
MATH240 – Statistiques Prof. Victor Panaretos

Exercices à faire chez vous

Exercice 1. Considérons une bôıte contenant 6 boules blanches, 3 boules rouges et une boule
bleue. Nous tirons de façon aléatoire une boule de la bôıte. Soit X une variable aléatoire
prenant la valeur 1 si la boule pigée est blanche, 5 si la boule est rouge et 10 si la boule est
bleue.

(a) Trouver la fonction de masse de X.

(b) Trouver la fonction de répartition de X.

(c) Représenter graphiquement la fonction trouvée en (b).

Exercice 2. On tire trois boules (sans remise) au hasard d’une bôıte contenant n1 = 6 boules
rouges et n2 = 4 boules vertes. Soit X la variable aléatoire représentant le nombre de boules
rouges parmi les trois boules pigées. Calculer l’espérance et la variance de X.

Exercice 3. Dénotons respectivement par µ et σ2 > 0, l’espérance et la variance de la variable

aléatoire X. Déterminer E
[
X−µ
σ

]
et E

[(X−µ
σ

)2]
.

Exercice 4. Soient X et Y deux variables aléatoires indépendantes et soient MX ,MY : R →
R leurs fonctions génératrices de moments respectives. Montrer que la fonction génératrice
des moments de la variable aléatoire Z = X + Y est égale à

MZ(t) = MX(t) ·MY (t).

Exercice 5. Soit Y une variable aléatoire dont la fonction de densité est donnée par

g(y) =

{
cy2 si −1 < y < 1
0 sinon.

(a) Déterminer la valeur de la constante c afin que g(y) satisfasse les propriétés d’une fonction
de densité.

(b) Trouver la fonction de répartition de Y .

(c) Trouver P(0 < Y < 1), P(0 < Y ≤ 3) et P(Y = 0). Remarque. On peut répondre à cette
question sans calculer aucune intégrale !

(d) Trouver E[Y ] et Var[Y ].

Exercice 6. Soit X une variable aléatoire dont la fonction de densité est donnée par

f(x) =

{
1
10 exp

(−x
10

)
si 0 < x < ∞

0 sinon.

(a) Trouver la fonction génératrice des moments MX(t) de X.

(b) En utilisant MX(t) ou RX(t) = ln(MX(t)), déterminer la moyenne et la variance de X.

Exercice 7. Montrer que si X =
∑n

i=1 Yi où Yi
iid∼ Bern(p), alors X ∼ Bin(n, p).

Exercice 8. Soit {Yi}i≥1 une collection infinie de variables aléatoires, où Yi
iid∼ Bern(p). Soit

T = min{k ∈ N : Yk = 1} − 1, montrer que T ∼ Geom(p).

Exercice 9. Montrer que si X =
∑r

i=1 Yi où Yi
iid∼ Geom(p), alors X ∼ NegBin(r, p).
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Exercice 10. Soient Xi
iid∼ Poisson(λ). Montrer que Y =

∑n
i=1Xi ∼ Poisson(nλ).

Exercice 11. Soient X∼Poisson(λ) et Y∼Poisson(µ) indépendantes. Montrer que la distri-
bution conditionnelle de X sachant X + Y = k est Bin(k, λ/(λ+ µ)).

Exercice 12. Soient X ∼ Exp(λ) et t ≥ 0. Montrer que P[X ≥ x+ t|X > t] = P[X ≥ x].

Exercice 13. Soient X et Y des variables aléatoires indépendantes qui suivent des distribu-
tions exponentielles d’intensité λ1 et λ2 respectivement. Montrer que Z = min{X,Y } est une
variable aléatoire exponentielle d’intensité λ1 + λ2.
Bonus. Montrer que P(Z = X) = λ1/(λ1 + λ2).

Exercice 14. Montrer que X ∼ χ2
2 si et seulement si X ∼ Exp(1/2).

Exercice 15. Montrer que les distributions suivantes constituent des familles Exponentielles
(peut-être lorsqu’un de leurs paramètres est fixé) :

(i) La distribution de Poisson.

(ii) La distribution géométrique.

(iii) La distribution binomiale négative.

(iv) La distribution exponentielle.

(v) La distribution gamma.

(vi) La distribution khi carré.

Exercice 16. Soit Y ∼ Unif(0, 1) et soit F une fonction de répartition. Montrer que la
fonction de répartition de la variable aléatoire X = F−1(Y ) est F , où F−1(y) = inf{t ∈ R :
F (t) ≥ y}.

Exercice 17. Soit X ∼ N(µ, σ2), montrer que la fonction de densité de Y = eX est donnée
par

fY (y) =
1

yσ
√
2π

exp

(
−(ln y − µ)2

2σ2

)
, 0 < y < ∞.

Exercice 18. Prouver le théorème sur les transformations multidimensionnelles (page 45 des
diapositives du cours) en utilisant la formule de changement de variables dans une intégrale.

Exercice 19. Soient X ∼ N(µ1, σ
2
1) et Y ∼ N(µ2, σ

2
2) indépendantes. Montrer que X +Y ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Exercice 20. Soit Z1 une variable aléatoire normale standard et Z2 une variable aléatoire
χ2
n où n ≥ 1, tels que Z1 et Z2 sont indépendantes. À l’aide du théorème 1 du cours (le

théorème 1.33 à la page 28 des notes du cours), trouver la densité de la variable aléatoire
T , où T = Z1/

√
Z2/n. Indice : définir g(Z1, Z2) = (T, V ) = (T,Z2) pour trouver la densité

conjointe de T et V . La densité de T se trouve en intégrant par rapport à V (penser à la
distribution Gamma).
Remarque. La loi de T s’appelle la loi t de Student avec n degrés de liberté. Elle est très
utilisée en statistique et on verra plus tard dans le cours pourquoi. Dans la plupart des cas,
n est un nombre entier, mais la distribution est définie pour n’importe quel n réel.
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*Exercice 21. Montrer que la distribution exponentielle est l’unique distribution sans mémoire.
Plus précisément, soit X une variable aléatoire telle que P(X > 0) > 0 et

P(X > t+ s|X > t) = P(X > s), ∀t, s ≥ 0.

Montrer qu’il existe un λ > 0 tel que X ∼ Exp(λ).
Indice : Soit G(t) = P(X > t). L’absence de mémoire implique que G(t+ s) = G(t)G(s) pour
t, s ≥ 0 (pourquoi ?). Poser g(t) = − lnG(t) et λ = g(1). Montrer que g(t) = tλ pour chaque
t > 0 rationnel. En déduire (avec justification !) que g(t) = tλ pour chaque t ≥ 0. Quel est
le signe de λ ? Enfin, montrer que λ < ∞ en utilisant le fait que G(0) > 0 et la continuité à
droite de G.

