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Organisation du cours

@ Cours mardi 13.15-15.00
@ Exercices lundi 10.15-12.00

o Référence principale (libre accés en ligne, et disponible a la Librairie La
Fontaine, RLC) :

Panaretos, V.M. (2016). Statistique pour Mathématiciens. PPUR.
@ Page web : moodle
@ Test bonus le 15 avril, 13.15
@ Examen final écrit.

@ La note finale N sera calculée selon I'algorithme

o F=0.75x E +0.256 x max{E, T}
o FE = examen final, T = test bonus
e on arrondi F' pour obtenir N
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Introduction
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Commencons par les maths :

Mathématiques «— pabfnuoatiko
i)
~ apprendre

Une maniere :

© d’exprimer une grande variété de notions complexes avec précision et
cohérence

@ de “légitimer les conquétes de notre intuition'” - apprendre, comprendre et
conclure correctement

1. Jacques Hadamard
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et la statistique ?

utiliser les maths
pour
extraire des informations
a partir de
données
en présence d’

incertitude.

Habituellement, on pense a des ensembles de nombres lorsqu’on parle de données,
mais...

...en fait, tous les objets qui peuvent étre exprimées mathématiquement sont
potentiellement des “données”
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Biologie structurelle

Controle d'Epidemiques
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Les probabilités nous aident pour la partie incertitude

o Clest la discipline mathématique qui étudie les phenomeénes aléatoires
(ou stochastiques)

@ Elle consiste en une base sur laquelle on peut construire des modeles qui
acceptent la présence d'incertitude

Les probabilités nous donnent un cadre de travail dans lequel on peut comprendre
et quantifier I'effet que la présence d’incertitude a sur notre extraction
d'informations a partir des données.
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Notre cadre générale

@ Nous disposons d'une distribution F'(z;8) qui dépend d'un paramétre
inconnu 6 € R?.

@ Nous observons la réalisation de n variables aléatoires X, ..., X,,
indépendantes et identiquement distribuées, qui suivent cette distribution.

Mais nous ne connaissons toujours pas le vraie valeur de 8 qui a généré les
X; !

© Nous voulons utiliser les n observations (les réalisations de Xj, ..., X,) afin
de faire des assertions concernant la vraie valeur de 6, et de quantifier
I'incertitude associée a ces assertions.

Semble trop simpliste ?

— Contient I'essence de la plupart des idées utilisées dans des problémes plus
complexes !

— Plusieurs situations plus complexes peuvent souvent étre réduites a ce cas
simple en utilisant les mathématiques de fagcon adéquate.
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Quels types d'assertions peut-on faire sur la vraie valeur de
07

Les trois problémes statistiques que nous allons considérer sont :

@ Estimation. Etant donné un échantillon Xy, ..., X, tiré d'une distribution
Fy qui dépend d'un parameétre inconnu 8, comment peut-on construire un
estimateur, i.e une fonction de I'échantillon, dont le but est d'estimer 67

@ Tests d’hypothéses. Etant donnée une valeur plausible 8y pour 8 (ou
plusieurs valeurs plausibles formant un ensemble ©), est-ce que, sur la base
de I'échantillon X, ..., X,, cette valeur (ou cet ensemble) est un bon
indicateur de la vraie valeur de 87

© Intervalles de confiance. Plutét que de tenter d’estimer la valeur précise du
parameétre 6 qui a généré notre échantillon Xi, ..., X,, est-ce qu'on peut
construire un ensemble de valeurs sous la forme d’un intervalle, qui aura une
grande probabilité de contenir le vrai paramétre 67
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Road Map

Avant d'attaquer ces problémes statistique, il nous faut développer |'arriére-plan :

(A) Modeles probabilistes : quels modeles, pourquoi, comment les manipuler,
comment les choisir, formes abstraites (pour obtenir des résultats qui sont
valables pour tous les modeles considérés).

(B) Théorie d’échantillonage : la relation entre les données et les modeles
probabilisties, et le comportement probabiliste des données (de I'echantillon).

Enfin, comme annoncé, nous allons nous intéresser aux trois problemes :
(C) Estimation.
(D) Tests d’hypotheses.

E

(E) Intervalles de confiance.
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Modeles Probabilistes
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Nomenclature

Dans le cadre de ce cours, un modele de probabilité sera la distribution (aussi
appelée loi ou fonction de répartition) F' d'une variable aléatoire X qui prend des
valeurs dans le sous-ensemble X C R de la droite des réels :

F(z) =P[X < z], z € R.

@ Ecrivons X ~ F' pour dire que F' est la distribution de X.

Si {X;}ier sont de variables aléatoires indépendantes et identiquement

o T L. id
distribuées selon la distribution F', écrivons X; ~ F'.

X est appelé |'espace échantillon, © est appelé I'espace des paramétres.

La distribution F' dépendra typiquement d'un ou de plusieurs paramétres,
6 =(61,...,0,)" € ©®CRP (dépendamment du contexte, une différente
lettre grecque ou latine peut étre utilisée).

Afin d'indiquer que la distribution F' dépend du paramétre 8, nous allons
souvent écrire Fig ou F'(z;60). Par conséquence : F'(z;0) = Po[X < z].

Victor M. Panaretos (EPFL) istil pour ématicie 12 / 246




Modeles réguliers discrets

Afin de spécifier un modéle de probabilité discret, nous devons définir :

@ L'espace échantillon X des valeurs possibles que peut prendre la variable
aléatoire discrete X, c'est-a-dire un ensemble discret

X ={z:P[X =z] >0}

@ La valeur de la fonction de masse f(z;8), en tant que fonction de z € X et
de § € ©.

On considera seulement de modeles telles que X C Z.

Rappelons quelques modeles discretes de base, et pourquoi il sont importants.
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Loi Bernoulli

Définition (Distribution de Bernoulli)

On dit qu’une variable aléatoire X suit une distribution de Bernoulli de parametre
p € [0,1], noté X ~ Bern(p), si

0 x=1{0,1},
Q f(z;p) = pl{z =1} + (1 - p)l{z = 0}.

L'espérance, la variance et la fonction génératrice des moments (FGM) de
X ~ Bern(p) sont données par

E[X]=p, VafX]=p(l1—-p), M(t)=1-p+pe’
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Loi Binomiale

Définition (Distribution binomiale)

On dit qu’une variable aléatoire X suit une distribution binomiale de paramétres
p €1[0,1] et n €N, noté X ~ Binom(n,p), si

Q0 x¥x={0,1,2,...,n},

0 f(eir) = (7)ot -p

La moyenne, la variance et la fonction génératrice des moments de
X ~ Binom(n, p) sont données par

E[X]=np, VafX]=np(1—p),  M(t) = (1—p+pe’)"

siX=>",Y,o0Y; “ Bern(p) = X ~ Binom(n, p)
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Loi Binomiale

Binomial Distribution PMF
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Loi Géometrique

Définition (Distribution géometrique)

Une variable aléatoire X suit une distribution géométrique de paramétre
p € (0,1], noté X ~ Geom(p), si

Q@ X ={0}UN,
Q f(z;p)=(1-p)°p.

La moyenne, la variance et la fonction génératrice des moments de X ~ Geom(p)
sont données par

E[X]= -2, Var[X]z(ll;zp), M(t) =

o t < —log(1-p

Si {Y;}i>1 sont telles que Y; e Bern(p) et T=min{k e N: Y, =1} -1
= T ~ Geom(p)
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Loi Géometrique

Geometric Distribution PMF
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Loi Binomiale Négative

Définition (Distribution binomiale négative)

Une variable aléatoire X suit une distribution binomiale négative de paramétres
p € (0,1] et » > 0, noté X ~ NegBin(r,p), si

0 ¥ ={0}UN,

z+r-—1
@)

@ (@in) = ( Ja-pep

La moyenne, la variance et la fonction génératrice des moments de
X ~ NegBin(r, p) sont données par

1_ T
EX]=r—2, ValX]=r

(1-p) _ P
P p> M(t) =

b)

i-a-per <P

SiX=>%._,Y ouY; “ Geom(p) => X ~ NegBin(r, p).
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Loi Binomiale Négative

Negative Binomial Distribution PMF
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Loi de Poisson

Définition (Distribution de Poisson )

Une variable aléatoire X suit une distribution de Poisson de paramétre X > 0,

noté X ~ Poisson(X), si

Q@ X ={0}UN,

e

Q f(z;\)=¢e o

La moyenne, la variance et la fonction génératrice des moments de
X ~ Poisson()) sont données par

E[X] = A, Varl X] = A, M(t) = exp{A(e’ — 1)}.

Informellement, Binom(n,p) — Poisson(A) lorsque n — co et p = A/n
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Loi de Poisson

Poisson Distribution PMF
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Modeles réguliers continus

Afin de spécifier un modele de probabilité continu, nous devons :

@ Définir la fonction de densité de probabilité, f(z;8), en tant que fonction de
zEXetdef€O.

@ Spécifier son support (I'ensemble sur lequel f(z;8) > 0), si ce n'est pas a
priori claire.

Rappelons quelques modeles continus de base, et pourquoi il sont importants.
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Loi Uniforme

Définition (Distribution Uniforme)

Une variable aléatoire X suit une distribution uniforme de paramétres
—00 < 01 < 83 < 00, noté X ~ Unif(61,6,), si

(92 — 91)71 siz € (91,92),
0 sinon.

fx(z;6) Z{

La moyenne, la variance et la fonction génératrice des moments de
X ~ Unif(61,02) sont données par

t6, t0,

E[X] = (8:+8,)/2, VarlX] = (8,—6:)2/12, M(t) = ﬁ t+#0,M(0) = 1l

Victor M. Panaretos (EPFL) istil pour ématicie 24 / 246




Densité uniforme

f(x)
1
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Loi Exponentielle

Définition (Distribution exponentielle )

Une variable aléatoire X suit une distribution exponentielle de paramétre A > 0,
noté X ~ Exp(}), si

Ae . siz>0
0 siz <0.

fx(z; ) = {

La moyenne, la variance et la fonction génératrice des moments X ~ Ezp()\) sont
données par

E[X] =271, VarlX] = 272, M(t) = t< A
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Densité exponentielle

Exponential Distribution PDF
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Loi Gamma

Définition (Distribution gamma)

Une variable aléatoire X suit une distribution gamma de paramétres r > 0 et
A > 0 (respectivement le paramétre de forme et le paramétre d'intensité), noté
X ~ Gamma(r, ), si

AT =1 =)z :
T e siz>0
z;r,A) =< F() ’ -
Ix( ) {0 siz < 0.

La moyenne, la variance et la fonction génératrice des moments de
X ~ Gamma(r, \) sont données par

E[X] =17/A, Varl X] = r/X%, M(t) = <>\it>r, t <A
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Loi Khi Quarré (ou Khi Deux)

Définition (Distribution khi carré)

Une variable aléatoire X suit une distribution khi carré de parameétre k € N
(appelé le nombre de degrés de liberté), noté X ~ x2, si
X ~ Gamma(k/2,1/2). En d'autres mots,
1 kE_1 _z .
—— T2 e 2, siz>0
fx (i k) = {Q%F(s) z

0 siz <O0.

La moyenne, la variance et la fonction génératrice des moments de X ~ X3 sont
données par

E[X]=k,  ValX]=2k, M(t)=(1-2t)"%2 < %
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Densité gamma

Gamma Distribution PDF
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Loi Normale (ol Loi de Gauss)

Définition (Distribution normale)

Une variable aléatoire X suit une distribution normale de paramétres u € R et
02 > 0 (respectivement le paramétre moyenne et le paramétre variance), noté
X ~ N(u,0?), si

1 l/z—p 2
T p,0%) = ——ex —< ) , T€ER
fx(z;p,0%) poy i Bl

La moyenne, la variance et la fonction génératrice des moments de X ~ N(u,o?)
sont données par

E[X] = u, ValX]=o0% ~ M(t) = exp{tu + t*0?/2}.

Dans le cas spécial Z ~ N(0,1), nous utilisons la notation ¢(z) = fz(z) et

®(z) = Fz(z), et nous les appelons respectivement la fonction de densité normale
centrée réduite (ou fonction de densité normale standard) et la fonction de
répartition normale centrée réduite (ou fonction de répartition normale standard).
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Densité normale

Normal Distribution PDF
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... et on arréte jamais !

La liste n'arréte pas...

...la distribution Pareto, la distribution de , la distribution log-normale, la
distribution , la distribution inverse-gaussienne, la distribution
normale-gamma, la distribution

Vers un cas général
© On veut développer une théorie statistique dont les proprietés seront valables
pour plusieurs modeles, indépendemment de leur structure spécifique.

@ Peut-on définir une classe (une famille) des modeles générale, telle qu'elle
nous permette d'étudier les méthodes statistiques dans un cadre général ?

© Si oui, alors n'importe quelle propriété prouvée pour le cas général sera aussi
valide pour les cas spéciaux!

@ Les questions en dessus motivent la définition des familles exponentielles.
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Familles Exponentielles

Définition (Les familles exponentielles de distributions) |

Une classe de distributions de probabilités régulieres sur X C R est une famille
exponentielle de distributions a < k-paramétre > si sa fonction de densité (ou
fonction de masse) admet la représentation

_exp{Z@ ; ¢1,...,¢k)+S(x)}, TEX (2.1)

ol :
Q &= (d1,..., %) est un paramétre de dimension k dans R* ;

Q@ T,:X—=>R, i=1,...,k S(z): X > R, ety:R¥ = R, sont des fonctions
a valeurs réelles ;

© Le support de f (I'ensemble X sur lequel f est positive) ne dépend pas de ¢.

@ Le paramétre ¢ est appellé le parameétre naturel.
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Forme Naturelle vs Forme Usuelle

eXP{ZdaH v(4) + S(e }—exp{Zm T ( d(9)+5(1’)}-

oli 7 : ©® — R* est une fonction injective deux fois différentiable, tel que
¢ =n(0)

et donc y(¢) = y(n(8)) = d(6), pour d =yon.

@ Forme naturelle : typiquement meilleure pour faire la théorie.

@ Forme usuelle : typiquement meilleure dans le cadre des applications.
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Soit X ~ Binom(n, p). Observons que :

(:) p®(1 - p)"° = exp {log (%) z + nlog(l — p) + log (Z) } .

Définissons :
¢ = log (%) , T(z)=g,
n

5(2) = log (

Ainsi, si m est maintenu fixe et que seulement p a le droit de varier, le support de
f ne dépend pas de ¢ et on a une famille exponentielle a 1-parametre. Ici le
parametre usuel est une bijection deux fois différentiable du parametre naturel ¢ :

m) 7(¢) = nlog(1 + e?) = —nlog(l - p).

e? P
= =1 —=
PEiyes ¥ ¢ °g(1—p>
—_————
=n(p)
Ici p € (0,1), mais ¢ € R. O
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Soit X ~ N(u,0?). Nous pouvons alors écrire :

2
f(m;u,og) - o 127r exp{—% (m 0M> }

1 5 u 1 o M2
exp{—?m +§:z:—§log(27ra )_F .

Définissons :

¢l = %1 ¢2 = _#)
2
T]_(.’B) =7z, Tg(.’r) = 1.2’ S(:B) = 01 (¢1’¢2) _ﬁz + %log <_%> )

et observons que le support de f est toujours R, indépendamment des valeurs du
parametre. Nous obtenons donc que la distribution N(u,02) est une famille
exponentielle 3 2-paramétres. O

v,
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Modeles de probabilité transformés
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Modeles de probabilité transformés

@ Souvent : nous avons un modele pour un phénomeéne aléatoire X

@ Mais nous somme plutdt intéressés par un autre aspect de ce phénomene,
disons g(X), ol g est une fonction connue.

Supposons que R est une variable aléatoire positive représentant le rayon de
couverture d'une antenne Wireless et considérons que R ~ Unif|a, b], pour
0<a<hb.

Quelle est la distribution de I'aire de couverture A = mR?? O

Modeles de probabilité transformés

Comment la distribution d’une variable aléatoire X est transformée, lorsque la
variable aléatoire X est transformée ?

u}
8]
I
il
it
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Modeles de probabilité transformés : cas discret

Lemme

Soit X une variable aléatoire discréte, et Y = g(X). Alors, I'espace échantillon
de Y est Y = g(X) et

Fy(y)=Plg(X)<y] = > fr(z)1{g(z) <y}, Vyel (31)
zeX

friv)=Plg(X)=y] = > fx(@){g(z)=y}, Vyel. (32
zeX

@ Preuve = enoncé!

@ Cas continu : plus compliqué :

© Si g pas monotone : au cas-par-cas.

© Si g est monotone : on a des résultats généraux.
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Soit Z ~ N(0,1). Nous voulons trouver la distribution de Y = Z2. Notez que

Fy(y)=P[Y <y]=0si y <0. Pour y > 0 nous avons :

Fy(y) = P[Z2°<y]=P)Z] < y]|=Pl-vy¥ < Z < /Y

= 2(Vy) - 2(=vy) = 2(Vy) — (1 = ¢(Vy)) = 22(Vy) -

Nous pouvons aussi trouver la densité en dérivant :

frly) = %@m—zd%ﬁ /T 5T
Y 1 —y 2Y
= 2¢(\/§) 2 :2\/%6 J

1
_ e y/2y71/2

Vajx

—1/2 —1/2

1
21/20(1/2)

yl/zflefy/Q‘

Notez que la derniére expression est la densité d'une distribution x2. Alors :

Z ~ N(0,1) = Z% ~x3.
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Modeles de probabilité transformés : cas continu

Lemme

Soit X une variable aléatoire continue sur X C R et soit g : X — R une
@ monotone,
@ continiiment dérivable,
@ de derivée jamais nulle.

