MATH240 — STATISTIQUES ProOF. VICTOR PANARETOS

EXERCICES ET SOLUTIONS A faire chez vous

Exercice 1. Considérons une boite contenant 6 boules blanches, 3 boules rouges et une boule
bleue. Nous tirons de fagon aléatoire une boule de la boite. Soit X une variable aléatoire
prenant la valeur 1 si la boule pigée est blanche, 5 si la boule est rouge et 10 si la boule est
bleue.

(a) Trouver la fonction de masse de X.

(b) Trouver la fonction de répartition de X.

(c) Représenter graphiquement la fonction trouvée en (b).

Solution 1. (a) La probabilité que X égale a 1 est la probabilité qu’on tire une des 6 boules
blanches. Puisqu’il y a 6 + 3 + 1 = 10 boules dans la boite, cette probabilité vaut 6/10.
Ainsi P(X = 1) = 6/10. Le méme raisonnement nous amene a

6 _

10 xr = 1

3 r=5
fx(@)=P(X =2) = 110

0  sinon.

(b) Nous trouvons la fonction de répartition grace & un calcul direct :

0 <1

6

= 1<z<b
Fx(z)=P(X <az)=<¢%¥ .  _~~

Sti=1 b<z<10

1 z > 10.

(¢) Voici la représentation graphique de la fonction de répartition. Remarquer la continuité
a droite !

Exercice 2. On tire trois boules (sans remise) au hasard d’une boite contenant n; = 6 boules
rouges et no = 4 boules vertes. Soit X la variable aléatoire représentant le nombre de boules
rouges parmi les trois boules pigées. Calculer 'espérance et la variance de X.

Solution 2. Nous utilisons les formules pour un tirage sans remise qui se trouvent au chapitre
2.5 du livre du cours de Probabilités. Evidemment X ne peut prendre que les valeurs 0, 1,2
et 3, avec

(%;) -9 r=1
FX=n=100 _ s _,

213025 30

(Ezoi) — % r=3
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0.6

On voit bien que ces quatre probabilités somment a 1. Calculons

1 9 15 ) 54 9

1 9 15 5 114 19

X2 =0—+1— +4— =—— =
E[X7] O30+ 30+ 30+930 30 5’

et donc Var[X] = E[X?] — (E[X])? = 14/25. Une autre méthode, sans devoir évaluer E[X?],
serait de calculer

(=3 o (108 o (1) s (e-5) o (o-3))

_8149-16+15-145-36 14
- 30-25 25

Var[X]| =E

Exercice 3. Dénotons respectivement par p et 02 > 0, espérance et la variance de la variable
aléatoire X. Déterminer E [%} et E [(%)2}

Solution 3. Nous appliquons la linéarité de 1’espérance pour calculer

E [X;“] e = LEx B = - m =0,

car l'espérance de la constante p égale p. Aussi

E [(X _“)2] _ 012 E[(X — p)?] = %Var[X] 1.

g

par définition de la variance.

Ainsi, pour n’importe quelle variable aléatoire X de variance finie et non nulle, la variable
aléatoire Z = (X — pu)/o a une espérance nulle et une variance égale a 1.
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Exercice 4. Soient X et Y deux variables aléatoires indépendantes et soient Mx, My : R —
R leurs fonctions génératrices de moments respectives. Montrer que la fonction génératrice
des moments de la variable aléatoire Z = X + Y est égale a

Mz(t) = Mx(t) - My(t).

Solution 4. Puisque X et Y sont indépendantes, exp(tX) et exp(sY’) sont indépendantes
pour chaque s,t € R. Par conséquent E[exp(tX) exp(sY')] = Elexp(tX)] - E[exp(sY)]. Prendre
s =t pour obtenir

My (t) = Elexp(t(X+Y))] = Efexp(tX) exp(tY)] = Elexp(tX)]-Elfexp(tY)] = My (¢)-My (t) € (0, 0],

Exercice 5. Soit Y une variable aléatoire dont la fonction de densité est donnée par
2 .
eyt si-1<y<1
9(y) = { 0 sinon.

(a) Déterminer la valeur de la constante c afin que g(y) satisfasse les propriétés d’une fonction
de densité.
(b) Trouver la fonction de répartition de Y.

(¢) Trouver P(0 <Y < 1), P(0 <Y < 3)et P(Y =0). Remarque. On peut répondre & cette
question sans calculer aucune intégrale!

(d) Trouver E[Y] et Var[Y].

Solution 5. (a) L’intégrale d’une fonction de densité vaut forcément 1. Donc
oo 1
1 -1 2c
1=/ g(y)dyZC/ y2dy=6<—> =
oo 1 3 3 3
Ainsi ¢ = 3/2.

(b) La fonction de répartition Fy se trouve en prenant U'intégrale de g. Pour y €] — 1, 1] nous

avons ) 5 5
2 Y —1 Yo +1
du=c| % —— ) = .

cudu =c ( 3 3 ) 5

Par conséquent Fy (y) = min(1, max(0, (y* + 1)/2)), c’est-a-dire

Fww:MYsm:/

-1

0 y< -1
Fr(y) =By <y) =8 1oyl
1 y > 1.

(c¢) Puisque Y est une variable aléatoire continue, pour chaque y € R, on a P(Y = y) = 0.
Par exemple si y = 0 on a pour € €]0, 1] que

341 =341 .
0§IP>(Y:0)gIP(—s<Y§s):IP(Y§s)—IP(Y§—g):8;r - 5; _ 3,

En laissant ¢ — 0 nous voyons effectivement que P(Y = 0) = 0.

Donc PO <Y <1)=P0<Y <1)=Fy(1) -~ Fy(0) =1-1/2=1/2et PO < Y <
3) = Fy(3) - Fy(0) =1—1/2=1/2.

En fait la densité de Y est symmétrique et nulle & 'extérieur de [—1, 1], ce qui implique
1=P(-1<Y<1)=2P0<Y <1).
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(d) On peut noter que l'espérance de Y est nulle puisque c’est une variable aléatoire dont la
densité est symmétrique ; autrement, calculons

ElY| = dy = 1 3dy = 3 —14 —14 =
Y] /_ yg(y) dy /_1€?J Y 5 <4 4) ;

o) 5 R RY)
Varly] = 5y - B =B = [ eman=5 (5 - S5 ) =2

Exercice 6. Soit X une variable aléatoire dont la fonction de densité est donnée par

f(z) = lioexp(%g’) si0<x < oo
0 sinon.
(a) Trouver la fonction génératrice des moments Mx (t) de X.

(b) En utilisant Mx (t) ou Rx(t) = In(Mx(t)), déterminer la moyenne et la variance de X.

Solution 6. (a) Calculons

o o0

Mx (t) = Elexp(tX)] = / exp(tz) f(z)de = —

. 5, ePat-1/10)dz.

Cette intégrale est certainement infinie si ¢ > 1/10. Dans le cas contraire, nous pouvons
joyeusement conclure que

-1
My (t) = % (110 - t> = _110t; Rx(t) = In(Mx(t)) = — In(1 — 10t).

(b) Par les propriétés de la fonction génératrice des moments,

10 10
E[X] = Mx(0) = AT C1% EX= Ry(0) = ;—m| =10
t=0 t=0
200 100
BIX? = MY(0) = s | =200 VarlX] = Rk(0) = g—ygs| = 100
=0 t=0

Var[X] = E[X?] — (E[X])? = 100.

Remarque. X est une variable aléatoire exponentielle de parametre A = 1/10.

Exercice 7. Montrer que si X = > ;Y ol Y] (S Bern(p), alors X ~ Bin(n,p).

Solution 7. Puisque les Y; ne prennent que les valeurs 0 et 1, X ne peut prendre comme
valeur que les entiers entre 0 et n. Mais X = x si et seulement si exactement x des Y;
valent 1. Pour chaque I C {1,...,n} de cardinalité z, P(Y; = 1 pour i € I et Y; = 0 pour
i ¢ I) = p*"(1 — p)"*, en raison de l'indépendance des Y;. L’événement X = z est donc
I'union (disjointe) sur tous les I de cardinalité z possibles, il y en a donc (7). Ainsi

>px(1—p)"_$, x=0,...,n.

4
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On peut aussi utiliser la fonction génératrice des moments. En effet, par I'exercice 4 de la
série 1 et la formule du binoéme, on a que

Mx () = (My, (1)) = (1 = p) +pe)" = <Z>Px(1 — )T,
=0

Cette derniere est par définition E[e!?] ot Z ~ Binom(n,p). Ainsi X ~ Binom(n, p).

Exercice 8. Soit {Y;};>1 une collection infinie de variables aléatoires, ou Y; d Bern(p). Soit
T =min{k € N: Y =1} — 1, montrer que T' ~ Geom(p).

Solution 8. Il est évident que T ne prend que des valeurs dans {0} UN. Remarquons que
T+1l=xz+1sietseulementsi Y =Yo=---=Y, =0et Y1 =1 et cet événement a une
probabilité (grace a 'indépendance des Y;)

xT

P(Yer1=1) [[P(Y;=0) = (1-p)*p.
=1

Ainsi T' ~ Geom(p).

Exercice 9. Montrer quesi X =%, Y, ou Y; i Geom(p), alors X ~ NegBin(r, p).

Solution 9. La fonction génératrice des moments de Y; est

My, (t) = ﬁ,

t < —log(1l—p).
Puisque les Y; sont indépendantes, la fonction génératrice des moments de X =) | Y; est
T

Mx (t) = EMYi(t) = <1_(1plp)et> = H—(lZJW’ t < —log(l—p),

et donc X ~ NegBin(r, p)

Exercice 10. Soient X; ~/ Poisson(A). Montrer que Y =37 | X; ~ Poisson(n\).

Solution 10. Nous allons montrer que si X ~ Poisson(A) et Y ~ Poisson(u) sont indépendantes
pour A\, > 0 alors X +Y ~ Poisson(A+ p). L’énoncé sera donc achevé par récurrence. Pour
x entier on a (car X et Y ne prennent que les valeurs dans {0} UN)

) . )\kux—k ()\ n M)x T /\kux—k
= = = = r— — —A h___ 7 = _()\Jr'u‘)i
P(X+Y =) kZoP(X kY =a-k) kZOG ¢ He-n ¢ a! kzo("“>

A+ p)*

Cette derniére somme vaut 1 par la formule du binéme. Par conséquent X +Y ~ Poisson(A+
)
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Exercice 11. Soient X ~Poisson(\) et Y ~Poisson(u) indépendantes. Montrer que la distri-
bution conditionnelle de X sachant X +Y = k est Bin(k, \/(A + p)).

Solution 11. II est clair que les valeurs possibles de X sachant X +Y = k sont 0,1,...,k.
Pour un tel z, en utilisant ’exercice précédent,

P(X _ :L'|X—|—Y _ k‘) _ — e e H )\I,uk*x e>‘+“ k! _ k px(l—p)k_x
P(X +Y =k) !k — x)! (A + p)k x ’

oup=A/(A+p). L’énoncé est donc demontré.
Exercice 12. Soient X ~ Exp(A) et ¢t > 0. Montrer que P[X > z + ¢|X > t] = P[X > z].

Solution 12. Nous avons par calcul direct que P(X > t) = e~*. De plus, lorsque z > 0,
Iévénement {X > x + t} est inclus dans {X > t}. Il s’en suit que

e—AMz+t)

—~ = e M =P(X >z).
e

P(X >z +tX >t) =

Si x < 0 D'égalité est évidente, car les deux cotés valent 1.

Exercice 13. Soient X et Y des variables aléatoires indépendantes qui suivent des distribu-
tions exponentielles d’intensité A; et A9 respectivement. Montrer que Z = min{X, Y} est une
variable aléatoire exponentielle d’intensité A; + Ao.

Bonus. Montrer que P(Z = X) = A\ /(M + A2).

Solution 13. Soit x > 0. Grace a l'indépendence de X et Y,
P(min(X,Y) > 2) =P(X > z,Y > 2) = P(X > 2)P(Y > z) = e M7 2% = g=(itho)z,

Il en découle que min(X,Y) ~ Exp(A1 + A2).
Bonus. Nous avons que

P(Z = X) = P(min(X,Y) = X) = P(X < Y).
Les variables X et Y étant indépendantes, la densité conjointe de (X, Y') est donnée par
fxy(@,y) = fx(@)fy(y) = e MPhge™ Y,

de sorte que

PIX<Y) = / / Alx\ge_/\lxe_)‘deydac
0 T

oo S
= e~ e [—e_’\w} dx
0 x
o0

= / )\16_>\1m6_/\2$dl‘
0

A
A+ Ao

6
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Exercice 14. Montrer que X ~ x3 si et seulement si X ~ Exp(1/2).

Solution 14. La fonction de densité d’une variable aléatoire Gamma(r, ) pour r = 1 est
e M x> 0.

Donc la distribution Exzp(\) est la méme que la distribution Gamma(1, A).
La distribution x3 n’est que la distribution Gamma(1,1/2) qui est donc la méme distribution
que Exp(1/2).

Exercice 15. Montrer que les distributions suivantes constituent des familles Exponentielles
(peut-étre lorsqu’un de leurs parametres est fixé) :

(i) La distribution de Poisson.

(ii) La distribution géométrique.

(iii) La distribution binomiale négative.

)
)
(iv) La distribution exponentielle.
(v) La distribution gamma.

)

(vi) La distribution khi carré.

Solution 15. Rappelons qu’'une famille de distributions est une famille exponentielle si sa
fonction de masse/densité admet la représentation :

k
f(a:):exp{quiTi(x)—’y(gf)l,...,gi)k)—i-S(x)}, reX. (1)
i=1

Noter que dans les exemples suivants, les paramétrisations ne sont pas uniques.

(i) Si X ~ Pois(\), alors

e AN
fla ) = —
(+(5))
= exp|(ln
x!
= exp(—A+zln(A) —In(x!)).
En posant ¢ = In()\), T(z) = z, v(¢) = e® et S(x) = —In(z!) et en notant que le support

de f (donné par X = {0} UN) ne dépend pas de ¢, nous obtenons bien que f(z;\) est de la
forme (1).

(ii) Si X ~ Geom(p), alors

flzip) = (1=p)%p
= exp(zIn(1 —p) +In(p)).

En posant ¢ = In(1 — p), T(z) = x, v(¢) = —In(1 — e?) et S(x) = 0 et en notant que le
support de f (donné par X = {0} UN) ne dépend pas de ¢, nous obtenons bien que f(z;p)
est de la forme (1).
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(iii) Si X ~ NegBin(r,p), alors

far) = (77T a-wrw

— exp <: <$+;_ 1) —|—xln(1—p)+rln(p)> .

En fixant r et en posant ¢ = In(1 — p), T(z) =z, v(¢) = —rIn(l — e?) et S(z) = In (xﬂ"*l)

T

et en notant que le support de f (donné par X = {0} UN) ne dépend pas de ¢, nous obtenons
bien que f(z;p) est de la forme (1).
Si r est inconnu, la famille binomiale négative n’est pas une famille exponentielle.

(iv) Si X ~ Exp()\), alors pour z > 0,

flzA) = Xe
= exp(In(A) — Az).

En posant ¢ = A\, T'(z) = —z, v(¢) = —In(¢) et S(x) = 0 et en notant que le support de f
(donné par X = [0,00)) ne dépend pas de ¢, nous obtenons bien que f(x;\) est de la forme

(1).

(v) Si X ~ Gamma(r,\), alors pour = > 0,

. _ AT r—1_—\z
flx;r\) = F(r)x e

~ e <ln <FA<7~)> b (r—1)In(z) — A:c)
— exp (rin(A) — In(T(r)) + rn(z) — In(z) — Az)

Noter qu’ici k£ = 2, contrairement aux exercices précédents ou k était égal a 1. En posant

¢ = (¢1,02) = (A7), Th(x) = —x, Ta(x) = In(z), 7(¢) = —d2In(d1) + In(I'(¢2)) et S(x) =
—In(z) et en notant que le support de f (donné par X = [0,00)) ne dépend pas de ¢,
nous obtenons bien que f(xz;r, \) est de la forme (1). Noter que nous aurions aussi pu poser

= ((¢)1,q52) =(\r—1), Ti(z) = —z, To(x) =In(z), () = —(¢d2+1)In(¢1) +1In(T(p2+ 1))
et S(x) = 0.

(vi) Si X ~ x2, alors X ~ Gamma(k/2,1/2). Ainsi, il suffit de poser r = k/2 et A = 1/2
dans les équations du probleme (v), afin d’obtenir que ¢ = k/2, T(x) = In(z), v(¢) =
—¢In(1/2) +In(I'(¢)) et S(x) = —In(x) — /2 nous donne la représentation (1).

Exercice 16. Soit Y ~ Unif(0,1) et soit F' une fonction de répartition. Montrer que la
fonction de répartition de la variable aléatoire X = F~1(Y) est F, ot F~!(y) = inf{t € R :

F(t) > y}.
Solution 16. Soit F'x la fonction de répartition de X, montrons que Fy = F'. Nous avons
Fx(z)=P(X <) =P(F 1Y) < x).

Il suffit donc de montrer que F~3(Y) < o <= Y < F(z), car Y ~ Unif(0,1) et donc
P(F~YY) <2) =P < F(x)) = F(x).
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SiY < F(z) alors x appartient & 'ensemble {t € R: F'(t) > Y} et x est donc plus grand que
I'infimum de cet ensemble, F~1(Y). Donc Y < F(z) implique que F~1(Y) < .

SiY > F(x) alors, F étant continue & droite, il existe € > 0 tel que Y > F(x + ). Ainsi
(puisque F est croissante) F~1(Y) =inf{t eR: F(t) > Y} >x+¢e > x. Donc F71(Y) <=z
implique que Y < F(x). La démonstration est ainsi achevée.

Exercice 17. Soit X ~ N(u,0?), montrer que la fonction de densité de Y = ¥ est donnée
par
1 —(Iny - u)2>
= ex , 0<y<oo.
fy(y) oo p ( 552 y

Solution 17. Nous avons Y = g(X) = ¥ avec X ~ N(u,0?). Par le lemme 1.30 des notes
de cours nous savons que Y = g(X) = g((—o0,00)) = (0,00) et que

fr(y) = jyg%y)' (e W), e (0,00),

ou

d 1
g_l(y) = In(y) et donc d—yg_l(y) = ; > 0, puisque y > 0,

et

Nous obtenons finalement que

2
fy(y)zigjﬁexp{—;<m(y;_”) } v (0,00).

Exercice 18. Prouver le théoréeme sur les transformations multidimensionnelles (page 45 des
diapositives du cours) en utilisant la formule de changement de variables dans une intégrale.

Solution 18. Pour n’importe quel A C V™, on a

PV ed) = [ frwy
Mais on a aussi que
P(Y € A)=P(g (V) eg '(A) = P(X € g '(A))
_ / fx (@) dw

g1 (4)
= Afx(g‘l(y)) |det J,-1(y)| dy,

ou on a utilisé la formule de changement de variables dans une intégrale. Donc, pour chaque
AcCyr,
[ty = [ x(a™ @) |det 1, w)] dy

et on conclut que

fy() = fx (g7 () [det J-1 (y)|, VyeI™

9
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Exercice 19. Soient X ~ N(u1,0%) et Y ~ N(p2,03) indépendantes. Montrer que X +Y ~
N(,ul + ,ug,O'% + 0'%)

Solution 19. D’apres le corollaire 1.34, la fonction de densité de X +Y en z € R est

1 <z—v—m>2] 1 (- )
z)= | ——ex ex dv.
Ix+y(2) /Rm P P{ oy P p 303

Nous allons faire en sorte que 1’élément dans 'exponentielle serait —(v — p)?/20? de sorte &
pouvoir évaluer cette intégrale. On a

1[(z—v—p1)? v — )2 1
e el ) L [0 + o) - 20003 — ) + ofe) + o3z — ) + o3
o7 o35 207035
_ o3 +o7 Ug_Qvag(Z—Ml)JrU%m+U§(Z—M1)2+U%M§
20{03 o3 +o? 03+ 0?
2
_ _os+ot [ oi(z—m)+oiu
20303 03+ 0?
2
o3t ot [ode—p)tt ot (0B m) + ot
20303 o3 +o? 03+ 0? '

Donc

2
03(z = m)* +ofp3 _ (03(z = m) +oips y
ag—f—a% O'%-I-O'%

2
of +of [ 0j(z—m)+oipm
expq ——= 55 |V~ 5 5 do.
R 20705 o5+ o7

L’expression dans la derniere intégrale est liée a la densité d’une variable aléatoire normale
d’une certaine moyenne et de variance %% = 0703 /(03 + 0}). Elle vaut donc v27%2 et on
obtient

1 o3+ o?
zZ) = ex —
fX+Y( ) 2o 09 p { 20_%0_3

Frsv(2) ! o[ 3ot [o3G =)+ ohis (%%(z — ) +a%m>2
X+Y = T - -
+ 21(02 + 0?) 20303 03 + o} 03+ 0}
_ 1 exp (2 — pa)* + 43 —2(2 — pa)pa _ 1 oy 7 = p2)?
2m (03 + 03) —2(03 + 01) 2m(03 + 0?) —2(03 4 03%)

qui est bien la densité d’une loi N(u1 + p2, 03 + 03).

