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Organisation du cours

Cours mardi 13.15–15.00

Exercices lundi 10.15–12.00

Référence principale (libre accès en ligne, et disponible à la Librairie La
Fontaine, RLC) :

Panaretos, V.M. (2016). Statistique pour Mathématiciens. PPUR.

Page web : moodle

Test bonus le 15 avril, 13.15

Examen final écrit.

La note finale N sera calculée selon l’algorithme

F = 0:75� E + 0:25�maxfE ;Tg
E = examen final, T = test bonus
on arrondi F pour obtenir N
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Introduction
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Commençons par les maths :

Mathématiques  � ����������

#
' apprendre

Une manière :

1 d’exprimer une grande variété de notions complexes avec précision et
cohérence

2 de “légitimer les conquêtes de notre intuition 1” - apprendre, comprendre et
conclure correctement

1. Jacques Hadamard
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et la statistique ?

utiliser les maths

pour

extraire des informations

à partir de

données

en présence d’

incertitude.

Habituellement, on pense à des ensembles de nombres lorsqu’on parle de données,
mais...

...en fait, tous les objets qui peuvent être exprimées mathématiquement sont
potentiellement des “données”
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Biologie structurelleAligned DNA minicircles: 3D view
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Imagerie médicale

Contrôle d’Epidemiques
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Particules Fondamentales

−6 −4 −2 0 2 4 6
0

500

1000

1500

2000

2500

3000

In
te

n
s
it
y

(a) Results of unfolding

 

 

Unfolded intensity

True intensity

Smeared intensity

−6 −4 −2 0 2 4 6

−300

−200

−100

0

100

200

300

f̂
−

f

(b) Difference between unfolded and true

Figure 1: Demonstration of unfolding using a two-component Gaussian mixture model. Figure (a)

shows the smeared intensity g, the true intensity f and the unfolded intensity f̂ along
with 95 % pointwise confidence bands. Figure (b) shows the results after subtraction of
the true intensity f .

we have used the observations y to choose the prior p(β|α̂). Hence, it is not clear how to
interpret interval estimates produced using the spread of the empirical Bayes posterior.

To produce confidence intervals with a straightforward frequentist interpretation, we
propose bootstrapping the procedure outlined above. More specifically, we resample the
observations y using parametric bootstrap with y∗ ∼ Poisson(µ̂), where y∗ denotes a
resampled smeared observation and µ̂ = y is the MLE of the smeared mean µ. For each
resampled observation y∗, we rerun the MCEM algorithm to find a resampled hyperpa-
rameter α̂∗. The bootstrapped spline coefficients β̂∗ are then found as the mean of the
bootstrapped empirical Bayes posterior, β̂∗ = E(β|y∗, α̂∗). The bootstrapped unfolded
intensities f̂∗(s) =

∑p
j=1 β̂

∗
jBj(s) are then used to compute pointwise percentile intervals

to serve as confidence bands for the unknown intensity f . Note that such a procedure
also takes into account uncertainty regarding the value of the regularization parameter α
which is ignored by most conventional techniques for uncertainty quantification in inverse
problems. Note also that such confidence bands are in fact confidence bands for E(f̂) since
they do not take into account the bias of the estimator f̂ . Unfortunately, bootstrap es-
timates of this bias are known to be inconsistent (see e.g. Hall and Horowitz (2012) and
the references therein) hence making it difficult to construct of bias-corrected confidence
bands for f .

We demonstrate the proposed framework for HEP unfolding with a simple simulation
study. In this demonstration, the probability density function of the true events was a
two-component Gaussian mixture model and the expected total number of events was
set to 10 000. This intensity was smeared by convolving it with a zero-mean Gaussian of
unit variance. The observations from the corresponding Poisson process were discretized
using n = 40 histogram bins on the interval [−7, 7] and the unknown intensity f using
p = 40 order-4 B-spline basis functions on the same interval. The hyperparameter α was
estimated to be 9.5 · 10−7 using 15 iterations of the MCEM algorithm. On each E-step
of the iteration, 200 observations were generated from the posterior p(β|y, α(k)) using the

7
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Les probabilités nous aident pour la partie incertitude

C’est la discipline mathématique qui étudie les phenomènes aléatoires
(où stochastiques)

Elle consiste en une base sur laquelle on peut construire des modèles qui
acceptent la présence d’incertitude

Les probabilités nous donnent un cadre de travail dans lequel on peut comprendre
et quantifier l’effet que la présence d’incertitude a sur notre extraction
d’informations à partir des données.
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Notre cadre générale

1 Nous disposons d’une distribution F (x ; �) qui dépend d’un paramètre
inconnu � 2 Rp .

2 Nous observons la réalisation de n variables aléatoires X1; : : : ;Xn ,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne connaissons toujours pas le vraie valeur de � qui a généré les
Xi !

3 Nous voulons utiliser les n observations (les réalisations de X1; : : : ;Xn) afin
de faire des assertions concernant la vraie valeur de �, et de quantifier
l’incertitude associée à ces assertions.

Semble trop simpliste ?

! Contient l’essence de la plupart des idées utilisées dans des problèmes plus
complexes !

! Plusieurs situations plus complexes peuvent souvent être réduites à ce cas
simple en utilisant les mathématiques de façon adéquate.
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Quels types d’assertions peut-on faire sur la vraie valeur de
� ?

Les trois problèmes statistiques que nous allons considérer sont :

1 Estimation. Etant donné un échantillon X1; : : : ;Xn tiré d’une distribution
F� qui dépend d’un paramètre inconnu �, comment peut-on construire un
estimateur, i.e une fonction de l’échantillon, dont le but est d’estimer � ?

2 Tests d’hypothèses. Etant donnée une valeur plausible �0 pour � (ou
plusieurs valeurs plausibles formant un ensemble �0), est-ce que, sur la base
de l’échantillon X1; : : : ;Xn , cette valeur (ou cet ensemble) est un bon
indicateur de la vraie valeur de � ?

3 Intervalles de confiance. Plutôt que de tenter d’estimer la valeur précise du
paramètre � qui a généré notre échantillon X1; : : : ;Xn , est-ce qu’on peut
construire un ensemble de valeurs sous la forme d’un intervalle, qui aura une
grande probabilité de contenir le vrai paramètre � ?
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Road Map

Avant d’attaquer ces problèmes statistique, il nous faut développer l’arrière-plan :

(A) Modèles probabilistes : quels modèles, pourquoi, comment les manipuler,
comment les choisir, formes abstraites (pour obtenir des résultats qui sont
valables pour tous les modèles considérés).

(B) Théorie d’échantillonage : la relation entre les données et les modèles
probabilisties, et le comportement probabiliste des données (de l’echantillon).

Enfin, comme annoncé, nous allons nous intéresser aux trois problèmes :

(C) Estimation.

(D) Tests d’hypothèses.

(E) Intervalles de confiance.
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Modèles Probabilistes
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Nomenclature

Dans le cadre de ce cours, un modèle de probabilité sera la distribution (aussi
appelée loi ou fonction de répartition) F d’une variable aléatoire X qui prend des
valeurs dans le sous-ensemble X � R de la droite des réels :

F (x ) = P[X � x ]; x 2 R:

Ecrivons X � F pour dire que F est la distribution de X .