Soit Y = g(X). Alors, I'espace échantillon de Y est Y = g(X) et

e Si g est croissante, alors

Fy(y) = Fx(g (v)).

o Si g est décroissante, alors

Fy(y)=1- Fx(g7'(v)).
Dans les deux cas, nous aurons :

0

fry) = @gfl(y) fx(g (), ye.
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Corollaire (Transformations affines)
Soit X une variable aléatoire et Y = g(X). Si g(z) = az + b, a # 0, alors

y’b) a >0,

F
Yy €, Fy(y) = 1_5;.;<%1:)+p<xzyab) a <0,

avec P (X = y%'b) = 0 si X est une variable aléatoire continue. Ainsi, pour
yey:

—-b
O fr(y)=|atfx (ya> si X est continue,

—b
Q fv(y) =rfx <ya> si X est discréte.
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Lemme (Transformations affines de la distribution normale)

Soit X ~ N(u,0?), a #0. Alors aX + b ~ N(au + b, a?c?). Par conséquent, si
2

X ~ N(u,0°), alors
Fx(m):‘P(x;#),

ou ® est la fonction de répartition standard,
®(u) = [ _(2m)"Y/2 exp{—22/2}dz, qui est, on le rappelle, la fonction de
répartition d’une variable aléatoire Z ~ N(0,1).
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Modéles transformés : cas continu multidimensionnel

Théoreme (Transformations multidimensionnelles)
Soit g : R® — R™ une bijection différentiable,
9x®) = (@), .., 0(x), x=(21,...,2) €R™

Soit X = (Xi,...,X,)" ayant la distribution conjointe fx(x), x € R", et
définissons Y = (Y1,..., Y,)" = g(X). Alors, si Y" = g(X™), nous avons

o) = felg ™ @))|det [T )] |, poury = (us,,9a)T €7

et zero sinon, lorsque J,—1(y) est bien defini. Ici, J,—1(y) est la matrice
Jacobienne de g—1, i.e. la fonction a valeur dans |'espace des matrices de
dimension (n,n),

20 o gty
Jo1(y) = : : :
29, y) . 29ty
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Soient X et Y deux variables aléatoires continues indépendentes, avec densités
fx et fy. La densité de la variable X + Y égale la convolution de fx et fy :

+oo
fxyv(u) = [ fx(u—v)fy(v)dv.
Définissons g : R? — R?, (z,y) > (z +y,9) (u,v) N (u — v,v).

La jacobienne de I'inverse est

(A7)

dont la déterminante absolue vaut 1. Il s’ensuit que

ind.
Fxvv,v(w,v) = fx,v (v —v,v) = fx(u —v)fr(v),
et on intégre par rapport a v pour trouver la marginale fx v :
+oo

fxiv(u) = / fx(u — v)fy(v)dv.

— 00

4
= = = =erae
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Application : Sommes des variables aléatoires normales

Exercice

Soient X; ~ N(u1,0%) et Xy ~ N(pa,03) deux variables aléatoires
indépendentes. Montrez que

X1+ Xo ~ N(u1 + p2,0% + 03)
Corollaire

Soient X1, ..., X, de variables aléatoires indépendantes telles que
X; ~ N(pi,0?), et soit Sy, = Z:-L:l X;. Alors,

n n
Sn ~ N <Z/~‘“ZUZ2> :
=1 =1
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Sélection de modeéle
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Comment choisir le bon modéle probabiliste ?

Comment choisir un modeéle?
et

Pourquoi la distribution supposée est un bon modéle pour le phénomene
considéré ?

En termes trés généraux, la sélection d’'un modele est basée sur :
© la théorie scientifique et des expériences préalables;
@ des principes philosophiques;
© une analyse exploratoire des données;;

@ une combinaison de (1), (2) et (3).
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Analyse exploratoire des données
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Parfois — modele de probabilité ne peut pas étre choisi sans équivoque au
moyen de lois physiques et/ou de principes scientifiques. Quoi faire?

Si on a observations zi, ..., Z,, on peut les utiliser pour choisir entre plusieurs
choix, ou au moins exclure certains choix.

Comment ? — en essayant d'apprécier certaines caractéristiques importantes que
nous devrions prendre en considération quand on fait un choix de modéle :

@ Position.
@ Dispersion.
© Comportement des Queues.

Q@ Symétrie/Asymétrie.
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; > 0 ’ : . > 0 : .
(a) Deux densités de positions différentes. (b) Deux densités de dispersions

différentes.
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f(x)

)

02
I

(c) Deux densités qui different par leur po- (d) Deux densités asymétriques : une avec
sition et leur dispersion. une asymétrie positive (rouge), et une avec

une asymétrie négative (bleu).
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; 0 s 0 : ; , ’
(e) Une densité. a queue lourde (rouge) et (f) Graphique de la fonction z
une densité a queue légere (bleu). f f(y)dy pour les deux densités de
gauche.
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Pour apprécier les 4 caractéristiques importantes, cn considera des résumés :
© Numériques.
@ Graphiques.

Tout d'abord, quelques notations utiles :

Echantillon ordonné

Si y,...,Z, sont n valeurs réelles, nous dénotons par z;y la 7¢ valeur de
I"échantillon, lorsque ces valeurs sont placées en ordre croissant (tel que
z(1) = min{z,...,z,} et In) = max{z,...,z,}). Notez que ceci signifie que

Za) S Ty < .. S 1) S Iy

v

Afin d’illustrer la notation, supposons que n = 4 et que nous avons

Ty :5,132 :12,123 :2,2?4: 12.

Nous écrivons alors z(;) = 2, z(2) = 5 et z(3) = z(4) = 12. Dans ce cas, nous
avons donc (1) = T3, I(2) = T1, I(3) = T(4) = To = T4.

A
= = = = ey
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Résumés numériques : centre

Définition (Moyenne et Médiane Empirique.)

Soit zy, ..., z, une collection de nombres réels, appelé un échantillon. Nous
définissons :

@ La moyenne empirique comme suit

I
[l
S|~

n
E T;.
1=1

@ La médiane empirique comme suit

T(24) si n est impair,

- 3 sinon.
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Résumés numériques : dispersion

Définition (Variance empirique et DAM)

Soit @y, ..., x, une collection de nombres réels, appelé un échantillon. Nous
définissons :

© La variance empirique comme suit

=1

(I'écart-type empirique est définit comme suit & = /52 ).

@ La Déviation Absolue par rapport a la Moyenne (DAM) comme suit

1 n
DAM = me—:ﬂ.
=1
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Résumés numériques : queues

Définition (Quartiles, EIQ et valeurs aberrantes)

Soit z1, ..., z, un échantillon de n valeurs réelles, et soit
m(l),...,M,...,m(n)

|'échantillon ordonée, ou M est la médiane. Nous définissons :

© Le premier quartile, @1, comme étant la médiane du sous-échantillon
ordonné z(1y, T(z), .-, M.

@ Le second quartile, Q)z, comme étant la médiane M, Q> = M.

© Le troisieme quartile, @3, comme étant la médiane du sous-échantillon
ordonné M, . .., T(n_1), T(n)-

@ L’écart interquartile (EIQ) comme étant EIQ = Q3 — Q.

@ Une valeur aberrante (anglais : outlier) est une observation qui
n'appartient pas a l'intervalle [Ql — %E’IQ , @3 + %EIQ].

Victor M. Panaretos (EPFL) istil pour ématici 58 /246




Résumés numériques : symétrie/asymétrie

Définition (Coefficient de dissymétrie empirique)

Soit z1, ..., z, un échantillon de n valeurs réelles. Nous définissons le coefficient
de dissymétrie de cet échantillon comme

% 2?21(331' - 5)3

SK = |
(5 >z — 5;)2)3/2

Si le numérateur et le dénominateur sont égaux 3 zéro (ce qui peut se produire
dans un échantillon discret), alors SK est indéfini.
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Résumés graphiques : histogrammes

Définition (Histogramme)

Soient 2, ..., z, une collection de n valeurs réelles et h > 0 une constante. Soit
{L}jez une partition réguliére de R contenant des intervalles de longueur h > 0,

I = [n+(j—1)h,n+jh), j€Z

ou k € R est un certain nombre réel fixe. L'histogramme de z, ..., z, avec des

intervalles de longueur h > 0 et d’origine k est défini comme étant le graphique
de la fonction :

y = hist, . (y) = Zl{ye]} Z1{x,ef}

JEZ

Deux remarques :
° fl histx, . x,(y)dy nous donne la proportion des observations de
J
I'échantillon qui appartiennent a I;.

o E[f, histx,,..x,(¥)dy] = £ $7, PIX: € L] = [; £(
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Density vs Histogram Density vs Histogram

(g) Densité d'une N(0,1) (en rouge) et (h) Densité d'une N(0,1) (en rouge) et
I"histogramme d’un échantillon aléatoire de I'histogramme d’un échantillon aléatoire de
taille 20 tiré d'une N(0,1) (en noir)). taille 100 tiré d'une N(0,1) (en noir)).
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Density vs Histogram Density vs Histogram
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1
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L
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(i) Densité d’une x2 (en rouge) et I'histo- (i) Densité d'une x2 (en rouge) et I'histo-
gramme d'un échantillon aléatoire de taille gramme d'un échantillon aléatoire de taille
20 tiré d’une x2 (en noir)). 100 tiré d'une x2 (en noir)).
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Density vs Histogram

Rl

T T T T
0 5 10 15

(k) Densité d'une x2 (en rouge) et I'histo-
gramme d'un échantillon aléatoire de taille
20 tiré d'une x2 (en noir)) lorsque la lar-
geur des intervalles h est trés petite.
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Density vs Histogram

(1) Densité d’une x2 (en rouge) et I'histo-
gramme d'un échantillon aléatoire de taille
20 tiré d'une x2 (en noir)) lorsque la lar-
geur des intervalles h est tres grande.
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Résumés graphiques : boxplot

Définition (Boite a moustaches (anglais : boxplot))

Soit z1,...,z, une collection de n valeurs réelles. Soient :

Q@ M la médiane, Q) le premier quartile, et Q3 le troisieme quartile de

{z1,..., 2}

Q Wl = minlSan{wj LT Z Ql —1.5x EIQ} &
Wy = maXlSan{xj 1T < @3+ 15x E]Q}
Q@ O={ie{l,...,n}: o ¢ [W, Wa]}.

La boite a moustaches de z1,...,z, est une annotation des valeurs M, Q1, Qs,

Wi, Wa, et {z; : j € O} sur la droite réelle. La figure suivante est une

annotation standard :

~{ (o]
Xo, fo,

Victor M. Panaretos (EPFL)
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Echantillonage
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Retour au cadre général

© Il y a une distribution F'(z;8) qui dépend d'un parameétre inconnu 8 € R?.

© Nous observons la réalisation de n variables aléatoires X,..., X,,
indépendantes et identiquement distribuées, qui suivent cette distribution.

© Nous voulons utiliser les n observations (les réalisations de Xi, ..., X,) afin
de faire des assertions concernant la vraie valeur de 6.

Puisque tout ce que nous avons en main est |'échantillon, nous travaillerons
essentiellement avec une fonction de I'échantillon, disons T'(X3,...,X,)

Il faut, donc, comprendre le comportement probabiliste d'une tell fonction
T(X1,-.-, Xn). Ceci est appelé théorie d'échantillonnage.
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Statistique

Définition (Statistique)

Soit X un espace échantillon. Une statistique est une fonction T : X™ — R.

@ Une statistique T : X™ — R réduit une collection de n nombres a une seule

valeur.

e Cependant, pour certains modeles, il est possible de choisir une statistique T'
telle que T'(Xi, .., X)) soit aussi informative au sujet de 8 que (Xi,...,X,).

68 /246
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Statistique exhaustives

Définition (Exhaustivité)
Soit X1,...,Xn % fo. Une statistique T : X" — R est appelée exhaustive pour le

paramétre 0, si
]P[Xl S (El,...,Xn S .’En|T = t]

ne dépend pas de 6, pour tout (zi,...,2,)" € R" et pour tout t € R.

@ Si une telle statistique existe,la seule connaissance de T suffit pour
faire des inférences sur 6.

69 /246
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Statistiques Exhaustives

Soit X1,..., X, % Bern(8), et T(X) = 237, X;. Pour x € {0,1}",

. PEX=x,T=t PX=x

PR=xT =t = —Zmp_g  ~pr=9g
B 92:1:1@(1 _ 9)"—&:1’%

= e e ==

- M z; — (" - P 0y =
- e 0= () whasn

WYz, =t}

o T est alors exhaustive pour p. Cela signifie qu'afin d'obtenir des informations
concernant p, tout ce qui est important est de connaitre le nombre total de
< faces »; en effet, I'ordre précis dans lequel sont apparues ces
< faces » n'est pas pertinent dans ce cas-ci :

0011101 VS 1000111 VS 1010101
. 70/246
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Critere de Fisher-Neyman

Comment vérifier q'une statistique est exhaustive ?

Théoreme (Critére de Fisher-Neyman (ou Critére de factorisation))

Supposons que (X1, ...,X,) a une fonction de densité/masse conjointe
fx, o x. (21, ..., 20 8), 6 € ©. Une statitique T : X™ — R est exhaustive pour 8
si et seulement si il existe des fonctions g : R x ® — R et h : R® — R telles que

fro,ox (@1, @03 0) = g(T' (21, ..., 2n), 0)h(21, ..., Zn).

Victor M. Panaretos (EPFL) istil pour ématicie 71/ 246




Soit X1,...,X» "2 Bern(p). Alors,

le ’Xn(ml, . ,mn) — Hle(mz) — pzizl l{wzzl}(l _ p)n Zi:l 1{&21}‘
i=1

Ainsi, le critére de Fisher-Neyman est satisfait avec

1=1

T(X1,..., Xn) = zn: 1{X; =1} = Zn:Xi

g(t,p) =p*(1—p)~*

h(zy,...,z,) = 1.
Il s’ensuit que Y., X; est exhaustive pour p.
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Echantillonnage

Définition (Distribution d'échantillonnage)
Soient X1,...,X, WEetT: X" =R une statistique. La distribution
d'échantillonnage de T' sous la distribution F' est la distribution de probabilité

Fr(t) =P[T(X1,...,X,) < t], teR.

Notation

Nous allons trés souvent écrire simplement T au lieu de T'(X1,..., X,).

Dans cette notation, la distribution d'échantillonnage de T sous F' est
Fr(t) =P[T < t].
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Echantillonnage

Dans la définition de la distribution d'échantillonnage de T', nous avons spécifié
sous quelle distribution F' celle-ci se produit.

< Changer la loi des X; (pour une certaine distribution G plut6t que F') aura
pour conséquence de changer aussi la distribution d'échantillonnage de T'.

Il faut, donc, examiner précisément cette dépendance :
© Examiner certaines formes spéciales de T' et de F’

© Dans des situations générales, tenter de donner des moyens d'établir une
distribution approximative

© Nous allons nous concentrer sur des statistiques 7' exhaustives et des
modeles F' constituant des familles exponentielles.
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Echantillonnage d'une distribution normale

Commengons avec un cas spécial, qui est quand-méme d'importance majeure :

@ La moyenne et la variance empirique de variables aléatoires normales

Theorem (Théoreme de Student-Fisher sur I'échantillonnage gaussien) |
Soit Xi1,..., Xn % N(u,0%), et X =150 X, 82 = _L.5" (X, - X)2.
Alors,

© La distribution conjointe de X1, ..., X, a pour fonction de densité :

1 n/2 1 n
2
Ixe, %, (T, T0) = (27ra2> €xp {_M (z; — ) } .

=1

@ La moyenne empirique est distribuée comme suit : X ~ N(u,0?/n).

@ Les variables aléatoires X et S? sont indépendantes.

n —

@ La variable aléatoire S? satisfait -
o

1
S%~ 2.

= =T ——

— Ty
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Corollaire (Moments pour I'échantillonnage d'une loi normale)

Soit Xy,...,Xn Zrlxcle(,u, 2), alors

% % o’ 2 2 2 20*
E[X] = u, Var(X):;, E[S?] =07, Var(S):n_l.

(c'est pourquoi nous utilisons un facteur (n — 1)1 au lieu de n~! dans la
définition de S?)

Théoreme (La statistique de Student et sa loi d'échantillonnage)

Soit Xy,...,Xn Zrlxcle(,u, 2), alors

2 ~t
S/yn T

Ici t,—1 représente la distribution de Student avec n — 1 degrés de liberté.

Victor M. Panaretos (EPFL) istil pour

76 /246



Définition (Distribution t de Student )

Une variable aléatoire X suit une distribution t de Student de paramétre k € N
(appelé nombre de degrés de liberté), noté X ~ ty, si

k+1
r (M) 22\ Z
T k) =—>22_|1+ > ,
La moyenne et la variance de X ~ t; sont données par
E[X]=0 Van{X]—L
- k) - k _ 27

pour k > 2. La moyenne n’est pas définie pour k = 1 et la variance est non-définie
pour k < 2. Pour tout k € N, la FGM n'est pas définie.