Exercice 20. Soit Z; une variable aléatoire normale standard et Zs une variable aléatoire
X2 ot n > 1, tels que Z; et Z sont indépendantes. A Taide du théoreme 1 du cours (le
théoreme 1.33 a la page 28 des notes du cours), trouver la densité de la variable aléatoire
T,ouT = Zy/\/Z2/n. Indice : définir g(Z1,Z2) = (T,V) = (T, Z2) pour trouver la densité
conjointe de T' et V. La densité de T se trouve en intégrant par rapport a V (penser a la
distribution Gamma).

Remarque. La loi de T s’appelle la loi ¢ de Student avec n degrés de liberté. Elle est tres
utilisée en statistique et on verra plus tard dans le cours pourquoi. Dans la plupart des cas,
n est un nombre entier, mais la distribution est définie pour n’importe quel n réel.

10
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Solution 20. Soient
Z

\/ZQ/TL‘

Z1 ~ N(0,1), Zy ~ X2 et T =

Considérons la transformation g : R x Ry \ {0} - R x Ry \ {0}

qg: (Zl,Zg) — (T, V) = (?/n,22> .

2

La fonction inverse est
1 Vv
g (T,ZV)—= (T E’V , TeR, VeRi\{0},

ayant pour Jacobian

%1——<\G§” j) = <mu%1@ﬂm——¢z.

L’idée de la preuve est d’utiliser le théoreme 1.33 afin de trouver la fonction de densité
conjointe de (T, V') et d’ensuite obtenir la fonction de densité marginale de T' en intégrant
cette densité par rapport a V.

Rappelons que Z; et Zs sont des variables aléatoires indépendantes et donc

1 S—1 Ll 4,2
fiz1.22)(21,22) = f2,(21) [z, (%) = 2y e 3,
22T (3)
La fonction de densité conjointe de (7', V') est alors donnée par
forvy(t,v) = fiz,,22)(97" (¢, 0)) | det(Jy-1 (8, v))]
1
e (1)
2T Ir (3) "
S NG
272 /mnl (%)

Nous pouvons maintenant intégrer par rapport a v afin d’obtenir la fonction de densité de T :

e 2 (7“) "7 do.

En posant

nous obtenons

11
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et donc

ou l'intégrale de 'avant derniere ligne est égale a 1, car c’est l'intégrale de la fonction de
densité d’une distribution I'(n/2,1).

Autre fagon de trouver la densité conjointe (portez attention a la nouvelle nota-
tion)

Soient
A

i

L’idée dans ce qui suit est de trouver la fonction de densité conjointe de (7, V') en utilisant
la densité conditionnelle de T'|V = w.

La distribution conditionnelle de T sachant V' = v est normale de moyenne 0 et de variance
n/v. Nous pouvons alors calculer la densité conjointe de la fagon suivante :

faw)(t0) =fr (tV =) fy(v)

Z~N(0,1), V~x2 et T=

_L<B . RS
- Ver \n 22T (2)
= 1 6_%(%4_1)1}%_1

Ensuite 'on procede comme avant pour trouver la densité de T

*Exercice 21. Montrer que la distribution exponentielle est I'unique distribution sans mémoire.
Plus précisément, soit X une variable aléatoire telle que P(X > 0) > 0 et

P(X >t+s|X >t)=P(X >9), Vt,s > 0.

Montrer qu’il existe un A > 0 tel que X ~ Exp()\).

Indice : Soit G(t) = P(X > t). L’absence de mémoire implique que G(t + s) = G(t)G(s) pour
t,s > 0 (pourquoi?). Poser g(t) = —InG(t) et A = g(1). Montrer que g(t) = tA pour chaque
t > 0 rationnel. En déduire (avec justification!) que g(t) = t\ pour chaque ¢t > 0. Quel est
le signe de A7 Enfin, montrer que A < oo en utilisant le fait que G(0) > 0 et la continuité a
droite de G.

12
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Solution 21. Les hypotheses impliquent que
G(t+s) = G(t)G(s), Vt, s >0,

au moins lorsque G(t) > 0. Or, si G(t) = 0 P'égalité est évidante, car G est décroissante et
nonnegative.
En termes de g(x) = —InG(z), cette égalité s'écrit

glt+5) = g(t) +gls), V5> 0.

(A noter que cette égalité tient, et a un sens, méme si g = oo, puisque g(z) € [0,00] pour
chaque = > 0.)

Soit A = g(1), alors g(2) = 2\ et par récurrence g(n) = n\ pour n entier. Par récurrence encore
g (%) = kg (%) pour des entiers n, k. En posant k = n nous obtenons A = ¢g(1) = ng (%), et
donc g (%) = %)\, c’est-a-dire que g(q) = g pour chaque ¢ > 0 rationnel. Pour ¢ > 0 réel,
prenons une suite de rationnels ¢, N\, t. En utilisant la continuité a droite de g (qui résulte de
celle de G),

g9(t) = lim g(gn) = lim g, A = tA.

n—o0

(Nous aurions pu utiliser le fait que G, et par conséquent g, est monotone, sans utiliser la
continuité a droite.)

Ainsi G(t) = exp(—t\) pour chaque t. Puisque G(t) — 0 lorsque t — oo, forcément A > 0 et
la fonction qui vaut 0 pour ¢t < 0 et 1 — G(t) pour t > 0 est bien la fonction de répartition
d’une variable aléatoire exponentielle de parametre A. Il est impossible que A = oo, puisque
G est continue a droite et G(0) > 0.

Remarque 1. Nous n’avons méme pas supposé ni que X soit une variable aléatoire continue,
ni que P(X >0) = 1!

Remarque 2. Il existe des fonctions < sans mémoire > qui ne sont pas de la forme G(t) = e~
Ces fonctions, évidemment, ne sont pas continues a droite ni monotones. Leur existence
requiert une base de R sur Q dont la construction nécessite (une version faible de) l’axiome
du choix.

At

Exercice 22. Rappelons que pour un échantillon 1, ..., z, la moyenne échantillonnale est
définie par

1 n

=1
et la médiane échantillonnale par
T(nt1), si n est impair,
(3)™* :
sinon.

Montrer que
(i) la fonction f(y) =Y, (z; —)? atteint son minimum (uniquement) en z.

(ii) la fonction g(y) = >, |#; — 7| atteint son minimum en M. Attention : g n’est pas
dérivable au point v si v = x; pour un ¢ quelconque.

13
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Solution 22.
(i) La dérivée de f est

;yf(’y) =-2 ;(m — 7).

En la mettant égale a zéro, on trouve

n 1 n
z;xi—nv—Oév—nz;xi—x.
1= 1=

Puisque f”(y) =2n > 0, T est le minimum global de f.

(ii) On peut écrire
n n
g = i == lze -l
i=1 i=1

La fonction g est dérivable pour chaque v € R\{z(y),...,z(n)}

— Quand v € (=00, 7(1)), on a g(y) = > (x;) — ) et donc ¢'(y) = XL —1 = —n.
— Quand vy € (z(,),00), on a g(y) = i —(xu) —7) et donc ¢'(v) = X7, 1 =n.
— Quand v € (), 2(j41)), j=1,...,n—1,ona

g =~ -+ Y (@e—7)

i=1 i=j+1

et donc ¢'(y) = §:11+Z?:j+1 —1=j—(n—j)=2j—n.
Distinguons les deux cas suivants :
1. n pair :
— ¢'(7) <0 quand v € (—00,x(1)) ou vy € (¥(jy, T(j41)) avec j = 1,..., 5 — 1.
— ¢'(7) =0 quand v € (ac(%),x(%ﬂ))
— ¢'(7) > 0 quand 7 € (x(,),00) ou ¥ € (), T(j+1)) avec j =g +1,...,n— 1.
Puisque g est continue, chaque point en [1‘( ),:L‘(% +1)] est un minimum de ¢ et en

5
Ty TE(B41)

5 est un minimum.

particulier M =

2. n impair :

— ¢'(7) <0 quand v € (=00, z(1)) ou 7y € (x(jy, T(j11)) avec j = 1,..., ”TH —1.
— ¢'(7) > 0 quand v € (x(,),00) ou ¥ € (x(j), T(j11)) avec j = bl n—1.

Puisque g est continue, M = T(nt1) est 'unique minimum de g.
2
Remarque : il est possible que x(;,) = (1) pour un certain k (c’est-a-dire qu’'on observe la

méme valeur plusieurs fois), mais la preuve reste valide méme dans ce cas.

Exercice 23.

(i) Calculez la moyenne 7 et la médiane M des données suivantes :

9.2 115 97 11.0 85
9.8 10.0 12.1 10.5 10.1

14
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(ii) Refaire votre calcul quand la valeur 12.1 est remplacé par 48.6.

(iii) Comparez les valeurs de Z et M dans les parties (i) et (ii). Qu’est-ce que vous notez ?
Expliquez vos observations.

Solution 23.
(i) Nous obtenons z = 10.24 et M = 10.05.
(ii) Maintenant nous obtenons z = 13.89 et M = 10.05.

(iii) On observe que dans la partie (i) les valeurs de et de M sont similaires, tandis que
dans la partie (ii) la valeur de Z a beaucoup changé & cause de la valeur atypique 48.6.
En méme temps, la valeur de M n’a pas changé. On note que la moyenne Z est plus
susceptible aux valeurs aberrantes que la médiane M. En fait, dans la partie (ii), T est
plus grande que chaque observation sauf la valeur extréme 48.6. A cause de cette valeur,
la moyenne n’est pas un tres bon résumé de la position de cet échantillon. En revanche,
la médiane n’est pas affectée par cette valeur extréme.

Exercice 24. Soit x1,...,z, un échantillon. Est-ce que c’est possible que la moyenne de cet
échantillon est égal la médiane de cet échantillon, mais I’échantillon n’est pas symétrique.
Trouvez un exemple.

Solution 24. Considerons ’échantillon :
-2,-2,0,1,3

La moyenne et la médiane sont égal 0, mais I’échantillon n’est pas symétrique autour de 0.
Remarque pour ceux qui ont besoin d’une définition mathématique formelle de la symétrie.
L’échantillon z1,...,z, s’appelle symétrique autour de a € R, si

{z1,...,2n} ={—(x1 —a)+a,...,—(x, —a) + a}.
L’égalité est comprise comme 1’égalité des ensembles.

Exercice 25 (exercice 17). Montrer qu'une formule équivalente pour la variance empirique
est 62 = % Yo 5”12 — z2. Expliquer pourquoi cette formule peut étre plus utile.

Solution 25. Nous écrivons :

n

n n n
ne’ = E:(acZ -7)? = Zx? —I—Z:EQ - 22@5‘
i=1 i=1 i=1 i=1
n n n
= Z%Z —I—ZE:Q — 25:2111'
i=1 i=1 i=1

n
= E x? + nz? — 2nz?
i=1

n

= E xf — nz’.

i=1
Cette formule est plus pratique, car elle demande de calculer les carrés de n + 1 nombres et

une différence, au lieu de devoir calculer n différences, et puis n carrés, comme dans la formule
originale.

15
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Exercice 26 (exercice 18). Soit un échantillon z1,...,z,. Quels sont la médiane M et les
quartiles @1 et @3 quand n =12, 13, 14 ou 157

*Bonus (c’est un peu fastidieux) : trouver des formules générales (pour n quelconque) pour
le premier et troisieme quartile, Q1 et Q3. Indice : ces formules seront de la forme

mod 4
mod 4
mod 4

n =3 mod 4.

0 0
|

Solution 26. Sin = 12 alors M = (v(g) + 2(7))/2, Q1 = 24y et Q3 = x(g).

Sin =13 alors M = Z(7), Q1= Z(g) et Q3 = Z(10)-

Sin =14 alors M = ($(7) + .1‘(8))/2, Q1 = (.1‘(4) + $(5))/2 et Q3 = (x(lo) + x(u))/2.
Sin =15 alors M = Z(8)s Q1= (:13(4) + 56(5))/2 et Q3 = (x(n) + x(lg))/Q.

Pour n quelconque, on obtient les formules

0 44 T(3n) n=0 mod4
T(n n= mo
(5+1) T/ 3(n_1) n=1 mod4
x(ﬂ—i-l) n=1 mod4 (f""l)

) @s=141 —
% T(n=24) + T(n=2 4 9) n=2 mod4 5 <:1:(3<n42>+1> + a:<3(n42)+2)> n=2 mod4
1 ‘ =
5 x(anerl) + :B(ans+2) n=3 mod 4, % :1:<3<n,3>+2> + $<3(n3)+3>> n =3 mod 4.

4 4

Exercice 27 (exercice 19). Les données suivantes représentent les charges maximales (en
tonnes) supportées par les cables fabriqués par une usine :

10.1 122 93 124 137 11.1 133
10.8 11.6 101 11.2 114 118 7.1
122 126 9.2 142 10.5

(i) Représenter les données sous la forme d’un histogramme dont la largeur des intervalles
est égale & h = 1 et lorigine est égale a k = 10. Refaire I’histogramme avec h = 2 et
Kk = 11 et comparer les deux figures.

(ii) Quelle est approximativement la valeur de la charge que les trois quarts des céables
peuvent supporter ?

(iii) Donner le troisieme quartile.

(iv) Tracer une boite & moustaches. Parmi les données, y a-t-il des valeurs aberrantes 7 Dans
ce diagramme, ou visualise-t-on la valeur déterminée au point (ii) ?

Solution 27.

16
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Densité

0.25
|

0.20
|

0.20
1

0.15

Densité

0.10
1

0.05
1
0.0

0.00
L
0.00
L

T T T 1 T T T 1
8 10 12 14 8 10 12 14

Charge maximale Charge maximale

(i) A gauche : h =1, k = 10; a droite : h =2, k = 11.

(i)

(iii)

Les deux histogrammes donnent plus ou moins le méme message : la distribution est
unimodale et légerement asymétrique a gauche. Le premier histogramme a une plus
grande “résolution”, mais avec plus de variabilité. Par exemple, on peux déduire la
location du mode plus précisément avec le premier histogramme, mais il y a un intervalle
vide entre 8 et 9.

Il s’agit du premier quartile de 1’échantillon, Q1. Ici n = 19 et donc la médiane est M =
T(10)- Le premier quartile est donc défini comme étant la médiane du sous-échantillon
T(1),- - T(10), il est done donné par (z(s5) + () )/2 = 10.3.

Le troisieme quartile est défini comme étant la médiane du sous-échantillon x(1q), . . ., Z(19),
il est donc donné par (z(14) + 7(15))/2 = 12.3.

Charge maximale

Q1=10.3

(iv) Voir le graphique ci-dessous. La valeur 7.1 est une valeur aberrante et le premier quartile

()1 détermine la borne inférieure de la boite.

Exercice 28 (exercices 70-71). (Il serait utile de lire la section 6.5 des notes de cours
avant de commencer cet exercice.)

(i) Soit X ~ Exp(A) ot A > 0. Montrer que le a—quantile de X est

do = Fy (o) = —log(1l — ) /A,

17
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pour 0 < a < 1.

ii) Les fonctions quantile déterminent les distributions : soient X e es variables aléatoires

ii) Les foncti tile déterminent les distributi ient X et Y d iables aléatoi
quelconques avec des fonctions de répartition F'x et Fy. Supposons que F'y (a) = Fy («)
pour tout « €]0, 1[. Montrer que Fx = Fy.

Solution 28.

(i) La fonction de répartition de la loi exponentielle de parameétre A est donnée par

Fx(xz) =1—exp(—A\z), x> 0.

Puisque cette fonction est continue et strictement croissante sur son support [0, 00), nous
obtenons que g, = Fiy (a) = F5'(a) et donc

—In(1 — )

@ = Fx(qa) =1 —exp(—Aga) = o = 5

(ii) Supposons par 'absurde que Fy (t) < Fx(t) pour un certain ¢ € R. Il existe un € > 0 tel
que Fy (t+¢) < Fx(t), car Fy est continue & droite. Il existe un « tel que Fy (¢t +¢) <
a < Fx(t). Visiblement o €]0, 1] et par les définitions de Fy et Fy, nous avons

Fy(a)<t<t+e<Fy(a),

ce qui contredit I'hypothese F'y = Fy  sur |0, 1[. En supposant qu'il existe un t € R tel
que Fx(t) < Fy(t), on arrive a une contradiction semblable.

Exercice 29 (exercice 20). Le tableau suivant contient les résultats des matchs de rugby a
XV des onzieme et douzieme journées (novembre 2014) du championnat francais de rugby de
premiére (“Top 14”) et deuxieéme (“Pro D2”) division. L’équipe jouant & domicile est celle
notée a gauche du tiret.

Top 14 D2
Montpellier — Brive 10-25 | Albi — Agen 22-9
Castres — Toulon 22-14 | Béziers — Aurillac 14-19
Clermont — Stade Francais 51-9 | Colomiers — Pau 50-10
Grenoble — Lyon 34-30 | Montauban — Tarbes 31-13
Oyonnax — La Rochelle 37-9 | Biarritz — Massy 21-3
Racing Métro — Bayonne 27-10 | Dax — Narbonne 12-3
Bordeaux Begles — Toulouse 20-21 | Perpignan — Bourgoin 42-0
Carcassonne — Mont-de-Marsan 1728
Toulon — Clermont 27-19 | Biarritz — Agen 42-18
Castres — Racing Métro 9-14 | Albi — Carcassonne 34-22
La Rochelle — Bayonne 19-19 | Aurillac — Colomiers 20-13
Lyon — Montpellier 23-20 | Bourgoin — Montauban 14-20
Oyonnax — Bordeaux Begles 28-23 | Massy — Dax 50-13
Toulouse — Grenoble 22-25 | Mont-de-Marsan — Béziers 32-18
Stade Frangais — Brive 20-17 | Narbonne — Tarbes 36-23
Pau — Perpignan 22-19

18
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(i) Nous voulons comparer le comportement des équipes en premiere et en deuxieme divi-
sion. Pour ce faire, calculer pour chacune des divisions quelques statistiques pertinentes
(la moyenne, la médiane, les quartiles et 1’écart interquartile) pour la différence de points
entre le club jouant a domicile et le club visiteur et pour le somme des points par match.

(ii) Représenter cote a cote, sous forme de deux boites & moustaches, la somme de points
par match en premiére et en deuxieme divison. Faire de méme pour la différence de
points. Quelles conclusions peut-on en tirer ?

Solution 29. (i) Voici les tables :

Différence de points Nombre total de points
Top 14 | D2 Top 14 | D2
Moyenne 6.7 14.2 Moyenne | 43.1 43.1
Médiane 3.5 13 Médiane 42 43

o)) 05 | 7 o) 37 33
Qs 8 18 Qs 46.5 | 56
EIQ 8.5 11 EIQ 9.5 | 23
1% -5 | —6 4% 23 15
Wo 17 24 W 60 63

(ii) Voici les graphiques :

Différence de points Somme de points

40
60
1

60 _

56

30
1

46.5

20
1

17 —_— 18 22 43

13

10
1

37

33

30
1

-10
1
20
1

15

Top 14 D2 Top 14 D2

En regardant le premier graphique ci-dessus, il semble que dans les deux ligues I’équipe
jouant a domicile gagne plus souvent. En plus, 'avantage du terrain est nettement plus
prononcé en D2. Il y a une proportion importante de valeurs aberrantes (4 sur 16, 3 sur
14), ce qui pourrait suggérer que les ligues ne sont pas équilibrées.

En regardant le second graphique, on ne peut pas dire qu’une certaine ligue est plus
défensive que I'autre. En revanche, la variation entre les matchs semble étre plus grande
en D2. Il est intéressent de noter que la valeur aberrante correspond au match Grenoble—
Lyon, un classique du championnat de France, d’autant plus que la plupart des équipes
de rugby a XV viennent du sud de la France.
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Exercice 30 (exercice 21). Soient X;,..., X, ud Unif(0,0). Montrer que T(X1q,...,X,) =

X (n) est une statistique exhaustive pour 6, et trouver sa distribution d’échantillonage.