Exercice 22. Rappelons que pour un échantillon x1, . . . , xn la moyenne échantillonnale est
définie par

x̄ =
1

n

n∑
i=1

xi

et la médiane échantillonnale par

M =

x(n+1
2 ), si n est impair,

x(n2 )
+x(n2 +1)
2 , sinon.

Montrer que

(i) la fonction f(γ) =
∑n

i=1(xi − γ)2 atteint son minimum (uniquement) en x̄.

(ii) la fonction g(γ) =
∑n

i=1 |xi − γ| atteint son minimum en M . Attention : g n’est pas
dérivable au point γ si γ = xi pour un i quelconque.

Exercice 23.

(i) Calculez la moyenne x̄ et la médiane M des données suivantes :

9.2 11.5 9.7 11.0 8.5
9.8 10.0 12.1 10.5 10.1

(ii) Refaire votre calcul quand la valeur 12.1 est remplacé par 48.6.

(iii) Comparez les valeurs de x̄ et M dans les parties (i) et (ii). Qu’est-ce que vous notez ?
Expliquez vos observations.

Exercice 24. Soit x1, . . . , xn un échantillon. Est-ce que c’est possible que la moyenne de cet
échantillon est égal la médiane de cet échantillon, mais l’échantillon n’est pas symétrique.
Trouvez un exemple.

Exercice 25 (exercice 17). Montrer qu’une formule équivalente pour la variance empirique
est σ̂2 = 1

n

∑n
i=1 x

2
i − x̄2. Expliquer pourquoi cette formule peut être plus utile.

Exercice 26 (exercice 18). Soit un échantillon x1, . . . , xn. Quels sont la médiane M et les
quartiles Q1 et Q3 quand n = 12, 13, 14 ou 15 ?
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*Bonus (c’est un peu fastidieux) : trouver des formules générales (pour n quelconque) pour
le premier et troisième quartile, Q1 et Q3. Indice : ces formules seront de la forme

? n ≡ 0 mod 4

? n ≡ 1 mod 4

? n ≡ 2 mod 4

? n ≡ 3 mod 4.

Exercice 27 (exercice 19). Les données suivantes représentent les charges maximales (en
tonnes) supportées par les câbles fabriqués par une usine :

10.1 12.2 9.3 12.4 13.7 11.1 13.3
10.8 11.6 10.1 11.2 11.4 11.8 7.1
12.2 12.6 9.2 14.2 10.5

(i) Représenter les données sous la forme d’un histogramme dont la largeur des intervalles
est égale à h = 1 et l’origine est égale à κ = 10. Refaire l’histogramme avec h = 2 et
κ = 11 et comparer les deux figures.

(ii) Quelle est approximativement la valeur de la charge que les trois quarts des câbles
peuvent supporter ?

(iii) Donner le troisième quartile.

(iv) Tracer une bôıte à moustaches. Parmi les données, y a-t-il des valeurs aberrantes ? Dans
ce diagramme, où visualise-t-on la valeur déterminée au point (ii) ?

Exercice 28 (exercices 70–71). (Il serait utile de lire la section 6.5 des notes de cours
avant de commencer cet exercice.)

(i) Soit X ∼ Exp(λ) où λ > 0. Montrer que le α−quantile de X est

qα = F−
X (α) = − log(1− α)/λ,

pour 0 < α < 1.

(ii) Les fonctions quantile déterminent les distributions : soientX et Y des variables aléatoires
quelconques avec des fonctions de répartition FX et FY . Supposons que F

−
X (α) = F−

Y (α)
pour tout α ∈]0, 1[. Montrer que FX = FY .

Exercice 29 (exercice 20). Le tableau suivant contient les résultats des matchs de rugby à
XV des onzième et douzième journées (novembre 2014) du championnat français de rugby de
première (“Top 14”) et deuxième (“Pro D2”) division. L’équipe jouant à domicile est celle
notée à gauche du tiret.
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Top 14 D2

Montpellier – Brive 10–25 Albi – Agen 22–9
Castres – Toulon 22–14 Béziers – Aurillac 14–19
Clermont – Stade Français 51–9 Colomiers – Pau 50–10
Grenoble – Lyon 34–30 Montauban – Tarbes 31–13
Oyonnax – La Rochelle 37–9 Biarritz – Massy 21–3
Racing Métro – Bayonne 27–10 Dax – Narbonne 12–3
Bordeaux Bègles – Toulouse 20–21 Perpignan – Bourgoin 42–0

Carcassonne – Mont-de-Marsan 17–28
Toulon – Clermont 27–19 Biarritz – Agen 42–18
Castres – Racing Métro 9–14 Albi – Carcassonne 34–22
La Rochelle – Bayonne 19–19 Aurillac – Colomiers 20–13
Lyon – Montpellier 23–20 Bourgoin – Montauban 14–20
Oyonnax – Bordeaux Bègles 28–23 Massy – Dax 50–13
Toulouse – Grenoble 22–25 Mont-de-Marsan – Béziers 32–18
Stade Français – Brive 20–17 Narbonne – Tarbes 36–23

Pau – Perpignan 22–19

(i) Nous voulons comparer le comportement des équipes en première et en deuxième divi-
sion. Pour ce faire, calculer pour chacune des divisions quelques statistiques pertinentes
(la moyenne, la médiane, les quartiles et l’écart interquartile) pour la différence de points
entre le club jouant à domicile et le club visiteur et pour le somme des points par match.

(ii) Représenter côte à côte, sous forme de deux bôıtes à moustaches, la somme de points
par match en première et en deuxième divison. Faire de même pour la différence de
points. Quelles conclusions peut-on en tirer ?

Exercice 30 (exercice 21). Soient X1, . . . , Xn
iid∼ Unif(0, θ). Montrer que T (X1, . . . , Xn) =

X(n) est une statistique exhaustive pour θ, et trouver sa distribution d’échantillonage.

Exercice 31 (exercice 22). Soient X1, . . . , Xn
iid∼ Pois(λ). Montrer que T (X1, . . . , Xn) =∑n

i=1Xi est une statistique exhaustive pour λ, et trouver sa distribution d’échantillonage.

Exercice 32 (le théorème 2.9 (p. 54) du livre). Prouver que si X1, . . . , Xn
iid∼ N(µ, σ2), alors

X̄ − µ

S/
√
n

∼ tn−1

où tn−1 représente la distribution de Student avec n− 1 degrés de libérte.

Exercice 33 (Une preuve alternative de la proposition 2.7, p. 51). Soient X1, . . . , Xn
iid∼
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N(µ, σ2). Définir

a1 =
1√
n
(1, 1, . . . , 1)′,

a2 =
1√
2
(1,−1, 0, . . . , 0)′,

a3 =
1√
6
(1, 1,−2, 0, . . . , 0)′,

...

an =
1√

n(n− 1)
(1, 1, . . . , 1,−(n− 1))′.