Si fXigi2I sont de variables aléatoires indépendantes et identiquement

distribuées selon la distribution F , écrivons Xi
iid� F .

X est appelé l’espace échantillon, � est appelé l’espace des paramètres.

La distribution F dépendra typiquement d’un ou de plusieurs paramètres,
� = (�1; : : : ; �p)

> 2 � � Rp (dépendamment du contexte, une différente
lettre grecque ou latine peut être utilisée).

Afin d’indiquer que la distribution F dépend du paramètre �, nous allons
souvent écrire F� ou F (x ; �). Par conséquence : F (x ; �) = P�[X � x ].
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Modèles réguliers discrets

Afin de spécifier un modèle de probabilité discret, nous devons définir :

1 L’espace échantillon X des valeurs possibles que peut prendre la variable
aléatoire discrète X , c’est-à-dire un ensemble discret

X = fx : P[X = x ] > 0g:

2 La valeur de la fonction de masse f (x ; �), en tant que fonction de x 2 X et
de � 2 �.

On considera seulement de modèles telles que X � Z.

Rappelons quelques modèles discrètes de base, et pourquoi il sont importants.
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Loi Bernoulli

Définition (Distribution de Bernoulli)

On dit qu’une variable aléatoire X suit une distribution de Bernoulli de paramètre
p 2 [0; 1], noté X � Bern(p), si

1 X = f0; 1g,
2 f (x ; p) = p1fx = 1g+ (1� p)1fx = 0g.

L’espérance, la variance et la fonction génératrice des moments (FGM) de
X � Bern(p) sont données par

E[X ] = p; Var[X ] = p(1� p); M (t) = 1� p + pe t :
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Loi Binomiale

Définition (Distribution binomiale)

On dit qu’une variable aléatoire X suit une distribution binomiale de paramètres
p 2 [0; 1] et n 2 N, noté X � Binom(n ; p), si

1 X = f0; 1; 2; : : : ;ng,

2 f (x ; p) =

�
n

x

�
px (1� p)n�x .

La moyenne, la variance et la fonction génératrice des moments de
X � Binom(n ; p) sont données par

E[X ] = np; Var[X ] = np(1� p); M (t) = (1� p + pe t )n :

si X =
Pn

i=1Yi où Yi
iid� Bern(p) =) X � Binom(n ; p)
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Loi Binomiale
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Loi Géometrique

Définition (Distribution géometrique)

Une variable aléatoire X suit une distribution géométrique de paramètre
p 2 (0; 1], noté X � Geom(p), si

1 X = f0g [ N,

2 f (x ; p) = (1� p)xp.

La moyenne, la variance et la fonction génératrice des moments de X � Geom(p)
sont données par

E[X ] =
1� p
p

; Var[X ] =
(1� p)
p2

; M (t) =
p

1� (1� p)e t ; t < � log(1�p):

Si fYigi�1 sont telles que Yi
iid� Bern(p) et T = minfk 2 N : Yk = 1g � 1

=) T � Geom(p)
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Loi Géometrique
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Loi Binomiale Négative

Définition (Distribution binomiale négative)

Une variable aléatoire X suit une distribution binomiale négative de paramètres
p 2 (0; 1] et r > 0, noté X � NegBin(r ; p), si

1 X = f0g [ N,

2 f (x ; p; r) =

�
x + r � 1

x

�
(1� p)xpr .

La moyenne, la variance et la fonction génératrice des moments de
X � NegBin(r ; p) sont données par

E[X ] = r
1� p
p

; Var[X ] = r
(1� p)
p2

; M (t) =
pr

[1� (1� p)e t ]r ; t < � log(1�p):

Si X =
Pr

i=1Yi où Yi
iid� Geom(p) =) X � NegBin(r ; p).

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 19 / 246



Loi Binomiale Négative
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Loi de Poisson

Définition (Distribution de Poisson )

Une variable aléatoire X suit une distribution de Poisson de paramètre � > 0,
noté X � Poisson(�), si

1 X = f0g [ N,

2 f (x ;�) = e��
�x

x !
:

La moyenne, la variance et la fonction génératrice des moments de
X � Poisson(�) sont données par

E[X ] = �; Var[X ] = �; M (t) = expf�(e t � 1)g:

Informellement, Binom(n ; p)! Poisson(�) lorsque n !1 et p = �=n
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Loi de Poisson
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Modèles réguliers continus

Afin de spécifier un modèle de probabilité continu, nous devons :

1 Définir la fonction de densité de probabilité, f (x ; �), en tant que fonction de
x 2 X et de � 2 �.

2 Spécifier son support (l’ensemble sur lequel f (x ; �) > 0), si ce n’est pas a
priori claire.

Rappelons quelques modèles continus de base, et pourquoi il sont importants.
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Loi Uniforme

Définition (Distribution Uniforme)

Une variable aléatoire X suit une distribution uniforme de paramètres
�1 < �1 < �2 <1, noté X � Unif(�1; �2), si

fX (x ; �) =

(
(�2 � �1)�1 si x 2 (�1; �2);

0 sinon:

La moyenne, la variance et la fonction génératrice des moments de
X � Unif(�1; �2) sont données par

E[X ] = (�1+�2)=2; Var[X ] = (�2��1)2=12; M (t) =
e t�2 � e t�1
t(�2 � �1) ; t 6= 0;M (0) = 1:
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Densité uniforme
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Loi Exponentielle

Définition (Distribution exponentielle )

Une variable aléatoire X suit une distribution exponentielle de paramètre � > 0,
noté X � Exp(�), si

fX (x ;�) =

(
�e��x ; si x � 0

0 si x < 0:

La moyenne, la variance et la fonction génératrice des moments X � Exp(�) sont
données par

E[X ] = ��1; Var[X ] = ��2; M (t) =
�

�� t ; t < �:
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Densité exponentielle
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Loi Gamma

Définition (Distribution gamma)

Une variable aléatoire X suit une distribution gamma de paramètres r > 0 et
� > 0 (respectivement le paramètre de forme et le paramètre d’intensité), noté
X � Gamma(r ; �), si

fX (x ; r ; �) =

(
�r

�(r)x
r�1e��x ; si x � 0

0 si x < 0:

La moyenne, la variance et la fonction génératrice des moments de
X � Gamma(r ; �) sont données par

E[X ] = r=�; Var[X ] = r=�2; M (t) =

�
�

�� t
�r

; t < �:
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Loi Khi Quarré (ou Khi Deux)

Définition (Distribution khi carré)

Une variable aléatoire X suit une distribution khi carré de paramètre k 2 N
(appelé le nombre de degrés de liberté), noté X � �2k , si
X � Gamma(k=2; 1=2). En d’autres mots,

fX (x ; k) =

(
1

2k=2�( k
2 )
x

k
2�1e�

x
2 ; si x � 0

0 si x < 0:

La moyenne, la variance et la fonction génératrice des moments de X � �2k sont
données par

E[X ] = k ; Var[X ] = 2k ; M (t) = (1� 2t)�k=2; t <
1

2
:
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Densité gamma
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Loi Normale (où Loi de Gauss)

Définition (Distribution normale)

Une variable aléatoire X suit une distribution normale de paramètres � 2 R et
�2 > 0 (respectivement le paramètre moyenne et le paramètre variance), noté
X � N(�; �2), si

fX (x ;�; �
2) =

1

�
p
2�

exp

(
�1
2

�
x � �
�

�2
)
; x 2 R:

La moyenne, la variance et la fonction génératrice des moments de X � N(�; �2)
sont données par

E[X ] = �; Var[X ] = �2; M (t) = expft�+ t2�2=2g:

Dans le cas spécial Z � N (0; 1), nous utilisons la notation '(z ) = fZ (z ) et
�(z ) = FZ (z ), et nous les appelons respectivement la fonction de densité normale
centrée réduite (ou fonction de densité normale standard) et la fonction de
répartition normale centrée réduite (ou fonction de répartition normale standard).
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Densité normale
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... et on arrête jamais !