Solution 30. Pour chaque ¢, la fonction de densité de X, est

Ifxi(x3;0) = %1{331- €10,6]}.

Ainsi, les X; étant indépendantes, la fonction de densité conjointe est
1 — 1
Fxipexa (@ e b) = o8 [11{zi € 0,0]} = gn Ha(m) = 031{zq) 2 0}.
i=1

Par le théoreme 2.3 (p. 48), nous avons que T'(X1, ..., X;,) = X(,) est une statistique exhaus-
tive pour 6.

Il est évident que P(X(,,) < 0) = 0et P(X(,) < 0) = 1. Pour 0 <t < 0, X; étant indépendantes,
on a

Fr(t;0) =P (X <t)=P (ﬂ{xi < t}) =]]rxi<t) = (2>"
1=1 =1

En prenant la dérivée, il s’en suit que T' = X,y est une variable aléatoire continue avec densité

tnfl

fT(t, 9) = n07n>

t €10,0].

Exercice 31 (exercice 22). Soient Xi,..., X, id Pois(X\). Montrer que T'(X1,...,X,) =
>oi, X, est une statistique exhaustive pour A, et trouver sa distribution d’échantillonage.

Solution 31. Pour chaque 7, la fonction de masse de X; est
AT
in(.CUZ';)\) = Fe_)\l{l‘i € X}, X ={0,1,2,...}.

7.

Ainsi, les X; étant indépendantes, la fonction de masse conjointe est

nONTE 0oL | '
fxioxn (@1, oo s A) = H x—i!e Al{a:i eX}= ADoi=1 TigTnA (H M) 1{z; € X Vi}.

i=1 i=1

Par le théoréme 2.3 (p. 48), nous avons que T'(X1,...,X,) = Y i, X; est une statistique
exhaustive pour .

D’apres Dexercice 4, série 1, la distribution de T est Poisson(n)), c’est-a~dire fp(t;\) =
e "M nA)/t pour t =0,1,2,....

Exercice 32 (le théoreme 2.9 (p. 54) du livre). Prouver que si Xq,..., X, i N(u,0?), alors
X —pu ;
S/\/ﬁ n—1

ol t,_1 représente la distribution de Student avec n — 1 degrés de libérte.
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Solution 32. Let _

_X-p

- S/y/n

We need to show that fr(t), the density function of T', is as in Definition 2.10 (p.54). Observe
that 7' can be written as a function of two independent random variables Z = (X —pu)/(c//n)
and V = (n —1)5%/0? (by Proposition 2.7, p.51) :

T

Z
T —
v
n—1
Since,
1 'rLfl_l —l(’U-‘rZQ)
fzv(zv) = fz(2) fv(v) = vz ez
222l (%5L)

we can apply Theorem 1.33 (p.28) to the transformation

g%ZWHﬂﬂW:<¢Wé_Dy>

to get
1 n=2 _w(y t2
t”U e U 2 e 2 n—1
P = e )
And as a consequence,
1 o0 n— _v i
frit) = = [Tt g
202\ /m(n — DI(%5E)  Jo

Substitute

_u( Py
Y=5\n1

for v and integrate to obtain the marginal distribution of T'. The conclusion follows.

Exercice 33 (Une preuve alternative de la proposition 2.7, p. 51). Soient Xi,...,X, ud

N(u,0?). Définir

a; = Q%@JP.Jﬂ
ay = ;JL 1,0,...,0),
ag = ;éLL—ZQ ,0)',
1 /
a, = m(l,l,...,l,—(n—l)).
(i) Définir la n x n matrice A = [a; : a3 : ... : a,]. Montrer que A est un matrice

orthogonale, c’est-a-dire ATA = AAT =1,,, ot I, est la n x n matrice d’identité.
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(i)

(iii)

(iv)

Définir la transformation V; = aj(X —m),i = 1,2,...,n, ou X = (X1, Xo,..., X,,) et
m = (u, f, ..., pn)". Trouvez la densité conjointe de Y7, Ya, ..., Y,,. Sont-ils indépendants ?
Quelle est la distribution de Y; pour chaque ¢ ?

Montrer que
Vi=va(X —p) & ZW (n—1)S

Indice : Puisque A est une matrice orthogonale, ZZ Y2 =5"0 (X — )2

Utilisez la partie (iii) pour montrer que X et S? sont indépendants. Montrer aussi que
X ~ N(p,0%/n) et (n —1)S?/a% ~ x2_

Solution 33.

(i)

It is easy to show that aja; = 1. Observe that for any 2 < j < n, the ith term of a;
equals [j(j — 1)]"Y2if 1 =1,2,...,(j — 1), equals —[(j — 1)/4]"/? if I = j, and equals 0
if [ > j. So, direct calculation shows that

a;ajzl & a;al [nj(j —1)] 1/2{21—]—1}:0

for all j =2,3,...,n. Further, for any 2 < j < k < n,

ajay, = [jk(j — 1)(k 1/2{21—3—1}20.

Thus, ATA = I,. Since A is a n x n matrix, this also implies that AT = A~! and
AAT =1,

In matrix notation, Y = AT(X — m), where Y = (Y1,Y5,...,Y,)". Thus, the inverse
transformation is given by X = AY 4 m, which is a linear transformation. So, X; =
blY + p for all ¢ = 1,2,...,n, where b} is the ith row of A. Also, the Jacobian of
the inverse transformation is A. Since A is an orthogonal matrix, |det(A)| = 1. Define
y = (y1,%2,-.-,yn)’- The joint distribution of ¥7,Y5,... Y], is given by

1 \"? 1 &
le,Yz,-.-,KL(ylva;---vyn) - <27TO'2> exp{—w Z(b;y—i_:u’_,u')Q} X ’det(A)’

() oo{ e
() oo { e
_ (2;U2> exp{ 2;y'(ATA)y}
(7)ol
() o0 { o
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So,
n 1 1/2 y2
fY17Y27~--,Yn(y1> Y2, ... 7yn) = q <27I‘O‘2) eXp {_2;.2 } y
1=
which implies that Y7,Ys,...,Y,, are independent random variables. Further, Y; ~

N(0,0?) for each i = 1,2,...,n.
(iii) By definition of Y1, it follows that Y3 =n="/23"1" (X; — p) = v/n(X — p).
Observe that

n

Zn:yf =YY =X-m/AA"(X-m)=(X-m) (X -—m) =) (X;—p)?.
i=1 i

Thus,

n

SV =YV V23w (K = 3 - X = ()8
=1

=2 i=1 i=1

(iv) Note that X is a function of ¥; only and S? is a function of Y3,Y3,...,Y,. Since Y7 is
independent of Y5,Y3,...,Y,, it follows that X and S? are independent.
Since Y1 ~ N(0,0?), it follows that X ~ N(u,0?/n). Further, (n—1)S5?/0? = Y1 ,(Yi/0)?.
AsY;/o i N(0,1) for i = 2,3,...,n, the latter sum is that of (n — 1) independent x?
random variables. So, (n — 1)S?/0? ~ x2_;.

Exercice 34. Soient X1, X, ..., X, ¢ N(0,1). Montrer que X7/ 375 X3 et 357 X7 sont

indépendants pour chaque i = 1,2,...,n.

Solution 34. First observe that the random variables Y; = XiQ,i =1,2,...,n, are inde-
pendent, and each one of them have a x? distribution. So, the joint density of Y7, Ya,...,Y,
is given by
e =T /)
bt (1yz - -yn)2

where ¢, is a constant depending on n.

Define the transformation Zy = Y " | Y;, Zy = Y2/Z1, ..., Z,, = Y, /Z;. The inverse transfor-
mation is given by Y1 = Z1(1 = Y1 , Z;),Ys = Z1Zs,...,Y,, = Z1Z,. The Jacobian of the
inverse transformation is given by

1— 2?22 Zy —R1 —Zk1 —Xk1 ... —Z1
Z9 Z1 0 0 e 0 n ,
2 0 z 0 0| _|1-2Xien A
b 2L,
S 0 0 0 .. oz
where a = (—21,—21,...,—21) and b = (29, 23,..., 2,)". Using the formula for the determi-

nant of a partitioned matrix, it follows that the determinant of the Jacobian of the inverse
transformation is det(z1IL,—1) x {1 — >,z — a’zflIn,lb} = z?*l.
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So, the joint density of Z1, Zs, ..., Z, is given by

cn exp{—z1/2}277!

(271 = >ig zilzozs . . Zn)1/2

Cn z?/2_lexp{—z1/2}

(1=, zilz0zs ... 20) 2

Thus, Z; is independent of Zy, Z3, ..., Zy,. Since Y1/Zy =1 =Y, Yi/Z1 =1 =3 ", Z;, it
follows that Y7 /Z; is also independent of Z.

fZl,Zg,...,Zn (zla 2yt 7zn) =

Exercice 35 (exercice 23). Soient X1,...,X, u f,ou f est de la forme d’une famille expo-
nentielle, exprimée dans la paramétrisation usuelle comme f(x) = exp [n(6)T(z) — d(0) + S(x)],
0 € © C R ouvert. Montrer que :
(i) Sin est k-fois contintiment dérivable (k > 1) et inversible avec la dérivée jamais nulle,
alors d est aussi k-fois continiiment dérivable.

(ii) Sin est deux fois contintiment dérivable et inversible avec la dérivée jamais nulle, alors

d”(0)n'(0) — d'(0)n"(0)
[ (0)) ’

d'(0)
' (6)
ou T(Xl, e ,Xn> = Z?:l T(XZ)

Indice : utiliser le théoreme de la fonction inverse (théoreme 6.2, p. 162).

E[7(X1,...,Xn)]=n & Var[r(Xy,...,X,)]=n

Solution 35.

(i) Nous avons que f(z) = exp[n(0)T(z) —d(0) + S(z)] = exp[¢T(x) —v(¢) + S(x)] ou
n(0) = ¢ et v(¢) = v(n(0)) = d(0) avec d = ~y on. Puisque 1(0) est dérivable k fois par
I’hypothese, d le sera aussi, a condition que -y soit suffisamment dérivable. D’apres la
proposition 2.11 (p. 57), il suffit d’établir que

& =1n(0)={¢pcR:il existe un 0 € © tel que ¢ =n(0)}

est un ouvert ; il en résulte que  est infiniment dérivable.
Pour ce faire, nous devons montrer que pour chaque ¢y € @, il existe un § > 0 tel que

Jpo — 6,00 +0[ € @ =1n(O).

On remarque tout d’abord que, puisque ¢g € @, forcément ¢y = 1(0y) pour un certain
Ay € ©. Maintenant, on va utiliser les deux faits suivants :
(i) Sous I'hypothese O est ouvert, il existe donc € > 0 tel que |6y —€,00 + €[ C ©.

(ii) La dérivée ' est continue et 7'(6p) # 0. Le théoreme de fonction inverse implique
que ! est continue (en fait, continiment dérivable) sur un intervalle ouvert I
contenant ¢y = 1(6p).

Ceci montre que 7 est un homéomorphisme local et donc 7 est une application ouverte,
et la preuve est achevée. Ceux qui n’aiment pas la topologie devraient se contenter de
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I'argument élémentaire suivant : n~! étant continue sur I > n(6y) = ¢, il existe un
0 > 0 tel que

6 —¢ol <0 = | 01 (d) —n ()| <e¢
—— ———
—6 (disons) =to

de sorte que |¢pg — d, o + 0] C I et € est défini par (i).

Pour résumer : il existe un ¢ > 0 tel que pour chaque ¢ € |pg — I, P + d] il existe
0 € 100 — €,6p + €| C O pour lequel ¢ = (), et donc |¢g — d, po + [ C & = n(O). Or ¢o
est arbitraire ; ceci montre donc que ® est ouvert et donc ~ est infiniment dérivable. I1
s’en suit que si 7 est k fois dérivable, alors d = v o n I’est aussi.

Remarque. La fonction 7(f) = 6% est bijective et dérivable, mais sa dérivée s’annule
en z€ro.

(ii) Par la proposition 2.11, nous savons que E[7(X1,..., X,)] = nvy/(¢) on

(yon)'(6) _ d'(8
n'(

7 (6) = (n(6)) = /3

'(0)
car (f o g)'(x) = f(g(x))g'(x). Ainsi, E[r(X1, ..., X,)] = ni{3.
Par la proposition 2.11, nous savons aussi que Var[r(X1,...,X,)] = ny"(¢) ou
" " (' (n(6)))’ (d/(9)>/ 1 d"(0)n'(6) —d'(0)n"(9)
8) =" (n(6)) = = - -
PO =T =00 = rw)) v 0P
Ainsi, Var[r(X1,...,X,)] = nd”(e)n’%zz&ﬁl]’é@)n”(@)'

Exercice 36 (loi des événements rares, exercice 24). Soit {X,, },>1 une séquence de variables
aléatoires Bin(n, p,), telle que p, = A/n, pour une certaine constante A > 0. Montrer que
X, -4 Y, ou Y ~ Poisson(\).

Indice : (1) montrer que pour k£ € NU {0}, P(X,, = k) — P(Y = k). (2) Déduire que
P(X, <k) —P(Y <k). (3) Conclure.

n—oo

Solution 36. Suivant Iindice, montrons que fx, (z) — fy(z),Vx € {0} UN. Rappelons
que (pour n > \)

Nous pouvons réécrire fx, (z) de la fagon suivante :

i = g (2 (1-2)
e ()

B ﬁn—l n—x-+1 1_& 71& 1_5 "
a n n n n x! n)
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Le terme dans la premiere parentheése contient le produit d’'un nombre fixe x < oo de termes
qui convergent vers 1 lorsque m — oo, il converge donc vers 1. La deuxieme parenthese
converge aussi vers 1, puisque x est constant. Finalement, la troisieme parenthese converge
vers e~*. Nous obtenons donc que

(Y)Y (1-2) =5 ek e o
T n n xT.

Ensuite, on remarque que pour k € NU {0},

k k
P(X,<k)=> P(Xp=2)>>» P(Y=2)=PY <k), n— o0

x=0 =0

Les deux égalités viennent du fait que X,, ainsi que Y prennent des valeurs uniquement dans
Nu{0}.
Pour t < 0, P(X,, <t) =0=P(Y <t). Pour t > 0, posons k = [t] = max{n € Z : n < t}.
Alors
P(X,<t)=P(X, <k)—=>PY <k)=P(Y <t), n — 0.
q

Par définition, on a donc X,, — Y.

Exercice 37 (de la distribution exponentielle & la géométrique et inversement).

(i). Soit X ~ Exp(A) pour A > 0. Montrer que |X| ~ Geom(p) pour un p approprié a

trouver. (On définit |t] = max{n € Z: n <t}, pourt € R.)
(ii). Soit {X,,}°, une suite de variables aléatoires avec X, ~ Geom (2) et soit Z ~ Exp()),

pour un certain A > 0. Montrer que % 4z , lorsque n — oo.
Solution 37.
(i). Soit Y = [ X |, ou X ~ Exp(A). Alors, on calcule, pour chaque £ € NU {0} :
PY=k) = Pk<X<k+1)
k+1
= / e M dg
k
_ 7€_)\zi| k+1
k

S VRPESY( 5 ))
= 67)\]6(1 - ef/\)

= (1-p)'p

otl on a défini p =1 — e~*. Nous avons que p € (0,1), car A > 0. Alors Y ~ Geom(p).

26



MATH240 — STATISTIQUES ProOF. VICTOR PANARETOS

(ii). Pour montrer la convergence en loi, il faut calculer la fonction de répartition de X, /n.
Pour chaque t € R, ¢ > 0, nous avons :

IP’(‘)Z” >t> = P(X, > nt)

o

k
= > (1-3).
n n
k=|nt]+1

A(1-2

n

nt Tn
= (1)\) (1)\> ) rn = |nt] +1—nt,
n n

ou 0 <7, <1 pour tout n € N.

Puisque ( — %) < 1, on a que (1 — %) < (1 — %)r" < 1 pour tout n € N, et donc

(1 — %)r" — 1 lorsque n — oo (on utilise le théoreme de deux gendarmes). Puis,

[nt]+1
)

nt ,
(1—2)" — e lorsque n — oo, parce que t € R est fixé.
En résumé, nous avons montré que pour tout t € R,

X, _
FXn/n(t)zl—IP<>t> S 1—e M
n

lorsque n — oo (c’est évident quand ¢ < 0). Le membre a droite est la fonction de

répartition d’une variable aléatoire Exp()), et donc X,,/n L\ Z,ou Z ~ Exp(\).

Exercice 38 (exercice 25). On dit qu’une suite de variables aléatoires X,, converge vers une
variable aléatoire Y en probabilité (p. 60) si

Ve >0 lim P[|X,, = Y| > ¢ =0.
n—oo

, . P
Dans ce cas on écrit X,, > Y.

Soit {X,,}>° ; une suite de variables aléatoires avec
Xp,=(-D"X, PX=-1)=PX=1)=—-.
Montrer que X, LS X, mais que X, 2 X.

Solution 38. La variable aléatoire X est discrete avec fonction de masse :

1/2 siz=1
fx(x)=P(X=2)=<¢ 1/2 siz=-1
0 sinon.

Si n est pair, nous avons que X, = X et donc fx, = fx. Si n est impair nous avons :

1/2 siz=1
fx, () =P(X,,=2)=P(-X =2)=P(X =—2)=< 1/2 siz=-1
0 sinon.

27



MATH240 — STATISTIQUES ProOF. VICTOR PANARETOS

Nous avons donc montré que fx, = fx, quelque soit n. Il s’en suit que X, 4 X,
Notons que pour n pair, nous avons que Ve > 0 :

P(|X, — X|>¢€) =P0 >¢) =0.
Par contre, si n est impair, nous avons que
P(| X, — X|>¢€)=P(| -2X| >¢€) =P(2 >¢) =1,
pour 0 < e < 2. Ainsi la séquence {P(|X,, — X| > €)}n>1 est de la forme {0,1,0,1,...}, elle
ne converge donc pas et on peut conclure que X, L X.

Exercice 39 (exercise 27). Soient X;,..., X, b Pois(X), ou A € (0,00)\{1} et considérons
la probabilité 7 = P(X; = 1) = Xe™*. Nous voulons estimer 7 par 7, = j\ne*;\” olt \, =
L3~ | X;. Montrer que
A\/ﬁ(ﬁn - 7T)A i> Y,
Ve (1= 4,)
ouY ~ N (0,1). Indication : vous aurez besoin du théoreéme limite central, de la méthode
delta, de la loi faible des grands nombres ainsi que du théoreme de Slutsky.

Solution 39. Puisque les variables aléatoires X1, ..., X,, sont iid de moyenne E[X;] = X et
Var[X;] = A < 0o, nous avons par le théoreme limite central que

Vi = A) -5,

avec Y ~ N(0,)\). Définissons g : R — R par g(z) = ze *. Par la méthode delta, nous
obtenons que

Vilg(a) —a(N) == Y- (V).
ol g(An) = 7n, g(A) =7 et ¢/(A) = e (1 — A). Ainsi,

Vi, —m) -5 v,

avec Y7 ~ N(0, \e 2N (1 — \)2).
De plus, par la loi faible des grands nombres, nous savons que An — X Soit h: R x Ry - R

une fonction définie telle que h(zx,y) = m Par le théoreme de Slutsky, nous obtenons
que

\/ﬁ(ﬁ'n_ﬂ') . S A d _ Yi
\/Ze_j\n(l—j\n) _h(\/ﬁ(ﬂ-n )7)‘11) —)h(}/la)‘) - ﬁe—A(l—)\) VVa

avec W ~ N(0,1), ce qui conclut la preuve.

Exercice 40 (exercice 28). Soient z1,...,x, des réalisations indépendantes d’une variable
aléatoire X ayant une fonction de densité f continue. Soit y € R, montrer que la fonction
histg, ..z, (y) converge en probabilité vers f(y), lorsque n — oo, hy, — 0 et nhy, — oco. Indica-
tion : le nombre d’observation tombant dans l'intervalle I;, , donné par N, = >, Lizier,, }s
suit une loi Bin(n,py) ol p, = [ L, f(x)dz. Vous aurez besoin d’utiliser le fait que

l‘ ¥n NTL pTL pn
< -
nhy, f(y)‘ ~ | nhy hy, hn, f(y)' ’

ainsi que I'inégalité de Chebyshev (lemme 6.4, p. 163).
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Solution 40. Supposons sans perte de généralité que y € I;, et dénotons > " | 1 {z;€1;,} Par
N,, ~ Binom(n,py,). Nous avons alors

N,
hista,ea) = S| = |2y = 105)
Nn  pn Pn
< nihn_hin + hn_f(y)" (2)

olt p, = || I f(z)dx. Notons que puisque f est continue, nous avons que VY > 0,3p > 0 tel
que |f(x)— f(y)| < si|z—y| < p. Puisque h,, — 0 il existe Ny tel que pour n > N, hy, < p.
La longueur de [;, est h,, donc pour chaque n > N5 on a

mw =8 = [ (@) =9de< [ f@de< [ (o) +8dn = hi(f) +5).