(i) Définir la n × n matrice A = [a1 : a2 : . . . : an]. Montrer que A est un matrice
orthogonale, c’est-à-dire ATA = AAT = In, où In est la n× n matrice d’identité.

(ii) Définir la transformation Yi = a′i(X −m), i = 1, 2, . . . , n, où X = (X1, X2, . . . , Xn)
′ et

m = (µ, µ, . . . , µ)′. Trouvez la densité conjointe de Y1, Y2, . . . , Yn. Sont-ils indépendants ?
Quelle est la distribution de Yi pour chaque i ?

(iii) Montrer que

Y1 =
√
n(X̄ − µ) &

n∑
i=2

Y 2
i = (n− 1)S2.

Indice : Puisque A est une matrice orthogonale,
∑n

i=1 Y
2
i =

∑n
i=1(Xi − µ)2.

(iv) Utilisez la partie (iii) pour montrer que X̄ et S2 sont indépendants. Montrer aussi que
X̄ ∼ N(µ, σ2/n) et (n− 1)S2/σ2 ∼ χ2

n−1.

Exercice 34. Soient X1, X2, . . . , Xn
iid∼ N(0, 1). Montrer que X2

i /
∑n

j=1X
2
j et

∑n
j=1X

2
j sont

indépendants pour chaque i = 1, 2, . . . , n.

Exercice 35 (exercice 23). Soient X1, . . . , Xn
iid∼ f , où f est de la forme d’une famille expo-

nentielle, exprimée dans la paramétrisation usuelle comme f(x) = exp [η(θ)T (x)− d(θ) + S(x)],
θ ∈ Θ ⊆ R ouvert. Montrer que :

(i) Si η est k-fois continûment dérivable (k ≥ 1) et inversible avec la dérivée jamais nulle,
alors d est aussi k-fois continûment dérivable.

(ii) Si η est deux fois continûment dérivable et inversible avec la dérivée jamais nulle, alors

E[τ(X1, . . . , Xn)] = n
d′(θ)

η′(θ)
& Var[τ(X1, . . . , Xn)] = n

d′′(θ)η′(θ)− d′(θ)η′′(θ)

[η′(θ)]3
,

où τ(X1, . . . , Xn) =
∑n

i=1 T (Xi).

Indice : utiliser le théorème de la fonction inverse (théorème 6.2, p. 162).

Exercice 36 (loi des événements rares, exercice 24). Soit {Xn}n≥1 une séquence de variables
aléatoires Bin(n, pn), telle que pn = λ/n, pour une certaine constante λ > 0. Montrer que

Xn
d−→ Y, où Y ∼ Poisson(λ).

Indice : (1) montrer que pour k ∈ N ∪ {0}, P(Xn = k) → P(Y = k). (2) Déduire que
P(Xn ≤ k) → P(Y ≤ k). (3) Conclure.
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Exercice 37 (de la distribution exponentielle à la géométrique et inversement).

(i). Soit X ∼ Exp(λ) pour λ > 0. Montrer que ⌊X⌋ ∼ Geom(p) pour un p approprié à
trouver. (On définit ⌊t⌋ = max{n ∈ Z : n ≤ t}, pour t ∈ R.)

(ii). Soit {Xn}∞n=1 une suite de variables aléatoires avec Xn ∼ Geom
(
λ
n

)
et soit Z ∼ Exp(λ),

pour un certain λ > 0. Montrer que Xn
n

d→ Z, lorsque n → ∞.

Exercice 38 (exercice 25). On dit qu’une suite de variables aléatoires Xn converge vers une
variable aléatoire Y en probabilité (p. 60) si

∀ϵ > 0 lim
n→∞

P[|Xn − Y | > ϵ] = 0.

Dans ce cas on écrit Xn
p→ Y .

Soit {Xn}∞n=1 une suite de variables aléatoires avec

Xn = (−1)nX, P(X = −1) = P(X = 1) =
1

2
.

Montrer que Xn
d→ X, mais que Xn

p↛ X.

Exercice 39 (exercise 27). Soient X1, . . . , Xn
iid∼ Pois(λ), où λ ∈ (0,∞)\{1} et considérons

la probabilité π = P(Xi = 1) = λe−λ. Nous voulons estimer π par π̂n = λ̂ne
−λ̂n où λ̂n =

1
n

∑n
i=1Xi. Montrer que √

n(π̂n − π)√
λ̂ne−λ̂n(1− λ̂n)

d−→ Y,

où Y ∼ N (0, 1). Indication : vous aurez besoin du théorème limite central, de la méthode
delta, de la loi faible des grands nombres ainsi que du théorème de Slutsky.

Exercice 40 (exercice 28). Soient x1, . . . , xn des réalisations indépendantes d’une variable
aléatoire X ayant une fonction de densité f continue. Soit y ∈ R, montrer que la fonction
histx1,...,xn(y) converge en probabilité vers f(y), lorsque n → ∞, hn → 0 et nhn → ∞. Indica-
tion : le nombre d’observation tombant dans l’intervalle Ijn , donné par Nn =

∑n
i=1 1{xi∈Ijn},

suit une loi Bin(n, pn) où pn =
∫
Ijn

f(x)dx. Vous aurez besoin d’utiliser le fait que∣∣∣∣ Nn

nhn
− f(y)

∣∣∣∣ ≤ ∣∣∣∣ Nn

nhn
− pn

hn

∣∣∣∣+ ∣∣∣∣pnhn − f(y)

∣∣∣∣ ,
ainsi que l’inégalité de Chebyshev (lemme 6.4, p. 163).

*Exercice 41 (exercice 26). Prouver le lemme 2.20 (p. 60) du livre.
(L’étoile est la notation standard dans les livres de mathématiques pour des exercices plus
difficiles.)

Exercice 42 (exercise 29). Nous allons traiter la question de l’existence d’estimateurs non
biaisés.
Soit Y∼Bin(n, p), où p ∈ ]0, 1[ .

(i) Montrer que Y/n est un estimateur non biaisé pour p.

(ii) Montrer qu’il n’existe pas d’estimateur non biaisé pour 1/p.
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(iii) Montrer qu’il n’existe pas d’estimateur non biaisé pour le paramètre naturel ϕ = log
(

p
1−p

)
.

Remarque : ϕ s’appelle le log odds ratio ou de manière moins anglophone le log du rap-
port des chances.

Exercice 43. Soient X1, . . . , Xn
iid∼ Poisson(λ). Définissons les estimateurs λ̂n = Xn =∑n

i=1Xi/n et S2
n = (n− 1)−1

∑n
i=1(Xi −Xn)

2.

Montrer que VarS2
n ≥ Var λ̂n.

