
≈ [0.30, 2.10].

On peut donc conclure que le temps de l’efficacité de M1 est meilleur que celui de M2

par 18–126 minutes avec un seuil de confiance 95%.

Exercice 78 (*exercice 62). Soient Tk ∼ tk et soit Z ∼ N(0, 1). Montrer que Tk
d→ Z lorsque

k → ∞.
Indice : s’inspirer des exemples 5.3 et 5.7.

Solution 78. Soient X1, . . . , Xn
iid∼ N(µ, σ2) avec µ ∈ R et σ2 > 0 inconnus. Supposons qu’on

aimerait trouver un intervalle de confiance pour µ (donc σ2 est un paramètre de nuisance).
D’après l’exemple 5.7, on sait que

Xn − µ

Sn/
√
n

→ N(0, 1), Xn =
1

n

n∑
i=1

Xi, S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2.

Or ici les Xi sont normales ; on connâıt donc la distribution exacte de Tn =
√
n(Xn−µ)/Sn :

d’après le théorème 2.9, elle est tn−1. L’énoncé est donc démontré.

Exercice 79 (exercice 63). En utilisant la même notation que celle de la proposition 5.8 du
cours, prouver que le tableau suivant contient les intervalles de confiance approximatifs avec
seuil (1− α) pour θ :

Confiance approximative 1− α L(X1, . . . , Xn) U(X1, . . . , Xn)

Bilatéral θ̂n − z1−α/2Ĵn
−1/2

θ̂n + z1−α/2Ĵn
−1/2

Unilatéral à gauche θ̂n − z1−αĴn
−1/2

+∞
Unilatéral à droite −∞ θ̂n + z1−αĴn

−1/2

Indice : si Zn
d→ Z, où Z est une variable aléatoire continue, alors P[Zn = a] → 0 pour

chaque a ∈ R.

Solution 79. Montrons tout d’abord le résultat dans l’indice.
Soient Fn et F les fonctions de répartition de Zn et Z respectivement. Pour tout ϵ > 0,

0 ≤ P(Zn = a) ≤ P(a− ϵ < Zn ≤ a) = Fn(a)− Fn(a− ϵ) → F (a)− F (a− ϵ),
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lorsque n → ∞, puisque F est continue. Ainsi

lim sup
n→∞

P(Zn = a) ≤ F (a)− F (a− ϵ) → 0, ϵ → 0,

car F est continue. Ceci prouve le résultat cherché.
Vérifions le cas bilatéral :

P[θ̂n − z1−α/2Ĵ
−1/2
n ≤ θ ≤ θ̂n + z1−α/2Ĵ

−1/2
n ]

=P[−z1−α/2 ≤ Ĵ1/2
n (θ̂n − θ) ≤ z1−α/2]

=P[zα/2 ≤ Ĵ1/2
n (θ̂n − θ) ≤ z1−α/2]

=Fn(z1−α/2)− Fn(zα/2) + P[Ĵ1/2
n (θ̂n − θ) = zα/2],

où Fn est la fonction de répartition de Ĵ
1/2
n (θ̂n−θ) et où on a utilisé le fait que zα/2 = −z1−α/2.

Par la proposition 5.8 (p. 123), on sait que Fn(x) → Φ(x) pour chaque x ∈ R, où Φ(x) est la
fonction de répartition de N(0, 1). De plus, par la proposition ci-dessus

P[Ĵ1/2
n (θ̂n − θ) = zα/2] → 0, n → ∞.

Donc

P[θ̂n− z1−α/2Ĵ
−1/2
n ≤ θ ≤ θ̂n+ z1−α/2Ĵ

−1/2
n ] → Φ(z1−α/2)−Φ(zα/2) = 1−α/2−α/2 = 1−α.

Il s’en suit que [θ̂n−z1−α/2Ĵ
−1/2
n , θ̂n+z1−α/2Ĵ

−1/2
n ] est un intervalle de confiance approximatif

avec seuil 1− α.
De la même façon, on trouve que

P[θ̂n − z1−αĴ
−1/2
n ≤ θ] = P[Ĵ1/2

n (θ̂n − θ) ≤ z1−α] = Fn(z1−α) → Φ(z1−α) = 1− α

et que

P[θ ≤ θ̂n + z1−αĴ
−1/2
n ] = 1− P[θ > θ̂n + z1−αĴ

−1/2
n ]

= 1− P[Ĵ1/2
n (θ̂n − θ) < zα]

= 1− Fn(zα) + P[Ĵ1/2
n (θ̂n − θ) = zα]

→ 1− Φ(zα) = 1− α.