J Jn Ij

Ainsi, pour chaque n > Ns on a |p,/h, — f(y)| < J. Ceci est vrai pour chaque § > 0, et on
conclut que le deuxiéme terme de l’expression (2) converge vers 0 lorsque n — oo.
De plus, par I'inégalité de Chebyshev (lemme 6.4, p. 163 du livre),

npn(l _pn) _ pn(l _pn)
(nhpe)? nh2 e

> 6) = P(|Ny, — npp| > nhpe) <

Nous obtenons donc

. . . Np Pn € Pn €
Jim P(lhisty,, e, (y) = f(y)l >€) < Tim []P’< whe Bl 2) ‘HP’( h, f(y)‘ > 2)}
. Apn(1 —pn)
< i S
s e
1 —
= 4lim 2w =P,

2
n—oo fl, N—00 nhne

*Exercice 41 (exercice 26). Prouver le lemme 2.20 (p. 60) du livre.
(L’étoile est la notation standard dans les livres de mathématiques pour des exercices plus

difficiles.)

Solution 41.
(=) Notons tout d’abord que X, BNy signifie que Vz # ¢

1 siz>c
< n—oo < _ =
P(X, <z) — P(c<x) {0 Grec
Nous pouvons maintenant calculer :
P(|Xp—cl>¢) = PX,>c+e)+P(X,<c—¢)
< 1-PX,<c+e)+P(X,<c—¢)
T 1 —Ple<c+e)+Pc<c—e)
= 1-1+0
= 0.
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Nous venons de montrer que X, Ly
(<) Rappelons tout d’abord que lorsque A C B, alors P(A) < P(B). Soit € > 0 et x # ¢,
nous avons :

]P)(Xngx) = P(XnS.CL‘,‘Xn*C‘ >€)+]P>(Xn§l" ’XTL*C’ SE)
< PXp—cl>e)+Plc<z+¢)
2 Ple<x+e). (3)

L’inégalité vient du fait que I’événement {X,, < x,|X,, — ¢| > €} est inclus dans 1’événement
{|Xn — c| > €} et que I'événement {X,, < z,|X,, — ¢|] < €} est inclus dans 1’événement
{¢ < x+ €}. Quant a elle la derniére ligne est une conséquence du fait que X, L

De facon similaire nous obtenons que :

Plc<xz—¢) = Plc<z—¢|Xp—c|>e)+Pc<z—¢€l|X,— <e)
< P(X,—¢ >e€)+P(X, <z),

ce qui implique

P(X,<z) > Ple<z—e—P(X,—c|>¢)
— Ple<z—e). (4)

En combinant les équations (3) et (4) et le fait que e soit arbitraire, nous obtenons finalement

d
que X,, — c.

Exercice 42 (exercise 29). Nous allons traiter la question de l'existence d’estimateurs non
biaisés.
Soit Y ~Bin(n, p), ou p €]0,1][.
(i) Montrer que Y/n est un estimateur non biaisé pour p.
(ii) Montrer qu’il n’existe pas d’estimateur non biaisé pour 1/p.
(iii) Montrer qu’il n’existe pas d’estimateur non biaisé pour le parametre naturel ¢ = log (ﬁ) .
Remarque : ¢ s’appelle le log odds ratio ou de maniere moins anglophone le log du rap-
port des chances.

Solution 42.

(i) L’estimateur Y/n est non-biaisé car

(ii) On cherche une fonction U telle que
1 " (n -
LB wm=3 (})omta-rt el
b iz \F

Or, le membre droite de I’équation est un polynome alors que le membre gauche ne ’est
pas. Ainsi, une telle fonction U ne peut pas exister. (Un autre raisonnement serait de
dire que la limite du membre gauche de I"équation lorsque p N\, 0 est 00.)
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(iii) Pareil qu’en (ii) : supposons que V(Y) soit un estimateur non biaisé de ¢, c’est-a-dire
que E,(V(Y)) = ¢. Nous avons alors

Zn: (Z) V(k)pF(1—p)"F = E,[V(Y)] = ¢ = log <1f) .

k=0 p

Le polynome ci-dessus est de degré inférieur ou égale a n, tandis que ¢ n’est pas un
polynéme de degré fini, nous obtenons donc une contradiction.

Exercice 43. Soient Xi,...,X, d Poisson(A). Définissons les estimateurs Xn = X, =
Sy Xifnet Sp=(n—1)"1 30 (Xi — Xn)?.

Montrer que Var S2 > Var \,.

Indice : la borne de Cramér—Rao peut s’averer utile.

Solution 43. Remarquons que X, est un estimateur non biaisé pour \, puisque

" _

EA(Yn) = n

A

On va montrer que X,, atteint la borne de Cramér-Rao. II suffit de calculer le logarithme de
la loi de probabilité de Poisson, et de dériver :

] X)\2 X 2 EXx? EX AN —202 4022 1
10y =5 (ZBAO0Y g (X4} B LB, NN

A A2 A A2 A
Ainsi I(A) = 1/\. Comme X, est un estimateur non biaisé de A, la borne de Cramér—Rao est

Vary (X ,,) > =—.

Or Vary(X,) = Var(X)/n = A\/n, donc X,, atteint cette borne.
Pour S2, on effectue la manipulation suivante (voir l'exercice 4, série 3) :

R -
S2 = n_1§ X2 - 2X;X + (X)?
i=1

Puisque X; ~ Poi()),
Ex(X7) = Vary(X;) + (Ex(X:))? = A + A%
D’apres exercice 2, série 4 (exercice 22 du livre), on sait que Z = > | X; ~ Poi(n)\), et donc

Ex(Z%) = Vary(Z) + (Ex Z)? = nA + (n)\)2
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Par la linéarité de I’espérance, on écrit

n

n 2
Bs) - — (Lm0 - L, (zxi)
=1

i=1
212
R <n()\+)\2)_”)‘+”>‘)
n—1 n
1
= n_l((n—l))\+n>\2—n)\2)
= A\

Autrement dit, S est lui aussi un estimateur non biaisé pour \. Puisque X, atteint la borne

de Cramér-Rao, on sait que
Var \,, < Var 52,

Un calcul exacte de la variance de S?2 est possible, en utilisant Var S2 = E[S2]? — [ESZ]?, mais
fastidieux.

Exercice 44. Soient Xi,..., X, i Exp(A), ou n > 2.
(i) Montrer que Pestimateur \, = (X)~! est consistent pour .
(ii) Montrer que Ey(\,) = An/(n — 1), et trouver un estimateur ANB 1on biaisé de .
Indice : utiliser le fait que Z =" | X; ~ Gamma(n, \).
(iii) Montrer que Vary(A,) = n? M/((n=1)*(n—2)).

(iv) L’estimateur XEB atteint-il la borne inférieure de Cramér-Rao?

Solution 44.
(i) Onaque X;, i =1,...,nsont iid, et Ex(X;) = % Donc, par la loi des grands nombres,

— 1
X=-X,= -
no " A

3

En utilisant la theoréme de l'application continue avec la fonction g(z) = %, on a

X A,

ce qui dit justement que /):n — X" est consistent pour .
(ii) On utilise le fait que Z = >""" | X; ~ Gamma(n, \), et on écrit An = n/Z. Ainsi

“ *1 <1 1
n) = = fan = . e M (A\2)"1d
Ex(An) n/o zf)" (z)dz n/o . T e ¥ (\z) z

nF(n — ].) o0 ]. A _9 n
T'(n) A/0 Tmon) e W) dz=1m

L’estimateur 5\2[ B = ”7715\71 est donc non biaisé. La derniere égalité vient du fait que
lintégrale vaut 1, et que I'(x) = (z — 1)I'(z — 1) pour tout = > 1.
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(iii) Calculons

22

N | >~ 1 1
E\ /\% = nz/ f,\nzdz—nZ/ — - e M(\2)" "z
(32) [ Zhats S e

_ ”22(&;2) 2 /0 h P(;_Q)Ae—AZ(Az)n-?’dz = (n_;;(Qn_Q)AQ.
Ainsi
Vara(A) = Ex(A2) - [Ex(An)]? 2
T (- 17;(71— 5 - (nf el
" (n- 1)22(71 - 2)A2'

(iv) L’information de Fisher I(\) est

i 2
I(\) = E 0 log (Aexp (—AX1))
O\
o )
= E|{-—X
(o)
12 1
= E_)\?_AXIJFXJ:/\?’

car X1 ~ Exp()\) dont 'éspérance est 1/ et la variance 1/A%. La borne de Cramér—Rao
est donc (nI(\))~! = A2/n.

Comme Vary(ANB) = X2/(n — 2) > X2/n, Destimateur ANB n’atteint (tout juste) pas la
borne de Cramér-Rao.

. . jid o .
Exercice 45. Soient X1, ..., X, ~ Poisson(\).
(i) Montrer que l'estimateur du maximum de vraisemblance \,, de A est consistant et non-
biaisé.
(ii) Donner un estimateur (par exemple une simple modification de \,) qui est consistant,
mais néanmoins biaisé.

Solution 45.

(i) Ona A, =n! >, X;. Par la loi faible des grands nombres, An 5 EX; = A et donc
An est consistant. Pulsque IE[)\ = A, An est en plus non-biaisé.

(ii) L’estimateur A = /\n + E est un exemple d’estimateur biaisé mais consistant. L’estima-

teur "TH)\n en est un autre.

Exercice 46 (exercice 31). Soient X1,..., X, w Exp(A), o n > 2.

(i) Trouver 'estimateur du maximum de vraisemblance A,,.
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(ii) Déterminer I’estimateur du maximum de vraisemblance é}}b/w et la borne de Cramér-Rao
associés au parametre § = 1/\. Peut-on utiliser la proposition 3.177

(iii) Comparer An et @){W avec les bornes de Cramér-Rao correspondantes. Attention : quand

Iestimateur est biaisé, le nominateur de la borne de Cramér—Rao n’est pas 1.

Solution 46.

(i) En dérivant la fonction de log vraisemblance (par rapport a \)

ln(N) = log(A"e A 2i=1%) = nlog A — )\in,

i=1
et en la posant égale a zéro, nous obtenons

5\ n 1

n — n - = -
Yic1®i Xp

La fonction ¢, étant concave, il s’agit bien d’'un maximum.

(ii) Nous pouvons en effet utiliser la proposition 3.17, puisque A — 6 = % sur )0, oo[ est une
fonction bijective de X. Donc OMY = 1/X, = X,,. C’est un estimateur non biaisé de 6.

(iii) Nous savons que

. n ~ A
Ex(A\n) =

n—1

L’information de Fisher I(\) est

2
10 - E {gloguexp(—m))}]

1 2
= E{--X
E

12 )1
— E_>\2—)\X1+X1:|:)\2,
car X1 ~ Exp(\) dont espérance est 1/ et la variance 1/A\%. La borne de Cramér—Rao
est donc
BN +1? _ (Q+1/m-1) _ o
nI(\) n/\2 S nn—1)2  (n—1)%

(Au fait, la borne de Cramér-Rao correspondante & aT est a? fois la borne de Cramér—
Rao correspondante a T', si a € R; on aurait donc pu utiliser le fait que la borne de
Cramér-Rao pour \NB = (n — 1)\, /n est A\?/n.)

Or 2 )\2 )\2
o n n n n
Vary(\,) = 2\ = .
M) = O =) T o 1En—2 o 1)

L’estimateur A, n’atteint donc (tout juste) pas la borne de Cramér-Rao.

34



MATH240 — STATISTIQUES ProOF. VICTOR PANARETOS

Quant a 6, 'information de Fisher () est

o = o (s (oo (5}
-l 3]

1 _[Xx2 2 1
= —E|—=--X;+1| =—.
02 [92 gt ] 02
La borne de Cramér-Rao est donc 62/n = Varg(é}\lw), donc é}\;{\/ atteint la borne de
Cramér-Rao.

Exercice 47 (exercice 33). Un malheureux époux bavarde souvent & son téléphone portable
afin d’oublier ses miseres. On sait que la longueur de ses jasettes téléphoniques suit une
loi exponentielle de parametre A > 0. Longtemps génée par les conversation de son époux,
la femme de ce monsieur malchanceux se mit a mesurer la longueur de celles-ci; ayant un
nombre infini d’observations, elle connait la valeur précise du parametre .

Lors d’une dispute avec son mari et afin d’avoir un argument plus concret, la femme montra
a son époux un échantillon t¢1,...,%, des longueurs de n de ses conversations téléphoniques,
et ce, afin de lui prouver qu’il placote au téléphone de maniere excessive.

L’homme, tout méfiant, ne croit guere sa femme ; connaissant celle avec laquelle il vit déja de-
puis quelques décennies, il la soupgonne d’avoir choisi ’échantillon de maniére aléatoire, mais
uniquement a partir des conversations qui duraient plus longtemps que la moyenne (théorique)
de la longueur des conversations. En supposant ceci, le bavard s’attaque au probleme d’estimer
le parametre A\, dont seule son épouse connait la valeur véritable.

Trouver I'estimateur de maximum de vraisemblance de A a partir de ’échantillon ¢4, ..., t,,
mais sous I’hypothese que le monsieur a raison. Attention : comme a 'exemple 3.20 (du livre),
le support de la distribution dépend de I’état de la nature, c’est-a-dire de la vraie valeur de
A

Solution 47. L’espérance de la durée des conversations est 1/\. Lorsque les soupgons du
monsieur sont justifiés, la fonction de répartition de la distribution qui génere 1’échantillon
t1,...,1n est

FT(t):P{Y§t|Y>§\], tz%,

ouY ~ Exp()\). Grace a I’'absence de mémoire de la distribution exponentielle (cf. exercice 6,
série 1), on a pour ¢t > A\~ !

1 1
FT(t):l—P[Y>t\Y>)\] zl—P{Y>t—)\] =1—e MU — 1 el

La densité de la variable aléatoire T est donc f(t; ) = Xe!™1{t > A~'}. La vraisemblance
a partir d’un échantillon t1,...,t, s’écrit

n n

Lo(X; (1) = [[ £t d) = Amen A 2im B T 1{t; > 1/A}

=1 i=1
= AN TARI N > 1/t )}, tg) = min{ty,.. .t ),
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puisque i, 1{t; > 1/A} = 1 si et seulement si (1) > 1/ si et seulement si A > 1/().
Afin de maximiser cette fonction, faisons comme si la fonction indicatrice n’était pas la et
dérivons £, (); (t;)) = nlog(A) +n — nAt :

%_ﬁ_ng
oN A '

En posant cette derniere équation égale a zéro, nous obtenons :

ol, .
5—0 “— A=

SN

Malheureusement, puisque ¢ > (1), % < % ; notre solution ne satisfait donc pas a la condi-

tion A > 1 /t(l) et la vraisemblance vaut zéro. Puisque ¢, (et donc L, ) est décroissante sur
1 /t(l), oo[, le maximum sera atteint au premier point ou la vraisemblance ne s’annule pas
(voir le graphique ci-dessous). L’estimateur est donc Xn =1/ ta1)-

Remarque. Il se peut que ¢ = (1), mais méme dans ce cas I'estimateur sera 1/t = 1/.
Cette particularité n’arrive cependant qu’avec probabilité zéro, a moins que n = 1.

Likelihood

1/mean(t)  1/min(t)

Lambda

Exercice 48 (exercice 35). Soient Xi,..., X, i N(u,0?) ol les deux parametres sont in-

connus (n > 1). On peut estimer o2 par

1 _
52 = — > (X -X)?

i=1

ou bien par I'estimateur de maximum de vraisemblance 52 = (n —1)S2 /n (cf. I'exemple 3.16,
p. 75).

(i) Lequel de ces estimateurs est meilleur au sens de l'erreur quadratique moyenne ?
Indication : on a (n — 1)S2/0? ~ x2_; (cf. proposition 2.7, p. 51).

(i) Considérons les estimateurs de la forme aS2 o a € R. Quelle est la meilleure valeur de
a au sens de lerreur quadratique moyenne ?

Solution 48.
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(i) Puisque I'espérance d’une variable aléatoire x2_; est n — 1 et sa variance est 2(n — 1),
E[S2%] = 0% et EQM(S?,0%) = Var[S?] = 20%/(n — 1).
Puisque 62 = (n—1)S2/n, nous avons E[62] = (n—1)0?/n et Var[62] = 2(n—1)0*/n?.

Ainsi

2
n—1 2(n—1) 2n —1 2
EQM (62,02 = o —o? = et= ot < o,
QM (@, o) < n R n? n—1

puisque 0 > 0 et (2n — 1)/n? < 2/n < 2/(n — 1). On remarque que méme si o2 est

biaisé et S2 ne ’est pas, ce dernier a une erreur quadratique moyenne plus élevée.
(ii) Ici espérance est ac? et la variance 2a?0*/(n — 1) de sorte que I'erreur quadratique

moyenne vaille

22 22 4
(aa2—02)2+ni104:a4 <(a—1)2—i—ni1> :na—l ((a®* —2a+1)(n—1) +2a%) .

C’est une parabole convexe en fonction de a dont 'unique minimum est la racine de
I’équation

n—1

n+1

0=2a(n—1)4+4a—-2(n—1)=2a(n+1)-2(n—-1) = a=

Ainsi le meilleur estimateur de cette forme est

n—1 1 —
S? = X, — X)2.
n+1" n—i—lg( ! )

Exercice 49. Soient Xi,..., X, i Unif(0,0), ou § > 0. Soit 0, lestimateur de maximum

de vraisemblance. Trouver 6,, et montrer que n(6 — 6,,) converge en distribution vers une
distribution a trouver.

Solution 49. L’estimateur de maximum de vraisemblance est §n = X(p) (cf. 'exemple 3.20,
p. 77). On trouve pour x > 0,

~

P(n(Q—Gn)SJr):P(X(n)ze_%):1_1{I§n9}(1_6£>n

n

—>1—exp<—g), n — 00.
Ainsi n(0 — 0,) % Exp(1/6).

Exercice 50 (exercices 36 et 37).

(i) Considérons la représentation usuelle d’une famille exponentielle
[(@30) = exp(n(O)T(z) — d(6) + S(x), z€X, €0,

oll © C R est un ouvert et ) est deux fois continiiment dérivable et inversible avec la
dérivée jamais nulle. Soient X1,..., X, ad f(z;0). Montrer que

0
E %logf(Xl,...,Xn;G) =0, et
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E

9 2 0

Indication : ce n’est pas pour rien qu’on a fait I’exercice 35.

*Soit f(z;0) un modele paramétrique régulier (pas forcément une famille exponentielle !)
tel que

X={zeR: f(x;0) >0}
ne dépend pas de 6, et que f est doublement dérivable par rapport a 6. Soient en
plus X1,..., X, i f(x;0). Montrer que I’égalité (5) est équivalente & une condition de
régularité qui dit que 'on peut interchanger la dérivée et 'intégrale.

Indication : il faut absolument se rendre compte que pour chaque fonction g : R” — R,

Elg(X)] = / 9(Z) f(%;0) Az quand cette intégrale existe (¥ = (z1,...,x,) € R").

Solution 50.

(i)

Remarquons que

0n(0) =1log f(X1,..., Xn;0) = n(0) > T(X;) —nd(6) + > _ S(Xy);
=1 i=1
0,0) =n'(6) > T(X;) —nd'(0) = n(n ()T — d'(9));
=1
0n(0) =n"(0) > T(X:) — nd"(6) = n(n"(0)T — d"(9)).
=1

Par Dexercice 35, E[£),(0)] = n(n/(0)E[T] — d'(#)) = 0 et

E[((,(6))7) = Varlt (6)] = (o (6))* Var[T] = n OO0,

(0) ’
BI0)] = n(o OET] - a'(0) = n (1) 1)~ ¢'9)) =n T ZEOTE)

tel que requis.

Soit £, (0; X1, ..., Xy) =log f(X1,...,Xn;0). Afin d’alléger la notation (souvent quelque
peu fastidieuse en statistiques), nous allons simplement écrire f et ¢,,. Lorsqu’on prend
une dérivée, cela se fait toujours par rapport a 6. (En fait il n’a souvent pas de sens de
dériver par rapport & x, par exemple lorsque l’espace X" est discret.) Avec cette notation,
la question est : est-ce que E[¢!] = —E[(¢,,)?]?