La liste n’arrête pas...

...la distribution Pareto, la distribution de Weibull, la distribution log-normale, la
distribution inverse-gamma, la distribution inverse-gaussienne, la distribution
normale-gamma, la distribution beta...

Vers un cas général
1 On veut développer une théorie statistique dont les proprietés seront valables

pour plusieurs modèles, indépendemment de leur structure spécifique.

2 Peut-on définir une classe (une famille) des modèles générale, telle qu’elle
nous permette d’étudier les méthodes statistiques dans un cadre général ?

3 Si oui, alors n’importe quelle propriété prouvée pour le cas général sera aussi
valide pour les cas spéciaux !

4 Les questions en dessus motivent la définition des familles exponentielles.
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Familles Exponentielles

Définition (Les familles exponentielles de distributions)

Une classe de distributions de probabilités régulières sur X � R est une famille
exponentielle de distributions à � k -paramètre � si sa fonction de densité (ou
fonction de masse) admet la représentation

f (x ) = exp

(
kX

i=1

�iTi (x )� 
(�1; : : : ; �k ) + S(x )

)
; x 2 X (2.1)

où :

1 � = (�1; : : : ; �k ) est un paramètre de dimension k dans Rk ;

2 Ti : X ! R, i = 1; : : : ; k , S(x ) : X ! R, et 
 : Rk ! R, sont des fonctions
à valeurs réelles ;

3 Le support de f (l’ensemble X sur lequel f est positive) ne dépend pas de �.

Le paramètre � est appellé le paramètre naturel.
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Forme Naturelle vs Forme Usuelle

exp

(
kX

i=1

�iTi (x )� 
(�) + S(x )

)
= exp

(
kX

i=1

�i (�)Ti (x )� d(�) + S(x )

)
:

où � : �! Rk est une fonction injective deux fois différentiable, tel que

� = �(�)

et donc 
(�) = 
(�(�)) = d(�); pour d = 
 � �.

Forme naturelle : typiquement meilleure pour faire la théorie.

Forme usuelle : typiquement meilleure dans le cadre des applications.
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Example (Famille exponentielle binomiale)

Soit X � Binom(n ; p). Observons que :�
n

x

�
px (1� p)n�x = exp

�
log

�
p

1� p
�
x + n log(1� p) + log

�
n

x

��
:

Définissons :

� = log

�
p

1� p
�
; T (x ) = x ;

S(x ) = log

�
n

x

�
; 
(�) = n log(1 + e�) = �n log(1� p):

Ainsi, si n est maintenu fixe et que seulement p a le droit de varier, le support de
f ne dépend pas de � et on a une famille exponentielle à 1-paramètre. Ici le
paramètre usuel est une bijection deux fois différentiable du paramètre naturel � :

p =
e�

1 + e�
& � = log

�
p

1� p
�

| {z }
=�(p)

:

Ici p 2 (0; 1), mais � 2 R. □
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Example (Famille exponentielle gaussienne)

Soit X � N (�; �2). Nous pouvons alors écrire :

f (x ;�; �2) =
1

�
p
2�

exp

(
�1
2

�
x � �
�

�2
)

= exp

�
� 1

2�2
x 2 +

�

�2
x � 1

2
log(2��2)� �2

2�2

�
:

Définissons :

�1 =
�

�2
; �2 = � 1

2�2
;

T1(x ) = x ; T2(x ) = x 2; S(x ) = 0; 
(�1; �2) = � �21
4�2

+
1

2
log

�
� �

�2

�
;

et observons que le support de f est toujours R, indépendamment des valeurs du
paramètre. Nous obtenons donc que la distribution N (�; �2) est une famille
exponentielle à 2-paramètres. □
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Modèles de probabilité transformés
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Modèles de probabilité transformés

Souvent : nous avons un modèle pour un phénomène aléatoire X

Mais nous somme plutôt intéressés par un autre aspect de ce phénomène,
disons g(X ), où g est une fonction connue.

Example

Supposons que R est une variable aléatoire positive représentant le rayon de
couverture d’une antenne Wireless et considérons que R � Unif [a ; b], pour
0 < a < b.

Quelle est la distribution de l’aire de couverture A = �R2 ? □

Modèles de probabilité transformés

Comment la distribution d’une variable aléatoire X est transformée, lorsque la
variable aléatoire X est transformée ?
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Modèles de probabilité transformés : cas discret

Lemme

Soit X une variable aléatoire discrète, et Y = g(X ). Alors, l’espace échantillon
de Y est Y = g(X ) et

FY (y) = P[g(X ) � y ] =
X
x2X

fX (x )1fg(x ) � yg; 8y 2 Y (3.1)

fY (y) = P[g(X ) = y ] =
X
x2X

fX (x )1fg(x ) = yg; 8y 2 Y: (3.2)

Preuve = enoncé !

Cas continu : plus compliqué :

1 Si g pas monotone : au cas-par-cas.

2 Si g est monotone : on a des résultats généraux.
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Example (La normale standard au carré a une distribution �2
1)

Soit Z � N (0; 1). Nous voulons trouver la distribution de Y = Z 2. Notez que
FY (y) = P[Y � y ] = 0 si y < 0. Pour y � 0 nous avons :

FY (y) = P[Z 2 � y ] = P[jZ j � py ] = P[�py � Z � py ]
= �(

p
y)� �(�py) = �(

p
y)� (1� �(

p
y)) = 2�(

p
y)� 1:

Nous pouvons aussi trouver la densité en dérivant :

fY (y) = 2
d

dy
�(
p
y) = 2

d

d
p
y
�(
p
y)

d

dy

p
y

= 2�(
p
y)
y�1=2

2
= 2

1p
2�
e�y=2 y

�1=2

2

=
1p
2
p
�
e�y=2y�1=2 =

1

21=2�(1=2)
y1=2�1e�y=2:

Notez que la dernière expression est la densité d’une distribution �21. Alors :

Z � N (0; 1) =) Z 2 � �21: (3.3)
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Modèles de probabilité transformés : cas continu

Lemme
Soit X une variable aléatoire continue sur X � R et soit g : X ! R une

1 monotone,

2 continûment dérivable,

3 de derivée jamais nulle.