0.40
0.35
0.30
0.25
Zo20
0.15
0.10
0.05
0.00
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Echantillonnage de familles exponentielles

Que se passerait-il si la distribution a partir de laquelle nous échantillonnons
n'était pas normale, mais.......

binomiale
Poisson

géométrique...

Plus généralement : que se passe-t-il si I'échantillon X,..., X, vient d'une
. . . . id N
certaine famille exponentielle ? Soit X3,..., X, ~ f, ou

k
f(:p):exp{ZcﬁiTi(a:)—’y(¢1,...,¢k)+S(w)}, zEeX.

© Est-il possible de trouver la distribution conjointe de I'échantillon
(X1, X0)?
@ Est-il possible de trouver les moments exacts de certaines statistiques clés?

© Est-il possible de trouver la distribution d'échantillonnage exacte de certaines
statistiques importantes ?
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Proposition (Echantillonnage d'une famille exponentielle)
Soit X1,..., Xn % f, oil
f(z) =exp{¢T(z) —v(¢) + S(z)}, =z€X

avec ¢ € & C R, est une densité ayant la forme d’une famille exponentielle.
Alors :
Q La densité conjointe de (X1, ...,X,) a la forme d'une famille exponentielle a
1-paramétre, donnée par

le,,,,,Xn(:cl,...,a:n):exp{¢T(w1,..., —ny(¢ +ZS(% },xieé\f,

ol "
T(Z1y. . 20) = Z T(x;).
i=1

@© Si ® est ouvert, alors 7y est infiniment dérivable, et en plus

E[r( Xy, .., Xp)] =ny(¢) <oco et Varlr(Xi,...,X,)]=ny"(¢) < 0.
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Echantillonnage de familles exponentielles

Corollaire

Sous les mémes conditions, T est exhaustive pour ¢ (si ¢ = n(6) pour une certain
injection n(-), alors il est clair que T est aussi exhaustive pour ).
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Distributions d'Echantillionage
Approximative
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Distributions d'Echantillionage Approximative

La distribution d'échantillonnage de la statistique 7(Xi, ..., X,) ne peut pas
toujours étre déterminée exactement lorsque I'échantillon est tiré d’une famille
exponentielle a un parameétre.

Par conséquent— tenter de |'approximer en supposant que n — 0o

Mais il faut définir « la distribution Fr(x,, . x,) est approximée par une certaine
distribution G »

n

© Voyons Fr(x,, .. x, comme séquence indexée par la taille de I'échantillon n.

@ Alors « approximation par G > doit étre formalisée par une forme de
convergence de F, a G lorsque n — 0.
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Convergence en loi (ou Convergence faible)

Définition (Convergence en loi (ou convergence faible))

Soit { F}n>1 une séquence de fonctions de répartition et G une fonction de
répartition sur R. Nous disons que F,, converge en loi vers G, et écrivons

F, —d) G, si et seulement si
Fo(z) =% G(a),

pour tout les z qui sont des points de continuité de G (i.e. tous les zy tels que
lim; 0 G(20 + z) = G(20)).

a noter : si G est continue, la convergence est uniforme.

Soient X1,..., X, & Unif(0,1), M, = max{Xy,..., Xn} et Q, = n(1 — M,).

P[QnSm]ZIP’[MnZl—w/n]ZI—(l—%)nnﬁl—e*’”.

Notez que la limite est la fonction de repartltlon d'une variable aléatoire Ezp(1).
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Convergence en loi : commentaires

© Convergence en loi = convergence ponctuelle de la séquence de fonctions de
répartition, a I'exception qu'il n'est pas nécessaire d'avoir une convergence
ponctuelle aux points de discontinuité de la limite.

@ Lorsque F,(z) = P[X, < ] pour une séquence de variables aléatoires
{Xn}n>1 et G(z) = P[Z < z] pour une autre variable aléatoire Z, nous
allons abuser de la notation et écrire

X, — 4.

© Notre but d'approximation de la loi d'échantillonnage se transforme a trouver
une variable aléatoire Z dont la distribution explicite est connue, et telle que

d
Tn — 4
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Convergence en probabilité

Définition |

Lorsqu’une séquence de variables aléatoires { X, } est telle que
P[| X, — Y| > €] "=3° 0 pour tout € > 0 et pour une certaine variable aléatoire

. e .y P
Y, nous disons que X, converge en probabilité vers Y, et écrivons X,, — Y.

d
o X, HY = X, 5 Y
@ L'inverse n’est généralement pas vrai.
@ Cependant, si Y = ¢ € R est une constante et si {Xn}nzl est une séquence

d
telle que X,, — ¢, nous avons :

Lemme \

Soient {Xy,}n>1 une séquence de variables aléatoires prenant des valeurs dans R,
et ¢ € R une certaine constante, alors

n—oo

Xo -5 ¢ = PXn—c|>€ =30, Ve>o.

La preuve est laissée en exercice.
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Distributions d'Echantillonage Approximative

La statistique exhaustive pour un échantillon iid Xj, ..., X, tiré d'une famille
exponentielle a un paramétre

f(z) = exp{¢T(z) — 7(¢) + S(z)}
est de la forme 7(X1,..., X,) = Yo, T(X;), ou

El7(X1,..., Xn)] =ny(¢) <o et Var[r(Xy,...,Xn)] = nvy"(4) < oo.

Définissons

= 1 1 ¢
T, = ET(Xl)"an) = ;2; T(XZ)
i

alors nous remarquons que nous sommes en présence d'une variables aléatoire
qui :

@ est en fait la moyenne de n variables aléatoires iid,

@ qui a une moyenne finie '(¢) et une variance finie v"(¢)/n.

Comment approximer la loi de T, au cas général ?
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Les Deux Grands Théorémes

Théoreme (Loi faible des grands nombres)

Soit Y1,...,Y, des varieLbles aléatoires iid telles que E[Y;] = pu < oo et
VarlYi] = 0% < 0. Soit Y, =237 | Y], alors

Y, D

En fait, la méme conclusion reste vraie lorsque nous imposons une condition plus
faible que celle de la variance finie, i.e. que E|X;| < 0.

Théoreme (Théoreme central limite) |

Soit Y1,..., Y, des variables aléatoires i.i.d. telles que E[Y;] = 4 < o0 and
VarlY;] = 0% < oo et soit Y, = 13" . Y}, alors

V(Y s —p) -5 N(0,02).
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Distribution d'Echantillonage Approximative pour Familles

Exponentielles

Corollaire

. jid .
Soit X1,..., X, < f, ou

f(a) = exp{#T(2) - 1(4) + S(a)}, weX

avec ¢ € & C R et soit

— 1

Tp==> T(X)=n""7(X1, ..., Xn).
Si ® est ouvert et y est doublement différentiable, alors

Vn(Tr —7'(4)) -2 N(0,7"(9)).
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Distributions approximatives pour les fonctions de sommes

Théoreme (Théoreme de Slutsky)

Soit X une variable aléatoire telle que P[X € X] =1, et g: R xR — R une
fonction continue en X x ¢, ot ¢ € R. Si X, —d> XetY, EN c, alors,

9(Xn, Yn) 2, 9(X, ¢) lorsque n — oo.

Remarque (Théoreme de |'application continue)

Notez un cas spécial important : si X est une variable aléatoire telle que
P[X € X] =1, et g : R — R est continue en X, alors

d d
X, > X = g9(X,) = g(X).

Théoreme (La méthode delta) |

Soit Z,, := an (X, — 6) 2 7 oi an,8 € R pour tout n et a, T co. Soit
g : R — R dérivable en 6, alors a,(g(X,) — g(f)) 4 9'(6)Z, lorsque g'(6) # 0.

] — Ty
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Nouveaux théoremes limites partir des plus vieux

ATTENTION : On ne peut pas remplacer la constante déterministe ¢ avec une
variable aléatoire Y dans le théoreme de Slutsky.

Le théoreme central limite nous dit que si Yy,..., Y, sont des variables aléatoires
. . - d
iid de moyennes u et de variances 02 < oo, alors \/n(Y, —u) — N(0,02).

© Gréace a la méthode delta, nous obtenons de plus que

Vn(g(¥a) — g(w) % N(0, 029 (1)),

pour toutes les fonctions continues et dérivables g.

© Maintenant considérons W, une séquence de variables aléatoires telle que
P T Lo .
W, = o. |l est facile d'utiliser le théoréme de Slutsky afin de conclure que

\/ﬁ <g( Yn)v[;ng(ﬂ'))) i> N(O, [gl(#)]Z)‘
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Estimation ponctuelle

Victor M. Panaretos (EPFL) istil pour ématicie 90 /246




Le probleme d’estimation dans notre cadre générale

Q Il y a une distribution F'(z;8) qui dépend d'un paramétre inconnu 8 € RP.

© Nous observons la réalisation de n variables aléatoires X7,..., X,,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas le vraie valeur de 6 qui a generé les X; !

© Probleme d’estimation ponctuelle : Comment utiliser les n observations
(les réalisations de Xi,..., X,) afin de déterminer la vraie valeur de 6.

Comment ? Mais avec un estimateur, bien-sur!

Définition (Estimateur ponctuel)

Une statistique prenant des valeurs dans © est appelée un estimateur ponctuel.
Réciproquement, un estimateur ponctuel est une statistique T : X" — ©.

Remarque

Puisque I'objectif d'un estimateur est de fournir une estimation du vrai 6 qui a
généré les données, nous le dénotons typiquement 6. Notez de plus que 8 est un
parameétre déterministe tandis que 6 est une variable aléatoire.

— == - ot
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Mais... quel estimateur ?

@ N'importe quelle fonction dont I'image est incluse dans ® pourrait étre un
estimateur.

@ Laquelle devons-nous choisir ?
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Critéres pour comparer des estimateurs
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Critéres pour comparer des estimateurs

Il'y a plusieurs critéres différents que I'on peut utiliser, mais les statisticiens
considerent typiquement deux caractérisations de base de la concentration : la
moyenne et la variance de 6.

Pourquoi ?
© Interprétation facile.
@ Théoréme centrale limite.

© Inégalités de concentration

Il s’avére que I'erreur quadratique moyenne prend en compte la moyenne
et la variance en méme temps.
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Erreur quadratique moyenne

Définition (Erreur quadratique moyenne)

Soit § un estimateur du paramétre 6 d'un modeéle paramétrique {Fy : 6 € ©},
© C R. L’Erreur Quadratique Moyenne (EQM) de 6 est définie comme suit

EQM(6,6) =E [(9 - 9)2} .

Lemme (Décomposition biais-variance)

L 'erreur quadratique moyenne d’'un estimateur admet la décomposition

EQM(8,6) = (E[é] - 9)2 + E[(é . E(é))2] = biais?(,8) + Varld].
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Concentration et EQM

Lemme

Soit 8 un estimateur de € R? tel que Var[é] < 0. Alors, pour tout € > 0,

N EQM (4,6
PG — 6] > ¢ < Z2M1:6)
€
o Notez que EQM(6,,6) =30 = 4, 25 6.
@ Lorsqu'un estimateur posséde une telle propriété, nous disons que cet
estimateur est consistant.

Définition (Consistance)
Un estimateur én de 8, construit a I'aide d'un échantillon de taille n, est

. . P
consistant si 8, — 0 lorsque n — co.

Remarque |

Notez que la convergence de I'EQM vers zéro implique la consistance, mais que la
réciproque est généralement fausse.

- = = = >yt
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Limitations sur la précision ?

@ Nous pouvons utiliser I'erreur quadratique moyenne afin de comparer deux
estimateurs, et ainsi obtenir une idée de leur performance

@ Mais y-a t'il une meilleure erreur quadratique moyenne réalisable pour un
probleme donné?

@ Ce probléme est treés difficile, car il est équivalent au probléme consistant a
trouver un estimateur uniformément optimal : un estimateur T tel que

EQM(T.,6) < BEQM(T,6)
pour tout § € © et pour tous les estimateurs T'.

@ Pour apprécier la difficulté du probleme, supposons que ® = R et considérons
I'estimateur S(X1,...,X,) =0:

o C'est un estimateur ridicule, car il n’utilise pas les données, mais quand méme
quand la verité est 6 = 0, alors EQM(S,0) < EQM(T,6) pour tout T —
aucun autre estimateur peut battre S a cet endroit de I'éspace ©.

e Mé&me une montre cassée donne |'heure exacte deux fois par jour...
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Borne de Cramér-Rao

Théoreme (Borne de Cramér-Rao) |
Soit Xy, ..., X, un échantillon iid tiré d'un modeéle paramétrique régulier f( -;8),
O CRetsoit T:X™ — © un estimateur de 8, pour tout n. Supposons que :

Q Var(T) < oo, pour tout 8 € ©.

Q 35 [fxn T(z1, - Tn)fxq .., Xn(zl,-~~,zn;9)dz] = fxn T (21, Tn) 25 g

X (Z1, ..., Tn; O) dz.

Si nous dénotons le biais de T par f(6) = E(T) — 6, alors B(8) est dérivable et

(B +1)
1 fyn (& log f(;6))” f(;0)dz

@ La condition 1. n'est en réalité pas nécessaire, mais si elle n'est pas vérifiée le théoreme ne
nous apprend pas grand chose...

Var(T) >

@ On appelle la quantité positive fx (% logf(z;e))zf(:c;e)dz —E (5% logf(Xl;G))2
I'information de Fisher, I(8).

@ Méme si le biais est égal a zéro, la variance sera bornée inférieurement par 1/[n x I(8)].
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La méthode du maximum de
vraisemblance
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Motivation

La statistique comme “probabilité inverse”. — Considerons le cas discret.

Point de vue Probabilités |

Si on se dispose d'un parameétre § € ©, alors pour tout (23, ..., 2,) € X™, on peut
évaluer
(21, -y 2) = Po[ X1 = @1, ..., Xy = @]

c'est a dire, comment se varie la probabilité comme fonction de I'échantillon (=du
résultat).

Point de vue Statistiques |

Si on se dispose d'un échantillon (zi, ..., z,) € X", alors pour tout 8 € © on peut
évaluer
0 — Pg[Xl =Ty .eny Xn = iEn]

c'est a dire, comment se varie la probabilité comme fonction du paramétre (=du
modéle).

Intuition : on imagine que les @ plausibles a partir du connaissance de I'échantillon

sont ceux qui rendent notre échantillon assez probable...
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Maximum de vraisemblance : cas discret

Définition (La vraisemblance pour une collection discréte iid)

Soit X1, ..., X, une collection de variables aléatoires discrétes, indépendantes et
identiquement distribuées de fonction de masse f(z;6), ou 8 € RP. La
vraisemblance de 6 est définie par

L:0 —0,1]

n

L(8) = [ ] F(X:;6).

1=1

Remarques :
@ La vraisemblance est une fonction aléatoire

@ La vraisemblance est, en effet, la fonction [, f(X;; ) vue comme fonction
de 0

© La vraisemblance n'est pas “la probabilité de §”

@ La vraisemblance L(6) est la réponse a la question : quelle est la probabilité
de I'échantillon observé lorsque le paramétre est égal a 6
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Maximum de vraisemblance : cas discret

Lorsque 8 est inconnu, il semble que I'estimation la plus adaptée serait une valeur
0 pour laquelle ce que nous observons est le plus probable — une valeur qui serait
compatible avec nos observations empiriques

Définition (Estimateur du maximum de vraisemblance)

Soit X1, ..., X, un échantillon aléatoire iid tiré d'une distribution Fy de fonction

de masse f(z;0) et soit 6 tel que

L(6) < L(§), Véeo.

Alors § est appelé un estimateur du maximum de vraisemblance (EMV) de 6.

@ Lorsqu'il existe un unique maximum a la fonction de vraisemblance, nous

parlons de I'estimateur du maximum de vraisemblance § = arg max L(6)
6ce
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Maximum de vraisemblance : cas continu

Et le cas continu? On utilisera la méme définition, avec la densité au lieu de la
fonction de masse, méme si on va perdre l'inteprération en de termes de
probabilités !

Définition (La vraisemblance pour une collection continue iid)

Soit X3, ..., X, une collection de variables aléatoires continues, indépendantes et
identiquement distribuées de fonction de densité f(z;6), ot 6 € R?. La
vraisemblance de 6 est définie par

L:0© — [0,+00)

n

L(9) = [ [ £(X:;6).

i=1

Remarques :
@ Notons que maintenant la vraisemblance prend de valeurs dans R entier.
@ Puisque F(z +¢€/2;0) — F(z —€/2;0) ~ ef(z;6) lorsque € | 0, nous
pouvons voir €" L(#) comme étant la probabilité approximative d'un
echantillon “proche” a ce que nous avons observé.
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Définition Générale

Définition (La vraisemblance pour une collection iid)

Soit X3, ..., X, une collection de variables aléatoires indépendantes et
identiquement distribuées de fonction de densité/masse f(z;8), ol 6 € R®. La
vraisemblance de 6 est définie par

n

L) = [ [ £(X:;0).

=1

Définition (Estimateur du maximum de vraisemblance) |

Soit X1, ..., X, un échantillon aléatoire iid tiré d’'une distribution Fy de fonction
de densité/masse f(z;0) et soit 6 tel que

L(#) < L(§), Véeo.

Alors 6 est appelé un estimateur du maximum de vraisemblance (EMV) de 6.
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Détermination de 'EMV

@ Notons que I'EMV est défini indirectement, comme |'optimum d’une fonction
objective. Alors comment le déterminer?