Dérivons : ¢/, = f'/f et £ = (f"f — f'f")/f%. Par conséquent, E[(¢})?] = —E[¢"] si et

seulement si

N2
[ U Rai [ sz =sie - s
n .

f
G- e | e o
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De maniere équivalente, 0 = [, f” dZ ou bien :

o f(f'@)df—ﬁl—o— f”df—/ a—2fda_c'

002 Jyn” 0027 Jan  Jn 062 ’

car f(Z;0) est une fonction de densité pour n’importe quel 6. En d’autres mots, E[¢/! (0)] =
—E[(¢(0)?)] est équivalent au fait de pouvoir interchanger la dérivée seconde et I'intégrale
comme le font nos amis les physiciens.

Exercice 51. Soit la variable aléatoire X, dont la densité est donnée par

erfl, si0<z<1;

f(w;9)={ 0.

ou 6 > 0 est un parametre inconnu. Trouver, sans calculer aucune intégrale, Ellog X] et
E[(log X)?].
Remarque. Cette méthode est beaucoup moins laborieuse que de calculer explicitement

sinon,

1 1
/ 02 logx dx et / 021 (log z)? d.
0 0

Solution 51. Il s’agit bien d’une famille exponentielle, ou
01(0) =logf + (6 — 1)log X;

1

1

Or, E[¢}(0)] = 0, et par conséquent E[log X] = —1/6. De plus, d’aprés I'exercice 1,

oo = 0] = B[ 0)7) = 5 + 28X Bl10g )7 = 1~ 2 4 Bl(o X)),

donc E[(log X)?] = 202
Exercice 52. Soit X ~ Exp()), ou A > 0. Montrer que Y = aX ~ Exp(\/a) pour a > 0.

Solution 52. La densité de X est fx(z) = Ae **1{z > 0} et grace au corollaire 1.31 (p. 27)
la densité de aX est a= ' fx(x/a) = (A a)e~MD*1{z > 0}. Par miracle, il s’agit de la densité
d’une variable aléatoire exponentielle de parametre \/a.

Exercice 53. Nous avons montré une sorte de théoreme centrale limite pour les familles
exponentielles (théoreme 3.23, p. 81; corollaire 3.27, p. 84). Nous verrons dans cet exercice
deux exemples de ce qui se passe en dehors du cadre des familles exponentielles.
ConsidéArons An, Vestimateur de I'exercice 47. Trouver une suite de nombres réels a,, telle que
an(\ — Ap) converge en distribution vers une distribution non dégénérée.

Indication : utiliser 'exercice 13 et I’exercice 52.
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Solution 53. L’estimateur de maximum de vraisemblance est A, = 1 [ty (cf. exercice 47).
Or t(qy — 1/A =ty ~ Exp(n)), oi t =t — 1/X ~ Exp()) (cf. exercice 50).

Solution « intélligente >. Par I'exercice 52, n(t(;)—1/A) ~ Ezp()). Appliquons la méthode
delta avec g(t) = —1/t et encore une fois l’exercice 3 pour conclure

> d
B = Xn) = n(A = 1/t) = nlglty) — g(1/A) > Eop(\A2 ~ Bap(1/A).
Solution < brute-force >. On peut calculer la distribution exacte de a, (A — /)\\n), puisque
c’est une fonction de #(;) — 1/ dont on connait la distribution : soit z > 0.

P(an(A—Xn)gx) :P(anA_l‘>

Aan,

Qn

_p(+ 1.z
U O TN T Naph —2)

:1—exp<_n$>, oulsixz>ap.
ap\ — T

On aimerait que la limite de cette probabilité soit une fonction qui dépend de x. Si a,,/n — 0
I’exponentielle converge vers 0 et donc la probabilité converge vers 1, et ce, quelque soit la
valeur de z. Il faut donc que a,, > O(n) et en particulier a,, — oo, ce qui implique que pour
x fixé, r < ap, A pour n suffisamment grand. On a

_ —nx . —nzx IR PR
lm1l—exp|{——— | =1—exp| lim —— ) =1—exp| — lim — |,
n—00 ap\ — T n—00 Ap\ — T A n—oo a,

car a, — oo donc Ax devient négligeable lorsque n — co. Si a,,/n — oo la limite est 0 qui ne
dépend pas de z. Il faut donc que lima,/n €]0,00[, et on peut choisir par exemple a,, = n.

Remarque. Puisque A > Xn, nous ne pouvons pas nous attendre a ce que la distribution
limite de a,(\ — Xn) soit normale ; en effet, n’importe quelle distribution limite est forcément
non-négative ! De méme pour a, (6 — §n)

Exercice 54. (i). Soit X = (x1,...,7,)7 une image de dimension 1. Supposons que 1’on
puisse uniquement observer une version de cette image sur laquelle il y a du bruit
numérique, i.e, que 'on observe Y = (y1,...,y.)", ot chaque pixel s’écrit comme

Yi = T + &,

iid

ot &; ~ N(0,0%). Trouver une estimation de l'image originale X par la méthode du

maximum de vraisemblance.

(ii). Supposons maintenant que 1’on vous donne une information supplémentaire sur I’allure
de I'image : I'image est en fait une ligne, ot chaque pixel satisfait la relation

Yi = a+br; +¢&;.

Calculer 'estimateur du maximum de vraisemblance des parametres a et b.
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Solution 54. (i). Etant donné 'image originale x;, les y; suivent la distribution du bruit,
et donc y; ~ N(z;,0%). La log-vraisemblance de {x;} est donc donnée par

n n 1 &
(5 yi,0%) = —§log(27r) - 510g02 T 952 Z(Z/z — ;)%
i=1

En posant les dérivés de la log-vraisemblance égales a zéro, nous obtenons
Ty = Yi-

Alors, nous avons montré que si on a une seule observation y; par pixel, la vraisemblance
ne nous donne aucune d’information supplémentaire sur I'image.

(ii). Maintenant, les y; sont indépendants et sont distribués comme
i ~ N+ bz, o).
La log-vraisemblance de {a, b} est donc

n n 1<
lp(a,byy) = -5 log(27) — 5 log 0% — %57 Z(yl — a — bx;)?
i=1

avec les derivées partielles

oL, —a— bxz)
Yn _ 9
da Z

oy —a— bxz)
% = —22 — 5.

En posant les dérivés de égales a zéro, nous obtenons

aEn Yi na b
D =t t=-D DL

ol TiYi T %2
%:O = Z 0_2 _GIZE_Z) : ﬁzo

Soit T = n~ 'Y " | x;, et soient x2, § et Ty definis de la méme maniére. On trouve
finalement que

. 1y —T-TY

a = — —
12 —

p_TYy—T-y

b:fz
12 —T

Finalement, observez que (a,b) minimisent la somme des carrés résiduels >, (y; — a —
bx;)?, et donc nous les appelons aussi les estimateurs des moindres carrés.
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. : iid .
Exercice 55. Soient z1,...,x, ~ Gamma(r, 1). Trouver l'estimateur des moments 7™ de

r, et la loi limite de

~mom __ (logr(‘))/(/\mom — @X —7r
VGL(T (log [())/ (7o) )

ot logX = n~! > logx;.

Solution 55. On trouve r™°™ en résolvent 1’équation

fn = E;.‘momﬂfl = Amom.

Gréce au théoréme limit centrale, v/n(7™°™ —r) — N(0, Var(z1)) = N(0,7). En définissant

£,

pmom _ (IOg F)/(%\mom) — @X

P =T e (og Ty Grmom)

et remarquant que I' est suffisamment réguliere, on obtient

Vit =) = N (0755 ) = ¥ (0, g )

Exercice 56. Soit X1,..., X, un échantillon i.i.d. tiré d’une distribution de densité
303274, sixz >0,
fla;0) = { .
0, sinon,
ou 0 > 0.

(i) Trouver l'estimateur MM de @ par la méthode des moments.
(ii) Trouver Pestimateur du maximum de vraisemblance MV de 6.
iii) Montrer que MM egt non-biaisé, tandis que OMV et un estimateur biaisé.
q n q n
)

(iv) Calculer lerreur quadratique moyenne de éTI\L/IOM et de é}f" Quel estimateur est le
meilleur au sens de 'erreur quadratique moyenne ?

Solution 56.
(i) On a
E[X1] =m(d) = / 30323 dx = ge.
0

On obtient donc I’équation et la solution suivantes :

3 1< 2 —
70M01V[ _ ZXZ s G%OM — 37n ZXl
i=1 =1

2T &

(ii) La vraisemblance de 0 est

Ln(0) = [[360°X;"1{X; > 0} = 3"°" [ [ X, "1{X ;) > 0}.

i=1 i=1

Pour 6 €]0, X (1], la vraisemblance est une fonction strictement croissante et pour
0 €]X(1),0[, Ln(#) = 0. I s’en suit que oMV = X1y = min(Xy, ..., Xp).
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(iii) Pour MM on a
E [éMoM} _ EZE[X] - i.négzg
" 3n — ’
et HATI\L/IOM est donc non-biasié.

Pour trouver I'espérance de ég/IV = X(1), il faut tout d’abord trouver la distribution de
X : pour t >0,

n n 00 3n
P(X(l)§t>:1_P(X(1)>t>:1_HP(Xi>t):1_H/t 3935134(133:1—(?) .
=1

i=1

Pour ¢ < 6 cette probabilité vaut 0. Ainsi, la fonction de densité de X () est

d 0 o 3ny—3n—1

E [é}f"} — E[X(y)] = /0 3n@Pnt=3n dt = 3n37z .

et on obtient

Le biais de 0MV est donc biais [é%v} =E [é%v] —-0= 3n1_16 # 0.
(iv) On a

E[X7] = / 30322 dx = 362,
0

de sorte que Var[X;] = E[X?] — E[X;]? = 26%. Puisque les X; sont iid, on a

et 'erreur quadratique moyenne est

~ A 1
BQM (81N = Var [0M] = ¢,
3n
ol on a utilisé le fait que é%OM est non-biaisé.
Pour X(y), on obtient
o0
3
E[X?)] = / 3ngPng3ntlqr = 2 g2
/] 3n—2

Donc

. 3n 3n 2
Mv] _ 2 2 2 ’
Var {Hn } = E[X{)] - E[X(1)] o= (3n - 1> ?

et on obtient

QA1) = s [20] 4 var (0] = o e 2 (L0
2

T Brn-1)(3n-— 2)92‘
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Par un calcul standard, on obtient que

EQM [é}}fv} < EQM [é}}foM} = n>2
De plus, quand n = 1, on a EQM [é%v] > EQM [é%OM . Donc, pour n = 1, I'estimateur
QA;\L/IOM est meilleur que é%v
vraisemblance est meilleur.

, mais pour chaque n > 2 l'estimateur de maximum de

Exercice 57. Soit Xi,..., X, un échantillon i.i.d. tiré de la distribution uniforme sur [0, ]
ou le parametre 6 > 0 est inconnue. Dans les exercices précédentes on a trouvé l'estimateur
du maximum de vraisemblance MV = X (n)-

(i) Trouver Destimateur §M°M de # par la méthode des moments. Montrer qu’il est non-
biaisé.

(ii) Modifier I'estimateur 971\1/1V7 par example en multipliant par un constant, pour le rendre
non-biaisé. Dénoter cet estimateur OV MOdf

(iii) Calculer I'erreur quadratique moyenne de OM°M et de MV modif Quel estimateur est le
meilleur au sens de 'erreur quadratique moyenne ?

(iv) Commenter la vitesse de convergence de 'erreur quadratique moyenne de ces deux esti-
mateur.

Solution 57. (i) Selon la définition du méthode des moments :

Xy 4 X, YoM
n 2
Alors, MM = 92X De plus, E[2X] =2 28 — ¢, donc I'estimateur est non-biaisé.
(ii) Rappelle que la fonction de répartition de X(,), c’est Fix, () = (x/0)" pour z € [0, 6].
Done, fx,, (z)= 2(z/6)"! pour z € [0,6]. Calculer I'espérance :

o 0 n—1
E[6,"] = E[Xm] = / oo (E) dr = nf
0

0 \0 n+1
Alors on peut mettre, O mON — (1+1) X(n)-

(iii) Les deux estimateur sont non-biaisés, alors :

MSE [éTI\L/IV,modif] — Var [ég/{\/,modif} ) |:(érl\L/[V,modif) 2} _ 62

92
:n(n+2)
MSE [63M] = Var [§3eM) = 2 pvar (X
] = v ] = o
0 2
SR IROr)
n 0 0 2
62
ED
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, converge vers ( avec la vi-

(iv) L’erreur quadratique moyenne de 'EMV, MSE [é%v’mOdif}

tesse quadratique grace & n~2. Au contraire, l'erreur quadratique moyenne de I’estima-
teur par le méthode des moments, MSE [0%01“} , converge vers 0 avec la vitesse linéaire

(grace a n~1).

Exercice 58. Soit X7i,..., X,un échantillon i.i.d. tiré de la distribution binomial avec les
deux parametres m et p inconnues. Trouver m, p les estimateurs des m et p par la méthode
des moments. Montrer que cela peut arriver que m ¢ {0,1,...} ou p ¢ (0,1).

Solution 58. Le systeme des equations pour les deux premiers moments :

1 n
X=mp,  —> X7 =mp(l-p)+mp’
=1

Donc : _ _
X 5 (X)?
= - m = — n — .
P m X_% i:l(Xi_X)2

Si la moyenne échantillonnale est plus petite que la variance échantillonnale, m et p sont
négatives.

*Exercice 59. (un exercice théorétique) Soit f(z;6) = exp(T(z)n(8) — d(0) + S(x)) une fa-
mille exponentielle non dégénérée, ou I'espace des parametres © est ouvert, et soit 1, xa, ..., Ty
un échantillon iid tiré de f(x;60p) pour un certain 6. Soit «,, n’importe quel estimateur tel
que /n(ay, — 60y) — V pour une variable aléatoire V. Imaginons qu’on cherche & approximer
I'estimateur de maximum de vraisemblance 5,1 avec une seule itération de Newton—Raphson,

_ o (an)
" (o)

Bn =«

En supposant que n € C3(0), montrer que

Vil = 00) > N (0.5 ).

ou I(6p) est 'information de Fisher, et commenter ce résultat.
Indice : faire une développement de Taylor d’ordre 2 de ¢, autour de 6y, et remarque que
cette fonction (aléatoire!) est une somme de variables aléatoires iid.

Solution 59. On écrit
1
O (an) = £3,(00) + (v — 60)€5(60) + 5 lan = 00)>0 (a),

ou |a — 6p| < |y, — Op|, de sorte que

Vn(Bn — 0o) = v/n(om — 00) + V(B — o)

n~/2¢
:_w+\/ﬁ(an_00) <1_

n=t" (o)

—1pn 1 —1 oy, x
n_ en(eo) — (o — eo)n_ 0 (an) )
n~W (o) 2 n=t" (o)
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Le fait que /n(ay, — 6p) 4y implique que o, = 6 (voir le corollaire 3.26, p 84), et donc
aussi a, 2 0. Rappelons que :

S
o) = SRR
1(85) = £ 0o)n /(9073,(—906;'(90)77"(00) .

Puisque n € C3(R), I'exercice 35 montré que d € C3(R). Donc, la loi faible des grands
nombres, les théoremes de Slutsky, de I’application continue, et centrale limite impliquent les
convergences (en distribution) suivantes :

120, (60) = n'/? (1 (60)T — d'(60)) — N (0,1 (60)]*Var(T(X1))) = N (0,1(60)) ;

n’léﬁ(eo) = 77”(60)?,1 — d"(&o) — 77”(90):51&22; — d”(eo) = —[(90) < 0;
7)== () = (00 S8 — 00) = —r(0n)
4 (60)

_1€/”( ) _ 77///( )Tn _ d/l/(a;kl) N _n/l/(90>

On en déduit, avec I'aide du théoreme de Slutsky

7n_1/2%(90) N(0,1(0)) - N (Q7 L > ;

(o) | 1(0) 1(0)
et
% (0 — o) —iif/i/((zn)) .. n”’(e())éz(gi)— d"(6o) _ 0:
(e — 60) (1 - m - %(an ) :lli(( )) SV (0-0)=0.

et encore une fois par Slutsky /n(3, — o) 4 N(0,1/I(6p)). Ainsi, 3, a la méme loi asymp-
totique que lestimateur du maximum de vraisemblance (donc quasiment optimale), méme si
on a utilisé une seule itération de Newton—Raphson !

Exercice 60 (exercice 40). Pour chacun des scénarios suivants, trouver les hypotheéses a
tester ainsi que les deux types d’erreurs qu’on peut commettre. Sur la base de ces informations,
décider quelle hypothese devrait étre I’hypothese nulle Hy et laquelle devrait étre ’alternative
H;.
(i) Une physicienne travaille sur une expérience dont le but est de détecter des particules
de matieres noires. Elle aimerait tester si ses données indiquent la présence de matiere
noire.
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(i)
(i)

(iv)

Un fétard voudrait savoir s’il est en mesure de conduire apres un apéro. Il aimerait donc
tester si le taux d’alcool dans son sang est supérieur a celui autorisé par la loi.

Barack Obama et Mitt Romney étaient les deux candidats principaux a 1’élection
présidentielle de 2012 aux Etats-Unis. Le directeur de campagne de M. Obama aimerait
savoir si M. Obama est en téte dans 1’état d’lowa afin de décider s’il doit allouer ou non
plus de ressources financiéres pour la campagne dans cet état. Il faut donc tester si M.
Obama est en téte dans I’état d’Iowa. De quelle facon le test changerait-il si on était a
la place du directeur de campagne de M. Romney ?

Un scientifique travaillant pour une compagnie pharmaceutique a pu développer un
nouveau médicament afin de réduire la pression artérielle trop élevée. Il voudrait tester
si le médicament produit 'effet attendu.

Solution 60. A noter que le choix des hypotheses nulles dans cette exercice est quelque peu
subjectif. Les choix ci-dessous refletent cependant ce qui est habituellement fait en pratique
dans les domaines considérés.

(1)

(iii)

Les expériences concernant la matiere noire sont habituellement des expériences de
décompte modélisés par des lois de Poisson. Soient g le nombre moyen de particules
dénombrées pendant ’expérience, b le nombre moyen de particules dénombrées pendant
I’expérience lorsqu’il n'y a pas présence de matieres noires et s le nombre moyen de
particules de matieres noires dénombrées lors de ’expérience. Les deux hypotheses sont
w=>b,ie. quil n’y pas d’indication de la présence de matiere noire et 4 = b+ s, c’est-a-
dire qu’il y a une indication de matiere noire. On fait une fausse découverte si on affirme
qu’il y a présence de matiére noire lorsqu’en fait il n’y en a pas. On peut <rater une
découverte> si on affirme qu’il n'y a pas d’indication de la présence de matiere noire
lorsqu’en fait il y en a une. Faire une fausse découverte est considéré comme une tres
grave erreur (cf. Paffaire des <faster-than-light neutrinos> au CERN, qui a provoqué la
démission du chairman de I'expérience OPERA ). On teste donc :

Hy:p=0>
Hi:p=b+s

Soient p le vrai taux d’alcool dans le sang et pg la limite 1égale. Les hypotheses a tester
sont pu < g, c’est-a~-dire qu’on peut conduire en toute légalité, et u > pg, c’est-a-dire
qu’on n’est pas autorisé a conduire. Si on pense que p > g lorsqu’en fait u < g,
on peut décider inutilement de ne pas conduire et de rentrer chez soi en transport en
commun/taxi/a pied. Si on pense que p < g lorsqu’en fait p > g, on va conduire sous
I'influence d’alcool et ainsi risquer d’avoir une amende ; ou pire encore, de provoquer un
accident. Il est clair que la derniere erreur peut avoir des conséquences beaucoup plus
sérieuses que la premiere, ainsi on devrait tester :

Ho : > po
Hy:p<po

Soit O le nombre d’habitants d’Towa qui ont 'intention de voter pour M. Obama et soit
R le nombre d’habitants d’lowa qui ont I'intention de voter pour M. Romney. Les deux

1. http://www.lescienze.it/news/2012/03/30/news/opera_ereditatos_point_of_view-938232/
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hypotheses sont O > R, c’est-a-dire que M. Obama est en téte, et O < R, ¢’est-a-dire que
M. Obama est en train de perdre (ou qu’il y a égalité). Si le directeur de campagne de
M. Obama pense que M. Obama est en train de perdre lorsqu’en fait O > R, il décidera
de dépenser inutilement plus d’argent dans I'Towa. S’il pense que M. Obama est en téte
alors qu’en fait O < R, il décidera de ne pas dépenser d’argent supplémentaire dans
I’Towa, ce qui peut avoir pour conséquence la défaite de M. Obama dans cet état. Cette
derniére erreur est certainement la plus grave, on devrait donc tester :

Hy:O<R
H :0>R

Pour le directeur de campagne de M. Romney, les hypotheses seront inversées :

H()ZRSO
H12R>O

Afin de vérifier D'efficacité du médicament, on devra faire une étude clinique avec des
patients souffrant de pression artérielle élevée (il ne sera certainement pas difficile d’en
trouver, puisqu’on estime que plus que 20% de la population a une pression artérielle
élevée). Dans cette étude, il y aura un groupe appelé <traitement> & qui on adminis-
trera le nouveau médicament et un groupe appelé «controle> a qui on administrera
un placebo. Soit pr la moyenne des pressions artérielles du groupe traitement et soit
pc la moyenne des pressions artérielles du groupe controle. Les deux hypotheéses sont
pr = pc, c’est-a-dire que le médicament ne fonctionne pas, et pr < pc, i.e. que le
médicament réduit la pression artérielle. Lorsque pr = pc on pourra déclarer, a tort,
que le médicament fonctionne et lorsque pr < pc, on pourra penser a tort que le
médicament n’est pas efficace. Dans le premier cas, un médicament inefficace pourrait
se retrouver sur le marché, entrainant potentiellement d’important effets secondaires
tandis que dans le deuxieme cas, le développement d’un médicament efficace pourrait
étre arrété. Puisque nous voulons étre certains que les médicaments que nous utilisons
sont efficaces a traiter les maladies, nous devrions choisir :

Hy :pr =pc
Hy:pr <pc

Exercice 61 (tests d’hypotheéses intuitifs, exercice 48). Le but de cet exercice est de
donner une motivation intuitive aux tests d’hypotheses. Soient X1, ..., X, iid avec la fonction
de densité

1
fx(z) = @)\5$3/267>\\/E, x>0,

ol A > 0 est un parametre. On aimerait tester I’hypotheése Hy : A = g vs. Hy : A = A1, ou
Ao > A1

(i)
(i)

Trouver 'estimateur du maximum de vraisemblance \,,.