Soit Y = g(X ). Alors, l’espace échantillon de Y est Y = g(X ) et
Si g est croissante, alors

FY (y) = FX (g
�1(y)):

Si g est décroissante, alors

FY (y) = 1� FX (g
�1(y)):

Dans les deux cas, nous aurons :

fY (y) =

���� @@y g�1(y)
���� fX (g�1(y)); y 2 Y:
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Corollaire (Transformations affines)

Soit X une variable aléatoire et Y = g(X ). Si g(x ) = ax + b, a 6= 0, alors

8y 2 Y; FY (y) =

8<:FX

�
y�b

a

�
a > 0;

1� FX

�
y�b

a

�
+ P

�
X = y�b

a

�
a < 0;

avec P
�
X = y�b

a

�
= 0 si X est une variable aléatoire continue. Ainsi, pour

y 2 Y :

1 fY (y) = ja�1jfX
�
y � b
a

�
, si X est continue,

2 fY (y) = fX

�
y � b
a

�
, si X est discrète.
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Lemme (Transformations affines de la distribution normale)

Soit X � N (�; �2), a 6= 0. Alors aX + b � N (a�+ b; a2�2). Par conséquent, si
X � N (�; �2), alors

FX (x ) = �

�
x � �
�

�
;

où � est la fonction de répartition standard,
�(u) =

R u
�1(2�)�1=2 expf�z 2=2gdz , qui est, on le rappelle, la fonction de

répartition d’une variable aléatoire Z � N (0; 1).
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Modèles transformés : cas continu multidimensionnel

Théorème (Transformations multidimensionnelles)

Soit g : Rn ! Rn une bijection différentiable,

g(x) = (g1(x); : : : ; gn(x)); x = (x1; : : : ; xn)
> 2 Rn :

Soit X = (X1; : : : ;Xn)
> ayant la distribution conjointe fX(x), x 2 Rn , et

définissons Y = (Y1; : : : ;Yn)
> = g(X). Alors, si Yn = g(X n), nous avons

fY(y) = fX(g
�1(y))

���det hJg�1(y)i���; pour y = (y1; : : : ; yn)
> 2 Yn ;

et zero sinon, lorsque Jg�1(y) est bien defini. Ici, Jg�1(y) est la matrice
Jacobienne de g�1, i.e. la fonction à valeur dans l’espace des matrices de
dimension (n ;n),

Jg�1(y) =

264
@
@x1

g�11 (y) : : : @
@xn

g�11 (y)
...

. . .
...

@
@x1

g�1n (y) : : : @
@xn

g�1n (y)

375 :
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Example (Convolution de densités)

Soient X et Y deux variables aléatoires continues indépendentes, avec densités
fX et fY . La densité de la variable X +Y égale la convolution de fX et fY :

fX+Y (u) =

Z +1

�1
fX (u � v)fY (v)dv :

Définissons g : R2 ! R2; (x ; y)
g7! (x + y ; y) (u ; v)

g�17! (u � v ; v):
La jacobienne de l’inverse est �

1 0
�1 1

�
dont la déterminante absolue vaut 1. Il s’ensuit que

fX+Y ;Y (u ; v) = fX ;Y (u � v ; v) ind:
= fX (u � v)fY (v);

et on intégre par rapport à v pour trouver la marginale fX+Y :

fX+Y (u) =

Z +1

�1
fX (u � v)fY (v)dv :
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Application : Sommes des variables aléatoires normales

Exercice

Soient X1 � N (�1; �
2
1) et X2 � N (�2; �

2
2) deux variables aléatoires

indépendentes. Montrez que

X1 +X2 � N (�1 + �2; �
2
1 + �22)

Corollaire
Soient X1; : : : ;Xn de variables aléatoires indépendantes telles que
Xi � N (�i ; �

2
i ), et soit Sn =

Pn

i=1Xi . Alors,

Sn � N

 
nX

i=1

�i ;

nX
i=1

�2i

!
:
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Sélection de modèle

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 48 / 246



Comment choisir le bon modèle probabiliste ?

Comment choisir un modèle ?

et

Pourquoi la distribution supposée est un bon modèle pour le phénomène
considéré ?

En termes très généraux, la sélection d’un modèle est basée sur :

1 la théorie scientifique et des expériences préalables ;

2 des principes philosophiques ;

3 une analyse exploratoire des données ;

4 une combinaison de (1), (2) et (3).
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Analyse exploratoire des données
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Parfois �! modèle de probabilité ne peut pas être choisi sans équivoque au
moyen de lois physiques et/ou de principes scientifiques. Quoi faire ?

Si on a observations x1; :::; xn , on peut les utiliser pour choisir entre plusieurs
choix, ou au moins exclure certains choix.

Comment ? – en essayant d’apprécier certaines caractéristiques importantes que
nous devrions prendre en considération quand on fait un choix de modèle :

1 Position.

2 Dispersion.

3 Comportement des Queues.

4 Symétrie/Asymétrie.
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Pour apprécier les 4 caractéristiques importantes, cn considera des résumés :

1 Numériques.

2 Graphiques.

Tout d’abord, quelques notations utiles :

Echantillon ordonné
si x1; : : : ; xn sont n valeurs réelles, nous dénotons par x(j ) la j e valeur de
l’échantillon, lorsque ces valeurs sont placées en ordre croissant (tel que
x(1) = minfx1; : : : ; xng et x(n) = maxfx1; : : : ; xng). Notez que ceci signifie que

x(1) � x(2) � : : : � x(n�1) � x(n):

Example

Afin d’illustrer la notation, supposons que n = 4 et que nous avons

x1 = 5; x2 = 12; x3 = 2; x4 = 12:

Nous écrivons alors x(1) = 2, x(2) = 5 et x(3) = x(4) = 12. Dans ce cas, nous
avons donc x(1) = x3, x(2) = x1, x(3) = x(4) = x2 = x4.
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Résumés numériques : centre

Définition (Moyenne et Médiane Empirique.)

Soit x1; : : : ; xn une collection de nombres réels, appelé un échantillon. Nous
définissons :

1 La moyenne empirique comme suit

�x =
1

n

nX
i=1

xi :

2 La médiane empirique comme suit

M =

8>><>>:
x( n+1

2 ) si n est impair;

x( n
2 )

+ x( n
2
+1)

2 sinon:
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Résumés numériques : dispersion

Définition (Variance empirique et DAM)

Soit x1; : : : ; xn une collection de nombres réels, appelé un échantillon. Nous
définissons :

1 La variance empirique comme suit

�̂2 =
1

n

nX
i=1

(xi � �x )2;

(l’écart-type empirique est définit comme suit �̂ =
p
�̂2).