@ Lorsque la vraisemblance est une fonction dérivable de 8, le maximum de la
fonction L(6) doit étre une solution de I'équation

Vo L(6) =0,

@ Avant de déclarer qu'une solution 6 de cette équation est un EMV, nous
devons d'abord vérifier que c'est bien un maximum (et non un minimum !).

@ Si la vraisemblance est deux fois dérivable, ceci peut étre fait en vérifiant que
2
— V3L(6)|,_; >~ O,

i.e que (—1) multiplié par la matrice hessienne est définie positive.

@ Lorsque le parametre est de dimension un, ceci se réduit a vérifier que la
seconde dérivée est négative lorsqu’elle est évaluée a la solution de I'équation
de vraisemblance.
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Détermination de 'EMV — La logVraisemblence

Afin de résoudre Vo L(6) = 0, il faut déterminer la dérivée d'un produit de n
fonctions, ce qui peut étre un calcul fastidieux.

Afin d'éviter ceci, nous nous concentrons habituellement a maximiser la
log-vraisemblance

£(8) :=log L(9)
au lieu de la vraisemblance.

Puisque la fonction log est monotone, la vraisemblance et la
log-vraisemblance ont les maximums et les minimums pour les mémes 6.

L'avantage de la log-vraisemblance est que nous travaillons avec une somme
de n fonctions plutét qu'un produit,

£(6) = log <Hf(Xi;9)> = log f(X:; 6).

Encore une fois, si la fonction log-vraisemblance est deux fois dérivable, un
EMV 8 de 6 satisfera

Vel(0)lg_5=0 & — V5u(8)|,_s > O.
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. jid . .

Soit Xi,..., X, ~ Bern(p) et supposons que nous voulons utiliser la méthode
du maximum de vraisemblance afin de construire un estimateur de p € (0,1). La
vraisemblance est :

n n

Lp)=[[fXsp) =[P -p)" " = pia Ki(1 - p) i X,

1=1 =1

En prenant le logarithme de chaque coté de I'équation, nous obtenons la fonction
de log-vraisemblance

{p) = longX +log(l—p <n—ZX>

i=1

Nous pouvons noter que cette fonction est deux fois dérivable par rapport a p et

calculer
n n
Y X —(—p) (n—zxz) .
1=1 =1

d
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Résoudre |'équation £'(p) = 0 en fonction de p est équivalent a résoudre

Pflixi -(1-p)" <n —in) =0,
im1 i—1

et nous pouvons voir que cette derniére équation a un unique racine donnée par
%Z?:l X; = X. Appelons cette racine p, nous devons maintenant vérifier qu'elle
correspond bien a un maximum. Notez que

d2 n n
WZ(P) =-p*> Xi—-(1-p)? (n -> Xi) )
=1 =1

et que cette expression est toujours non-positive, car 0 < Z?:l X; < n presque
sirement et p € (0, 1). Ainsi

est I'unique EMV de p. O
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. id . ,
Soit X1,...,X, e Ezp(\) et supposons que nous voulons utiliser la méthode du

maximum de vraisemblance afin de construire un estimateur de A € (0, ). La
vraisemblance est :

n

L) = [[f(Xi52) = ﬁ)\e_AX’ = \" exp {—)\zn:Xz} :

=1 i=1

En prenant le logarithme de chaque coté de I'équation, nous obtenons la fonction
de log-vraisemblance

LX) =nlogh— X)X,

i=1

Nous pouvons noter que cette fonction est deux fois dérivable par rapport a A et

calculer
—e( Z X;.
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Résoudre |'équation £/(A\) = 0 en fonction de A nous donne |'unique racine

<% zn:Xi>_ =1/X.

Appelons celle-ci A, nous devons maintenant vérifier qu’elle correspond bien a un

maximum. Notez que

d? n
et

e
et que cette expression est toujours négative, car A > 0. Ainsi

)

1< o
- (23%)
n -
=1
est I'unique EMV de M.

=1/X
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. id s ,
Soit Xi,...,X, & N(u,0?) et supposons que nous voulons utiliser la méthode

du maximum de vraisemblance afin de construire un estimateur de
6 = (p,0?) € R x (0,00). La vraisemblance est :

L(p,0%) = i:li[lf(Xi;#,Uz) = (ﬁ)neXP{—W} :

En prenant le logarithme de chaque c6té de |'équation,

n 1 <
Up,0°) = —Elog(szz) ~ 5g3 2(Xi— p)?.
=1

Noter que les dérivés secondes par rapport a u et o2 existent et
0 5 il <
@Z(M,U ) = = Z:(Xz =

—r+ 5k Z
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Résoudre I'équation V(, 42)€(i, o) = 0 en fonction de (i, 0?) donne un systéme
de deux équations a deux inconnues. L'unique solution de ce systeme est

n
(Y, Tty (X — Y)?) .
i=1
Appelons cette solution (£, 2), nous devons maintenant vérifier qu'elle

correspond bien a un maximum. Notez que

02 3 n 82 3 n 1 <& 5
a—#ge(#,a )= 2 6(02)2““’0 )= 20% 56 ;(Xz — W)

02 5 02 5 S (Xi—p) np—-nX
6#60_2((,“:0- ) - 60,26’“((#!0- ) 0,4 0,4 .

En évaluant ces dérivés secondes en ({2, 52), nous obtenons

2
Lp,0%) =2, 6(62)2e(u,02) -
(1,02)=(£,52) g (1,02)=(p,52) )
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62
Audo?

62

_ 2
- 30’23#«2(#,0’ )

o, 0?)

(4,02)=(2,52) (p,02)=(,62) 64

Nous obtenons que la matrice
v2 ; 2 ‘
[ (o217 (102)=(2,62)

est diagonale. Afin de montrer qu’elle est définie positive, il suffit de montrer que
les éléments de sa diagonale sont positifs. C'est bien le cas ici, puisque 62 est
positif avec probabilité 1. Ainsi I'unique EMV de (i, 0?) est donné par

(,5%) = (Y, e e —Y)Q) .

Notons que |'estimateur EMV de o2 est biaisé.
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Equivariance de I'EMV

@ Il y a des situations ol nous ne sommes pas intéressés a estimer 8, mais
plutdt une transformation ¢ = g(8) de celui-ci.

@ Si la fonction g est une bijection, nous n'avons pas besoin de répéter le
processus entier d'estimation

Proposition (Equivariance bijective de I'EMV)

Soit {f(-;6) : 0 € ®} un modéle paramétrique ou ©® C RP. Supposons que 6 soit
un EMV de 6, sur la base de I'échantillon X, ..., X, tiré de f(z;8). Soit
g : © — & C RP une fonction bijective, alors, qb = g(8) est un EMV de ¢ = g(8).

. id
Soit X1,...,Xn & N (p,1), et supposons que nous sommes intéressés par |'estimation de

PlX; < m] pour un z € R donné. Notons que

PX; <az]=PX1 —p <z —p]=2(z —p),

ou $ est la fonction de répartition normale standard. La fonction p — $(z — u) est une
bijection, car $ est monotone ; donc, 'EMV de P[X; < ] est ®(z — i), ol i est 'EMV de p
(par I'exemple précédent i = 7) 1

<
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Equivariance de I'EMV

. jid
Soit Xi,..., X, ~ f, avec

f(z) =exp{¢T(z) —7(¢) + S(z)}, =zeX

ol ¢ € ® C R est le parametre naturel. Supposons maintenant que nous pouvons
aussi écrire ¢ = n(0), ol 8 € © est le paramétre usuel et n: © — & est une
certaine fonction bijective et dérivable (et donc v($) = v(n(8)) = d(8), pour

d = <y on). Avec cette notation, la fonction de densité/masse de la famille
exponentielle prend la forme :

exp{¢T(z) —7(¢) + S(z)} = exp{n(6) T'(z) — d(6) + S(z)} .

La proposition précédente implique que si § est I'EMV de 6, alors n(é) est 'EMV
de ¢ = n(6). La réciproque est elle aussi vraie : si ¢ est I'unique EMV de ¢, alors
n () est I'unique EMV de 6 = n~1(9). O

v,
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EMV dans les familles exponentielles

Ce n'était pas par hasard que 'EMV existait et était unique dans les exemples
traités : c'est un phénomeéne général chez les familles exponentielles.

Proposition (EMV pour la famille exponentielle a 1-paramétre)

Soit X1, ..., X, un échantillon iid tiré d'une distribution dont la fonction de
densité/masse appartient a une famille exponentielle a 1-parametre,

f(z;¢) =exp{¢T(z) —7(¢) + S(z)}, =zeX,¢e?

avec T une fonction non constante et I'espace des paramétres ® C R un ouvert.
Alors 'EMV ¢ de ¢ est unique lorsqu'il existe, et est donnée par I'unique solution
par rapport a u de I'équation

[ci,
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Propriétés de I'EMV quand n — oo
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Le cas Gaussien

Commenens avec le cas spécifique Gaussien.

EMV au cas Gaussien

I'estimateur du maximum de vraisemblance pour le paramétre (i, 0?) d'une

distribution gaussienne, basé sur un échantillon iid X;,...,X,, est
(fin, 32) = lix- li(x-—X)Q _ (%, "—1g2
Hn,Op) = ni_l z’ni_l t - ™o ® )0

o L'EMV de u, fi,, est non-biaisé pour tout n.

@ Pour tout n, sa distribution est normale, avec variance égale a az/n.

@ Ainsi, I'erreur quadratique moyenne est exactement o2 /n, et ce, peu importe

la vraie valeur de .

o |l s'ensuit que fi, est un estimateur consistant.
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Le cas Gaussien

@ L'EMV de 02, 62 est biaisé pour tout n, son biais étant égal a :

R . n—1 n—1 1
biais (62, 0%) = E[62] — o =E[ sz] P ek S S )
n n n
@ Ainsi, 62 sous-estime 02, méme si asymptotiquement, le biais se réduit a zéro.

e La distribution de 62 est la méme que celle d'une variable aléatoire khi carré
multipliée par 02/n, i.e.

N 52

72 n ™ Xn 1

@ Par conséquent, I'erreur quadratique moyenne de 62 est

(2n — 1)o*

EQM(62,0°%) = biais?(62,0°) + Var[62] =

@ Il s’ensuit que 62 est un estimateur consistant.
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Le cas général

@ Il n’est habituellement pas possible de déterminer de fagon exacte la
distribution d'échantillonnage de I'EMV. Par contre, nous devons recourir a
des approximations en utilisant la notion de convergence en loi

@ Mais nous avons vu que, pour les familles exponentielles a un-paramétre,
— d B
Tn= NO(4),n 7"(8))

@ Alors comme le EMV satisfait 4/'(¢) = T, si la solution de I'équation dépend

de T, de facon « dérivable » , alors la méthode delta pourrait étre utilisée
@ En fait, c'est exactement le cas! On utilisera :

Théoreme de la fonction inverse
Soit h(z) : R — R une fonction continiiment dérivable, avec une dérivée
différente de zéro au point z, € R. Alors,

@ il existe un € > 0 tel que ™' € C*(h(z) — €, h(zo) +€).

Q (A1) (y) =[r'(R (9))]* pour |y — h(z)| < e.
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Convergence faible du EMV

Théoreme

Soit Xy, ..., X, un échantillon iid tiré d'une distribution dont la fonction de
densité/masse f(z; ¢o) appartient 3 une famille exponentielle & 1-paramétre
non-dégénérée,

f(z;¢) = exp{¢T(z) —v(¢) + S(z)}, zeX,¢ec?

telle que

©Q L’espace des paramétres ® C R est un ensemble ouvert
(qui implique que ~(-) est deux fois continiment dérivable).
@ La fonction T n'est pas une constante sur le support de f

Soit ¢, I'estimateur du maximum de vraisemblance ¢q, dont on suppose
I'existence, alors

1

o< 7" (¢o)

< 0 et \/ﬁ(qgn—qﬁo)—d)N(O,’y”(lM).
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@ Pour des grandes valeurs de n, I'EMV 43 est approximativement

N (o, [n7"(¢0)] ).
@ Biais asymptotique = zéro.
@ Et la variance? Notons que
! 2 0 ?
E[(¢(9)7] = E{ 2 e Xa) — ma(9)] }

= E[(r(Xa,..., Xn) = n7(#))’]
= Var[r(Xy,...,X,)]
= n7"(¢).

o L'EMV atteint asymptotiquement la borne de Cramér-Rao! .

@ |'estimateur du maximum de vraisemblance de ¢ a une performance
quasiment optimale (pour n grand!)
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Pourquoi 1/[ny"($)] ?

— MLEof o
— Tred”

logLikelihood
logLikelihood

— MLEofo®
— Treo®
\ \ \ \ \ \ \ \ \ \ \ \
0.0 05 1.0 15 20 25 3.0 0.0 0.5 10 15 20 25 3.0
o &
(p) Fonctions de log-vraisemblance pour le (q) Fonctions de log-vraisemblance pour le
parametre de variance correspondant a 25 parametre de variance correspondant a 25
réplications d'un échantillon iid N(0,1) de réplications d'un échantillon iid N(0,1) de
taille 10. taille 50.
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Pourquoi 1/[ny"($)] ?

— MLEofo® — MLEof o
— Treo’ — Tred”

logLikelihood
logLikelihood

0.5 10 15 20 25 3.0
o &
(r) Fonctions de log-vraisemblance pour le (s) Fonctions de log-vraisemblance pour le
parametre de variance correspondant a 25 parametre de variance correspondant a 25
réplications d'un échantillon iid N(0,1) de réplications d'un échantillon iid N(0,1) de
taille 150. taille 450.
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Consistance de 'EMV

Corollaire (Consistance de I'EMV dans les familles exponentielles)

Dans le méme cadre et les mémes conditions que pour le théoreme précédent,
nous avons

$n N ¢o, lorsque n — oo.

Et le paramétre usuel ?
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Convergence faible du EMV

Corollaire

Soit X3, ..., X, un échantillon iid tiré d’une distribution dont la fonction de
densité/masse f(z;0y) appartient & une famille exponentielle non-dégénérée 3
I-pramétre

f(z;0) = exp{n(6) T(z) — d(8) + S(z)}, z€EX,0€O.

Supposons que
Q@ L’espace des paramétres ® C R est une ensemble ouvert.
@ La fonction n(-) est une bijection C? entre © et ® = n(©).
© La fonction T n'est pas une constante sur le support de f.

Soit 6,, I'estimateur du maximum de vraisemblance de 6, alors

N [n'(60)]
Vn(6n —b0) — N <0’ d"(6o)n'(80) — d'(eo)n”(f?o))'

Exercice : Prouvez ce corollaire.
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@ Biais asymptotique = zéro.
e Et la variance? Si ¢ = n(6) et y(¢) = d(n~1(¢)), notons

E[(£(6))%] = E (3“”6”(9))] = ()P ($))]

on(6) 06

(n'(8))2Var[r(X1, ..., X,)]

, 2d”9 "(0) — d'(8)n'" (6
wtf (o OO 4O )
a"(6)1/(6) - d'(©)n"(6)

(7' (6)] |

e L'EMV atteint asymptotiquement la borne de Cramér-Rao dans le cas usuel
aussi !

= n
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Autres méthodes d'estimation
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Motivation

@ Pourquoi utiliser d’autres méthodes si I'EMV est quasiment optimal pour
grand n 7
@ Une raison est que, parfois, le EMV n’est pas explicitement disponible.

Supposons que X4, ..., X, sont des variables aléatoires iid suivant une
distribution de Cauchy dont la fonction de densité est

1
f(m;e):m, z € R.

La fonction de Iog—vraisemblance dans ce cas est )
£0) = =57 log[l + (X; — 6)%] — nlog(m). L'EMV doit satisfaire £'(§) = 0, ou

de fagon équivalente
Z”: 2(X;—8)
o 1+ (Xi = 9)2

L'équation ci-dessus ne peut pas étre résolue explicitement afin de trouver I'EMV.
Solution numérique ! Point de départ ? O

Vv
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Itération de Newton-Raphson |

Supposons que nous ayons une valeur initiale (o) qui est prés du vrai maximum 6.

Puisque § est le maximum global, il satisfait £'(§) = 0. Supposons maintenant que
{ soit telle qu'il est possible de faire un développement en série de Taylor. Nous
aurions alors :

~ ~ ~

0=2'(8) =€ (b0) + (6 — b0))¢" (b)) + (9 0(0))*" (64),

oll B, = A6 + (1- )\)é(o) pour un certain A € [0,1]. En supposant maintenant que
|§ — é(o)| est petit, nous obtenons que le terme (é — 9“(0))2 est négligeable par
rapport au terme (9 — é(o)). Alors, lorsque £’ est bornée, nous pouvons écrire

Z1(9(0)) + (8- é(o))eu(é(o)) ~ 0,

ce qui suggere que

. 4G
6~ o) — B)
£"(6(0))
La procédure peut maintenant &tre itérée en définissant 9(1) = 9(0) _ 20

(b))’

e ——
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Comment peut-on trouver une valeur initiale é(o) raisonnable 7
Notez que la densité f(z;0) est symétrique par rapport a 6,
f(z:8) = —

1

(1+ (z—6)2)’

z € R.
Une valeur initiale potentielle pour 8 est donc la médiane de X, .

peut &étre utilisée afin d'initialiser une itération de Newton-Raphson.