Comme expliqué au chapitre 3 du livre, Xn est un bon estimateur.AAinsi, il est en un
certain sens naturel de rejeter Hy si Ag n’est pas < compatible >avec \,. Dans notre cas,
cela voudrait dire : rejeter Hy lorsque Xn est petit. (Si Xn > Ao, on préferera certainement
Hj et non Hj.) Quelle forme prendra donc la fonction de test 7 Donner-la a une constante
D pres.
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(iii) Maintenant, il faut trouver la fonction de test précise. Pour cela, il faudrait choisir une
borne en dessous de laquelle on juge A, suffisamment petit pour rejeter Hy. Pour un
seuil a €10, 1] donné, on voudrait que la probabilité de commettre une erreur de type I
soit a. A partir de la, décrire la relation entre o et D.

(iv) Nous voila un test au niveau a. On peut ensuite se demander s’il est le meilleur test.
Aurons-nous pu faire mieux, c’est-a-dire trouver un test au niveau « mais plus puissant ?
Montrer que la réponse est négative, en montrant que notre fonction de test est exacte-
ment la méme que celle décrite par le lemme de Neyman—Pearson. (On peut supposer
que la valeur @ du lemme existe ; ce résultat sera démontrée ultérieurement.)

(v) Trouver une formule, la plus simple possible, pour la fonction de test §(Xi,..., Xy).
Indice : A\, contient une somme dont chaque élément suit une distribution qu’on a déja
vu.

Solution 61. (i) On procede comme d’habitude :
n n 3/2
Ln(\) = (48) 7"\ exp <—)\ > \/X,-> (H XZ->
=1 =1
n 3 n
la(N) = 5nlog A — )\z; VX + 2210gX2- — nlog48

on " —bn
l(\) = T_ZVX"’ l(N) = BV <0,
i=1

d’ou on trouve aisément

S on
! POUERY Xi
(ii) Par définition, on rejette Hy si et seulement si la fonction de test §(Xi,...,X,) est

égale a 1. L’énoncé suggere qu’on la rejette si et seulement si Xn est inférieur a un seuil
quelconque, D. Ainsi, la fonction de test est de la forme 6(X,...,X,) = 1{\, < D}.

(iii) La probabilité de commettre une erreur de type I est la probabilité de rejeter Hy lors-
qu’elle est vraie. Ainsi, on obtient I’équation suivante :

a =Py (6(X1,...,X,) =1) =Py, (A < D),

ou les probabilités (qui dépendent bien stir de A\!) sont calculées pour A = \g. Si G, est
la fonction de distribution de la variable aléatoire /):n quand A = )g, alors la solution
est le a-quantile de G,, : D = G, (a) = G, '(a) car G,, est strictement croissante et
continue.

(iv) Le rapport de vraisemblance est

5n n
An(X1,...,X,) = L) _ (Al> exp [()\0 =203 \/)7] .

Puisque A\g > A1, on voit que

log [Q (i‘j)Em] - 5n(Ao — A1)

=1\, <

o x)”
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Ce qui est important ici n’est pas ces expressions atroces, mais le fait que la fonction
de test du rapport de vraisemblance est elle aussi de la forme 1{Xn < D'}, qui est
exactement la méme forme de d. Par le lemme de Neyman—Pearson, @ (et donc D') est
tel que R

o= ]P))\O(An > Q) = P/\O()\n < D/)
Il s’en suit que D' = G, }(a) = D et donc 1{A,, > Q} = 6. Ainsi, notre test intuitif est
optimal !

(v) A Dexpression de A ainsi qu’a celle de Ay, le seul élément aléatoire est » | v/ X;. Essayons
donc de trouver la fonction distribution de Y = y/X;. C’est une tranformation de Xy
dont U'inverse est X; = Y2. Ainsi

1 - 1 -
fr(y) = fx(¥?)2y = @ABySe Ay = ﬁk‘r’y“e v,

Méme si on ne se souvient pas que I'(5) = (5 — 1)! = 24, on reconnait ici la loi
Gamma(5, A). (D’ici, on peut déduire que soit I'(5) = 24, soit ceux qui ont écrit cet
exercice se sont trompés.) Il s’en suit que > 1 | v/X; ~ Gamma(5n,\) (on peut voir
cela en utilisant la fonction génératrice des moments). Sous Hp, A = Ao. A partir de
la on peut trouver les valeurs de D et (J, mais on peut se simplifier la vie en remar-
quant que la fonction de test est également de la forme 1{>  +/X; > D”}. Pour que
Py, (> VX; > D") = a, il faudrait que D" soit le (1 — )-quantile de la distribution de
ST VX, sous Hy, & savoir Gamma(5n, \g). Ainsi, la fonction de test optimal au seuil «

est
n
1 {Z vV Xz > Gamma5n7>\071_a} .
i=1

Le message a retenir ici est que ce qui est important est la fonction de test, et non
pas sa représentation. Par exemple, si on observe Xi,..., X9 et on veut tester Hy :
A =1vs. H : A= 0.5, il est plus simple d’utiliser 1{>_ v/X; > 62.17} que d’utiliser
1{50/ > v X; < 0.804}!

Exercice 62 (exercice 41). Soit Xi,..., X, un échantillon iid provenant d’une distribution
N(u,1). On va tester I'hypothése nulle Hy : u = 0 vs. 'hypotheése alternative Hy : u # 0 en
utilisant la statistique de test

_ 1 &
To(X1,. ., Xn) = X, = “ZQX
1=

et la fonction de test

1, si|Th(X1,...,X5)| > @,
LX) = )
0, sinon,
ou @ > 0.
(i) Trouver la probabilité de commettre une erreur de type I.
(ii) Trouver la probabilité de commettre une erreur de type II.

(ili) Comment se comportent ces deux probabilités lorsqu’on augmente la valeur de Q ?
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(iv) Trouver la plus petite valeur de @ pour laquelle le seuil de signification du test est
a €10, 1[. Quelle est cette valeur lorsque o« = 0.05 et n = 107 Trouver le supremum de
la probabilité de commettre une erreur de type Il pour cette valeur de Q.

Solution 62.

(i) En utilisant la proposition 2.7 (p. 51), on trouve que sous Hj la statistique de test
T, =T, (X1,...,X,) suit une loi N(0,1/n). Ainsi, \/nT, ~ N(0,1) et la probabilité de
commettre une erreur de type I est

Po(6 =1) =Po(|Th| = Q) =Po(T, < Q) + Po(T5, > Q)

ou PPy est la probabilité sous Hy et @ est la fonction de répartition de N(0,1), et on a
utilisé ®(—z) = 1 — ®(z). Le graphique 1 donne cette probabilité en fonction de @ pour
n = 10.

Probabilite de commettre une erreur de type |

1 1.5 2
Q

FIGURE 1 — La probabilité de commettre une erreur de type I en fonction de ) pour n = 10.

(ii) En utilisant la méme proposition 2.7, on trouve que sous H; la statistique de test T),
suit la loi N(p,1/n), ou u # 0. Il s’en suit que /n(T,, — ) ~ N(0,1) et la probabilité
de commettre une erreur de type II est

g(pn) =Pu(0=0) =P, (T, < Q) =P, (-Q < T, < Q)
=Pu(vn(=Q — 1) < V(T — p) < Vn(Q — 1))
= 0(Vn(Q — p) — 2(Vn(-Q — 1))

avec p # 0.

(iii) On remarque que ® est continue, strictement croissante et tend vers 0 lorsque z — —o0,
vers 1 lorsque z — o0.
On en déduit que, en fonction de @, la probabilité de commettre une erreur de type I est
une fonction strictement décroissante tandis que la probabilité de commettre une erreur
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de type II est une fonction strictement croissante. Cela veut dire qu’en réduisant ’erreur
de type I, on va forcément augmenter l'erreur de type II. Par ailleurs ces probabilités
convergent vers 0 et 1 lorsque @ — oc.

(iv) Comme la probabilité de commettre une erreur de type I est une fonction continue et
strictement décroissante, la valeur de ) demandée est la solution de 1’équation

a=Py(0=1)=20(—/nQ).
La solution est Q = —ﬁ@‘l(%) = —ﬁza/z = %2’17&/27 ot z5 = ®71(B) est le
B-quantile de N(0,1). Donc, pour a = 0.05 et n = 10, on trouve

1
Q = —=20.975 ~ 0.62.

V10

Cela veut dire que 'on rejette Hy au niveau 0.05 si |T'| > 0.62.
Le dérivée de g(p) (par rapport a p) est

g9' (1) = =vn®'(Vn(Q—p)) +v/ne'(vVn(-Q—p)) = —vVno(Vn(Q—pn)+vnd(vn(-Q—p)),

ou ¢ est la fonction de densité de N (0, 1). En mettant la dérivée egale a zero, on trouve
(Vn(Q — p) = o(vn(-Q — )
1 n 2\
Lo (2@ ) -
= (Q-n?=(-Q-p?

< u=0.

—

e (hca- )

Il est aisé de voir que ceci correspond & un maximum. Ainsi, sup,.og(n) = g(0) =
O(/nQ) — 2(—/nQ) =1—-28(—/nQ) =1 —a = 0.95. La fonction g(u) avec @ = 0.62
et n = 10 est illustrée dans le figure 2.

Probabilite de commettre une erreur de type I, Q = 0.62
1 : . .

0.8

0.6

0)

&

S

o 04¢f

0.2

o

FIGURE 2 — La probabilité de commettre une erreur de type Il en fonction de u avec @@ = 0.62.
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Exercice 63 (exercice 45). Soient Xi,..., X, N (u,0?) avec o2 > 0 connue. Trouver le
test le plus puissant pour tester Hg : = g vs. Hy : p = p1 avec pug < p1 & un seuil de

signification a € (0, 1).

Solution 63. La loi gaussienne avec une variance connue fait partie d’une famille exponen-
tielle & 1-parametre avec n(u) = p/o? et T(x) = . Puisque 7 est croissante, on peut utiliser
lexemple 4.14 (p. 108) pour déduire que la fonction de test pour le test le plus puissant est

0= 1{Tn > Q1—a},

avec T, = y i X; et qi—q le (1 — )-quantile de 7, sous Hy. Lorsque p = pip, nous avons que
T ~ N (npo,no?), ce qui implique
Tn — No

Vno?

Puisque 7, est une variable aléatoire continue, nous pouvons calculer ¢;_, a partir de

Z = ~ N(0,1).

l-a= P,u,o (Tn < q1—a)

_p <Tn—7w0 <Q1a—nuo)
Ho vno?  vno?

Ql—a — MO Ql—a — N0
=P /< — """ | =0 | ——M—— | .
Ho <  Vno? ) < no? >

Q1o = Vno?® (1 - a) + npo = Vno?z1_o + npo,

Nous obtenons alors

ol z1_gq est le (1 — a)-quantile d’une loi N(0,1). La fonction de test est donc donnée par

Tn — N X — o
o=1{m>q_o}l=1{ ———>21_o, =1 > 21 -
() =1 {0 s =1

Exercice 64 (exercice 46). Pour un échantillon Xi,..., X, b Bernoulli(p), on veut tester
Hy: p=049 vs H;: p=0.51.

Déterminez approximativement la taille de I’échantillon pour laquelle la probabilité de com-
mettre une erreur de type I et la probabilité de commettre une erreur de type Il sont approxi-
mativement égales & 0.01. Utilisez une fonction de test qui rejette Hy si >, X; est grande.
Indice : Utilisez le théoréme centrale limite pour approximer la distribution de n~" Yo X
par une loi normale. Vous avez aussi besoin du fait que zgg9 =~ 2.33, ot zp.99 est le 0.99-
quantile de la loi N(0,1).

Solution 64. Nous utilisons la statistique de test 7, = > " | X; ~ Bin(n,p). Nous allons
utiliser ’approximation normale de la loi binomiale, i.e. que nous approximons la distribution
de Z = —2="2_ par une loi N(0,1). Nous voulons n et @ tel que

v/ np(1-p)

IP)130(7—n > Q) =«
Py (7 >Q)=1—q,
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ot @ = 0.01. Les deux dernieres équations sont équivalentes a
—n-04
P (Z > QnOQ) =0.01
n-0.49-0.51

P (Z > Q—n()51> =0.99,
vn-0.51-0.49

i.e. que nous devons résoudre

_ .04
M =233
n-0.49 - 0.51
—n-051
Q-n-051 _ 544

vn-0.51-0.49
ce qui nous donne n = 13567 et Q) = 6783.5.

iid.

Exercice 65 (exercice 47). Soient Xi,...,X,, '~ Unif(0,0) et considérez Hy : 0 = 6y et

Hy : 0 =0, avec 61 < 6.

(i) Trouvez le test le plus puissant de Hy vs. Hj a un seuil de signification o = (61/6p)".

Considérez le comportement de ce seuil, comme fonction

de 0y, 0, et n. Quelle est la

puissance de ce test 7 Est-ce qu’on peut définir un test optimal de type Neyman—Pearson

pour d’autres valeurs de o ?

(ii) Considérez un test (pas nécessairement optimal) de seuil de signification o < (61/6p)"
qui rejette Ho quand X(,,) < k. Trouvez la valeur appropriée de k. Quelle est la puissance

de ce test ?

Solution 65.

(i) La vraisemblance est

La(0: X1, %) = [[ %1{0 <X, <6} = 9%1{)((”) < 0.
=1

Grace au lemme de Neyman-Pearson (lemme 4.11, p. 106), nous savons que la statistique
de test optimale pour un seuil « est

n )" x, <o
An(X) = Ln(O1) <0°> 1{X(,) <61} = (91) (m) =71
01 0 X(n) > 04,

lorsqu’il existe une valeur Q > 0 satisfaisant Py, (A, > Q) = . Lorsque X(,,) < 1,
Ap(X) = (%)n, sinon A, (X) = 0. Ainsi, pour chaque @ € ]0,(6y/601)"] (par exemple
@ = 1) nous avons A, > @ si et seulement si X(n) < #1. Rejeter Hy lorsque A,, > Q

est donc équivalent a la rejeter lorsque X,y < 61, et la fonction de test devient donc
6 = 1{X(,) < 61}. La probabilité de commettre une erreur de type I est alors
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C’est exactement le seuil demandé, ainsi nous avons bien défini un test le plus puissant
au seuil a = (01/6p)". Ce seuil est croissant en tant que fonction de 6, et décroissant en
tant que fonction de 0y et de n. La puissance est Py, (0 = 1) = Py, (X(,y < 1) = 1. De
plus, il n’est pas possible d’utiliser le lemme de Neyman—Pearson afin de créer des tests
PP pour d’autres valeurs de a.

(ii) Nous cherchons la valeur de k telle que
k n
a =Py (X <k) = <<90> ’

ce qui donne k = Opalt/™ < 0.
La puissance de ce test est
1/n 0o "
Pgl(X(n) < o ) =a| — < 1.
01
Il est possible de montrer que ce test est en fait un test PP pour a < (61/60)".

Remarque : il est naturel de baser le test sur X(,), puisque c’est une statistique ex-
haustive pour 6.

Exercice 66 (exercice 49). Un laboratoire de traitement d’images a développé une nouvelle
méthode pour scanner le cerveau. Le laboratoire prétend qu’ils sont capables de scanner le
cerveau en moins de 20 minutes. Voici un échantillon de temps de 12 scans de cerveau :

X = {21,18,19, 16,18, 24,22, 19, 24, 26, 18, 21}

(i) Supposons que la durée de scan suit N (u, 3%). Testez si la durée moyenne de scan est
moins de 20 minutes, i.e., testez Hy : p < po vs Hy : p > pg avec o = 20 a un seuil

de signification o = 0.05.
(ii) Pourriez-vous faire la méme analyse sachant que la variance de la loi normale est incon-

nue ? Indice : Utilisez 6 = 1 (M > tn,1717a> comme fonction de test. Icit,—1,1—a

est le 1 — a quantile de la loi Student avec n — 1 degrés de liberté.

Solution 66.

(i) En utilisant le théoreme 4.16 (p. 112), nous rejetons Hy lorsque 7 = ), X; est grand, i.e.
lorsque 7 > ¢1—q, OU q1—q est le (1—a)-quantile de la distribution de 7 avec p = pg = 20.
En utilisant le méme raisonnement que dans I'exercice 1, on arrive a la fonction de test

X—M0>Z
o/yn =S

La fonction précédente évaluée aux valeurs données dans I’énoncé nous donne

T

§ = 1{0.577 > 1.645} = 0.

Il n’y a donc pas d’évidence, a un seuil de signification de 5%, nous permettant de rejeter
Paffirmation de la compagnie.
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(ii) Pour n =12 et @ = 0.05, tp—1,1—o = 1.796. Nous rejetons donc si
o X — po
S/v/n

o 52 =" | (X; — X)?/(n — 1). Dans notre cas, la valeur de 7 est

> 1.796,

20.5—20
T=—35— = 0.572,
V12
nous ne pouvons donc pas rejeter Hy.
Exercice 67 (exercice 50). Soient Y1, ...,Y, des variables aleatoires independantes et iden-

tiquement distribues selon une loi normale N(p,42). On veut montrer que u est plus grand
que o = 10. Par conséquent, on effectue un test au niveau o = 5% de I’hypothese nulle
Hy : p <10.

(i) Calculez la puissance du test pour des vraies valeurs de p égales a 13 et 11.

(ii) Sila vraie valeur de p est égale a 13, quelle chance a-t-on de la détecter ?

(iii) Pour augmenter la chance de détection, déterminez le nombre d’observations nécessaires
pour obtenir une puissance de 90% dans le cas p = 13.

Solution 67.

(i) En utilisant le méme test que dans I'exercice précédent, on trouve que la puissance vaut :

B Y — o o (Y- [ — i
00 =8 (o7 2 i) =B (G = o+ 57
=1-9 <Zo.95 + /;0/;5) s > Ho-

Ce qui nous donne les valeurs suivantes :

p| 13 11
B(p) | 0.44 0.12
Mo —

(ii) On cherche n tel que 1 — @(zo_% + ) = 0.9; c’est-a-dire :

I
o/

16 2
n = g 20.95 — 20.10

Dans notre cas, n = 15.22. Il faut donc 16 observations.