2 La Déviation Absolue par rapport à la Moyenne (DAM) comme suit

DAM =
1

n

nX
i=1

jxi � �x j :

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 57 / 246



Résumés numériques : queues

Définition (Quartiles, EIQ et valeurs aberrantes)

Soit x1; : : : ; xn un échantillon de n valeurs réelles, et soit

x(1); : : : ;M ; : : : ; x(n)

l’échantillon ordonée, où M est la médiane. Nous définissons :

1 Le premier quartile, Q1, comme étant la médiane du sous-échantillon
ordonné x(1); x(2); : : : ;M .

2 Le second quartile, Q2, comme étant la médiane M , Q2 =M .

3 Le troisième quartile, Q3, comme étant la médiane du sous-échantillon
ordonné M ; : : : ; x(n�1); x(n).

4 L’écart interquartile (EIQ) comme étant EIQ = Q3 �Q1.

5 Une valeur aberrante (anglais : outlier) est une observation qui
n’appartient pas à l’intervalle

�
Q1 � 3

2EIQ ; Q3 +
3
2EIQ

�
.
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Résumés numériques : symétrie/asymétrie

Définition (Coefficient de dissymétrie empirique)

Soit x1; : : : ; xn un échantillon de n valeurs réelles. Nous définissons le coefficient
de dissymétrie de cet échantillon comme

SK =
1
n

Pn

i=1(xi � �x )3�
1
n

Pn

i=1(xi � �x )2
�3=2 :

Si le numérateur et le dénominateur sont égaux à zéro (ce qui peut se produire
dans un échantillon discret), alors SK est indéfini.
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Résumés graphiques : histogrammes

Définition (Histogramme)

Soient x1; : : : ; xn une collection de n valeurs réelles et h > 0 une constante. Soit
fIj gj2Z une partition régulière de R contenant des intervalles de longueur h > 0,

Ij =
h
�+ (j � 1)h ; �+ jh

�
; j 2 Z

où � 2 R est un certain nombre réel fixe. L’histogramme de x1; : : : ; xn avec des
intervalles de longueur h > 0 et d’origine � est défini comme étant le graphique
de la fonction :

y 7! histx1;:::;xn (y) =
1

h

X
j2Z

1fy 2 Ij g 1
n

nX
i=1

1fxi 2 Ij g:

Deux remarques :R
Ij
histX1;:::;Xn

(y)dy nous donne la proportion des observations de

l’échantillon qui appartiennent à Ij .

E
hR

Ij
histX1;:::;Xn

(y)dy
i
= 1

n

Pn

i=1 P[Xi 2 Ij ] =
R
Ij
f (y)dy :
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(g) Densité d’une N (0; 1) (en rouge) et
l’histogramme d’un échantillon aléatoire de
taille 20 tiré d’une N (0; 1) (en noir)).
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(h) Densité d’une N (0; 1) (en rouge) et
l’histogramme d’un échantillon aléatoire de
taille 100 tiré d’une N (0; 1) (en noir)).
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Résumés graphiques : boxplot

Définition (Bôıte à moustaches (anglais : boxplot))

Soit x1; : : : ; xn une collection de n valeurs réelles. Soient :

1 M la médiane, Q1 le premier quartile, et Q3 le troisième quartile de
fx1; : : : ; xng.

2 W1 = min1�j�nfxj : xj � Q1 � 1:5� EIQg &
W2 = max1�j�nfxj : xj � Q3 + 1:5� EIQg.

3 O = fi 2 f1; : : : ;ng : xi =2 [W1;W2]g.
La bôıte à moustaches de x1; : : : ; xn est une annotation des valeurs M , Q1, Q3,
W1, W2, et fxj : j 2 Og sur la droite réelle. La figure suivante est une
annotation standard :
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Echantillonage
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Retour au cadre général

1 Il y a une distribution F (x ; �) qui dépend d’un paramètre inconnu � 2 Rp .

2 Nous observons la réalisation de n variables aléatoires X1; : : : ;Xn ,
indépendantes et identiquement distribuées, qui suivent cette distribution.

3 Nous voulons utiliser les n observations (les réalisations de X1; : : : ;Xn) afin
de faire des assertions concernant la vraie valeur de �.

Puisque tout ce que nous avons en main est l’échantillon, nous travaillerons
essentiellement avec une fonction de l’échantillon, disons T (X1; : : : ;Xn)

Il faut, donc, comprendre le comportement probabiliste d’une tell fonction
T (X1; :::;Xn). Ceci est appelé théorie d’échantillonnage.
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Statistique

Définition (Statistique)

Soit X un espace échantillon. Une statistique est une fonction T : X n ! R.

Une statistique T : X n ! R réduit une collection de n nombres à une seule
valeur.

Cependant, pour certains modèles, il est possible de choisir une statistique T
telle que T (X1; ::;Xn) soit aussi informative au sujet de � que (X1; : : : ;Xn).
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Statistique exhaustives

Définition (Exhaustivité)

Soit X1; : : : ;Xn
iid� f�. Une statistique T : X n ! R est appelée exhaustive pour le

paramètre �, si
P[X1 � x1; : : : ;Xn � xn jT = t ]

ne dépend pas de �, pour tout (x1; : : : ; xn)> 2 Rn et pour tout t 2 R.

Si une telle statistique existe,la seule connaissance de T suffit pour
faire des inférences sur �.
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Statistiques Exhaustives

Example (Estimer le biais d’une pièce de monnaie)

Soit X1; : : : ;Xn
iid� Bern(�), et T (X) =

Pn

i=1Xi . Pour x 2 f0; 1gn ,

P[X = xjT = t ] =
P[X = x;T = t ]

P[T = t ]
=

P[X = x]

P[T = t ]
1f�n

i=1xi = tg

=
��

n
i=1xi (1� �)n��n

i=1xi�
n

t

�
�t (1� �)n�t 1f�n

i=1xi = tg

=
�t (1� �)n�t�
n

t

�
�t (1� �)n�t

1f�n
i=1xi = tg =

�
n

t

��1
1f�n

i=1xi = tg:

T est alors exhaustive pour p. Cela signifie qu’afin d’obtenir des informations
concernant p, tout ce qui est important est de connâıtre le nombre total de
� faces � ; en effet, l’ordre précis dans lequel sont apparues ces
� faces � n’est pas pertinent dans ce cas-ci :

0 0 1 1 1 0 1 VS 1 0 0 0 1 1 1 VS 1 0 1 0 1 0 1
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Critère de Fisher-Neyman

Comment vérifier q’une statistique est exhaustive ?

Théorème (Critère de Fisher-Neyman (ou Critère de factorisation))

Supposons que (X1; : : : ;Xn) a une fonction de densité/masse conjointe
fX1;:::;Xn

(x1; : : : ; xn ; �), � 2 �. Une statitique T : X n ! R est exhaustive pour �
si et seulement si il existe des fonctions g : R��! R et h : Rn ! R telles que

fX1;:::;Xn
(x1; : : : ; xn ; �) = g(T (x1; : : : ; xn); �)h(x1; : : : ; xn):
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Example (Estimer le biais d’une pièce de monnaie)

Soit X1; : : : ;Xn
iid� Bern(p). Alors,

fX1;:::;Xn
(x1; : : : ; xn) =

nY
i=1

fXi
(xi ) = p

P
n

i=1
1fxi=1g(1� p)n�

P
n

i=1
1fxi=1g:

Ainsi, le critère de Fisher-Neyman est satisfait avec

T (X1; : : : ;Xn) =

nX
i=1

1fXi = 1g =
nX

i=1

Xi

g(t ; p) = pt (1� p)n�t

h(x1; : : : ; xn) = 1:

Il s’ensuit que
Pn

i=1Xi est exhaustive pour p.
□
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Echantillonnage

Définition (Distribution d’échantillonnage)

Soient X1; : : : ;Xn
iid� F et T : X n ! R une statistique. La distribution

d’échantillonnage de T sous la distribution F est la distribution de probabilité

FT (t) = P[T (X1; : : : ;Xn) � t ]; t 2 R:

Notation

Nous allons très souvent écrire simplement T au lieu de T (X1; : : : ;Xn).