, Xn, celle-ci

O

V
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Dans d'autres cas, les choses peuvent ne pas étre si claires.

. iid .
Soit Xi,...,X, ~ Gamma(r,1) et supposons que nous voulons estimer le
parameétre r par la méthode du maximun de vraisemblance. La vraisemblance est

avec la log-vraisemblance correspondante
Lr)=—nlogD(r) + (r—1) ZlogX ZX

En dérivant et en posant |'expression obtenue égale a zéro, nous obtenons que

I'EMV 7 doit satisfaire
(7)) 1 <
A) :;izgllog.xz‘.

Cette équation ne peut pas étre résolue explicitement. Pire encore, il n'y a pas de
valeur plausible immédiate pour 7 lorsqu’'on examine la forme de la densité. 1
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Méthode des moments

Motivation :
© Trouver un estimateur qu'on peut déterminer explicitement.
@ L'estimateur doit éter assez bon (proche a 8) mais pas nécessairement
optimal.

Heuristique des moments
Q@ Soient Xi,.., X, ljvdfgo et supposons que E|X;| < oo.

O LGN= 1y* x;, LE[Xx)=["7

o0

zf (z;00)dz = m(6o)
© Endautres mots: 1 Y7 | X; 25 m(6o)
@ Alors pour grand n on aura 2 3°7 | X; ~ m(fy)

© Alors si 6 est prés de 8, nous nous attendons a ce qu'il satisfasse

™7 (mid = = APASE
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Méthode des moments

Définition (la méthode des moments - Cas pour un seul paramétre)

Soit X1, ..., X, un échantillon aléatoire iid tiré d’une distribution Fy de fonction
de densité/masse f(z;6). Supposons que E|X;1| < oo pour tout § € © C R. Soit
0 tel que

ol

Alors 6 est appelé I'estimateur par la méthode des moments (MoM) de 6.
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Méthode des moments - Commentaires

@ La méthode des moments dit que nous devons poser le premier moment
théorique égal au premier moment empirique observé.

@ Ceci nous donne une équation dont I'inconnue est le paramétre a estimer; en
résolvant cette équation par rapport a cet inconnue, nous obtenons un
estimateur de 8, qui est I'estimateur par la méthode des moments.

@ Cette équation est habituellement plus facile a résoudre que I'équation
obtenue en posant la dérivée de la log-vraisemblance égale a zéro, car la
plutot que d'avoir une équation de la forme

9(X1,...,X,,0) =0,
nous avons un probléme généralement plus facile de la forme
g9(8) = h(Xy,..., Xp).
(séparation des variables)
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wd

Soit Xi,..., X, ~ Unif(0,6), et supposons que nous voulons estimer 6§ € R .
Dans ce cas, nous avons qu'un seul parameétre, alors I'estimateur par la MoM de

@, disons é, doit étre tel que

Dans ce cas,

Comparez avec I'EVM qui est égal a X(y,).

O

v,
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Méthode des moments — cas 8 € RP

Définition (Méthode des moments — Cas pour plusieurs parametres)

Soit X1, ..., X, un échantillon aléatoire iid tiré d’une distribution Fy de fonction
de densité/masse f(z;0). Supposons que E|X;|P < oo, pour tout § € © C RP.
Soit 8 tel que

1 n
;ZXZkzmk(e), k:].,...,p
i=1

ol

+0oo
mk(e):/ z*f(z;0)dz, 0ER?, k=1,...,p.

—o0

Alors 6 est appelé I'estimateur par la méthode des moments (MoM) de 6.
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iid .
Supposons que X, ..., X, ~ Gamma(r, \) et que nous voulons estimer le
vecteur (r,A)". Les équations des deux premiers moments sont :

n

1 . 2 1 . &

;ZXi:ml(T,A) et ;ZXf:mQ('r,)\).
=1

De plus, nous avons vu que

my(r,\) =r/A et

my(r,A) = E2[X;] + Var[Xq] = 2 /A2 + r/2% = r(r + 1) /22,

En résolvant le systeme des équations des moments par rapport aux parametres
inconnus, nous obtenons les estimateurs

~ nX2 - nX
r = n—_z et )\: n—_2
Zz‘:1(Xi - X) E;l(Xi - X)

O

v
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Inconvénient de la méthode de moments — il n'est pas garanti qu’elle fonctionne
tout le temps...

...pour un probleme a p parameétres, nous avons besoin de |'existence d'un p®
moment absolu !

Soit X3, ..., X, des variables aléatoires iid suivant une distribution de Cauchy
avec fonction de densité

1

Notez que
+oco
7711(0)2l _ % = co.
T ) o 1+ 22

Ainsi les équations des moments ne sont pas définies et la méthode des moments
ne fonctionne donc pas. O

.

En général : lorsque la fonction génératrice des moments existe, alors la méthode
des moments est bien définie.

(=] = = E D
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Parenthese
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Quantiles

Question : étant donné z € R, quelle est la probabilité P[X < z] que X soit plus
petit ou égal a z 7 Réponse : fonction de répartition
Question opposée :

étant donnée une probabilité o € (0,1), quel est le z € R tel que P[X < z] = a?‘

Réponse : Souvent pas unique — motive la définition des quantiles.

Définition (Fonction quantile et quantiles)

Soient X une variable aléatoire prenant des valeurs dans X C R, et F'x sa
fonction de répartition. Nous définissons la fonction quantile de X comme étant
la fonction

Fy:(0,1) = R Fy(a) =inf{t € R: Fx(t) > a}.
Pour une valeur de o € (0, 1) donné, nous appelons le nombre réel

da = Fx(a)

le a-quantile de X (ou, de facon équivalente, de F'x ).

™7 mid = = APASSE
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Quantiles
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Quantiles

] S °
Fx(x)
1 — pg—>—> % O
0 : = : :
0=Fy(l-p 1 v
[} [ =
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Quantiles

af

L
Y
Y

(=]

1= Fy(a) @
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Tests d'hypothese
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Le probleme d’estimation dans notre cadre générale

Q Il y a une distribution F'(z;8) qui dépend d'un parameétre inconnu 8 € RP.

© Nous observons la réalisation de n variables aléatoires Xi,..., X,,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas le vraie valeur de 8 qui a generé les X !

© Probléme de tests d’hypothése : Comment utiliser les n observations (les
réalisations de Xi, ..., X,) afin de décider si 6 € ©g ou 6 € ©; pour
©g N ©; donnés.

Au lieu d'estimer la valeur précise du paramétre on s'intéresse plutdt a juger si il
fait partie d'un sous-ensemble particulier ou non (per exemple, si il dépasse ou non
une certaine borne)
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@ Considérons une situation ol nous voulons vérifier si une piece de monnaie
est équilibrée ou biaisée.

@ Nous pouvons lancer la piece n fois et enregistrer le résultat de chaque lancé.

@ Nous souhaitons alors utiliser ces résultats afin de décider si la probabilité
d'obtenir < face » est égale a 1/2 ou différente de 1/2.

@ Nous ne somme pas vraiment interessés a savoir la valeur exacte : au lieu de
concentrer nos efforts a déterminer la valeur précise, on veut utiliser
I'échantillon de maniere efficace pour décider si la piece est équilibrée ou
biaisée.

@ Nous pourrions formaliser ce probleme en disant que Xq,..., X, = Bern(p)
et que nous voulons décider si p € {1} ou p € (0,1) \ {3}.

O

v,
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Le Cadre

Afin de rendre les choses plus concrétes :

@ Nous savons que le parameétre appartient a I'un des deux ensembles suivants :
By ou O, avec Oy NO; = 0.

© Nous voulons utiliser I'échantillon X3, .., X, que nous avons a disposition afin
de décider a quel ensemble il appartient.

© Cette situation se produit trés souvent en science lorsqu'il y a deux
hypothéses scientifiques concurrentes pour un méme phénomene :

@ |'hypothése nulle Hy qui dit que 6 € Oy,
Hp : 60 € O,
et
@ |'hypothése alternative qui postule plutét que 6 € ©,,

H, :0 € ©,.
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@ Une des plus grandes questions du dernier quart de siecle en physique : savoir
si le fameux boson de Higgs existait ou non.

@ En utilisant le Modele standard de la physique des particules, nous pouvons
calculer combien de diphotons seraient produits en moyenne s'il n'y avait pas
de boson de Higgs. Appelons ce nombre b.

@ De fagon similaire, nous pouvons calculer combien de diphotons de plus
seraient produits en moyenne si le boson de Higgs existait. Dénotons ce
nombre par s.

@ Par des moyens de characterisation on sait que les événements correspondant
a I'observation de diphotons suivent une distribution de Poisson avec une
certain moyenne, disons p.

Ainsi, I'hypothese nulle (qui correspond a I'état de la nature si le boson de Higgs
n'existait pas) est
Hy:p=109,

et I'hypothese alternative concurrente (qui décrit I'état de la nature si le boson de
Higgs existait) est
H :p=>b+s.

g

M
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Fonctions de test

Notre décision sera basée sur léchantillon, on aura donc :

Définition (Fonction de test)

Une fonction de test & est n'importe quelle fonction § : X™ — {0, 1}.

On obtien 0 ou 1 dépendamment de si I'échantillon satisfait une certaines
condition ou non :

1, si T(Xp,...,X,) € C,
5(Xl)"'7Xn): . ( ! 'ﬂ)
0, si T(Xy,...,Xn) ¢ C,
ou
o T est une statistique appelée statistique de test et
@ C est un sous-ensemble de I'image de T', appelé région critique.

De facon plus compacte :

8(X1,..., Xn) = 1{T(X1,...,X,) € C}.
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Fonctions de test et types d'erreur

Notez que ¢ est toujours une variable aléatoire de Bernoulli,

5= 1, avec probabilité P[T(Xq,...,X,) € C],
10, avec probabilité P[T'(Xy,...,X,) ¢ C].

@ Alors une bonne fonction de test doit étre telle que sa loi est concentré
autour de la bonne décision.

@ Est-ce qu'il y a une critere pareil a I'erreur quadratique moyenne pour
quantifier cette concentration ?
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Types d'erreur

@ Dans les tests d’hypothese, il y a deux états possibles de la nature, et deux
décisions possibles que I'on peut prendre.

@ Ainsi, les erreurs qui peuvent étre commises sont données par le tableau

suivante :
| Décision / Vérité || H, \ H; \
0 Pas d’erreur Erreur de type Il
1 Erreur de type | Pas d'erreur

@ Ainsi une bonne regle de décision devrait étre concentrée autour de 2, lorsque
H; est vraie, pour ¢ € {0,1}.
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Types d'erreur

@ Par un |éger abus de notation, nous pouvons considerer une sorte de « erreur
quadratique moyenne >,

EQM (8, H;) = Ep[(6 — 1)), 1€ {0,1}.

@ Puisque § est une variable de Bernoulli et que ¢ prend des valeurs dans
{0, 1}, nous avons que

Eq[5], si 6 € O,
1-Ee[6], sifcO,.

| Pels =1], si 6 € 9,
| 1-Pel6=1], sife€O.

EQM (S, H;) = B[(6 — 2)*] = Bg[|6 —4|] = {

_ Pel6=1], sif€ @,
| Pg[6=0], sifeO.
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Définition (Les probabilités d’erreurs)
Soient Hy : 0 € ©g et H; : 8 € ©1 deux hypothéses a tester. La probabilité de
commettre une erreur de type | est définie comme la fonction h : ©9 — [0, 1],

h() =P[5 =1], € 0.

La probabilité de commettre une erreur de type Il est définie comme la fonction
g:0; —10,1],
g(8) =Pg[6 = 0], 0 € 0.

Remarque |

Le fait que les deux probabilités d’erreurs soient des fonctions de 6 nous indique
que nos erreurs dépendent du vrai état de la nature : il sera plus facile de
distinguer entre ©g et ©1 pour certains valeurs du vrai 8 que pour d’autres.

Remarque (Avertissement sur les probabilités d'erreurs)

Notez que h(6) # 1 — g(8) puisque les deux fonctions ne sont pas définies sur le
méme domaine. C'est une erreur commune qu’il faut éviter.

Victor M. Panaretos (EPFL) istil pour ématici 155 / 246




La gravité des erreurs...

Remarque (Erreur de type | vs erreur de type Il)

o Dans plusieurs contextes pratiques, les deux hypothéses sont asymétriques :
faire une sorte d’erreur est beaucoup plus grave que faire une erreur de
I'autre type.

o Le type d'erreur le plus sérieux est appelé le type | et I'autre est I'erreur de
type Il. Ainsi, dans toutes les situations pratiques, Hy est I'hypothése dont le
rejet erroné (i.e. lorsque Hy est en fait vraie), est le plus dommageable.
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Compte-Rendu

o

o

On veut décider entre {Hp : 6 € ©} et {H; : 8 € ©1} sur la base de
X1y oos X fo.

On va utiliser une fonction de test §(X3, ..., X,) = 1{ T (X1, .., X») € C},
définie a I'aide d’une statistique de test T et d'une région critique C.

Afin de choisir de bonnes fonctions de test, il faut essayer de minimiser les
probabilités des deux types d’erreur,

h(@) =Po[6 =1, 6¢€ 6.
g(0) =Pe[6=0], 6€O,.

Est-il toujours possible de rendre ces deux probabilités petites pour tous les
parametres 6 contenus dans les ensembles ©¢ et ©; respectivement ?

Malheureusement, la réponse est non
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Voici pourquoi : soit (Xy,...,X,) =1{T(X1,...,X,) € C} et supposons que
nous voulons diminuer sa probabilité d'erreur de type I,

h(6) =Pe[s=1], 8¢ O,

pour tous les 8 € Og.

Pour cela, remplacer C par un ensemble C, C C, en obtenant
0 = 1{T(Xy,...,Xn) € Cs}.
Observez que, V6 € Qg,
Po[dy = 1] =P[T(Xy,...,Xpn) € C <P[T(Xy,...,X,) € C] =Pg[6 = 1]
Notez cependant que C, C C = Cf D CC et alors V8 € ©;

Pe[s, = 0] = P[T(Xy, ..., Xn) & C.] > P[T(Xy,...,X,) ¢ C] =Pg[s = 0].

En essayant de diminuer la probabilité de I'erreur de type |, nous avons augmenté
celle de I'erreur de type 1!
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Le cadre Neyman-Pearson
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Cadre de Neyman-Pearson

4

Le paradigme fondamental du cadre de Neyman-Pearson est informellement que :

© puisque I'erreur de type | est la plus importante, nous devons premierement
fixer la probabilité de I'erreur de type | a un certain niveau

@ Une fois ce niveau fixé, nous pouvons nous concentrer sur le probleme
d’'obtenir une petite probabilité de I'erreur de type Il

160 / 246

Victor M. Panaretos (EPFL) pour



Définition (Cadre de Neyman-Pearson)

Soient Hy : 8 € ©g et Hy : 6 € ©; deux hypothéses a tester.
Q Fixer un o € (0,1) et I'appeler seuil (ou niveau) de signification du test.
@ Considérer seulement les § : X™ — {0, 1} qui respectent ce seuil,

D(Bg, ) = {5 1 X" = {0,1}] sup Pp[d = 1] < a}.
9€6,

© A l'intérieur de la classe D(©g, &), comparer les fonctions de test en
considérant laquelle a la plus petite probabilité d'une erreur de type Il

9(0) =Pe[6=0], H€O,.

De facon équivalente, on compare les fonctions de test en considérant
laquelle a la plus grande puissance
B(6) =1—g(8) =Pg[6 = 1], 0 €0O;.
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Meéthodes pour tester des hypotheses
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Type de méthode < Type d'hypotheses

La fagon de construire des fonctions de test dépend fortement du type
d'hypothese a tester

© Simple vs simple (Hy : § = 6, Hy : 6 = 61, pour un certain 6y # 61 donné).

@ Unilatéral gauche vs unilatéral droit : (Hy : 6 < 6, H; : 6 > 65, pour un
certain 85 donné).

© Unilatéral droit vs unilatéral gauche. (Hy : 6 > 6y, Hy : 6 < 6y, pour un
certain 65 donné).

© Simple vs bilatéral : (Hy : 6 = 8y, H; : 6 # 8, pour un certain 8y donné).
En résumé,
HO:QZHO HO:HSGO HO:HZHO HO:0:00
Hi:0=0, [®"\ H:0>6 [ Hi:0<8, (") Hi:0+£6,

simple vs simple unilatéral vs unilatéral simple vs bilatéral
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Pourquoi faire cette catégorisation ?

Il s'avere que dans certain cas, il existe une fonction de test optimale

< Alors si c'est le cas, on a pas besoin de considérer autre chose!
Specifiquement :

(a) Simple vs simple : Dans ce cas, nous allons &tre capable de trouver des tests

optimaux, et ce, indépendamment du modele de probabilité sous-jacent.

(b) Unilatéral : Dans ce cas, nous allons étre capable de trouver des tests
optimaux pour des classes spécifiques de modeles, plus spécifiquement pour
la famille exponentielle.

(c) Bilatéral. Dans ce cas, nous allons démontrer, qu'en général, il n'existe pas
de tests optimaux. Nous allons néanmoins proposer deux méthodes générale,
inspirée par le concept de vraisemblance.