Donc, [θ̂−z1−αĴ
−1/2
n ,+∞] et [−∞, θ̂+z1−αĴ

−1/2
n ] sont les intervalles de confiance unilatéraux

approximatifs avec seuil 1− α.

Exercice 80 (*exercice 64, pivot général).

(i) Soient X1, . . . , Xn
iid∼ f(x; θ) et Tn(X1, . . . , Xn) une statistique continue. Soit Yn =

FTn(Tn; θ), où FTn(t; θ) = Pθ[Tn ≤ t] est la fonction de répartition de Tn. Supposons que
FTn(t; θ) est pour chaque t une fonction continue de θ. Montrer que Yn ∼ U(0, 1) et donc
que Yn est un pivot. Comment peut on utiliser ce résultat pour trouver un intervalle de
confiance pour θ ?

(ii) Soit f(x; θ) = e−(x−θ)1[θ,∞)(x). Utiliser la partie a) et la statistique Tn = min{X1, . . . , Xn}
pour trouver un intervalle de confiance pour θ avec un seuil 1− α.
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Solution 80. (i) Nous avons déjà montré que Yn ∼ U(0, 1). Ainsi, pour chaque θ et chaque
α ∈ ]0, 1[ on a

1− α = Pθ[α/2 ≤ Yn ≤ 1− α/2] = Pθ[α/2 ≤ FTn(Tn; θ) ≤ 1− α/2].

Donc, l’ensemble
S = {θ ∈ Θ : α/2 ≤ FTn(Tn; θ) ≤ 1− α/2}

est une région de confiance pour θ avec un seuil 1−α. Si S est un intervalle, on a trouvé
un intervalle de confiance pour θ. Cela est le cas par exemple quand FTn(t; θ) est une
fonction monotone de θ pour chaque t. Si c’est une fonction croissante et Tn est une
variable aléatoire continue, alors

S = {θ ∈ Θ : qα/2(θ) ≤ Tn ≤ q1−α/2(θ)},

où qβ est le β-quantile de la distribution de Tn.

Si Tn = τn est la statistique exhaustive d’une famille exponentielle à 1-paramètre, S est
la région de confiance au seuil (1 − α) obtenue en inversant le test dont la fonction de
test est

δ(X1, . . . , Xn) = 1{qα/2 ≤ τn(X1, . . . , Xn) ≤ q1−α/2}.

(ii) Trouvons la fonction de répartition de Tn = min{X1, . . . , Xn}. Ceci se fait facilement
en utilisant P(T > t) = P(X1 > t)n pour chaque t. On peut éviter quelques calculs en

remarquant que Xi − θ
iid∼ Exp(1) et donc Tn − θ

iid∼ Exp(n), de sorte que pour t ≥ θ,
1− FTn(t; θ) = Pθ[Tn − θ > t− θ] = exp{−n(t− θ)}. Ainsi

FTn(t; θ) =

{
1− exp{−n(t− θ)} t ≥ θ

0 t < θ,

est décroissante en θ (vérifier les deux cas !) et donc l’ensemble S est un intervalle [L,U ].
Les bornes sont tels que FTn(Tn;L) = 1− α/2 et FTn(Tn;U) = α/2 ; autrement dit

1− e−n(Tn−L) = 1− α/2, 1− e−n(Tn−U) = α/2.

La solution est

[L,U ] =

[
Tn +

1

n
log(α/2), Tn +

1

n
log(1− α/2)

]
qui est par construction un intervalle de confiance pour θ avec un seuil 1− α :

P([L,U ] ∋ θ) = P (α/2 ≤ Yn ≤ 1− α/2) = 1− α.

On remarque que les deux logarithmes sont négatifs ; on sait que Tn ≥ θ !

Exercice 81 (exercice 65). Soient X1, . . . , Xn
iid∼ N(µ, σ2), où σ2 est connu. Trouver une

expression pour l’intervalle de confiance unilatéral à gauche avec seuil 1− α pour µ.
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Solution 81. Grâce à la proposition 5.17, nous savons qu’il faut inverser un test uniformément
le plus puissant pour la paire d’hypothèses

H0 : µ ≤ µ0 vs H1 : µ > µ0.