Dans cette notation, la distribution d’échantillonnage de T sous F est
FT (t) = P[T � t ].
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Echantillonnage

Dans la définition de la distribution d’échantillonnage de T , nous avons spécifié
sous quelle distribution F celle-ci se produit.

,! Changer la loi des Xi (pour une certaine distribution G plutôt que F ) aura
pour conséquence de changer aussi la distribution d’échantillonnage de T .

Il faut, donc, examiner précisément cette dépendance :

1 Examiner certaines formes spéciales de T et de F

2 Dans des situations générales, tenter de donner des moyens d’établir une
distribution approximative

3 Nous allons nous concentrer sur des statistiques T exhaustives et des
modèles F constituant des familles exponentielles.
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Echantillonnage d’une distribution normale

Commençons avec un cas spécial, qui est quand-même d’importance majeure :

La moyenne et la variance empirique de variables aléatoires normales

Theorem (Théorème de Student-Fisher sur l’échantillonnage gaussien)

Soit X1; : : : ;Xn
iid� N (�; �2), et �X = 1

n

Pn

i=1Xi , S
2 = 1

n�1
Pn

i=1(Xi � �X )2.
Alors,

1 La distribution conjointe de X1; : : : ;Xn a pour fonction de densité :

fX1;:::;Xn
(x1; : : : ; xn) =

�
1

2��2

�n=2

exp

(
� 1

2�2

nX
i=1

(xi � �)2
)
:

2 La moyenne empirique est distribuée comme suit : �X � N (�; �2=n).

3 Les variables aléatoires �X et S2 sont indépendantes.

4 La variable aléatoire S2 satisfait
n � 1

�2
S2 � �2n�1.
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Corollaire (Moments pour l’échantillonnage d’une loi normale)

Soit X1; : : : ;Xn
iid� N (�; �2), alors

E[ �X ] = �; Var( �X ) =
�2

n
; E

�
S2
�
= �2; Var(S2) =

2�4

n � 1
:

(c’est pourquoi nous utilisons un facteur (n � 1)�1 au lieu de n�1 dans la
définition de S2)

Théorème (La statistique de Student et sa loi d’échantillonnage)

Soit X1; : : : ;Xn
iid� N (�; �2), alors

�X � �
S=
p
n
� tn�1:

Ici tn�1 représente la distribution de Student avec n � 1 degrés de liberté.
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Définition (Distribution t de Student )

Une variable aléatoire X suit une distribution t de Student de paramètre k 2 N
(appelé nombre de degrés de liberté), noté X � tk , si

fX (x ; k) =
�
�
k+1
2

�
�
�
k
2

�p
k�

�
1 +

x 2

k

�� k+1
2

;

La moyenne et la variance de X � tk sont données par

E[X ] = 0; Var[X ] =
k

k � 2
;

pour k > 2. La moyenne n’est pas définie pour k = 1 et la variance est non-définie
pour k � 2. Pour tout k 2 N, la FGM n’est pas définie.
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Echantillonnage de familles exponentielles

Que se passerait-il si la distribution à partir de laquelle nous échantillonnons
n’était pas normale, mais.......

binomiale

Poisson

géométrique:::

Plus généralement : que se passe-t-il si l’échantillon X1; : : : ;Xn vient d’une

certaine famille exponentielle ? Soit X1; : : : ;Xn
iid� f , où

f (x ) = exp

(
kX

i=1

�iTi (x )� 
(�1; : : : ; �k ) + S(x )

)
; x 2 X :

1 Est-il possible de trouver la distribution conjointe de l’échantillon
(X1; : : : ;Xn) ?

2 Est-il possible de trouver les moments exacts de certaines statistiques clés ?
3 Est-il possible de trouver la distribution d’échantillonnage exacte de certaines

statistiques importantes ?
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Proposition (Echantillonnage d’une famille exponentielle)

Soit X1; : : : ;Xn
iid� f , où

f (x ) = exp f�T (x )� 
(�) + S(x )g ; x 2 X

avec � 2 � � R, est une densité ayant la forme d’une famille exponentielle.
Alors :

1 La densité conjointe de (X1; : : : ;Xn) a la forme d’une famille exponentielle à
1-paramètre, donnée par

fX1;:::;Xn
(x1; : : : ; xn) = exp

(
�� (x1; : : : ; xn)� n
(�) +

nX
i=1

S(xi )

)
; xi 2 X ;

où

� (x1; : : : ; xn) =

nX
i=1

T (xi ):

2 Si � est ouvert, alors 
 est infiniment dérivable, et en plus

E[� (X1; : : : ;Xn)] = n
0(�) <1 et Var[� (X1; : : : ;Xn)] = n
00(�) <1:

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 79 / 246



Echantillonnage de familles exponentielles

Corollaire

Sous les mêmes conditions, � est exhaustive pour � (si � = �(�) pour une certain
injection �(�), alors il est clair que � est aussi exhaustive pour �).
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Distributions d’Echantillionage
Approximative
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Distributions d’Echantillionage Approximative

La distribution d’échantillonnage de la statistique � (X1; : : : ;Xn) ne peut pas
toujours être déterminée exactement lorsque l’échantillon est tiré d’une famille
exponentielle à un paramètre.

Par conséquent�! tenter de l’approximer en supposant que n !1

Mais il faut définir � la distribution F�(X1;:::;Xn ) est approximée par une certaine
distribution G �

1 Voyons F�(X1;:::;Xn ) comme séquence indexée par la taille de l’échantillon n .

2 Alors � approximation par G � doit être formalisée par une forme de
convergence de Fn à G lorsque n !1.
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Convergence en loi (ou Convergence faible)

Définition (Convergence en loi (ou convergence faible))

Soit fFngn�1 une séquence de fonctions de répartition et G une fonction de
répartition sur R. Nous disons que Fn converge en loi vers G, et écrivons

Fn
d�! G , si et seulement si

Fn(x )
n!1�! G(x );

pour tout les x qui sont des points de continuité de G (i.e. tous les x0 tels que
limx!0G(x0 + x ) = G(x0)).

à noter : si G est continue, la convergence est uniforme.

Example (Le maximum de variables aléatoires uniformes)

Soient X1; : : : ;Xn
iid� Unif (0; 1), Mn = maxfX1; : : : ;Xng, et Qn = n(1�Mn).

P[Qn � x ] = P[Mn � 1� x=n ] = 1�
�
1� x

n

�n
n!1�! 1� e�x :

Notez que la limite est la fonction de répartition d’une variable aléatoire Exp(1).
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Convergence en loi : commentaires

1 Convergence en loi � convergence ponctuelle de la séquence de fonctions de
répartition, à l’exception qu’il n’est pas nécessaire d’avoir une convergence
ponctuelle aux points de discontinuité de la limite.