H0:9:90 HO:GSGO HO:HZQO Ho:9:€0
H:0=6 [(°“\ H:0>6, [°") Hi:0<8, [°" H.:0+£6
simple vs simple unilatéral vs unilatéral simple vs bilatéral

™7 (mid = = APASNE
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Tests Optimaux

Avant de commencer, il nous reste de définir la notion d’optimalité d'un test.

Définition (Tests optimaux)
Une fonction de test 6 pour Hy : 6 € ©qg vs Hy : 6 € O est appelée optimale au
seuil a (ou uniformément plus puissante au seuil &) si les deux conditions

suivantes sont respectées.

Q 6 € D(Og,a), cest a dire, supgeg, Pold = 1] < .

Q Py, [t = 1] <Py, [6 = 1] pour tout 61 € Oy et pour tout 3 € D(Og, cx).

Observation utile : Comme § est toujours une variable Bernoulli on a

Pels = 1] = Eo[6], V8 € O U O;.
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simple vs simple
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simple vs simple : lemme fondamental de Neyman-Pearson

Lemme (Neyman-Pearson)

Supposons que X = (X1, ...,Xy) a la fonction de densité/masse conjointe

fx(x;0) et que nous voulons tester

H0:0:90 vs H1:0:91,

a un certain seuil o € (0, 1), pour 6y # 61 donnés. Si la variable aléatoire

_ fX(X11"';X7L;61) _ L(el)
AX) = (X1, ., Xni60)  L(6o)’

est telle qu'il existe @ > 0 satisfaisant
Po[A > Q] =a,
alors le test dont la fonction de test est donnée par
§(X) = HA(X) > @1,

est un test optimal de Hy versus Hy a au niveau de signification o.
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: iid : .
Soit Xyp,..., Xn ~ Exp(A) et soient A\; > Ag deux constantes. Considérons le

probleme consistant a tester la paire d’hypotheses :

H()Z >\=>\0
Hll )\:Al

La vraisemblance est
n
_ A" X
F(Xyee, XniX) = [[Ae ™% = Ame A i X,
i=1
Par le lemme de Neyman-Pearson, nous savons que nous devons baser notre test
sur la statistique

AKi,..., Xp) = FEadeii) (8 o [(Ao —Al)zxi] ,
i=1

et rejeter I'hypothese nulle si A > @, pour @ tel que
P [A(X1, ..., Xn) > Q] = a, lorsqu'un tel @ existe.
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Notons que A(X3, ..., X,) est une fonction décroissante de
T(X1,...,Xn) = 2oy X1 (puisque Ag < Ar). Ainsi,

A(Xl,...,Xn) > Q T(Xl,...,Xn) <g,
pour un certain g, tel que
a=P[A> Q] &= a=P,[7(X1,--.,Xn) < q].

Sous la distribution nulle, nous savons que 7(Xj, ..., X,) suit une distribution
gamma de parametres n et Ag .

Ainsi, il existe un g tel que a = Py, [7(X1,...,Xn) < g, et ce g est donné par le
go-quantile de la distribution gamma(n, Ag).

En résumé, le test optimal consiste a rejeter Hy au seuil « si la statistique
7(X1,...,Xy) est inférieure au a-quantile d'une distribution gamma(n,Xg). O
v,

Le test dépend sur la statistique exhaustive ! Ce n'est pas une coincidence
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Soit Xi,..., Xn < f(z;6), ol

f(z;6) = exp{n(6) T(z) — d(6) + S(z)}

avec 7 une fonction croissante. Supposons que nous voulons tester Hy : 8 = 6,
contre Hy : 8 = 6;. Sans perte de généralité, supposons que 8y < 6;.

Le lemme de Neyman-Pearson nous dit que nous devons chercher une statistique
de test de la forme

6 = 1{L(61)/L(60) > Q} = 1{log L(61) — log L(fp) > log Q}.

Grace a la forme de f(z;6) (famille exponentielle), nous obtenons que

5:1{( n(6o)) ZT (91)—d(90))>108Q}

B i | log Q + n(d(61) — d(6o))
=1 {Z:j T > =6 — n(eo) }

(] = =

= o
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Notez que 7(61) — 7(6o) > 0, puisque 7 est croissante, et n(d(f1) — d(6p)) est
une constante.

Nous pouvons alors simplement écrire
0 =1{r(X1,...,Xn) > q}.

@ Si 7 est une variable aléatoire continue, alors g va étre le (1 — a)-quantile de
Go(t) = Pgy[7(X1,...,Xn) < t], i.e. le (1 — a)-quantile de la distribution
d'échantillonnage de 7(Xj, ..., X}), lorsque I'on utilise le parametre 6

@ Si nous avons plutdt que 7 est une fonction décroissante, alors pour 6y < 61,
nous avons que n(61) — n(6y) < 0. Dans ce cas, nous pouvons voir que la
statistique de test optimal devient

6= l{T(Xh oo an) S q}

Cette fois-ci, si T est continue et que nous voulons un test avec un seuil o, g
doit étre le a-quantile de Go(t) = Pg,[T(X1,..., Xn) < £
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Nous pouvons observer que la forme du test dépend :

@ du comportement de 7 (si elle est croissante ou décroissante), et

Q desi by <61 ou by > 6.
Le tableau suivant résume les formes de statistique de test pour les différents cas
possibles.

Dans chaque cas, gs représente le s-quantile de la distribution
Go(t) = ]P)go [T(X]_, ) Xn) < t]

| || Oy < 61 | 6y > 61 |

n(-) croissante Hr( X1, o, Xn) > i—a) | W7( X1, ..., Xn) < ¢of
n(-) décroissante Hr( X1, -, Xn) < gat Hr(Xy,..., Xn) > q1—at

Une observation intéressante est que la fonction de test ne dépend pas de la
valeur précise de 61, mais seulement de si §; < 6y ou 81 > 6,. O

v
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Existence d'un test NP pour chaque o

Notons que Go(t) = Py, [7(X1,...,Xn) < ] n'est pas toujours une distribution
continue. Ceci signifie qu'il se peut que nous ne soyons pas capable de trouver un
test optimal pour tous les !

Soit X1,...,X, = Poisson(u) et considérons la paire d'hypothéses
Ho:p=po vs Hy:p=pa.

Notons que c'est la paire d'hypothéses que nous avons vu dans |'exemple du
boson de Higgs, si nous posons ug = b et u; = b + s.

Ceci est un exemple avec une famille exponentielle a 1-parametre, il donc facile de
voir que la statistique exhaustive est

(X1, Xa) =YX,
i=1

et que la fonction 7(-) est strictement croissante (7(:) = log(-)).
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Puisque gy > po, nous obtenons, par notre travail, que la statistique de test
optimale, dictée par le cadre de Neyman-Pearson, est la suivante :

§(X1, 0 Xa) =18> " Xi?q1a ¢,

lorsqu'il existe un g1_q tel que Go(gi1—a) = Py [7(X1,. .., Xn) < g1—a] = 1—a.

Puisque les variables aléatoires X; sont indépendantes et qu'elles suivent une loi
de Poisson, c'est un exercice simple de montrer que

T(X1,---, Xp) = Poisson(npg)-

Puisque c'est une distribution discrete, les seuls @ pour lesquels ce sera le cas sont

(n ,Uo)

e™"H0, e (14 npg) , e "0 (1+nu +

) , ---et ainsi de suite

@ Cependant, une observation intéressante est que lorsque n augmente, cette

suite de valeurs devient de plus en plus dense prés de ['origine.
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Existence d'un test NP pour chaque o

Méme si Go(t) = Py, [7(X1,...,Xn) < t] nest pas :
@ une distribution continue
@ ou n'est pas exactement connue,

on a déja montré que (sous de conditions),

Jn (an(Xl,_”,Xn) _ d’(9)) N (0, d"(6)n'(6) — d’(9)n”(9)) '

n'(6) [7'(6)]°

Cette derniére expression nous suggére d'approximer la distribution
Go(t) = Py, [T(X1,- .., X,) < t] par une distribution

(60)  d"(60)7(60) — ' (Bo)"(6o)
N <n77’(90) 7 CIGHE ) :

lorsque n est suffisamment grand.

qui est une loi continue, et donc on peut choisir un g approximatif pour tout o
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Cas unilatéral

Victor M. Panaretos (EPFL) istil pour ématicie 176 / 246




Cas unilatéral

Théoreme (Tests unilatéraux optimale pour les familles exponentielles) |

Soit X1, ..., Xn un échantillon iid tiré d’'une famille exponentielle a 1-paramétre avec fonction de
densité

#(2:6) = exp{n(6)T(z) — d(8) + S(2)}, 2 € X,0€OCE,

© © un ouvert.

© 7(:) est strictement croissante et continiiment dérivable,
SiT= Zz‘n—1 T(X;) est une variable aléatoire continue, alors :

© Pour a € (0,1), la statistique de test § = 1{T > q1_a} est Uniformément la Plus

Puissante (UPP) pour tester
Hp : 6 <8
H, : 6> 90

au seuil e. Ici, q1— est le (1 — a)-quantile de Go(t) = Pg, [T < t].
@ Pour a € (0,1), la statistique de test § = 1{T < go} est uniformément la plus puissante

pour tester
Hp:0 > 6o
Hi:0 < 6o

au seuil c. Ici, go est le a-quantile de Go(t) = Pgy [T < 2.
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Cas unilatéral

Remarque
Sin(-) est strictement décroissante, alors définissons
m()=-n() & Ti=-T.

Nous avons une famille exponentielle

£(2;6) = exp{n: (6) Ta(e) — d(6) + S()}, =€ X, 6€OCR,
avec my(+) strictement croissante.

Dans le tableau suivant, nous avons résumé le forme de la statistique de test, qui
dépend de la direction des hypothéses et de la monotonicité de 7.

H019§90 HO:GZGO
<H129>90> <H1:9<90>
n(-) croissante Hr( Xy, .., Xn) > q1—at | H{7(X1,..., X0) < ga}
n(-) décroissante Hr( X1, o, Xn) < o} | W7 ( Xy, ., Xn) > qi—at
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Cas unilatéral

© Notez que la forme du test est exactement la méme que celle du test pour la
famille exponentielle d'une paire d'hypothéses simple vs simple

@ Cela est possible car pour une famille exponentielle, la forme du test de
Neyman-Pearson ne dépend pas de la valeur précise de 8;, mais seulement de
si 1 < 6y ou 01 > By, et de la valeur de 8.

© Ceci n'est pas vrai en général, mais ca I'est pour les familles exponentielles a
1-parameétre, en raison de leur forme spéciale.
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Cas bilatéral
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Cas bilatéral

Aucun espoir pour trouver des tests optimales dans ce cas :

@ Pour que § : X™ — {0, 1} soit optimal en méme temps pour :

(1) Ho:8 =60 vs Hy : 8 =6, pour tout 81 > 6
et
(2) Hp:6 =6¢ vs Hy : 8 = 61, pour tout 81 < g

e Mais la forme du test optimal est différente dans les deux cas !

@ Rappelons le cas d'une famille exponentielle :

| [ &<t [ Gsh
n(-) croissante Hr( X, .., Xn) > qi—at | H{7(X1,..., X0) < qat
n(-) décroissante Hr( X1, oy Xn) < qa} | Wr( Xy, o 0s Xn) > @1-a)

@ On abandonne donc I'exigence d'un test optimal et on cherche pour de tests
raisonnables.
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de nouveau la vraisemblance...

d'oll commencer?
— Peut-étre generaliser les tests de la forme Neyman-Pearson ?

< Peut-étre utiliser un estimateur de vraisemblance pour juger si 8y est proche
au EMV 47

©Q le prémier nous mend vers les test du rapport de vraisemblance
@ le deuxieme vers le test de Wald
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Test du rapport de vraisemblance
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Test du rapport de vraisemblance

Définition (Test du rapport de vraisemblance)
2id

Soit Xy,..., X, ~ f(z;0), qui nous donne la vraisemblance

n

L) = [ [ £(X:;6),
i=1
et soient Hy : 6 € ©g et Hy : § € ©1 deux hypothéses a tester. Le rapport de
vraisemblance est défini comme suit

suPsco, L(6)

AKXy, X)) = .
( ) SuPgece, L(6)

Le test du rapport de vraisemblance (TRV) au seuil o € (0,1) est défini comme

étant le test dont la fonction de test est :

(X1, Xp) = H{A(Xy,..., Xn) > QF,

oll @ > 0 est tel que supyeg, Po[A(X1,...,Xy) > Q] = a, lorsqu'il existe.

T = = -
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TRV pour d’hypothéses bilatérales
Lorsque
Ho:9:90 & H1:97£00,

nous avons
® ={6} & ©:=R\ {6},

et donc, si L est une fonction continue de 8 et qu'elle atteint son supremum,

AXy X,) = Suppce, L(6) _ SUPser\{90} L(9) _ SUPgep L(6) _ L(6)
ooy Xn SUPgeo, L(6) L(8o) L(6o) L(6o) )

ou 8 est |'estimateur du maximum de vraisemblance de 6.

Donc, pour les cas qui nous concernent :

Le test du rapport de vraisemblance (TRV) de Hy : 6 = 0y vs Hy : 8 # 6y au seuil
a € (0,1) est défini comme étant le test dont la fonction de test est :

8(X1,..., Xn) = 1{L(6)/L(6o) > Q},
oll @ > 1 est tel que supycg, Po[L(8)/L(6) > Q] = e, lorsqu'il existe.

™7 (mid = = APANE
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. iid o
Soient X1,..., X, ~ N(u,c?) avec 02 connue. Considérons

Hoy:p=po vs  Hy:p# po.

Puisque 'EMV de p est X, nous avons
Lx) = (-2 " e d ! zn:(x Xy
- 2mo? - 202 — ¢ ’

1 n/2 1 n )
L(mo) = (27m2> €XP\ "5z (Xi — wo)” ¢

1=1

Par conséquent,

MKy, X) = 70 ) = exp {—% [Z(xi _X)? -3 (- MO)Q] } .

=1l o=l

Notons que L . .
Yo (Xi— o) = (X = X+ X —po)? =2 (X = X)P+n(X — M0)2,«

= = - = = et
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Il s'ensuit que le rapport de vraisemblance se réduit a
n 5 2
A(le" an) = €xp {_2(X - :u’O) } '
20
Nous pouvons en déduire que A(Xy, ..., X,) est une fonction croissante de

)

Notons que lorsque Hy est vraie, S ~ x% Ainsi,

S(Xl,...,Xn):<

6= 1{S(X1: RN Xﬂ) > X%,l—a}:

oll X3 ;_, dénote le (1 — a)-quantile d'une distribution x3.
Notons que ceci est équivalent a rejeter I'hypothése nulle si et seulement si

X — po
ol > 21_a/2,

oll 21_q/2 est le (1 — a/2)-quantile d'une distribution N(0,1).

v,
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Presence d'un parametre de nuisance

iid N
Supposons que X1, ..., X, ~ f(z;6,€), o 6 € R et ¢ € R? sont deux
parameétres inconnus. Nous pouvons étre intéressés a tester

H0:9:90 VS H1:07é00

au seuil & > 0, pour un certain 8y € R, sans faire aucune référence au (et sans se
soucier du) parameétre £. Observez que ce paire d'hypotheses est équivalent a

Hy:(6,6) € {6} xR? vs  Hy:(6,6) € {R\{6o}} xR?
Dans ce cas, si L est continue, le rapport de vraisemblance est donné par

_ SupaeR\{%},ﬁER" L(01‘$) _ SuPeeR,geRP L(G,f) — L(é)é)
SUPge {60}, cRP L(6,§) SUP¢cRe L(6o,§) SUP¢ cRre L(6o,¢)’

ol (8, €) est 'EMV de (8, £). Le test du rapport de vraisemblance au seuil
a € (0,1) sera encore une fois défini comme étant le test dont la fonction de test
est

(X1, o, Xp) = H{A(Xy, ..., X0) > QF,
ol @ > 0 est tel que Py [A(X1,...,Xs) > @] = a, lorsqu'il existe.

Victor M. Panaretos (EPFL) istil pour ématicie 189 / 246




. iid . . .
Soit Xi,..., X, ~ N(u,0d?), ot i et 0 sont inconnus. Considerons

Hoy:p=po vs  Hy:p#po
au seuil & > 0, pour une certaine valeur fixée ug € R. Nous devons déterminer

L(3,6°)
SuP2-0 L{Ho, 07)

A(Xl)""Xn) =

bl

ot (f1,62) est 'EMV de (i, 0?). Pour le dénominateur, nous pouvons calculer que
0 5 n &
= =—— 4+ — S (X, — po)>
9o tlto, %) 202 T 20% ;( o)

Nous concluons que

n

1
arg sup L(uo,0%) = = ) " (Xi — po)®
T2 =

v,
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En d'autres mots, le supremum du dénominateur est

[27r(1/n) E?il

(xi—yo)Q]n/Ze"p{ (2/2)?5()(( MO)#O)}

ne ! n/2
- et
Au numérateur, rappelons que I'EMV de (p,0?) est (X,2 3" (X; — X)?)

[27r(1/n) E?:

=

::>

Q>

\_9
|

(X — 7)2] e {_ (2/3?221:(‘)?()_(?—);)2 }

ne! n/2
[277 E?:l(Xi _7)2] .
Par conséquent le rapport de vraisemblance est
PP n n/2
L(@,6%) [ (X — mo)*]™
j : .