Indice : la borne de Cramér–Rao peut s’averer utile.

Exercice 44. Soient X1, . . . , Xn
iid∼ Exp(λ), où n > 2.

(i) Montrer que l’estimateur λ̂n = (X)−1 est consistent pour λ.

(ii) Montrer que Eλ(λ̂n) = λn
/
(n− 1), et trouver un estimateur λ̂NB

n non biaisé de λ.

Indice : utiliser le fait que Z =
∑n

i=1Xi ∼ Gamma(n, λ).

(iii) Montrer que Varλ(λ̂n) = n2 λ2
/(

(n− 1)2 (n− 2)
)
.

(iv) L’estimateur λ̂NB
n atteint-il la borne inférieure de Cramér–Rao ?

Exercice 45. Soient X1, . . . , Xn
iid∼ Poisson(λ).

(i) Montrer que l’estimateur du maximum de vraisemblance λ̂n de λ est consistant et non-
biaisé.

(ii) Donner un estimateur (par exemple une simple modification de λ̂n) qui est consistant,
mais néanmoins biaisé.

Exercice 46 (exercice 31). Soient X1, . . . , Xn
iid∼ Exp(λ), où n > 2.

(i) Trouver l’estimateur du maximum de vraisemblance λ̂n.

(ii) Déterminer l’estimateur du maximum de vraisemblance θ̂MV
n et la borne de Cramér–Rao

associés au paramètre θ = 1/λ. Peut-on utiliser la proposition 3.17 ?

(iii) Comparer λ̂n et θ̂MV
n avec les bornes de Cramér–Rao correspondantes. Attention : quand

l’estimateur est biaisé, le nominateur de la borne de Cramér–Rao n’est pas 1.

Exercice 47 (exercice 33). Un malheureux époux bavarde souvent à son téléphone portable
afin d’oublier ses misères. On sait que la longueur de ses jasettes téléphoniques suit une
loi exponentielle de paramètre λ > 0. Longtemps gênée par les conversation de son époux,
la femme de ce monsieur malchanceux se mit à mesurer la longueur de celles-ci ; ayant un
nombre infini d’observations, elle connâıt la valeur précise du paramètre λ.
Lors d’une dispute avec son mari et afin d’avoir un argument plus concret, la femme montra
à son époux un échantillon t1, . . . , tn des longueurs de n de ses conversations téléphoniques,
et ce, afin de lui prouver qu’il placote au téléphone de manière excessive.
L’homme, tout méfiant, ne croit guère sa femme ; connaissant celle avec laquelle il vit déjà de-
puis quelques décennies, il la soupçonne d’avoir choisi l’échantillon de manière aléatoire, mais
uniquement à partir des conversations qui duraient plus longtemps que la moyenne (théorique)
de la longueur des conversations. En supposant ceci, le bavard s’attaque au problème d’estimer
le paramètre λ, dont seule son épouse connâıt la valeur véritable.
Trouver l’estimateur de maximum de vraisemblance de λ à partir de l’échantillon t1, . . . , tn,
mais sous l’hypothèse que le monsieur a raison. Attention : comme à l’exemple 3.20 (du livre),
le support de la distribution dépend de l’état de la nature, c’est-à-dire de la vraie valeur de
λ.

8



MATH240 – Statistiques Prof. Victor Panaretos

Exercice 48 (exercice 35). Soient X1, . . . , Xn
iid∼ N(µ, σ2) où les deux paramètres sont in-

connus (n > 1). On peut estimer σ2 par

S2
n =

1

n− 1

n∑
i=1

(Xi −X)2,

ou bien par l’estimateur de maximum de vraisemblance σ̂2
n = (n− 1)S2

n/n (cf. l’exemple 3.16,
p. 75).

(i) Lequel de ces estimateurs est meilleur au sens de l’erreur quadratique moyenne ?

Indication : on a (n− 1)S2
n/σ

2 ∼ χ2
n−1 (cf. proposition 2.7, p. 51).

(ii) Considérons les estimateurs de la forme aS2
n où a ∈ R. Quelle est la meilleure valeur de

a au sens de l’erreur quadratique moyenne ?

Exercice 49. Soient X1, . . . , Xn
iid∼ Unif(0, θ), où θ > 0. Soit θ̂n l’estimateur de maximum

de vraisemblance. Trouver θ̂n et montrer que n(θ − θ̂n) converge en distribution vers une
distribution à trouver.

Exercice 50 (exercices 36 et 37).

(i) Considérons la représentation usuelle d’une famille exponentielle

f(x; θ) = exp(η(θ)T (x)− d(θ) + S(x)), x ∈ X , θ ∈ Θ,

où Θ ⊆ R est un ouvert et η est deux fois continûment dérivable et inversible avec la

dérivée jamais nulle. Soient X1, . . . , Xn
iid∼ f(x; θ). Montrer que

E
[
∂

∂θ
log f(X1, . . . , Xn; θ)

]
= 0, et

E

[(
∂

∂θ
log f(X1, . . . , Xn; θ)

)2
]
= −E

[
∂2

∂θ2
log f(X1, . . . , Xn; θ)

]
. (1)

Indication : ce n’est pas pour rien qu’on a fait l’exercice 35.

(ii) * Soit f(x; θ) un modèle paramétrique régulier (pas forcément une famille exponentielle !)
tel que

X = {x ∈ R : f(x; θ) > 0}

ne dépend pas de θ, et que f est doublement dérivable par rapport à θ. Soient en

plus X1, . . . , Xn
iid∼ f(x; θ). Montrer que l’égalité (1) est équivalente à une condition de

régularité qui dit que l’on peut interchanger la dérivée et l’intégrale.

Indication : il faut absolument se rendre compte que pour chaque fonction g : Rn → R,

E[g(X)] =

∫
Xn

g(x⃗)f(x⃗; θ) dx⃗ quand cette intégrale existe (x⃗ = (x1, . . . , xn) ∈ Rn).

Exercice 51. Soit la variable aléatoire X, dont la densité est donnée par

f(x; θ) =

{
θxθ−1, si 0 < x ≤ 1 ;
0, sinon,

9
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où θ > 0 est un paramètre inconnu. Trouver, sans calculer aucune intégrale, E[logX] et
E[(logX)2].
Remarque. Cette méthode est beaucoup moins laborieuse que de calculer explicitement∫ 1

0
θxθ−1 log x dx et

∫ 1

0
θxθ−1(log x)2 dx.

Exercice 52. Soit X ∼ Exp(λ), où λ > 0. Montrer que Y = aX ∼ Exp(λ/a) pour a > 0.