Le théorème 4.16 dit que ce test aura la fonction de test

δ(X1, . . . , Xn;µ0) = 1(τn(X1, . . . , Xn) > q1−α(µ0)),

où τn =
∑n

i=1Xi = nXn est la statistique exhaustive et q1−α(µ0) est le (1 − α)-quantile
de la distribution de τn sous H0, à savoir N(µ0n, nσ

2). Il est élémentaire que q1−α(µ0) =
nµ0+

√
nσz1−α, où z1−α est le (1−α)-quantile d’une loi N(0, 1). La région de confiance pour

µ est la collection de tous les µ0 pour lequels on ne rejette pas l’hypothèse nulle avec les
données X1, . . . , Xn, soit

R(X1, . . . , Xn) = {µ0 : τn ≤ q1−α(µ0)}

=

{
µ0 :

τn − nµ0√
nσ

≤ z1−α

}
= {µ0 : µ0 ≥ Xn − z1−ασ/

√
n}

=

[
Xn − z1−α

σ√
n
,+∞

[
.

Les conditions sont satisfaites, puisque c’est une famille exponentielle avec η(µ) = µ/σ2

strictement croissante, τn est une variable aléatoire continue, et sa loi Pµ[τn ≤ t] = Φ((t −
nµ)/σ

√
n) est continue en µ.

La borne inférieure est donc construite à partir de l’estimateur de maximum de vraisemblance,
en laissant une marge d’erreur pour compenser le fait que celui-ci est aléatoire. La taille de
cette marge d’erreur dépend de α, σ et n comme expliqué à la page 136.

Exercice 82 (exercice 66). Soient X1, . . . , Xn
iid∼ Bern(p). Avec l’aide d’une statistique ex-

haustive τn(X1, . . . , Xn) pour p, trouver une expression pour l’intervalle de confiance unilatéral
à gauche pour p avec seuil approximatif 1− α, en inversant le test

H0 : p ≤ p0 vs H1 : p > p0.

Utiliser une fonction de test qui rejette H0 lorsque τn prend une valeur (strictement) plus
grande qu’une certaine valeur critique. Les bornes de cet intervalle ne seront malheureusement
pas si explicitent qu’à l’exercice précédente.
Indice : suivre la proposition 5.14. Hélas, une des conditions de cette proposition n’est pas
satisfaite (laquelle ?). Ainsi, pour la plupart des valeurs de p, la probabilité de couverture de
l’intervalle sera seulement approximativement 1− α.

Solution 82. L’intervalle cherché peut être obtenu en inversant le test

H0 : p ≤ p0 vs H1 : p > p0.

Notre test est basé sur τn = nXn =
∑n

i=1Xi ∼ Binom(n, p), qui est une statistique exhaustive
pour p. On rejette H0 lorsque τn > C(p0).
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Ainsi, notre intervalle de confiance cherché est détérminé par la région

R(X1, . . . , Xn) = {p0 : τn ≤ C(p0)}.

Par le théorème 4.16, le test optimal est obtenu quand C(p0) = q1−α(p0), à condition qu’il
existe un q1−α tel que Pp0 [τn ≤ q1−α] = 1−α. Or, τn étant une variable aléatoire discrète, un
tel q1−α existe uniquement pour certaines valeurs de α. En particulier, nous ne pouvons pas
avoir un seuil de test qui sera exactement α pour n’importe quel α (et donc la probabilité que
notre intervalle de confiance contienne p ne sera pas exactement 1− α).
On choisit donc C(p0) de sorte que le seuil du test soit le plus proche possible de α, sans en
être plus grand. Ainsi, C(p0) est détérminé par les deux inégalités suivantes :

Pp0(τn ≤ C(p0)) ≥ 1− α (6)

Pp0(τn ≤ C(p0)− 1) < 1− α. (7)

L’inégalité (??) dit que le test a un seuil ≤ α. L’inégalité (??) dit que C(p0) est le nombre
entier minimal tel que le test a un seuil ≤ α. On note que le (1−α)-quantile de Binom(n, p0)
satisfait ces deux propriétés (voir la définition 6.6). Donc,

C(p0) = F−
τn,p0(1− α) = inf

t ∈ R :

⌊t⌋∑
k=0

(
n

k

)
pk0(1− p0)

n−k ≥ 1− α

 .

Le fait que C(p0) est croissante en p0 n’est pas évidente de l’équation ci-dessus, mais cela
résulte de la (preuve de la) proposition 5.17. De toute façon, c’est une fonction en escalier
(continue à gauche) telle que C(0) = 0 et C(1) = n.
La région de confiance qui résulte de l’inversion du test, {p0 : τn ≤ C(p0)}, est un intervalle
de la forme (L, 1] dont la borne inférieure est

L = inf{p0 : τn ≤ C(p0)} = inf{p0 : Xn ≤ n−1F−
τn,p0(1− α)}.

Malheureusement ces expressions n’ont pas une forme plus explicite, mais il est encore facile
de calculer la borne L avec un ordinateur.
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