SupP,250 Lo, o

4
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Nous pouvons simplifier cette expression encore plus en observant que

n n n

DX — o) =) (X=X + X — o) =) (X — X)* + n(X — po)?
i=1 i=1 i=1
puisque les termes croisés s'annulent. En utilisant ce fait, nous pouvons écrire

n/2

e [P ]

Observez maintenant que

:{1+m

n(X — po)? o o/ T o
A>Q = s Sy @ ) = s > Ve
=1} \
r [T

Le test du rapport de vraisemblance est donc

§(X1y.. ., Xp) = 1{A > Q}:l{‘z/_ﬁ

>\/5}.
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Ici +/C doit &tre choisi afin que

X —
Py, H Ho

>V/C
S/vn ]
Mais, lorsque Hy est vraie, nous avons que

a.

T~ th-1,
ol t,_j représente une distribution de Student avec n — 1 degrés de liberté
Ceci nous donne que

vVC = n—1,1—c /2
oll tp_1,1—a/2 est le (1 — a/2) quantile d'une distribution t,_;. En conclusion, le
TRV est _
X — po
0= 1{ W > tn—l,l—a/z} g
D)

[m] = = =
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Valeurs Critiques

@ Dans le cas Gaussien, nous avons pu trouver la bonne valeur critique @ pour
que le TRV 6 = 1{A > Q} respecte le seuil .

@ Que faire dans d'autre cas?

Par exemple : que faire dans le cadre d'un test bilatérale pour une famille
exponentielle quelconque ?

e Mais, bien-sur, nous allons de nouveau recourir a des approximations.
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Valeurs critiques approximatives pour le TRV

Théoreme

Soit Xy, ..., X, un échantillon iid tiré d'une distribution de fonction de
densité/masse f(z;0) qui appartient a une famille exponentielle non-dégénérée 3,

f(z;0) = exp{n(8) T(z) — d(6) + S(z)}, zcX,0cO

Supposons que :
© L'espace des paramétres ©® C R est un ensemble ouvert.
@ La fonctionn : © — & = n(©) est une bijection de classe C?.

Soit 8, I'estimateur du maximum de vraisemblance de 8, et soit 85 € © un
élément fixe de I'espace des paramétres, tel que n'(60) # 0. Si
A(X1,...,X,) = L(0,)/L(6o) est le rapport de vraisemblance, alors

2log A(X1, ..., Xn) = 2(€(6n) — £(60)) - 2,
lorsque {Hp : 6 = 0o} est vraie.

Remarque : le suppositions garantissent que d est C? a @p, voir. Remargue 2.15
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Valeurs critiques approximatives pour le TRV

Comment utiliser ce résultat?
2
@ Choisissons @ = exp {Xl%} ol ol x3 ;_, représente le (1 — a)-quantile
d'une distribution x?.

@ Alors, comme 2log A 4 X2, on aura

Pg, [A > Q] = Pg, [IOgA > log Q]
= Pgo [2 IOgA > X%,lfa]
e,

En conclusion, le TRV est approximativement (pour grand n) équivalent a :

1 {2(e(én) —£(60)) > X%,lfa}
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Tests de Wald
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Utiliser la théorie d’estimation ponctuelle pour de tests
bilatéraux ?

On veut tester {Hy : 8 =0} vs {Hy : 0 # 6y}

Si on a un estimateur ponctuel 9(X1, ..oy X)) du vrai paraméter, alors on peut
comparer la valeur nulle 8y avec la valeur observée de 6( X1, ..., X,).

Si ces deux valeurs sont séparées par un distance « significative », alors il est
clair que nous devrions rejeter Hy : 8 = 6 en faveur de H; : 6 # 6.

© o0 o060

De quelle taille doit-elle étre une distance pour qu'on la considere comme
< significative » ?

@ Cette distance ne peut pas étre exprimée en terme absolue !

@ ...car nous devons tenir compte de la variabilité de 6

Exprimer la distance en terme de la variance de 6. Ceci nous donne une statistique
de test de la forme : R
|0 — 60|

Var(6)

Victor M. Panaretos (EPFL) istil pour ématicie 198 / 246




Test de Wald

Le seul probleme est : souvent on ne connait pas la variance de 6

(car elle peut dépendre de la vraie valeur du paramétre 6)

Définition (Test de Wald)

. id A . . L .
Soient X1,...,X, e F(:;6) et 6 un estimateur de 8 basé sur I'échantillon

X1y, Xn. Un test de Wald pour la paire d’hypothéses
{H0:9:00, H1:97£00}

au seuil a est un test dont la fonction de test est

_J -6
5(X1,...,Xn)_1{ 70 >Q},

ol Py, {(; 60)° Q] = a, lorsqu’un tel @ existe.
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Test de Wald basé sur la vraisemblance

Nous savons que I'EMV a une performance asymptotique quasiment optimale.

Alors :
@ Choisissons comme I'EMV pour jouer le réle de 6
@ Et pour \Er(é)?
Quand n — o0, la variance de I'EMV dans une famille exponentielle est
1 [7/(60)]
n d"(60)n'(60) — d'(6o)n" (6o)

Alors definissons

n d”(én)n’(én) - dl(én)n”(én)
(6). Le test de Wald devient :

—~ —_ =1
est posons J, = Var

Test de Wald basé sur la vraisemblance
1{7n (8 — 60)* > Q}

ol Py, [j;(é —6)? > Q] = q, lorsqu'un tel Q existe.
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Théoreme (Valeurs critiques approximatives pour les tests Wald)

Soit X3, ..., X, un échantillon iid tiré d'une distribution ayant une fonction de
densité/masse f(x;0) appartenant a une famille exponentielle non-dégénérée a
1-paramétre,

f(z;8) = exp{n(0) T(z) — d(8) + S(z)}, z€eX,0€O.

Supposons que :
@ L'espace des paramétres ® C R est un ensemble ouvert.
@ La fonction n(-) est une bijection deux fois continliment dérivable entre © et
& =1(8).
Soient 8,, 'estimateur du maximum de vraisemblance de 6, et
T, =n d"(é")nl(i;?&f;gé")"”(é"). Soit 6y € © un élément fixe de I'espace des
paramétres tel que n'(6o) # 0. Alors,

Tn(Bn — 60)® -5 2,

lorsque {Hp : 6 = 04} est vraie.

Remarque : le suppositions garantissent que d est C? a fp, voir. Remargue 2.15
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@ Le résultat ci-dessus peut étre utilisé afin de déterminer la valeur critique
d'un test de Wald avec un seuil a.

La fonction de test de Wald au seuil o, est approximativement (pour grand n)
équivalent a

17262~ 607 > 32 1-a}

oll X7 ;_, représente le (1 — a)-quantile d'une distribution x3.

@ En d’autres termes, pour de grandes valeurs de n, la valeur critique
approximative devrait étre Q@ ~ x?,_,,.
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p-valeur de Fisher
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N.—P. et la pratique

Neyman—Pearson : une théorie mathématique Elégante et raisonnable.

Mais : parfois il y a des problemes pratiques :

© Il n'est pas toujours clair a priori quel est le « bon > seuil de signification a
utiliser.

< il se peut que, pour les méme données, Hy soit rejetée pour o = 0.05, mais
pas pour o = 0.01!

@ Une fois que le seuil est fixé, nous utilisons un test optimal (s'il est
disponible), et nous prenons une décision basée sur nos données. Le probleme
maintenant est que nous n’avons pas d'indications claires afin de savoir a
quel point notre décision était « siire > ou « marginale >

— Les scientifiques souhaitent parfois non seulement pouvoir prendre une
décision, mais aussi pouvoir quantifier la confiance qu’ils ont dans cette
décision.
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p-valeur de Fisher : une approche duale a celle de N.—P.

@ Plutdt que de prendre une décision explicite (i.e. 6§ = 0 ou § = 1), définissons
une mesure qui indique a quel point les données supportent |'hypothese nulle.

@ Nous laissons par la suite le scientifique juger s'il y a oui ou non assez
d’évidences contre Hj.
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p-valeur de Fisher : une approche duale a celle de N.—P.

Définition (p-valeur) |
Soient X1,..., X, - f(:;6) et Hy : 6 € ©g une hypothése de la forme :
{Ho 10 = 90} ou {HO . 0 S 90} ou {HO 10 Z 90}

Soit é,, une fonction de test pour Hy, ayant I'une des deux formes suivantes :

(5a(X1,...,Xn) = 1{T(X1,,Xn) > ql—oz}

ou

O0a(X1,. .., Xn) = H{T(X1,-., Xn) < g}y

ou T est une certaine statistique de test, et q, est le z-quantile de la distribution
Go(t) = PQO[T(X:L, cocyg Xn) S t] Alors

p(X1,...,Xn) = inf{a € (0,1) : 5(X1,...,X,) = 1}.
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Calculs des valeurs-p

@ La définition de la p-valeur semble un peu compliquée, il est donc naturel de
se demander s'il est possible de la calculer dans des exemples concrets.

@ Cela est en effet le cas lorsque I'hypothése nulle est d’une des formes que
nous avons considérées jusqu'a présent. Les calculs sont en fait plutot simples
Lemme (Calculs des valeurs-p)

Dans le méme contexte que celui de la définition précédente, si Gy est continue?
et strictement croissante, alors

Q Sid, est de la forme 8o (X1,..., Xy) = {T(X1,...,Xn) > qi—a}, alors
p(Xla"'an) =1 GO(T(XL,X?'L))
@ Sid, est de la forme §o(Xy,..., Xp) = {T(X1,...,Xn) < qa}, alors

p(.Xl, oo ,Xn) = Go(T(.Xl, om0 Xn))

a. continuité n'est pas nécessaire
T S — Ty
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Calculs des valeurs-p — Interprétation

Le lemme nous donne une autre facon de comprendre les valeurs-p.

Concentrons nous sur le cas (1), ol nous rejetons pour des grandes valeurs de T'.

© Notez que 1 — Go(T(Xy,...,X,)) est égal a la probabilité d'observer
quelque chose d'aussi grand, ou méme plus grand que ce que nous avons
observé, lorsque Hj est vraie.

@ Ainsi, lorsque la p-valeur est petite, nous avons en fait observé quelque chose
qui serait tres improbable si Hy était en effet vraie.

© Nous nous attendons alors a ce que Hy soit fausse.

Remarque (Avertissement)

Une erreur commune est d'interpréter la p-valeur comme la probabilité que Hy
soit vraie. Ceci est faux, et n'a en fait pas de sens, car le paramétre 6 n'est pas
une variable aléatoire.
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Soit X1,...,X, w N (u, 1) et considérons la paire d'hypotheses :

Hy:p=0 Vs Hy :p#0.

Rappelons que le TRV pour cette paire est donné par :

§(X1,..., Xp) = 1{(%)2 >xi1a},

oll X7 ;_, est le (1 — a)-quantile d'une distribution x3.

Nous pouvons donc définir la p-valeur correspondante comme étant :

1- G, (nX?)

(notons que G,z est une fonction monotone croissante de (0, 00) a (0,1) puisque
la fonction de densité d'une x3 est strictement positive sur tout (0, c0)). O

v

Victor M. Panaretos (EPFL) Statistique pour ématici 210/ 246




Lien entre Neyman-Pearson et Valeurs-p

Est-ce qu'il y a un lien entre les approches de Fisher et de Neyman & Pearson en
ce qui concerne les tests d'hypothese ?
Il 'y a une relation particulierement simple et élégante :

Corollaire

Dans le méme contexte que celui du dernier lemme, soit ag € (0,1) et supposons
que Gy est continue et strictement croissante. Si nous définissons

'l/)(le"')Xn) = 1{p(Xl))Xn) < aO}v

alors (X1, ..., Xn) = 80 (X1,...,Xn). En d’autres mots, si nous rejetons
I'hypothése nulle lorsque la p-valeur est plus petite que cg, alors notre test se
réduit 3 64, .
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Intervalle de Confiance
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Rappel : notre cadre général

© On dispose d'une distribution F'(z;8) qui dépend d'un paramétre inconnu
0 eR?.

© Nous observons la réalisation de n variables aléatoires X1, ..., X,,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas la vraie valeur de 8 qui a generé les X !

© Nous voulons utiliser les n observations (les réalisations de Xj, ..., X,) afin
de faire des assertions concernant la vraie valeur de 8, et afin de quantifier
I'incertitude associée a ces assertions.
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Quelle sorte d'affirmations concernant la vraie valeur de 87

@ Estimation. Etant donné un échantillon Xi,..., X, tiré d'une distribution
Fy qui dépend d'un paramétre inconnu 8, comment peut-on construire un
estimateur, i.e une fonction de I'échantillon dont le but est d'estimer 87

@ Tests d’hypothéses. Etant donné une valeur plausible 85 pour 8 (ou
plusieurs valeurs plausibles formant un ensemble ©g), est-ce que, sur la base
de I'échantillon Xy,..., X,, cette valeur (ou cet ensemble) est un bon
indicateur de la vraie valeur de 67

© Intervalles de confiance. Plutot que de tenter d'estimer la valeur précise du
parameétre € qui a généré notre échantillon Xy, ..., X,, est-ce qu'on peut
construire un ensemble de valeurs sous la forme d’un intervalle, qui aura une
grande probabilité de contenir le vrai parametre 67

Victor M. Panaretos (EPFL) istique pour ématici 214 /246




Définition (Intervalle de confiance bilatéral)

Soient Xy,..., X, & f(z;0), ou 8 € ® CR, un échantillon aléatoire et a € (0,1)

une constante. Soient L(Xy,...,X,) et U(Xy,...,X,) deux statistiques,
appelées respectivement la limite inférieure et la limite supérieure, telles que

glélcgpg[L(Xl,...,Xn) <6< U(Xl,...,Xn)] —1-a
Alors, I'intervalle aléatoire
[L(Xl,...,Xn), U(Xl,...,Xn)],

est appelé un intervalle de confiance bilatéral pour 6 avec un seuil de confiance
(1-a).
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Définition (Intervalle de confiance unilatéral) |

Soient Xy, ..., X, o f(z;0), ou 8 € ® C R, un échantillon aléatoire et a € (0,1)

une constante. Soit L(X1,...,X,) une statistique telle que
i ce. < =1-—a.
inf Py [L(Xl, LX) < 9] 1-a
Alors, I'intervalle aléatoire
(X, .., Xn), +o0)

est appelé un intervalle de confiance unilatéral a gauche pour 8 avec un seuil de
confiance (1 — ). De facon analogue, si U(Xx,...,X,) satisfait

glél(gpg[U(Xl,...,Xn) > e] —1—aq,
alors l'intervalle aléatoire
(—oo, U(Xl,...,Xn)]

est appelé un intervalle de confiance unilatéral 3 droite pour 8 au seuil (1 — o). |
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Interpretation

o |l faut faire attention lorsqu’on interpréte un intervalle de confiance.
@ Remarquez que

i e <6< e =1-
91'2({3 Py [L(Xla aXn) <6< U(le 7Xn)] 1-a,
est une affirmation équivalente a
elg(gm{e € [L(Xl,...,Xn), U(Xl,...,Xn)] }] —1-a

o Toutefois, la deuxieme fagcon d'écrire I'affirmation peut nous amener a une
mauvaise interprétation de ce que signifie un intervalle de confiance.

o En effet, c'est I'intervalle [L, U] qui est aléatoire et non le parametre 6.

@ Dire que « la probabilité que le parameétre tombe a |'intérieur de I'intervalle
est au moins 1 — o » est faux : le paramétre ne va ou ne tombe nul part, il
est fixe!

@ C'est l'intervalle qui peut changer pour différentes valeurs de I'échantillon
X1, .., Xn, et qui peut donc couvrir ou non le paramétre.

o |l faut donc dire « la probabilité que I'intervalle couvre le paramétre 6 est au
moins (1 — o) ».
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Interpretation

RN
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Interpretation

@ Une facon différente de clarifier la situation est de remarquer que :

]P’g[L(Xl,...,Xn) <9< U(Xl,...,Xn)] _

=P, [{L(Xl,...,Xn) <ONN{U(XL,. ., Xn) > e}],

ou le coté droit de I'expression accentue le fait que I'affirmation s'applique
aux bornes aléatoires de confiance L et U, plutdt qu'au parameétre
déterministe 6.

@ Afin d'éviter toute confusion, il est préférable d'écrire Pg {[L, U] 3 6} que
Pe {6 € [L, U]}
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Exemple (presque le “seul exemple™)

. id N .
Soit X1,...,X, & N(u,0?), ol u est inconnu et g2 est connu. Nous voulons

construire un intervalle bilatéral pour p. Nous standardisons pour obtenir :

X —p
o/Vn

Ainsi, si zg et z1_g sont les a/2 et 1 — a/2 quantiles (respectivement) de la
distribution N (0, 1), nous avons :

~ N(0,1).