Exercice 53. Nous avons montré une sorte de théorème centrale limite pour les familles
exponentielles (théorème 3.23, p. 81 ; corollaire 3.27, p. 84). Nous verrons dans cet exercice
deux exemples de ce qui se passe en dehors du cadre des familles exponentielles.
Considérons λ̂n, l’estimateur de l’exercice 47. Trouver une suite de nombres réels an telle que
an(λ− λ̂n) converge en distribution vers une distribution non dégénérée.
Indication : utiliser l’exercice 13 et l’exercice 52.

Exercice 54. (i). Soit X = (x1, . . . , xn)
T une image de dimension 1. Supposons que l’on

puisse uniquement observer une version de cette image sur laquelle il y a du bruit
numérique, i.e, que l’on observe Y = (y1, . . . , yn)

T , où chaque pixel s’écrit comme

yi = xi + εi,

où εi
iid∼ N (0, σ2). Trouver une estimation de l’image originale X par la méthode du

maximum de vraisemblance.

(ii). Supposons maintenant que l’on vous donne une information supplémentaire sur l’allure
de l’image : l’image est en fait une ligne, où chaque pixel satisfait la relation

yi = a+ bxi + εi.

Calculer l’estimateur du maximum de vraisemblance des paramètres a et b.

Exercice 55. Soient x1, . . . , xn
iid∼ Gamma(r, 1). Trouver l’estimateur des moments r̂mom de

r, et la loi limite de
√
n

(
r̂mom − (log Γ(·))′(r̂mom)− logX

(log Γ(·))′′(r̂mom)
− r

)
où logX = n−1

∑
log xi.

Exercice 56. Soit X1, . . . , Xn un échantillon i.i.d. tiré d’une distribution de densité

f(x; θ) =

{
3θ3x−4, si x ≥ θ,

0, sinon,

où θ > 0.

(i) Trouver l’estimateur θ̂MoM
n de θ par la méthode des moments.

(ii) Trouver l’estimateur du maximum de vraisemblance θ̂MV
n de θ.

(iii) Montrer que θ̂MoM
n est non-biaisé, tandis que θ̂MV

n est un estimateur biaisé.

(iv) Calculer l’erreur quadratique moyenne de θ̂MoM
n et de θ̂MV

n . Quel estimateur est le
meilleur au sens de l’erreur quadratique moyenne ?

10
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Exercice 57. Soit X1, . . . , Xn un échantillon i.i.d. tiré de la distribution uniforme sur [0, θ]
où le paramètre θ > 0 est inconnue. Dans les exercices précédentes on a trouvé l’estimateur
du maximum de vraisemblance θ̂MV

n = X(n).

(i) Trouver l’estimateur θ̂MoM
n de θ par la méthode des moments. Montrer qu’il est non-

biaisé.

(ii) Modifier l’estimateur θ̂MV
n , par example en multipliant par un constant, pour le rendre

non-biaisé. Dénoter cet estimateur θ̂MV,modif
n .

(iii) Calculer l’erreur quadratique moyenne de θ̂MoM
n et de θ̂MV,modif

n . Quel estimateur est le
meilleur au sens de l’erreur quadratique moyenne ?

(iv) Commenter la vitesse de convergence de l’erreur quadratique moyenne de ces deux esti-
mateur.

Exercice 58. Soit X1, . . . , Xnun échantillon i.i.d. tiré de la distribution binomial avec les
deux paramètres m et p inconnues. Trouver m̂, p̂ les estimateurs des m et p par la méthode
des moments. Montrer que cela peut arriver que m̂ /∈ {0, 1, . . . } ou p̂ /∈ (0, 1).

*Exercice 59. (un exercice théorétique)
Soit f(x; θ) = exp(T (x)η(θ) − d(θ) + S(x)) une famille exponentielle non dégénérée, où l’es-
pace des paramètres Θ est ouvert, et soit x1, x2, . . . , xn un échantillon iid tiré de f(x; θ0)
pour un certain θ0. Soit αn n’importe quel estimateur tel que

√
n(αn − θ0) → V pour une

variable aléatoire V . Imaginons qu’on cherche à approximer l’estimateur de maximum de
vraisemblance θ̂n avec une seule itération de Newton–Raphson,

βn = αn − ℓ′n(αn)

ℓ′′n(αn)
.

En supposant que η ∈ C3(Θ), montrer que

√
n(βn − θ0) → N

(
0,

1

I(θ0)

)
,

où I(θ0) est l’information de Fisher, et commenter ce résultat.
Indice : faire une développement de Taylor d’ordre 2 de ℓ′n autour de θ0, et remarque que
cette fonction (aléatoire !) est une somme de variables aléatoires iid.

Exercice 60 (exercice 40). Pour chacun des scénarios suivants, trouver les hypothèses à
tester ainsi que les deux types d’erreurs qu’on peut commettre. Sur la base de ces informations,
décider quelle hypothèse devrait être l’hypothèse nulle H0 et laquelle devrait être l’alternative
H1.

(i) Une physicienne travaille sur une expérience dont le but est de détecter des particules
de matières noires. Elle aimerait tester si ses données indiquent la présence de matière
noire.

(ii) Un fêtard voudrait savoir s’il est en mesure de conduire après un apéro. Il aimerait donc
tester si le taux d’alcool dans son sang est supérieur à celui autorisé par la loi.

(iii) Barack Obama et Mitt Romney étaient les deux candidats principaux à l’élection
présidentielle de 2012 aux États-Unis. Le directeur de campagne de M. Obama aimerait
savoir si M. Obama est en tête dans l’état d’Iowa afin de décider s’il doit allouer ou non

11
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plus de ressources financières pour la campagne dans cet état. Il faut donc tester si M.
Obama est en tête dans l’état d’Iowa. De quelle façon le test changerait-il si on était à
la place du directeur de campagne de M. Romney ?

(iv) Un scientifique travaillant pour une compagnie pharmaceutique a pu développer un
nouveau médicament afin de réduire la pression artérielle trop élevée. Il voudrait tester
si le médicament produit l’effet attendu.

Exercice 61 (tests d’hypothèses intuitifs, exercice 48). Le but de cet exercice est de
donner une motivation intuitive aux tests d’hypothèses. Soient X1, . . . , Xn iid avec la fonction
de densité

fX(x) =
1

48
λ5x3/2e−λ

√
x, x > 0,

où λ > 0 est un paramètre. On aimerait tester l’hypothèse H0 : λ = λ0 vs. H1 : λ = λ1, où
λ0 > λ1.

(i) Trouver l’estimateur du maximum de vraisemblance λ̂n.

(ii) Comme expliqué au chapitre 3 du livre, λ̂n est un bon estimateur. Ainsi, il est en un
certain sens naturel de rejeter H0 si λ0 n’est pas ≪ compatible ≫avec λ̂n. Dans notre cas,
cela voudrait dire : rejeterH0 lorsque λ̂n est petit. (Si λ̂n > λ0, on préferera certainement
H0 et nonH1.) Quelle forme prendra donc la fonction de test ? Donner-la à une constante
D près.