Exercice 68 (exercice 51, test apparié). Une compagnie pharmaceutique veut vérifier si son
nouveau produit amaigrissant ABALGRA est efficace. Pour ce faire, le poids (en kilo) de 10
hommes choisis de facon aléatoire a été recueilli juste avant la premiere prise du médicament
ainsi qu’a la fin du traitement, 7 semaines plus tard. Soit X; le poids du ¢® homme avant le
traitement et soit Y; son poids a la fin du traitement. On peut donc supposer que X; sont
iid, puisque les différentes personnes ont été choisies au hasard. De méme pour Y;, car chaque
personne a regu le méme traitement. Soient 1 = EX; et pus = EY;.

On s’intéresse donc aux différences d; = Y; — X;. Celles-ci sont indépendantes et on suppose
qu’elles suivent une loi normale N (ug—p1, 5). Tester & I'aide des données du tableau ci-dessous
si le médicament semble entrainer une perte de poids au seuil a = 0.05.
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i 1 2 3 4 5 6 7 8 9 10
X; | 955 | 75 | 638|547 627 | 71 | 683 | 56 | 744 | 65
Y; | 52.8 | 73.7 | 62.7 | 35 | 59.3 | 70.2 | 67.1 | 55.4 | 71.9 | 65.2

Remarque. Puisque X; et Y7 proviennent de la méme personne, il est irréaliste de les
supposer indépendantes. Dans ce contexte, on parle d’un test apparié (angl. < paired test >).
Bonus. Expliquer le nom ABALGRA.

Solution 68. Nous voulons tester Hy : po — p1 > 0 contre Hy : pe — p1 < 0. En po-
sant p = po — p1, nous obtenons un test unilatéral classique avec pg = 0. Nous savons
donc par le théoreme 10 (p. 96) que le test uniformément le plus puissant est de la forme
{7 (d1,...,dn) < ga}, ot 7 (d1,...,dy) =D di et

o= By (1 < ga) = P <Tn/n — [0 qa/n — Mo)

NN

Le terme de gauche de la deuxiéme égalité suit une loi N'(0,1) sous Hy. Ainsi

Ga/M — po

ofyn

Nous obtenons finalement

”%Wh~w%><%}:1{fﬂgé<%}'

Dans notre cas, d, = —1.31, 02 =5, n = 10, a = 0.05 et 2905 = —1.645, ce qui donne la
fonction de test

~1.31
1{E;<<—LM5}—]{—L&%<—L&%}—1

/5/10

On rejette donc 'hypothese nulle.

Exercice 69 (exercice 52, test de variance pour la loi gaussienne).

(i) Soit Xj,..., X, un échantillon iid tiré d’une distribution normale A'(u,o?), ou les pa-
rametres 4 et o sont inconnus. Montrer que la fonction de test du test du rapport de
vraisemblance pour les hypotheses Hy : 02 = 03 et Hy : 02 # 0} & un seuil a est de la
forme L{W > c1} + L{W < co}, ot W = (1/03) 31 (X; — X)? et ol ¢1 et c2 sont tels
que c; et = ¢y "e®.

Indice : écrire le rapport de vraisemblance comme une fonction de W et étudier la forme
de cette fonction.

(ii) En pratique, on choisit ¢; et ¢z tel que Pr, (W > ¢1) = Py, (W < ¢2) = /2. (Le test
obtenu n’est donc pas un test du rapport de vraisemblance.) Trouver les valeurs de ¢;
et ca lorsque a = 0.05, et effectuer ce test pour 0'(2) = 4 sur les données suivantes :

0.449, —3.421, —2.841, 0.829, —0.941, 1.789, 0.889, 1.109, 0.969, 1.169

(Noter que X = 0.)
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Solution 69.
(i) Les hypotheses du test sont Hg : (u,02) € Og vs. Hy : (p,0?) € O1, ott ©Og = {(11,0?) :
peR, 0?2 =03} et O = {(,0%) : p € R,0? > 0,0% # 3 }. Nous obtenons donc que
sup  Ly(p,02) = Ly (fin, 02),
(/”‘30-2)661

ot (fin,02) = (Xp,n 130 (Xi—X1)?) est Pestimateur du maximum de vraisemblance
de (u,0?) et

sup Ln(:uv 02) = Ln(ﬁnv 08)7
(/"02)660

ol fi, = X, est estimateur du maximum de vraisemblance de p lorsque la variance est
connue. Le rapport de vraisemblance est

oA n/2 n -
(X, oy X) = LnlBnsT) ( noy ) / exp(Zizl(Xi—XnV _n)
! o L(ﬁn708> Z?:l(Xi_YnP 20(2) 2

- () e () -

on W= (1/a3) 3" 1(X; — X,,)? ~ x2_, sous Hp. Nous avons donc

A(X1y e X)) > Qo (%)nW—"eW SQew W s Q)

ot Q' est tel que Py, (W"e" > Q') = a. Posons f(w) = w™"e", et analysons cette
fonction. Nous avons

<0 O<w<n

fl(w) =w™ e (w—n) =0 w=n
>0 w>n
Nous obtenons donc que Ay (Xi,...,X,) > Q < W > ¢ ou W < ¢g, ol ¢ et ¢g sont

telles que f(c1) = f(c2) et telles que Pr, (W > ¢1) +Pr, (W < ¢2) = « (voir graphique).
Ceci nous donne un systeme a deux équations deux inconnus compliqué a résoudre.

(ii) En supposant que c; et co sont telles que
Pu,(W > 1) = /2 et Py, (W < ¢2) = /2,

nous obtenons que ¢; = X?L—l,l—a/2 et co = Xi_lﬂ/? puisque W ~ X%A sous Hy.
Lorsque @ = 0.05, nous obtenons ¢; = 19 et ¢co = 2.7. Les données nous donnent
W = 7.27. Nous ne rejetons pas ’hypothese nulle puisque §(X71, ..., X19) = 1{7.27 >
19} 4+ 1{7.27 < 2.7} = 0.

Exercice 70. La brasserie québécoise Unibroue produit des bieres mondialement reconnues 2.

Elle souhaite vérifier si les bouteilles de biere qu’elle produit contiennent bien 341 ml, comme
indiqué a I'étiquette. En effet, si la quantité était inférieure a 341 ml, la brasserie risquerait

2. http ://www.unibroue.com/fr/unibroue/medals
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f(w)

C2 C1

un mécontentement de la part de sa fidele clientele, ainsi que des problemes juridiques. En
revanche, une quantité supérieure a 341 entrainerait des pertes financieres. Afin d’effectuer
cette vérification, la quantité de biere dans n = 100 bouteilles a été mesurée, et les valeurs
Z1,...,Ty ont été observées. On suppose que les observations x; sont indépendantes et tirées
d’une loi normale A (y, 0%) dont les deux parameétres sont inconnus. Les observations obtenues
sont de moyenne Z = 337 et de variance échantillonnale S? = 40. Tester & un niveau o = 0.05
si les bouteilles produites contiennent en moyenne 341 ml.

Indice : consulter 'exemple 4.22 (p. 119).

Est-ce que la conclusion changerait si n était égal a 107

Solution 70. Nous voulons faire le test bilatéral Hy : u = 341 contre Hy : u # 341. Puisque
les données sont tirées d’une loi normale, il suffit d’appliquer le résultat trouvé a l’exemple
4.22. La fonction de test est donc

1337 — 341 B B
5(X1, - ,Xn) =1 { 40/100 > 199,0.975 p = 1 {\/E > 1.984} =1.

Nous rejetons donc ’hypothese nulle au niveau 0.05.
Par contre, si ’échantillon était de taille 10, la fonction de test serait

337 — 341
S(X1yeen, Xp) =1 2 2]
H ) { \/40/10

on ne rejetterait donc pas 'hypothese nulle.

> t9’0.975} =1 {2 > 2.262} =0,

Exercice 71 (exercice 54).

(i) Soit Xi,..., X, un échantillon tiré d’une distribution de Poisson de parametre 6. Nous
voulons tester Hy : 0 = 0y vs. Hy : 0 # 6y. Trouver un test du rapport de vraisemblance
approximatif permettant de tester ces deux hypotheses.

Indice : utiliser le théoreme 4.23.
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(ii) Supposons que nous ayons observé n = 100 observations de moyenne & = 2.1. Tester a
un seuil de signification e = 0.05 les hypotheses Hy et H; définies ci-dessus pour 6§y = 2.

Solution 71.

(i) La fonction de vraisemblance

e—n@ez;lzl Xi
Ln(0) = I X
i=1 <vit
est maximisée en (/9\” = X,,. Le rapport de vraisemblance est donc
X T\ i1 Xi
L,(Xy) v (X i=1
A(Xq, ... X,) = 22 on(fo—Xn) (20 )
( 1, ) n) Ln(eo) (& 00

Par le théoreme 4.23, nous savons que
. X,
2n (g — Xy, +anog9— =2log Ap(X1,..., Xpn) = X7,
0
sous Hy. Un test approximatif peut donc étre défini par la fonction de test
1 2 _ B R Y” 2
{2 logAn(Xh s 7Xn) > Xl,lfa} =142n 90 - Xn + Xn log 970 > Xl,lfa .
(ii) Nous avons
2.1 9
nous ne rejetons donc pas 'hypothese nulle.

Exercice 72 (exercice 55). Soit un échantillon iid X7,..., X, issu d'une loi N(0,0?) ot la
variance o est inconnue. Construire un test de Wald approximatif (de niveau «) afin de tester
I'hypotheése Hy : 02 = o versus Hy : 02 # o2 pour o3 > 0 fixé. Comparer avec le test du
rapport de vraisemblance.

Solution 72. La fonction de densité s’écrit
1 2
f(z;0%) = exp {—2 In(270?) — ;

2}; 0=0%>0, r €R,

o

de sorte que n(#) = —1/(20) et d(#) = 5 In(270). L’estimateur du maximum de vraisemblance
est 02 =0, =n"t> " | X2 Le calcul

/ _i, " __i_ / _i, 1" __L

implique que

O B) — B
7' (0n)

)
)

>

7 - n) _ g2 )o.
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Afin de tester I'hypothese nulle Hy : 02 = 03, M. Wald vérifiera si

o~ n O’2 2
Q<Jn(0n—90)2:2< —33)

D’aprés le théoréme 4.26, la distribution approximative du membre & droite est x7 sous Ho.
Ainsi (voir la remarque 4.27), le test de Wald approximatif rejette Hy si et seulement si

Remarque. On connait la loi exacte de jn(é\n —00)? sous Hy. En effet, no2/og ~ x2. A partir
de la on peut trouver le test exacte, mais il n’aura pas une forme explicite ; cela ressemble a
ce qui se passe dans ’exercice 4 de la série 10.

Rapport de vraisemblance. Puisque la moyenne p = 0 est connue, I'estimateur du maxi-
mum de vraisemblance est différent qu’a ’exercice 1 de cette série et il faut refaire le calcul :

= () o (B

2mo? 202
n noX2
l(0?) = ) log 2m0? — 212_012 !
no Y X2 _ 1 &
(0?) 552 12;4 : = n = EZX?
i=1
mo~2y N 27'121 XzQ Ny
En(o'n)_@_ 186 —_§O'n<0

Quand Hj est vraie 2log A, N X3 (théoreme 4.23).
Le test approximatif est donc (voir la remarque 4.24)

-~2 ~2

In On 2

n |:0'2 — log? — 1:| > Xl,l—oc‘
0 0

En faisant I’approximation de Taylor logz ~ log1 + (z — 1) — (2 — 1)2/2 pour z =~ 1 on voit
que les deux tests sont proches.

Exercice 73 (exercice 56). Soit un échantillon iid Xi,...,X,, issu d’une loi Bernoulli de
parametre p inconnu. Construire un test de Wald approximatif (de niveau «/) afin de tester
I'hypothese Hy : p = po versus Hy : p # po pour pg €]0, 1] fixé. Comparer avec le test de
rapport du vraisemblance.
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Solution 73. La fonction de masse s’écrit

f(z;p) = exp{zlnp+ (1 —z)In(l - p)} = exp{z[lnp —In(1 — p)] + In(1 — p)}, =€ {0,1},

de sorte que n(p) = Inp — In(1 — p) et d(p) = —In(1 — p). L’estimateur du maximum de
vraisemblance est p, =n"1Y." | X; = X,, et nX,, ~ Binom(n, p). Calculons
1 2 — 1 1 1
/ i U U
P)= ——= P)=—%—3 dp=—3 d(p) =13

") p(1—p) ) p*(1—p)? =1 ) (1-p)?

d’ou R R R R
7 = nd”(Gn)n'@n) —d'(0n)n" (6n) _ n
" ' (0,,) Pn(1 = D)

Le test de Wald rejette I’hypothese Hy : p = pg si et seulement si

Q< )(ﬁn — po)? N X2 (sous Hp, théoreme 4.26).

ﬁn(l - ﬁn
Le test de Wald approximatif est donc (remarque 4.27)

(ﬁn - p0)2 2
N————=~ > Xl i-a-
pn(l _pn) Ll-e

Le test du rapport de vraisemblance rejette si (p,/po)™[(1 — pn)/(1 — po)]"~"P» est grand,
et 2 fois le logarithme de cette quantité converge en distribution vers une variable aléatoire
x? quand Hy est vraie (théoréme 4.23).

Le test approximatif est donc (remarque 4.24)

~ ~

2n | pn log& + (1 — pn) log
Po 1

2
> Xi1-a-

Exercice 74 (exercice 53, test non apparié). Soit un échantillon Xi,...,X,, ¥7,...,Y,
de n 4+ m variables aléatoires indépendantes, ot X; i N(p1,0%) et Y; i N (pg,0?), ot 02 est
inconnue (mais la méme pour les X et les Y'). Le but de cet exercice est de trouver le test du
rapport de vraisemblance permettant de tester Hy : u1 = pg contre Hy : 41 # po.

(i) Définir la fonction de vraisemblance du parametre = (u1, 2, 02).

2

(ii) En remarquant que ©p = {(y,p,02) : —00 < pu < 00,0 < 02 < oo} et que O =

{(p1, po, 02) + —00 < 1 # po < 00,0 < 02 < oo}, montrer que

1 (m+n)/2
e
sup L(0) = <2) ,

66@0 271—6_@0

ot 3, = b (ST (X = )2 + 7, (¥ — )2 avee i = ok (00 X 4+ 5072, Y5 ).

Montrer aussi que
1 (m+n)/2
e
sup L(0) = ( ) ,

[ASCH 276(291
ot 63, = st (LI (X = X2+ (Y - V)2).
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(i) En utilisant le fait que Y0 (X; — )2 = Y0, (X — X)2 + 200 of que Y7, ()

1 (ntm)?
)2 = S (Y - Y)?+ %, montrer que

)

2 > (ntm)/2

AMXy,.. o, XY, Y= (14—
(X1, X, Y, V) <+m+n_2

t— \ e (X -Y)
Vil = 1)8% + (m = 1)83]
avee 8% = by Ty (Xi — X)? et 8 = o1y S (¥ - V)2

— m-—1

ou

(iv) En utilisant le fait que le test de niveau « dont la fonction de test est donnée par
H{A(X1,..., X0, Y1,..., YY) > Q} est le méme que celui dont la fonction de test est
1{[t| > Q'} ot Q" est tel que supyeg, Po(|t|] > Q') = «, énoncer le test du rapport de
vraisemblance, i.e. trouver la loi de t sous Hy et par le fait méme la valeur de Q’.

Indice : si A~ X?L et B ~ X% sont indépendantes, alors A + B ~ X(2z+b’

Solution 74.

(i) La fonction de vraisemblance est

n

m
L(M17/~L27U2) = H Xisp,0 H YJ7H2’

=1

1 (n+m)/2 1 n 2 m
= <2m2> exp | =5z [D_(Xi—u)*+ ) (¥ — pa)’
=1

1=1

(ii) Lorsque 6 € ©g, nous sommes dans la situation bien connue d’un échantillon iid, de
taille n +m, tiré d'une N (u, 0?). Nous avons donc que le supremum de L(6) est atteint
en

~ nX +mY nX+mY 1 & N U
0= (ﬂauaaéo)_ ZX_AL)Q"FZ

n+m  n+m ‘n+m P st
il est donc égal a
1 (n+m)/ 1 n m
L1, 11,58,) = 557 exp S D (X0 + > (Y - )
g, 2090 — —
K3 J]=
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Lorsque 6 € O1, nous devons maximiser la fonction de vraisemblance trouvée en (i)
par rapport & (1, g, 02). En dérivant la fonction de log-vraisemblance par rapport &
chacun des parametres et en posant les 3 expressions obtenues égales a 0, nous obtenons
que le supremum de L(0) est atteint en

1

9:(:3’17/3278%1): Y’?’n—i—m

il est donc égal a

(n+m)/2 m
~ o~ o~ 1 — —
L(fix, iz, 55,) = ( ) exp | — o5 D Xi-X)P+> (v -Y)?

271'&%1
1 (/2 n-+m
“\ 952 eXp (‘ )
2%091 2
-1 (n+m)/2
B e
N <27T8%1 ) '

(La matrice hessienne évaluée en (ji1, fi2, 8(291) est diagonale et définie négative.)

(iii) Remarquons tout d’abord qu’utilisant les deux identités fournies dans la question, nous
obtenons que 8(290 peut s’écrire de la facon suivante :

9 o mn(X — 7)2

760 = 70 (m +n)?

Le rapport de vraisemblance est donc

~~ o~ o~ ~ (n+m)/2
L(fi1, 1o, 52 G2
A(Xl,u-,Xn,Yh---,Ym):M: ( @0)

/\/\/\2

L(:u'au7o'®0) 8é1

. (n+m)/2

2

(1 TAngn(X Y) — 1+ S)(n+m)/2
05, (m+mn)?
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ou

mn(X —Y)?

S = =3 /. \2
05, (m+mn)

B mn(X —Y)?
(m+n) [0 (X = X)? + L, (% - V)
mn(X—Y)?
(m+n)

g [0 (X = X2+ S (Y - V)

2
ey (X=Y)
oz [ (X X4 2, (4 Y )

n-+m—2
2
Vi (XY)
Wl D)S% (m-1)s3 ]
B n+m-—2 '

(iv) Nous devons trouver la distribution de ¢ sous Hy, c’est-a-dire lorsque p1 = po = p. Pour
ce faire, nous allons réécrire t de la facon suivante :

L =T Z

t: =

\/Tl+7}fl—2 |:(n 1) + (m 1)82] \/n+%72’

ol 02 est la variance inconnue de notre échantillon.

Analysons premiérement Z;. Nous savons que sous Hop, X ~ N(u,0%/n) et Y ~
N (i, 0% /m), puisque ces deux variables aléatoires sont indépendantes, X —Y ~ N (0, o%(n+
m)/nm). Ainsi Z; ~ N(0,1).

Analysons maintenant le dénominateur. Nous savons par la proposition 2.7 que (n —
1)S% /0% ~ x2_, et que (m — 1)S%/0? ~ Xm . En utilisant l'indice fourni dans la
question, nous obtenons que Zy = (n —1)S% /o + (m — 1)S2 /o? ~ X721+m—27 puisque
les deux variables aléatoires sont independantes. La proposition 2.7 nous dit également
que Z; et Zs sont indépendantes, et d’apres l'exercice 6 de la série 2, t ~ t,1pm—2. Le
test du rapport de vraisemblance est donc défini par la fonction de test suivante :

(5(X1, e ,Xn,Yh e 7Ym) - 1{’t’ > tn+m,2’17a/2}.

Exercice 75 (*exercice 57). Soient Xi,..., X n g f(z;0). Supposons que l'on veut tester

: 0 =0y versus H; : 0 # 0y en utilisant la fonctlon de test d,, de la forme
0a(T(Xy,..., X)) = H{T(Xq,...,Xn) > qi—a} ou 0o (T(X1,..., X)) = H{T(X1,..., Xn) < Ga}s

ol g, est le a-quantile de Gy, la fonction de distribution de T'(X1, ..., X,) quand 6 = 6.
Supposons que G est une fonction continue. Montrer que sous Hy, la valeur-p suit la distri-
bution uniforme sur [0, 1].

Indice : utiliser le lemme 4.30.
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Solution 75. D’apres le lemme 4.30, il suffit de montrer que Go(T'(X1,...,X,)) ~ UJ[0,1]
sous Hy. Or, sous Hy, Gy est la fonction de distribution de T'(X1, ..., X,,), supposée continue.

Lorsque Z est une variable aléatoire avec fonction de distribution continue G (cf. Pexercice
2, série 2)

P(G(Z)>u)=P(Z>G ' (w)=1-GG (W) =1-u,  ue]0,1],

ott G~Y(u) = inf{t : G(t) > u} et les deux derniéres égalités découlent de la continuité de G.
Ainsi Go(T'(X1,...,Xp)) ~U0,1] et 1 — Go(T(X1,..., X)) ~ UJ[0,1] si Hy est vraie.