Plag < Tk <10

En manipulant I'expression a l'intérieur de la probabilité, nous obtenons :

*vn

S)_( zlza}zl—a

v
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<:>P|:—X+Z%\/ES—,U,S—X+21_%\/H- = l—-«a
(:>IP’[)_( T >u>X il 1
— %g Z MK 2 —2_a = —a
Zyn > V]
o - o]
— P|X —2z « ng,uSX—z%\/ﬁ_ = l—«a

L'égalité ci-dessus est vraie quelque soit la vraie valeur de u € R. Donc si

S g S g

L(Xy,..., X)) =X —2_s & U(Xy,..., X)) =X —zs

3

alors [L, U] est un intervalle de confiance au seuil 1 — a.. Par symétrie de N (0, 1),

— o = g
X —2zj_a X +2z_2
2 . /n 2 2 /n
———— ————
L(X1,.e, Xn) U (X1, Xn)

<
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Observez que I'intervalle est symétrique autour de X, le EMV de . Pour mettre
|'accent sur ce fait, on I'écrit souvent sous la forme

X + Z]_f_

\/_

Nous pouvons ainsi faire quelques observations importantes :

o La longueur de l'intervalle de confiance est 2z1_a/20/\/ﬁ, ce qui dépend de

02, n et a.

o Le parameétre o2 échappe a notre contrdle, puisque c'est la variance de la
distribution N (u,0?) sous-jacente.

@ Nous pouvons cependant contrdler la taille de I'échantillon n et le seuil de
confiance 1 — a.. En augmentant n, la longueur de I'intervalle est
ré-échelonnée par un facteur de 1/+/n.

@ D'un autre c6té, diminuer a (i.e. augmenter la confiance 1 — a) a pour effet
d'augmenter la longueur de I'intervalle : plus nous voulons avoir de la
confiance dans notre intervalle et plus I'intervalle sera grand (notons que la
longueur de l'intervalle tend vers I'infini lorsque o — 0).

v
T——————T————r—= = TYE T
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Maintenant, considérons le probléme consistant a trouver un intervalle de
confiance unilatéral a droite. En utilisant le fait que /f ~ N(0, 1), nous
pouvons écrire _
X —
= P [
o/vn

En manipulant I'expression, nous obtenons

<zl a]:l—cx.

et 'intervalle

= o
—00 X+ 21_q— .
( ’ n
est un intervalle de confiance unilatéral a droite avec au seuil 1 — a. De facon
similaire, un intervalle de confiance unilatéral a gauche avec un seuil 1 — o est
donné par

[ )_(—zl_a% , oo )
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Pivots et Pivots Approximatifs

© Quelle était I'idée essentielle derriére cette construction ?
@ Comment construire des intervalles plus généralement ?
La construction semble un peu ad-hoc, car I'étape cruciale était le resultat
X—p
o/v/n

~ N(0,1)
qui nous a permi d'écrire

Pu Za/2§ =1-g¢

b<z
O'/-\/ﬁ_ 1—a/2

qui était valide pour toute valeur de u. Nous étions alors capable de manipuler
I'expression a l'intérieur de la probabilité afin d'obtenir notre intervalle.

Il semblerait que ce soit le concept auquel nous devrions nous intéresser dans un
cadre plus abstrait...
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Pivots et Pivots Approximatifs

Définition (Pivot)

Soit Xy,..., X, b f(z;86). Une fonction

g: X" x0 = R,

est appelée un pivot si
Q 9 g(z,...,2,,0) est continue pour tout (z1,...,2,) € X".
Q Plg(Xi,...,Xn,0) < z] ne dépend pas de 6.

Si nous sommes capables de trouver un pivot pour 8, dont la distribution est
connue, nous sommes alors capables de trouver les quantiles g; et g, tels que

Plg1 < g(X1,..., X5,0) < @] =1 -

Si g a une forme nous permettant de manipuler 'inégalité a I'intérieur de la
probabilité on a espoir d'obtenir un intervalle explicite.

Sinon, nous pouvons toutefois tenter de déterminer de facon numérique I'ensemble
{0 S @ tq1 S g(X17"'1X7L;6) S q2}1
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Pivots et Pivots Approximatifs

Du point de vue concpetuel, tout va bien. Cependant, il y a deux défis auxquels
nous faisons maintenant face :

©@ Comment trouver des pivots en général ?
@ Comment déterminer la distribution d’un pivot ?
Pour répondre a 2, nous définissons :

Définition (Pivot approximatif)
Soit X1,..., X, S f(z;0). Une fonction
g: X" x0 - R,

est appelée un pivot approximatif si

Q Pourtoutn €N, 8 — g(z,...,,,0) est continue pour tout
(z1,...,2,) € X"
@ Nous avons
9( X1, ... X, 0) -5 Y,

ou Y est une variable aléatoire dont la distribution ne dépend pas de 6.
e = == = A
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Pivots et Pivots Approximatifs

@ Si nous connaissons la distribution asymptotique d'un pivot approximatif,
nous pouvons construire un intervalle de confiance approximatif.

@ Soit Y est une variable aléatoire continue. Si ¢; et g, sont les quantiles de
F'y tels que
Plgg<Y<g]=1-oa

@ Alors nous avons par définition de la convergence en loi,

g(X1,~-~,Xn,9) i> Y

n—oo

= Plan <9(X1,.., X0, 0) < o] — Pl <Y <g]=1-a.

@ Nous pouvons ainsi utiliser le pivot approximatif afin de construire un
intervalle de confiance approximatif.
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Soit X3, ..., X, une collection de variables aléatoires iid de moyenne inconnue
p = E[X] et de variance inconnue E[(X; — u)?] = 02 < 00. On cherche un pivot
approximatif afin de construire un intervalle pour u.

@ Par le théoreme central limite, nous avons /n(X — u) A N(0,02).

o Par la loi forte des grands nombres, S2 = 37 | (X; — p)?/(n — 1) & o2.
Maintenant, nous pouvons utiliser le théoréme de Slustky afin de conclure que
X —

S R4y
S/\/n

et nous avons donc trouvé un pivot approximatif. On obtient, maintenant :

.g(le""Xn>#): NN(O,l),

_ S X —
<pEX-zom) = P[za/zss/ﬁsh,a/z]
= ]P[za/Q Sg(lesX’m/J’) Szl—o

n—0

— ]P[Za/z < Y < Z]_,a/g] =1-a.

S
N

P X—Zl_%

Qui donne l'intervalle approximatif X + Zi_g \%

v,
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Pivots Approximatifs pour les familles exponentielles

Que se passe-t-il si I'on s’intéresse pas a une moyenne, mais a un parametre
général ?

On verra qu'il est possible de trouver des pivots approximatifs dans le cas d'une
famille exponentielle. Nous considérons deux types d'intervalles de confiance
découlant de deux types de pivots :

© Intervalles de Wald.

@ Intervalles du rapport de vraisemblance.
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Proposition (Pivots approximatifs de Wald) |

Soit X3, ..., X, un échantillon iid tiré d’une distribution avec une fonction de
densité/masse f(x;0) appartenant a une famille exponentielle non-dégénérée,

f(z;0) = exp{n(8) T(z) — d(6) + S(z)}, z€EX,0€0.

Supposons que

@ L'espace des paramétres ® C R est un ensemble ouvert.

@ La fonction n(-) est une bijection deux fois contindment dérivable entre ©
and ® = n(0) telle que n' # 0.

Soit 6, 'EMV de 6, et J, = n d"(é")",(éj[;?(éd;](é")nll(é"). Définissons

9(Xy,..., X, 0) = JTH?(8, —0).

Alors
9(X1,..., Xn,0) -5 N(0, 1),

et g(Xi,...,Xn,0) est donc un pivot approximatif pour 6.
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Intervalles de confiance approximatifs de Wald

En utilisant la méme notation que celle de la proposition précédente, on voit que
le tableau suivant contient les intervalles de confiance approximatifs avec seuil
(1 — ) pour 8 :

| Confiance approximative 1 —a [[ L(Xy,..., X)) | U(X1,...,Xn) |

Bilatéral 0 — 21 op2d, % | 04tz o0 d, 2
Unilatéral 3 gauche 6—2z_oJ, 2 +00
Unilatéral a droite —00 6+ zl_aJ,jl/Q
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Pivots du rapport de vraisemblance

Proposition (Pivots approximatifs du rapport de vraisemblance)

Soit X3, ..., X, un échantillon iid tiré d’une distribution avec un fonction de
densité/masse f(z;0) appartenant & une famille exponentielle non-dégénérée,

f(z;6) = exp{n(0) T(z) — d(8) + S(z)}, zeX,0e0.
Supposons que :

© L’espace des paramétres ® C R est un ensemble ouvert.

@ La fonction 7(-) est une bijection deux fois continiiment dérivable entre ®
and ® = n(0) telle que n' # 0.
Soient 6, 'EMV de 6, et g(Xy, ..., Xn,0) = 2(£(8) — £(8)). Alors,

d
g(Xla"'vXn’e) — X%)

et g(Xy,...,Xn,0) est donc un pivot approximatif pour 6.
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Pivots du rapport de vraisemblance

@ Notons que le pivot approximatif du rapport de vraisemblance

~

9(X1,...,Xn,0) =2(£(8) — £(8)) n'a pas nécessairement une forme que |'on
peut manipuler afin d’obtenir un intervalle de confiance explicite.

@ Cependant, nous pouvons trouver de facon numérique l'intervalle de
confiance approximatif, en déterminant I'ensemble

{9 € @ : g(X17' . '7X’ﬂ;9) S %—a(X%)},

oll ¢1_«a(x3) set le (1 — a)-quantile d'une distribution x2.
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La dualité avec les tests d'hypothese
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La dualité avec les tests d'hypothese

Il semble y avoir de liens entre les intervalles de confiance et les tests d’hypothese :

o Estimation par intervalle : trouver une région qui contient le paramétre.
Tests d'hypotheses, est-ce qu'une région donnée econtient le parameétre ?

@ Tests d'hypotheses : seuil donné par c.
Estimation par intervalle : confiance 1 — a.

@ Tests d'hypothese : tests du rapport de vraisemblance et des tests de Wald.
Estimation par intervalle : intervalles de Wald et du rapport de vraisemblance.

Est-il possible que nous soyons en train de regarder les deux cotés d'une méme
piece de monnaie?
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Dualité

Théoreme (Théoreme de la dualité)

Soient X1,..., X, < f(z;0) une variable aléatoire et § € © C R.

Q Si[L(Xiy,...,Xn),U(X1,...,Xy)] est un intervalle de confiance bilatéral
avec seuil (1 — &) pour 8, alors le test dont la fonction de test est

0( X1y, Xn) = Wb ¢ [L( X1, ..., Xp), U(X1,..., Xn)]}

est un test de {Hp : = 6o} contre {H; : 6 # 84} avec un seuil de
signification égal a o.

@ Réciproquement, supposons que pour n'importe quel 6y € ©,

0(Xy,...,Xn;00) est une fonction de test pour la paire d’hypotheses
{Hp :0 =6y} et {H; : 6 # 6y} avec une probabilité d’erreur de type | égale a
a. Alors,

R(X1,..., Xy) ={0€0©:6(Xq,...,X,;9) =0}

est une région de confiance avec seuil (1 — ) pour 6.
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Dualité

@ Lorsque nous suivons la procédure décrite dans la deuxieme partie du
théoréme afin d’obtenir une région R a partir d'une fonction de test, nous
parlons d'inverser un test.

o Notez que dans la partie (2), nous disons que R(X1,..., X,) est une région
et non un intervalle.

@ Pour certaines formes de 6 et pour certains modeles f(z;8), la région
R(X1,...,X,) est bel et bien un intervalle.
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Dualité

Le TRV au niveau a pour {Hpy : 4 = po vs Hy : p # pg’} dans le cas N(u,0?) (o
inconnu) était :

a(xl,...,xn)=1{‘x_“°

S/v/n
L'intervalle de confiance au niveau 1 — a était :

> t{n—l,l—a/2}}

X+t 11-a/235/Vn
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Dualité unilatérale ?

Pour des résultats unilatéraux, une direction est trés facile.

Si (—o0, U] est un intervalle unilatéral a droite avec seuil (1 — a) pour 6,
alors § = 1{U < 6p} est un test avec un seuil a pour {Hp : 6 > 65} vs
{Hl 10 < 90}

L'obtention d'un intervalle unilatéral a partir d'un test unilatéral dépend de la
forme de la fonction de test ainsi que de la forme du modele considéré...

@ Mais ca marche bien dans le cas d'une famille exponentielle !
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Proposition (Intervalles unilatéraux a partir de tests unilatéraux)

Soit Xy, ..., X, un échantillon aléatoire iid tiré d’'une famille exponentielle a
1-paramétre avec une fonction de densité/masse

f(z;0) = exp{n(6)T(z) — d(6) + S(z)}, z€X,6€OCR,

telle que m(-) est strictement croissante et dérivable, et que d(-) est dérivable.
Supposons que T = Z?:l T(X,) est une variable aléatoire continue, et que sa
Py[1 < t] = G(t;6) est continue par rapport a 8.

e Soit 6(Xi,...,Xn;60) le test UPP de

Ho 10 S 90
Hl 10 > 90
au seuil o, tel que défini avant. Alors, la région

R(X]_,,Xn):{’ljeeé(Xl,,Xn1'L9) :0},

est un intervalle unilatéral & gauche avec seuil (1 — ) de la forme
[L(Xy,- .., Xy), +00).
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@ Soit 6(Xi,...,Xn;6p) le test UPP de
HO -0 Z 90
Hl 10 < 90
au seuil o, tel que défini avant. Alors, la région

est un intervalle unilatéral a droite avec seuil (1 — ) de la forme
(=00, U(X1,..., X3)]

Remarques :

@ En termes non techniques : sous certaines conditions, inverser un test
unilatéral pour une famille exponentielle va nous donner un intervalle de
confiance unilatéral.

@ Observez de plus qu'il s’agit de tests unilatéraux optimaux peuvant étre
utilisés afin d’obtenir des intervalles de confiance.

@ Puisque les tests sont optimaux, est-ce que les intervalles sont aussi
optimaux ? Mais qu’entendons-nous par intervalles de confiance optimaux ?
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Optimalité dans |'estimation par intervalle
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Optimalité dans I'estimation par intervalle

Comment pouvons-nous définir la notion d'optimalité ? Il semble que n'importe
quelle définition d'optimalité devrait satisfaire les deux critéres suivants :

@ Intuitivement, les intervalles de confiance optimaux devraient &tre le plus
< petit » possible en moyenne, tout en respectant leur seuil de confiance :
plus l'intervalle est petit et plus la localisation du parameétre est précise.

@ Mathématiquement, nous avons vu qu'il existe une dualité naturelle entre les
intervalles de confiance et les tests d'hypothese.

e Ainsi, toute notion d'optimalité pour des intervalles de confiances devrait étre
duale a la notion d'optimalité pour les tests d'hypothese.

e En d'autres mots, inverser un test d'hypothése optimal devrait nous donner un
intervalle de confiance optimal.

Puisque nous avons vu qu’en général il n'y a pas de test optimal pour une paire
d'hypotheses bilatérale, le deuxieme critere élimine tout espoir d’obtenir un
intervalle bilatéral optimal. Qu'en est-il des intervalles unilatéraux ?
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Définition (Intervalles a gauche uniformément plus précis)
Soient [L(X1, ..., Xyn),+00) et [M(X1,...,X,),+00) deux intervalles de
confiance unilatéraux avec seuil (1 — &) pour 6. Si pour tout 6 € ©,

Pg[H—LZe]gng[H—MZe], \VI€>O,

alors on dit que [L(X3, ..., X,),+00) est plus précis que [M (X4, ..., X,), +0).

Si[L,+o0) est plus précis que tout intervalle 3 gauche au seuil (1 — ), alors il est
appelé I'intervalle de confiance unilatéral a gauche uniformément plus précis

Définition (Intervalles a droite uniformément plus précis)

Soient (—oo, U(X3,...,X,)] et (—oo, M(Xy,...,X,)] deux intervalles de
confiance unilatéraux avec seuil (1 — &) pour 6. Si pour tout 6 € ©,

Pg[U — 6 > €] <Pg[M — 6 > €], Ve>0,

alors on dit que (—oo, U(Xy, ..., X,)] est plus précis que (—oo, M (X1, ..., X,)].
Si (—o0, U] est plus précis que tout intervalle a droite au seuil (1 — ), alors il est

appelé I'intervalle de confiance unilatéral a droite uniformément plus précis.

i =7 — = =y
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Optimality = Tightness

Intuition \

Etant donné que L tombe a gauche au moins 95% des fois, one veut de plus qui'il
soit toujours plus probable que ca soit proche a 8 que pour une autre borne M
(pour tout 8!)

@ Nous constatons que notre définition satisfait notre premier critere :
intuitivement, la notion d'optimalité est équivalente a la notion de « plus
petit > intervalle de confiance.

@ La proposition qui suit nous montre qu'elle respecte aussi (au moins pour le
cas des familles exponentielles) notre deuxieme critére concernant la dualité.
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Intervalles optimales

Proposition (Tests UPP = intervalles UMA chez les familles exp.) |

Soit X1, ..., X, un échantillon aléatoire iid tiré d'une distribution exponentielle a
1-paramétre avec fonction de densité/masse

f(z;0) = exp{n(8) T(z) — d(8) + S(z)}, z€eX,0€0OCR,

telle que m(-) est strictement croissante et dérivable, et d(-) est dérivable.

Supposons que T = Y., T(X;) est une variable aléatoire continue dont loi la loi
Py[r < t] = G(t;8) est continue en 6.
Pour n'importe quel 6y € ©, définissons 6(X1, - .., Xn;00) comme étant le test

UPP
HO:GSGO
H129>90

R(Xl,...,Xn):{ﬁe @6()(1,,){7“’[9)20}7

au seuil o.. Alors, la région,

est un intervalle de confiance unilatéral & gauche uniformément plus précis avec
seuil (1 — a). i
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