(iii) Maintenant, il faut trouver la fonction de test précise. Pour cela, il faudrait choisir une
borne en dessous de laquelle on juge λ̂n suffisamment petit pour rejeter H0. Pour un
seuil α ∈ ]0, 1[ donné, on voudrait que la probabilité de commettre une erreur de type I
soit α. À partir de là, décrire la relation entre α et D.

(iv) Nous voilà un test au niveau α. On peut ensuite se demander s’il est le meilleur test.
Aurons-nous pu faire mieux, c’est-à-dire trouver un test au niveau α mais plus puissant ?
Montrer que la réponse est négative, en montrant que notre fonction de test est exacte-
ment la même que celle décrite par le lemme de Neyman–Pearson. (On peut supposer
que la valeur Q du lemme existe ; ce résultat sera démontrée ultérieurement.)

(v) Trouver une formule, la plus simple possible, pour la fonction de test δ(X1, . . . , Xn).
Indice : λ̂n contient une somme dont chaque élément suit une distribution qu’on a déjà
vu.

Exercice 62 (exercice 41). Soit X1, . . . , Xn un échantillon iid provenant d’une distribution
N(µ, 1). On va tester l’hypothèse nulle H0 : µ = 0 vs. l’hypothèse alternative H1 : µ ̸= 0 en
utilisant la statistique de test

Tn(X1, . . . , Xn) = X̄n =
1

n

n∑
i=1

Xi,

et la fonction de test

δ(X1, . . . , Xn) =

{
1, si |Tn(X1, . . . , Xn)| ≥ Q,

0, sinon,

où Q > 0.

(i) Trouver la probabilité de commettre une erreur de type I.

12
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(ii) Trouver la probabilité de commettre une erreur de type II.

(iii) Comment se comportent ces deux probabilités lorsqu’on augmente la valeur de Q ?

(iv) Trouver la plus petite valeur de Q pour laquelle le seuil de signification du test est
α ∈ ]0, 1[. Quelle est cette valeur lorsque α = 0.05 et n = 10 ? Trouver le supremum de
la probabilité de commettre une erreur de type II pour cette valeur de Q.

Exercice 63 (exercice 45). Soient X1, . . . , Xn
i.i.d.∼ N(µ, σ2) avec σ2 > 0 connue. Trouver le

test le plus puissant pour tester H0 : µ = µ0 vs. H1 : µ = µ1 avec µ0 < µ1 à un seuil de
signification α ∈ (0, 1).

Exercice 64 (exercice 46). Pour un échantillon X1, . . . , Xn
i.i.d.∼ Bernoulli(p), on veut tester

H0 : p = 0.49 vs H1 : p = 0.51.

Déterminez approximativement la taille de l’échantillon pour laquelle la probabilité de com-
mettre une erreur de type I et la probabilité de commettre une erreur de type II sont approxi-
mativement égales à 0.01. Utilisez une fonction de test qui rejette H0 si

∑
iXi est grande.

Indice : Utilisez le théorème centrale limite pour approximer la distribution de n−1
∑n

i=1Xi

par une loi normale. Vous avez aussi besoin du fait que z0.99 ≈ 2.33, où z0.99 est le 0.99-
quantile de la loi N(0, 1).

Exercice 65 (exercice 47). Soient X1, . . . , Xn
i.i.d.∼ Unif(0, θ) et considérez H0 : θ = θ0 et

H1 : θ = θ1 avec θ1 < θ0.

(i) Trouvez le test le plus puissant de H0 vs. H1 à un seuil de signification α = (θ1/θ0)
n.

Considérez le comportement de ce seuil, comme fonction de θ0, θ1 et n. Quelle est la
puissance de ce test ? Est-ce qu’on peut définir un test optimal de type Neyman–Pearson
pour d’autres valeurs de α ?

(ii) Considérez un test (pas nécessairement optimal) de seuil de signification α < (θ1/θ0)
n

qui rejette H0 quand X(n) < k. Trouvez la valeur appropriée de k. Quelle est la puissance
de ce test ?

Exercice 66 (exercice 49). Un laboratoire de traitement d’images a développé une nouvelle
méthode pour scanner le cerveau. Le laboratoire prétend qu’ils sont capables de scanner le
cerveau en moins de 20 minutes. Voici un échantillon de temps de 12 scans de cerveau :

X = {21, 18, 19, 16, 18, 24, 22, 19, 24, 26, 18, 21}.

(i) Supposons que la durée de scan suit N (µ, 32). Testez si la durée moyenne de scan est
moins de 20 minutes, i.e., testez H0 : µ ≤ µ0 vs H1 : µ > µ0 avec µ0 = 20 à un seuil
de signification α = 0.05.

(ii) Pourriez-vous faire la même analyse sachant que la variance de la loi normale est incon-

nue ? Indice : Utilisez δ = 1
(√

n(X̄−µ0)
S ≥ tn−1,1−α

)
comme fonction de test. Ici tn−1,1−α

est le 1− α quantile de la loi Student avec n− 1 degrés de liberté.

Exercice 67 (exercice 50). Soient Y1, . . . , Y4 des variables aleatoires independantes et iden-
tiquement distribues selon une loi normale N (µ, 42). On veut montrer que µ est plus grand
que µ0 = 10 . Par conséquent, on effectue un test au niveau α = 5% de l’hypothèse nulle
H0 : µ ≤ 10.
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(i) Calculez la puissance du test pour des vraies valeurs de µ égales à 13 et 11.

(ii) Si la vraie valeur de µ est égale à 13 , quelle chance a-t-on de la détecter ?

(iii) Pour augmenter la chance de détection, déterminez le nombre d’observations nécessaires
pour obtenir une puissance de 90% dans le cas µ = 13.

Exercice 68 (exercice 51, test apparié). Une compagnie pharmaceutique veut vérifier si son
nouveau produit amaigrissant ABALGRA est efficace. Pour ce faire, le poids (en kilo) de 10
hommes choisis de façon aléatoire a été recueilli juste avant la première prise du médicament
ainsi qu’à la fin du traitement, 7 semaines plus tard. Soit Xi le poids du ie homme avant le
traitement et soit Yi son poids à la fin du traitement. On peut donc supposer que Xi sont
iid, puisque les différentes personnes ont été choisies au hasard. De même pour Yi, car chaque
personne a reçu le même traitement. Soient µ1 = EXi et µ2 = EYi.
On s’intéresse donc aux différences di = Yi −Xi. Celles-ci sont indépendantes et on suppose
qu’elles suivent une loi normaleN (µ2−µ1, 5). Tester à l’aide des données du tableau ci-dessous
si le médicament semble entrâıner une perte de poids au seuil α = 0.05.

i 1 2 3 4 5 6 7 8 9 10

Xi 55.5 75 63.8 54.7 62.7 71 68.3 56 74.4 65

Yi 52.8 73.7 62.7 55 59.3 70.2 67.1 55.4 71.9 65.2

Remarque. Puisque X1 et Y1 proviennent de la même personne, il est irréaliste de les
supposer indépendantes. Dans ce contexte, on parle d’un test apparié (angl. ≪ paired test ≫).
Bonus. Expliquer le nom ABALGRA.