2 Lorsque Fn(x ) = P[Xn � x ] pour une séquence de variables aléatoires
fXngn�1 et G(x ) = P[Z � x ] pour une autre variable aléatoire Z , nous
allons abuser de la notation et écrire

Xn
d�! Z :

3 Notre but d’approximation de la loi d’échantillonnage se transforme à trouver
une variable aléatoire Z dont la distribution explicite est connue, et telle que

�n
d�! Z
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Convergence en probabilité

Définition

Lorsqu’une séquence de variables aléatoires fXng est telle que

P[jXn �Y j > �]
n!1�! 0 pour tout � > 0 et pour une certaine variable aléatoire

Y , nous disons que Xn converge en probabilité vers Y , et écrivons Xn
p�! Y .

Xn
p�! Y =) Xn

d�! Y

L’inverse n’est généralement pas vrai.

Cependant, si Y = c 2 R est une constante et si fXngn�1 est une séquence

telle que Xn
d�! c, nous avons :

Lemme

Soient fXngn�1 une séquence de variables aléatoires prenant des valeurs dans R,
et c 2 R une certaine constante, alors

Xn
d�! c () P[jXn � cj > �]

n!1�! 0; 8 � > 0:

La preuve est laissée en exercice.
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Distributions d’Echantillonage Approximative

La statistique exhaustive pour un échantillon iid X1; : : : ;Xn tiré d’une famille
exponentielle à un paramètre

f (x ) = expf�T (x )� 
(�) + S(x )g

est de la forme � (X1; : : : ;Xn) =
Pn

i=1T (Xi ), où

E[� (X1; : : : ;Xn)] = n
0(�) <1 et Var[� (X1; : : : ;Xn)] = n
00(�) <1:

Définissons

T n =
1

n
� (X1; : : : ;Xn) =

1

n

nX
i=1

T (Xi )

alors nous remarquons que nous sommes en présence d’une variables aléatoire
qui :

est en fait la moyenne de n variables aléatoires iid,

qui a une moyenne finie 
0(�) et une variance finie 
00(�)=n .

Comment approximer la loi de T n au cas général ?
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Les Deux Grands Théorèmes

Théorème (Loi faible des grands nombres)

Soit Y1; : : : ;Yn des variables aléatoires iid telles que E[Yi ] = � <1 et
Var[Yi ] = �2 <1. Soit Y n = 1

n

Pn

i=1Yi , alors

Y n
p�! �:

En fait, la même conclusion reste vraie lorsque nous imposons une condition plus
faible que celle de la variance finie, i.e. que EjXi j <1.

Théorème (Théorème central limite)

Soit Y1; : : : ;Yn des variables aléatoires i.i.d. telles que E[Yi ] = � <1 and
Var[Yi ] = �2 <1 et soit Y n = 1

n

Pn

i=1Yi , alors

p
n(Y n � �) d�! N (0; �2):
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Distribution d’Echantillonage Approximative pour Familles
Exponentielles

Corollaire

Soit X1; : : : ;Xn
iid� f , où

f (x ) = exp f�T (x )� 
(�) + S(x )g ; x 2 X

avec � 2 � � R et soit

T n =
1

n

nX
i=1

T (Xi ) = n�1� (X1; : : : ;Xn):

Si � est ouvert et 
 est doublement différentiable, alors

p
n(T n � 
0(�)) d�! N (0; 
00(�)):
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Distributions approximatives pour les fonctions de sommes

Théorème (Théorème de Slutsky)

Soit X une variable aléatoire telle que P[X 2 X ] = 1, et g : R� R! R une

fonction continue en X � c, où c 2 R. Si Xn
d! X et Yn

p! c, alors,

g(Xn ;Yn)
d�! g(X ; c) lorsque n !1.

Remarque (Théorème de l’application continue)

Notez un cas spécial important : si X est une variable aléatoire telle que
P[X 2 X ] = 1, et g : R! R est continue en X , alors

Xn
d! X =) g(Xn)

d! g(X ):

Théorème (La méthode delta)

Soit Zn := an(Xn � �) d! Z où an ; � 2 R pour tout n et an " 1. Soit

g : R! R dérivable en �, alors an(g(Xn)� g(�)) d! g 0(�)Z , lorsque g 0(�) 6= 0.
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Nouveaux théorèmes limites partir des plus vieux

ATTENTION : On ne peut pas remplacer la constante déterministe c avec une
variable aléatoire Y dans le théorème de Slutsky.

Le théorème central limite nous dit que si Y1; : : : ;Yn sont des variables aléatoires

iid de moyennes � et de variances �2 <1, alors
p
n( �Yn � �) d�! N (0; �2).

1 Grâce à la méthode delta, nous obtenons de plus que

p
n(g( �Yn)� g(�)) d�! N (0; �2[g 0(�)]2);

pour toutes les fonctions continues et dérivables g .

2 Maintenant considérons Wn une séquence de variables aléatoires telle que

Wn
p! �. Il est facile d’utiliser le théorème de Slutsky afin de conclure que

p
n

�
g( �Yn)� g(�))

Wn

�
d�! N (0; [g 0(�)]2):
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Estimation ponctuelle
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Le problème d’estimation dans notre cadre générale

1 Il y a une distribution F (x ; �) qui dépend d’un paramètre inconnu � 2 Rp .

2 Nous observons la réalisation de n variables aléatoires X1; : : : ;Xn ,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas le vraie valeur de � qui a generé les Xi !

3 Problème d’estimation ponctuelle : Comment utiliser les n observations
(les réalisations de X1; : : : ;Xn) afin de déterminer la vraie valeur de �.

Comment ? Mais avec un estimateur, bien-sur !

Définition (Estimateur ponctuel)

Une statistique prenant des valeurs dans � est appelée un estimateur ponctuel.
Réciproquement, un estimateur ponctuel est une statistique T : X n ! �.

Remarque

Puisque l’objectif d’un estimateur est de fournir une estimation du vrai � qui a
généré les données, nous le dénotons typiquement �̂. Notez de plus que � est un
paramètre déterministe tandis que �̂ est une variable aléatoire.
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Mais... quel estimateur ?

N’importe quelle fonction dont l’image est incluse dans � pourrait être un
estimateur.

Laquelle devons-nous choisir ?
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Critères pour comparer des estimateurs
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Critères pour comparer des estimateurs

Il y a plusieurs critères différents que l’on peut utiliser, mais les statisticiens
considèrent typiquement deux caractérisations de base de la concentration : la
moyenne et la variance de �̂.

Pourquoi ?