Exercice 76 (exercice 60, intervalle bilatéral optimal). Afin de construire un intervalle de
confiance bilatéral pour la moyenne d’une distribution normale (dont la variance est connue),
nous avons choisi 2,/ €t 2;_,/2 comme bornes de I'intervalle (cf. exemple 5.3). L’on peut se
demander pourquoi ne pas choisir par exemple z, /3 et 21 _4/3.
Il est vrai qu’on aime les intervalles plus <« naturels » ou symétriques, mais la raison de ce
choix est la suivante :
(i) Soient Z ~ N(0,1) et a €]0,1[. Montrer que U'intervalle I = [L, U] ayant la plus petite
longueur et tel que P(I 3 Z) > 1 — « est donné par L = Zas2 €6 U = 21_q2.
(ii) Soient Xi,...,Xp N (p,0?) ol la variance o2 est connue. Trouver Uintervalle I,, =
[Ay, B,] ayant la plus petite longueur et tel que P(I, > u) > 1 — a.

(iii) *Peut-on généraliser ce résultat ?

Solution 76. (i) Il faut résoudre le probleme suivant :
minU — L t.q. OU)—-P(L)>1—« (U, L e R).

Puisque ® est une fonction croissante, la contrainte peut s’écrire U > ®~1(1—a+®(L)).
Pour un L donné, il faut choisir le U le plus petit qui satisfait la contrainte. Ainsi, notre
probleme se réduit a trouver

ming(L) =® '(1-a+®))—-L, LeR

Notons cependant que ®(L) < ®(U) — 1+ a < a et le domaine de g est | — oo, @71 (a)].
De plus, g(L) — oo lorsque L — —oco ou lorsque L — ® (), et ¢ > 0. Le minimum
de g sera donc atteint a un point intérieur du domaine de g. Celle-ci est dérivable
par le théoréeme de la fonction inverse (car ® est strictement croissante et contintiment
dérivable).
La dérivée de g s’annule si et seulement si

o'(L) (L) _ exp(-L?/2)

1= D I(1—a+®l)) @U) exp(—U2/2)

c’est-a-dire lorsque L = £U. Or, ® est croissante et ®(U) — (L) = 1 — a > 0, donc
forcément L < U. On a donc L = —U et par symétrie ®(U) = 1 — ®(L), donc

1—a:q>(U)—c1>(L):1—2<1>(L):><1>(L):%:><1>(U):1—

o] 2
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Le but de la discussion ci-dessus était de montrer qu’il s’agit d’un minimum sans devoir
calculer la dérivée seconde de g . A noter qu’il est facile dans ce cas de montrer que
g"(® Y(/2)) > 0 et donc qu’il s’agit bel et bien d’un minimum.

Remarque. Le choix L = ®~!(a) correspond & U = oc et donne I'intervalle de confiance
unilatéral & gauche. Le choix L = —oo correspond & U = ®~1(1—a) et donne I'intervalle
unilatéral a droite.

(ii) Comme dans I'exemple 5.3, posons Z, = v/n(X,, — p)/o ~ N(0,1) et remarquons que
_ — — n , — n —

Il faut minimiser B,, — A,,, ce qui équivaut & minimiser (v/n/0)(X, —A,) — (v/n/o) (X, —
B,,), mais sous la contrainte que cette probabilité soit au moins 1 — a. Par la partie (i),
la solution est

7(yn - Bn)u 7(Yn - An):| = [Za/2a Zl—a/Q] = [_Zl—a/2v Zl—a/2]'

Ainsi, la solution de notre probléeme est

— o o
[An, Bn] = [Xn - Zl—a/Q%wxn + Zl—a/Q% ;
qui est donc I'intervalle de confiance basé sur X, de seuil (supérieure ou égale a) (1 — )
ayant la plus petite longueur.

(iii) Le méme résultat est valable lorsque Z suit une loi ayant une densité symétrique f, qui
est strictement décroissante sur R,. C’est-a-dire, le résultat est valable si
— pour chaque z € R, f(z) = f(—2z);
— pour chaque 0 < x <y, f(z) > f(y).
Par exemple, ceci est bien le cas si Z ~ tj, pour k > 0. Ainsi, méme si la variance o2 est
inconnue, en la remplacant par Iestimateur S2, on obtiendra l'intervalle de confiance
ayant la plus petite longueur.
Remarque. Sous ces conditions, on peut montrer que U'intervalle [L, U] est I’ensemble
(mesurable) F' ayant la mesure de Lebesgue la plus petite et tel que P(F'> Z) > 1 — «.
I1 est donc inutile de chercher (par exemple) une union d’intervalles.

Exercice 77 (exercice 61, différence de moyennes).

(i) Soient X7i,...,X, Y N(ux,0%)etYy,..., Y, Y N(uy,o?) deux échantillons indépendants,

oll jux, fy et o2 sont inconnus. Trouver un intervalle de confiance bilatéral pour le pa-
rametre 0 = ux — py avec un seuil de confiance 1 — a.

(ii) On veut comparer la durée d’efficacité de deux nouveaux médicaments, M; et Ma, contre
la lombalgie®. On a donc administré chaque médicament & un groupe de 15 patients, et
ensuite mesuré (en heures) la période sans douleur apres la prise du médicament. On
obtient la moyenne du temps d’efficacité X; = 7.5 pour M; et Xy = 6.3 pour M,. On

3. C’est ce qu’a eu Pierre Brochant dans le film le diner des cons. Il n’est pas le seul : on estime qu’entre
40 et 70% de la population en sera touché au cours de la vie.
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a aussi les écart-types estimés S; = 1.1 et Sy = 1.3 pour My et M respectivement. En
supposant que les observations des groupes 1 et 2 sont indépendantes et suivent des lois
N(u1,02) et N(ug,0?) respectivement, donner I'intervalle de confiance & 95% pour la
différence 1 — ps. Que peut-on constater sur 'efficacité relative de My et Mo ?

Solution 77. (i) D’apres 'exercice 74 (avec n = m), la variable aléatoire

Vs K —px-Y+m)  m(X-V-0)

\/m[(”—1)5§(+(n—1)52] \/m \/W

suit une loi tg,—o pour chaque 6 € R. (Parce que Sg( = Sg(f . pour chaque constante
ceR.) Ainsi, T = g(X1,..., X, Y1,...,Y,,0) est un pivot (la continuité par rapport a
0 est évidente). A partir de 14, on n’a qu’a faire les manipulations habituelles :

T =

X-Y -4
1l—a=Py th_Q,a/Q < ﬁ < t2n—2,1—a/2
2 (8% +57)

1 - 1
=Py |tan-2a/2\| (5% +57) S X =V =0 <ty n1oap (5% +5¢)

_ 1 I 1
=Py | X =Y —ton 21 a0 E(Si +53) <0< X —Y —ton_9a/ E(Sﬁ +5%)

1 - 1
=Py | X =Y —ton 21 a0 E(S§<+S§Q/) SO<X =Y+l 21 o E(S§(+S§)

On conclut que [X —Y —toy 01_a/2 %(Sg( +52), X =Y +toy 01-a/2 %(Sgg + 532,)]

est un intervalle de confiance pour 0 = ux — py avec un seuil 1 — a.

Remarque. On peut définir Z; = X; — Y; ~ YN (0,20?) (ce qui par ailleurs aurait été

plus compliqué si m # n, c’est-a-dire si le nombre de X; n’était pas égal au nombre de
Y;) de sorte que

izt _ \/;(Z 2 L

car le nominateur suit une loi N(0,1) et le dénominateur est V/yv/n —1 ou V ~ x2_,,
et les deux sont indépendantes. Ainsi on obtient l'intervalle de confiance

_ _ 1 _ _ 1
X =Y =t 11-a/2 55%, X =Y+t 11-a/21 55% :

Cet intervalle sera probablement plus grand que celui d’avant : puisque S% — 202 et
Sg( + S%, — 202, on s’attend & ce que les deux aient une taille similaire (ils ont en tous
cas la méme espérance et la méme variance). Or pour 3 fixé, la fonction k — tj 5 est
décroissante. Notre deuxieme intervalle aura donc tendance a étre plus grand, puisqu’on

:\H
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utilise ¢,,_1 au lieu de to,,_o. Intuitivement, on a utilisé n données (les différences X; —Y;)
au lieu d’en utiliser 2n.

En revanche, le premier intervalle est moins général que le deuxiéme : ce dernier suppose
uniquement que les différences Z; sont iid, alors que dans le premier cas on a supposé
que toutes les X; sont indépendantes de toutes les Y;, une supposition plus forte. Dans
le cas apparié (exercice 6, série 10), on ne peut utiliser que le deuxieme intervalle !

(ii) En utilisant le résultat de la partie a), on obtient l'intervalle de confiance & 95% :

R — 1 R — 1
X1 — X2 — 2809751 B(S% +53), X1 — X2 + t2s,0.9751/ E(S% +52)| ~[0.30,2.10].

On peut donc conclure que le temps de 'efficacité de M; est meilleur que celui de My
par 18-126 minutes avec un seuil de confiance 95%.

Exercice 78 (*exercice 62). Soient T} ~ ty et soit Z ~ N (0, 1). Montrer que T}, 4 7 lorsque
k — oo.

Indice : s’inspirer des exemples 5.3 et 5.7.

Solution 78. Soient X1,..., X, ud N(u,0?) avec pu € R et 02 > 0 inconnus. Supposons qu’on
aimerait trouver un intervalle de confiance pour p (donc o2 est un parametre de nuisance).
D’apres I'exemple 5.7, on sait que

X, —p
Sn/v/n

n—1

_ 1 & 1 _
— N(0,1), X,= - § 1Xi, S2 = § 1:(Xi - X,
1= 1=

Or ici les X; sont normales ; on connait donc la distribution exacte de T, = /n(X,, —p)/Sy :
d’apres le théoreme 2.9, elle est t,,_1. L’énoncé est donc démontré.

Exercice 79 (exercice 63). En utilisant la méme notation que celle de la proposition 5.8 du
cours, prouver que le tableau suivant contient les intervalles de confiance approximatifs avec
seuil (1 — «) pour 6 :

H Confiance approximative 1 — « H L(Xy,...,X,) ‘ U(Xi,...,Xn) H
Bilatéral 0, — Z1—a 2J~n71/2 0,, + Z1—a anil ?
Unilatéral a gauche 6,, — zl,afn_l ? 400
Unilatéral a droite —00 én + zl_ajn_l 2

Indice : st Zy, A Z, ou Z est une variable aléatoire continue, alors P|Z,, = a] — 0 pour
chaque a € R.

Solution 79. Montrons tout d’abord le résultat dans I'indice.
Soient F), et F' les fonctions de répartition de Z,, et Z respectivement. Pour tout € > 0,

0<P(Z,=0a)<Pla-—e< Z,<a)=F,(a)— F,(a—¢€) = F(a) — F(a —¢),
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lorsque n — oo, puisque F' est continue. Ainsi

limsupP(Z, = a) < F(a) — F(a—¢€) — 0, e—0,

n—00
car F' est continue. Ceci prouve le résultat cherché.
Vérifions le cas bilatéral :
P[0y, — Zl—a/an_l/2 <0<0,+ Z1—a/2jn_1/2]
=P[—21_q/2 < Ta?(0n — 0) < Z1—a/2]
=Plzq/2 < Jal2(0n — 0) < 21—a/2]
=F(21-a/2) = Ful(Zay2) + PIJ3/* (0n — 0) = 24p2),

ou F, est la fonction de répartition de JL2 (0,—0) et ot on a utilisé le fait que Zaj2 = —Z1—a)2-
Par la proposition 5.8 (p. 123), on sait que F,(z) — ®(z) pour chaque z € R, o ®(z) est la
fonction de répartition de N (0, 1). De plus, par la proposition ci-dessus

P20 — 0) = 240] =0, 1 — oo
Donc

]P)[én - Z1fa/2j51/2 <6< én + Zlfa/erjl/Q] - (I)(Zlfa/2) - (I)(Za/Q) =1- a/2 - a/2 =1l-oa

Il s’en suit que [én —21—a/2 jEI/Z, 0,, +21_a/2 jn_l/Q] est un intervalle de confiance approximatif
avec seuil 1 — a.
De la méme facon, on trouve que

P[0, — z1-aJ; 2 < 0] = P[JY2(0, — 0) < z1_0] = Fu(21-a) = ®(21-0) =1 —a
et que

PO < b+ 210y V2 = 1= P[0 > 0 + 210

=1-P[JY%(0, —0) < 24
=1— Fy(za) + P[JY2(0, — 0) = 24]
= 1=P(zq)=1—-a.

Donc, [0— 21 _aJy vz +00] et [—00, 0+ 21 _adn Y 2] sont les intervalles de confiance unilatéraux
approximatifs avec seuil 1 — .

Exercice 80 (*exercice 64, pivot général).

(i) Soient Xi,...,X, id f(x;0) et T,,(Xy,...,X,) une statistique continue. Soit Y,, =

Fr (T,;0), ou Fr, (t;0) = Py[T,, < t] est la fonction de répartition de T,,. Supposons que
Fr, (t;0) est pour chaque ¢ une fonction continue de 6. Montrer que Y,, ~ U(0, 1) et donc
que Y, est un pivot. Comment peut on utiliser ce résultat pour trouver un intervalle de
confiance pour 67?7

(ii) Soit f(z;0) = 6_(x_9)1[9’oo) (x). Utiliser la partie a) et la statistique 7,, = min{ X1, ..., X, }
pour trouver un intervalle de confiance pour # avec un seuil 1 — a.
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Solution 80. (i) Nous avons déja montré que Y,, ~ U (0, 1). Ainsi, pour chaque 6 et chaque
a€]0,1[ on a

1 - a = Pgla/2 < Yy <1 - a/2] = Pgla/2 < Fr, (To;0) <1 - a/2].
Donc, I’ensemble
S={0€0:a/2<Fr,(T,;0) <1—a/2}

est une région de confiance pour 6 avec un seuil 1 —«. Si S est un intervalle, on a trouvé
un intervalle de confiance pour 6. Cela est le cas par exemple quand Fr, (t;6) est une
fonction monotone de # pour chaque t. Si c’est une fonction croissante et 7), est une
variable aléatoire continue, alors

S={0€0:q400) <T, < q1_qp2(0)},

ol gg est le S-quantile de la distribution de T;,.

Si T, = 7, est la statistique exhaustive d’une famille exponentielle & 1-parametre, S est
la région de confiance au seuil (1 — «) obtenue en inversant le test dont la fonction de
test est

5(X17 cee 7X7L> = 1{qa/2 < Tn(Xla s 7XTL) < ql—a/Q}'

(ii) Trouvons la fonction de répartition de 7, = min{Xy,..., X, }. Ceci se fait facilement
en utilisant P(T" > t) = P(X; > t)™ pour chaque t. On peut éviter quelques calculs en

remarquant que X; — 6 i Exp(1) et donc T, — 0 i Exp(n), de sorte que pour t > 6,
1—Frp,(t;0) =Py[T, — 0 >t — 0] = exp{—n(t — 0)}. Ainsi

1—exp{—-n(t—6)} t>46
Fr, (1:0) = {0 ==

est décroissante en 6 (vérifier les deux cas!) et donc I'ensemble S est un intervalle [L, U].
Les bornes sont tels que Fr, (T,; L) =1 —«/2 et Fp, (T,,;U) = /2 ; autrement dit

l—e =D =1 _q/2  1—e U =q/2

La solution est ) .
[L,U] = |T,, + - log(a/2), T, + ﬁlog(l —«/2)

qui est par construction un intervalle de confiance pour 0 avec un seuil 1 — « :
P(L,U]360)=P(a/2<Y,<1—-0a/2)=1—-q.
On remarque que les deux logarithmes sont négatifs ; on sait que 7;, > 0!

. . . iid .
Exercice 81 (exercice 65). Soient Xi,..., X, ~ N(u,0?), ott 02 est connu. Trouver une

expression pour l'intervalle de confiance unilatéral a gauche avec seuil 1 — a pour p.
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Solution 81. Grace a la proposition 5.17, nous savons qu’il faut inverser un test uniformément
le plus puissant pour la paire d’hypotheses

Hy:p<po vs  Hi:p>po.
Le théoreme 4.16 dit que ce test aura la fonction de test
0(X1, - Xnspo) = L(rn (X1, -, Xn) > q1-alpo)),

ot 1, = Y1 X; = nX, est la statistique exhaustive et q1_q (o) est le (1 — a)-quantile
de la distribution de 7, sous Hy, & savoir N(ugn,no?). Il est élémentaire que q_o (o) =
Nty +/N021—q, OU 214 est le (1 — a)-quantile d’une loi N(0,1). La région de confiance pour
1 est la collection de tous les pg pour lequels on ne rejette pas 'hypothese nulle avec les
données X1,...,X,, soit

R(X1,...,Xn) = {po: 7 < q1-a(po)}

0 - \/EO' e

= {:U'O Do = Yn - Zl—ao—/\/ﬁ}

= [Xn — Zla\;ﬁ,Jroo[.
Les conditions sont satisfaites, puisque c’est une famille exponentielle avec n(y) = p/o?
strictement croissante, 7, est une variable aléatoire continue, et sa loi P,[7, < t] = ®((t —
nu)/o+/n) est continue en p.
La borne inférieure est donc construite a partir de I’estimateur de maximum de vraisemblance,
en laissant une marge d’erreur pour compenser le fait que celui-ci est aléatoire. La taille de
cette marge d’erreur dépend de «, o et n comme expliqué a la page 136.

Exercice 82 (exercice 66). Soient Xi,..., X, Y Bern(p). Avec 'aide d’une statistique ex-
haustive 7,(X1, ..., X,,) pour p, trouver une expression pour l'intervalle de confiance unilatéral

a gauche pour p avec seuil approximatif 1 — «, en inversant le test
Ho:p<po vs  Hi:p>po.

Utiliser une fonction de test qui rejette Hy lorsque 7, prend une valeur (strictement) plus
grande qu’une certaine valeur critique. Les bornes de cet intervalle ne seront malheureusement
pas si explicitent qu’a ’exercice précédente.

Indice : suivre la proposition 5.14. Hélas, une des conditions de cette proposition n’est pas
satisfaite (laquelle 7). Ainsi, pour la plupart des valeurs de p, la probabilité de couverture de
I'intervalle sera seulement approximativement 1 — «.

Solution 82. L’intervalle cherché peut étre obtenu en inversant le test
Hoy:p <po Vs Hy :p > po.

Notre test est basé sur 7, = nX,, = Y. | X; ~ Binom(n,p), qui est une statistique exhaustive
pour p. On rejette Hy lorsque 7, > C(po).
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Ainsi, notre intervalle de confiance cherché est détérminé par la région

R(Xl, e ,Xn) - {po :Tn < C(po)}

Par le théoréme 4.16, le test optimal est obtenu quand C(pg) = qi1—a(po), & condition qu’il
existe un qi_qo tel que Py, [m, < g1—o] =1 —a. Or, 7, étant une variable aléatoire discrete, un
tel ¢q1_, existe uniquement pour certaines valeurs de «. En particulier, nous ne pouvons pas
avoir un seuil de test qui sera exactement o pour n’importe quel « (et donc la probabilité que
notre intervalle de confiance contienne p ne sera pas exactement 1 — «).

On choisit donc C(pg) de sorte que le seuil du test soit le plus proche possible de a, sans en
étre plus grand. Ainsi, C'(pp) est détérminé par les deux inégalités suivantes :

Ppo (0 < Clpo)) 2 1 — (6)
Py (T < Clpo) — 1) < 1—a. (7)

L’inégalité (??) dit que le test a un seuil < a. L’inégalité (??) dit que C(py) est le nombre
entier minimal tel que le test a un seuil < a. On note que le (1 — a)-quantile de Binom(n, po)
satisfait ces deux propriétés (voir la définition 6.6). Donc,

t)
p— : . n k nik
Clow) = o1 =) = 1€ R: D (ab0 -y~ 21

Le fait que C(pg) est croissante en py n’est pas évidente de I’équation ci-dessus, mais cela
résulte de la (preuve de la) proposition 5.17. De toute fagon, c’est une fonction en escalier
(continue a gauche) telle que C'(0) =0 et C(1) =n.
La région de confiance qui résulte de 'inversion du test, {pg : 7, < C(pp)}, est un intervalle
de la forme (L, 1] dont la borne inférieure est

L =inf{py: 7 < C(po)} = inf{pp : X,, < n_lFT:“pO(l —a)}.
Malheureusement ces expressions n’ont pas une forme plus explicite, mais il est encore facile
de calculer la borne L avec un ordinateur.
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