Exercice 69 (exercice 52, test de variance pour la loi gaussienne).

(i) Soit X1, . . . , Xn un échantillon iid tiré d’une distribution normale N (µ, σ2), où les pa-
ramètres µ et σ2 sont inconnus. Montrer que la fonction de test du test du rapport de
vraisemblance pour les hypothèses H0 : σ2 = σ2

0 et H1 : σ2 ̸= σ2
0 à un seuil α est de la

forme 1{W > c1}+ 1{W < c2}, où W = (1/σ2
0)
∑n

i=1(Xi − X̄)2 et où c1 et c2 sont tels
que c−n

1 ec1 = c−n
2 ec2 .

Indice : écrire le rapport de vraisemblance comme une fonction de W et étudier la forme
de cette fonction.

(ii) En pratique, on choisit c1 et c2 tel que PH0(W > c1) = PH0(W < c2) = α/2. (Le test
obtenu n’est donc pas un test du rapport de vraisemblance.) Trouver les valeurs de c1
et c2 lorsque α = 0.05, et effectuer ce test pour σ2

0 = 4 sur les données suivantes :

0.449, −3.421, −2.841, 0.829, −0.941, 1.789, 0.889, 1.109, 0.969, 1.169

(Noter que X̄ = 0.)

Exercice 70. La brasserie québécoise Unibroue produit des bières mondialement reconnues 1.
Elle souhaite vérifier si les bouteilles de bière qu’elle produit contiennent bien 341 ml, comme
indiqué à l’étiquette. En effet, si la quantité était inférieure à 341 ml, la brasserie risquerait
un mécontentement de la part de sa fidèle clientèle, ainsi que des problèmes juridiques. En
revanche, une quantité supérieure à 341 entrainerait des pertes financières. Afin d’effectuer
cette vérification, la quantité de bière dans n = 100 bouteilles a été mesurée, et les valeurs

1. http ://www.unibroue.com/fr/unibroue/medals
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x1, . . . , xn ont été observées. On suppose que les observations xi sont indépendantes et tirées
d’une loi normale N (µ, σ2) dont les deux paramètres sont inconnus. Les observations obtenues
sont de moyenne x̄ = 337 et de variance échantillonnale S2 = 40. Tester à un niveau α = 0.05
si les bouteilles produites contiennent en moyenne 341 ml.
Indice : consulter l’exemple 4.22 (p. 119).
Est-ce que la conclusion changerait si n était égal à 10 ?

Exercice 71 (exercice 54).

(i) Soit X1, . . . , Xn un échantillon tiré d’une distribution de Poisson de paramètre θ. Nous
voulons tester H0 : θ = θ0 vs. H1 : θ ̸= θ0. Trouver un test du rapport de vraisemblance
approximatif permettant de tester ces deux hypothèses.

Indice : utiliser le théorème 4.23.

(ii) Supposons que nous ayons observé n = 100 observations de moyenne x̄ = 2.1. Tester à
un seuil de signification α = 0.05 les hypothèses H0 et H1 définies ci-dessus pour θ0 = 2.

Exercice 72 (exercice 55). Soit un échantillon iid X1, . . . , Xn issu d’une loi N(0, σ2) où la
variance σ2 est inconnue. Construire un test de Wald approximatif (de niveau α) afin de tester
l’hypothèse H0 : σ2 = σ2

0 versus H1 : σ2 ̸= σ2
0 pour σ2

0 > 0 fixé. Comparer avec le test du
rapport de vraisemblance.

Exercice 73 (exercice 56). Soit un échantillon iid X1, . . . , Xn issu d’une loi Bernoulli de
paramètre p inconnu. Construire un test de Wald approximatif (de niveau α) afin de tester
l’hypothèse H0 : p = p0 versus H1 : p ̸= p0 pour p0 ∈]0, 1[ fixé. Comparer avec le test de
rapport du vraisemblance.

Exercice 74 (exercice 53, test non apparié). Soit un échantillon X1, . . . , Xn, Y1, . . . , Ym

de n+m variables aléatoires indépendantes, où Xi
iid∼ N (µ1, σ

2) et Yi
iid∼ N (µ2, σ

2), où σ2 est
inconnue (mais la même pour les X et les Y ). Le but de cet exercice est de trouver le test du
rapport de vraisemblance permettant de tester H0 : µ1 = µ2 contre H1 : µ1 ̸= µ2.

(i) Définir la fonction de vraisemblance du paramètre θ = (µ1, µ2, σ
2).

(ii) En remarquant que Θ0 = {(µ, µ, σ2) : −∞ < µ < ∞, 0 < σ2 < ∞} et que Θ1 =
{(µ1, µ2, σ

2) : −∞ < µ1 ̸= µ2 < ∞, 0 < σ2 < ∞}, montrer que

sup
θ∈Θ0

L(θ) =

(
e−1

2πσ̂2
Θ0

)(m+n)/2

,

où σ̂2
Θ0

= 1
n+m

(∑n
i=1(Xi − µ̂)2 +

∑m
j=1(Yj − µ̂)2

)
, avec µ̂ = 1

n+m

(∑n
i=1Xi +

∑m
j=1 Yj

)
.

Montrer aussi que

sup
θ∈Θ1

L(θ) =

(
e−1

2πσ̂2
Θ1

)(m+n)/2

,

où σ̂2
Θ1

= 1
n+m

(∑n
i=1(Xi − X̄)2 +

∑m
j=1(Yj − Ȳ )2

)
.

(iii) En utilisant le fait que
∑n

i=1(Xi− µ̂)2 =
∑n

i=1(Xi− X̄)2+ nm2(X̄−Ȳ )2

(n+m)2
et que

∑m
j=1(Yj −

µ̂)2 =
∑m

j=1(Yj − Ȳ )2 + mn2(X̄−Ȳ )2

(n+m)2
, montrer que

Λ(X1, . . . , Xn, Y1, . . . , Ym) =

(
1 +

t2

m+ n− 2

)(n+m)/2

,
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où

t =

√
nm
n+m(X̄ − Ȳ )√

1
n+m−2 [(n− 1)S2

X + (m− 1)S2
Y ]

,

avec S2
X = 1

n−1

∑n
i=1(Xi − X̄)2 et S2

Y = 1
m−1

∑m
j=1(Yj − Ȳ )2.

(iv) En utilisant le fait que le test de niveau α dont la fonction de test est donnée par
1{Λ(X1, . . . , Xn, Y1, . . . , Ym) > Q} est le même que celui dont la fonction de test est
1{|t| > Q′} où Q′ est tel que supθ∈Θ0

Pθ(|t| > Q′) = α, énoncer le test du rapport de
vraisemblance, i.e. trouver la loi de t sous H0 et par le fait même la valeur de Q′.

Indice : si A ∼ χ2
a et B ∼ χ2

b sont indépendantes, alors A+B ∼ χ2
a+b.

Exercice 75 (*exercice 57). Soient X1, . . . , Xn
iid∼ f(x; θ). Supposons que l’on veut tester

H0 : θ = θ0 versus H1 : θ ̸= θ0 en utilisant la fonction de test δα de la forme

δα(T (X1, . . . , Xn)) = 1{T (X1, . . . , Xn) > q1−α} ou δα(T (X1, . . . , Xn)) = 1{T (X1, . . . , Xn) < qα},

où qα est le α-quantile de G0, la fonction de distribution de T (X1, . . . , Xn) quand θ = θ0.
Supposons que G0 est une fonction continue. Montrer que sous H0, la valeur-p suit la distri-
bution uniforme sur [0, 1].
Indice : utiliser le lemme 4.30.

Exercice 76 (exercice 60, intervalle bilatéral optimal). Afin de construire un intervalle de
confiance bilatéral pour la moyenne d’une distribution normale (dont la variance est connue),
nous avons choisi zα/2 et z1−α/2 comme bornes de l’intervalle (cf. exemple 5.3). L’on peut se
demander pourquoi ne pas choisir par exemple zα/3 et z1−2α/3.
Il est vrai qu’on aime les intervalles plus ≪ naturels ≫ ou symétriques, mais la raison de ce
choix est la suivante :

(i) Soient Z ∼ N(0, 1) et α ∈ ]0, 1[ . Montrer que l’intervalle I = [L,U ] ayant la plus petite
longueur et tel que P(I ∋ Z) ≥ 1− α est donné par L = zα/2 et U = z1−α/2.

(ii) Soient X1, . . . , Xn
iid∼ N(µ, σ2) où la variance σ2 est connue. Trouver l’intervalle In =

[An, Bn] ayant la plus petite longueur et tel que P(In ∋ µ) ≥ 1− α.

(iii) *Peut-on généraliser ce résultat ?

Exercice 77 (exercice 61, différence de moyennes).

(i) SoientX1, . . . , Xn
iid∼ N(µX , σ2) et Y1, . . . , Yn

iid∼ N(µY , σ
2) deux échantillons indépendants,

où µX , µY et σ2 sont inconnus. Trouver un intervalle de confiance bilatéral pour le pa-
ramètre θ = µX − µY avec un seuil de confiance 1− α.

(ii) On veut comparer la durée d’efficacité de deux nouveaux médicaments,M1 etM2, contre
la lombalgie 2. On a donc administré chaque médicament à un groupe de 15 patients, et
ensuite mesuré (en heures) la période sans douleur après la prise du médicament. On
obtient la moyenne du temps d’efficacité X1 = 7.5 pour M1 et X2 = 6.3 pour M2. On
a aussi les écart-types estimés S1 = 1.1 et S2 = 1.3 pour M1 et M2 respectivement. En
supposant que les observations des groupes 1 et 2 sont indépendantes et suivent des lois
N(µ1, σ

2) et N(µ2, σ
2) respectivement, donner l’intervalle de confiance à 95% pour la

différence µ1 − µ2. Que peut-on constater sur l’efficacité relative de M1 et M2 ?

2. C’est ce qu’a eu Pierre Brochant dans le film le d̂ıner des cons. Il n’est pas le seul : on estime qu’entre
40 et 70% de la population en sera touché au cours de la vie.
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Exercice 78 (*exercice 62). Soient Tk ∼ tk et soit Z ∼ N(0, 1). Montrer que Tk
d→ Z lorsque

k → ∞.
Indice : s’inspirer des exemples 5.3 et 5.7.

Exercice 79 (exercice 63). En utilisant la même notation que celle de la proposition 5.8 du
cours, prouver que le tableau suivant contient les intervalles de confiance approximatifs avec
seuil (1− α) pour θ :

Confiance approximative 1− α L(X1, . . . , Xn) U(X1, . . . , Xn)

Bilatéral θ̂n − z1−α/2Ĵn
−1/2

θ̂n + z1−α/2Ĵn
−1/2

Unilatéral à gauche θ̂n − z1−αĴn
−1/2

+∞
Unilatéral à droite −∞ θ̂n + z1−αĴn

−1/2

Indice : si Zn
d→ Z, où Z est une variable aléatoire continue, alors P[Zn = a] → 0 pour

chaque a ∈ R.

Exercice 80 (*exercice 64, pivot général).

(i) Soient X1, . . . , Xn
iid∼ f(x; θ) et Tn(X1, . . . , Xn) une statistique continue. Soit Yn =

FTn(Tn; θ), où FTn(t; θ) = Pθ[Tn ≤ t] est la fonction de répartition de Tn. Supposons que
FTn(t; θ) est pour chaque t une fonction continue de θ. Montrer que Yn ∼ U(0, 1) et donc
que Yn est un pivot. Comment peut on utiliser ce résultat pour trouver un intervalle de
confiance pour θ ?

(ii) Soit f(x; θ) = e−(x−θ)1[θ,∞)(x). Utiliser la partie a) et la statistique Tn = min{X1, . . . , Xn}
pour trouver un intervalle de confiance pour θ avec un seuil 1− α.

Exercice 81 (exercice 65). Soient X1, . . . , Xn
iid∼ N(µ, σ2), où σ2 est connu. Trouver une

expression pour l’intervalle de confiance unilatéral à gauche avec seuil 1− α pour µ.

Exercice 82 (exercice 66). Soient X1, . . . , Xn
iid∼ Bern(p). Avec l’aide d’une statistique ex-

haustive τn(X1, . . . , Xn) pour p, trouver une expression pour l’intervalle de confiance unilatéral
à gauche pour p avec seuil approximatif 1− α, en inversant le test

H0 : p ≤ p0 vs H1 : p > p0.

Utiliser une fonction de test qui rejette H0 lorsque τn prend une valeur (strictement) plus
grande qu’une certaine valeur critique. Les bornes de cet intervalle ne seront malheureusement
pas si explicitent qu’à l’exercice précédente.
Indice : suivre la proposition 5.14. Hélas, une des conditions de cette proposition n’est pas
satisfaite (laquelle ?). Ainsi, pour la plupart des valeurs de p, la probabilité de couverture de
l’intervalle sera seulement approximativement 1− α.
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