1 Interprétation facile.

2 Théorème centrale limite.

3 Inégalités de concentration

Il s’avère que l’erreur quadratique moyenne prend en compte la moyenne
et la variance en même temps.
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Erreur quadratique moyenne

Définition (Erreur quadratique moyenne)

Soit �̂ un estimateur du paramètre � d’un modèle paramétrique fF� : � 2 �g,
� � R. L’Erreur Quadratique Moyenne (EQM) de �̂ est définie comme suit

EQM (�̂; �) = E
��
�̂ � �

�2�
:

Lemme (Décomposition biais-variance)

L’erreur quadratique moyenne d’un estimateur admet la décomposition

EQM (�̂; �) =
�
E[�̂]� �

�2
+ E

h
(�̂ � E(�̂))2

i
= biais2(�̂; �) + Var[�̂]:
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Concentration et EQM

Lemme

Soit �̂ un estimateur de � 2 Rp tel que Var[�̂] <1. Alors, pour tout � > 0,

P[k�̂ � �k > �] � EQM (�̂; �)

�2

Notez que EQM (�̂n ; �)
n!1�! 0 =) �̂n

p�! �.
Lorsqu’un estimateur possède une telle propriété, nous disons que cet
estimateur est consistant.

Définition (Consistance)

Un estimateur �̂n de �, construit à l’aide d’un échantillon de taille n , est
consistant si �̂n

p�! � lorsque n !1.

Remarque

Notez que la convergence de l’EQM vers zéro implique la consistance, mais que la
réciproque est généralement fausse.
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Limitations sur la précision ?

Nous pouvons utiliser l’erreur quadratique moyenne afin de comparer deux
estimateurs, et ainsi obtenir une idée de leur performance

Mais y-a t’il une meilleure erreur quadratique moyenne réalisable pour un
problème donné ?

Ce problème est très difficile, car il est équivalent au problème consistant à
trouver un estimateur uniformément optimal : un estimateur T� tel que

EQM (T�; �) � EQM (T ; �)

pour tout � 2 � et pour tous les estimateurs T .

Pour apprécier la difficulté du problème, supposons que � = R et considérons
l’estimateur S(X1; :::;Xn) = 0 :

C’est un estimateur ridicule, car il n’utilise pas les données, mais quand même
quand la verité est � = 0, alors EQM (S ; 0) < EQM (T ; �) pour tout T –
aucun autre estimateur peut battre S a cet endroit de l’éspace �.

Même une montre cassée donne l’heure exacte deux fois par jour...

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 98 / 246



Borne de Cramér-Rao

Théorème (Borne de Cramér-Rao)

Soit X1; : : : ;Xn un échantillon iid tiré d’un modèle paramétrique régulier f ( � ; �),
� � R et soit T : X n ! � un estimateur de �, pour tout n . Supposons que :

1 Var(T ) <1, pour tout � 2 �.
2 @

@�

�R
Xn

T(x1; :::; xn )fX1;:::;Xn (x1; :::; xn ; �)dx
�
=
R
Xn

T(x1; :::; xn )
@
@� fX1;:::;Xn (x1; :::; xn ; �)dx :

3 @
@�

�R
Xn

fX1;:::;Xn (x1; :::; xn ; �)dx
�
=
R
Xn

@
@� fX1;:::;Xn (x1; :::; xn ; �)dx :

Si nous dénotons le biais de T par �(�) = E(T )� �, alors �(�) est dérivable et

Var(T ) �
�
�0(�) + 1

�2
n
R
X n

�
@
@� log f (x ; �)

�2
f (x ; �)dx

:

La condition 1. n’est en réalité pas nécessaire, mais si elle n’est pas vérifiée le théorème ne
nous apprend pas grand chose...

On appelle la quantité positive
R
X

�
@
@�

log f (x ; �)
�
2

f (x ; �)dx = E
�
@
@�

log f (X1; �)
�
2

l’information de Fisher, I (�).

Même si le biais est égal à zéro, la variance sera bornée inférieurement par 1=[n � I (�)].
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La méthode du maximum de
vraisemblance
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Motivation

La statistique comme “probabilité inverse”. ! Considerons le cas discret.

Point de vue Probabilités

Si on se dispose d’un paramètre � 2 �, alors pour tout (x1; :::; xn) 2 X n , on peut
évaluer

(x1; :::; xn) 7! P�[X1 = x1; :::;Xn = xn ]

c’est à dire, comment se varie la probabilité comme fonction de l’échantillon (=du
résultat).

Point de vue Statistiques

Si on se dispose d’un échantillon (x1; :::; xn) 2 X n , alors pour tout � 2 � on peut
évaluer

� 7! P�[X1 = x1; :::;Xn = xn ]

c’est à dire, comment se varie la probabilité comme fonction du paramètre (=du
modéle).

Intuition : on imagine que les � plausibles à partir du connaissance de l’échantillon
sont ceux qui rendent notre échantillon assez probable...
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Maximum de vraisemblance : cas discret

Définition (La vraisemblance pour une collection discrète iid)

Soit X1; : : : ;Xn une collection de variables aléatoires discrétes, indépendantes et
identiquement distribuées de fonction de masse f (x ; �), où � 2 Rp . La
vraisemblance de � est définie par

L : �! [0; 1]

L(�) =

nY
i=1

f (Xi ; �):

Remarques :

1 La vraisemblance est une fonction aléatoire

2 La vraisemblance est, en effet, la fonction
Qn

i=1 f (Xi ; �) vue comme fonction
de �

3 La vraisemblance n’est pas “la probabilité de �”

4 La vraisemblance L(�) est la réponse à la question : quelle est la probabilité
de l’échantillon observé lorsque le paramètre est égal à �
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Maximum de vraisemblance : cas discret

Lorsque � est inconnu, il semble que l’estimation la plus adaptée serait une valeur
�̂ pour laquelle ce que nous observons est le plus probable — une valeur qui serait
compatible avec nos observations empiriques

Définition (Estimateur du maximum de vraisemblance)

Soit X1; : : : ;Xn un échantillon aléatoire iid tiré d’une distribution F� de fonction
de masse f (x ; �) et soit �̂ tel que

L(�) � L(�̂); 8 � 2 �:

Alors �̂ est appelé un estimateur du maximum de vraisemblance (EMV) de �.

Lorsqu’il existe un unique maximum à la fonction de vraisemblance, nous
parlons de l’estimateur du maximum de vraisemblance �̂ = argmax

�2�
L(�)
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Maximum de vraisemblance : cas continu

Et le cas continu ? On utilisera la même définition, avec la densité au lieu de la
fonction de masse, même si on va perdre l’inteprération en de termes de
probabilités !

Définition (La vraisemblance pour une collection continue iid)

Soit X1; : : : ;Xn une collection de variables aléatoires continues, indépendantes et
identiquement distribuées de fonction de densité f (x ; �), où � 2 Rp . La
vraisemblance de � est définie par

L : �! [0;+1)

L(�) =

nY
i=1

f (Xi ; �):

Remarques :
1 Notons que maintenant la vraisemblance prend de valeurs dans R+ entier.
2 Puisque F (x + �=2 ; �)� F (x � �=2; �) � �f (x ; �) lorsque � # 0, nous

pouvons voir �nL(�) comme étant la probabilité approximative d’un
echantillon “proche” a ce que nous avons observé.
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Définition Générale

Définition (La vraisemblance pour une collection iid)

Soit X1; : : : ;Xn une collection de variables aléatoires indépendantes et
identiquement distribuées de fonction de densité/masse f (x ; �), où � 2 Rp . La
vraisemblance de � est définie par

L(�) =

nY
i=1

f (Xi ; �):

Définition (Estimateur du maximum de vraisemblance)

Soit X1; : : : ;Xn un échantillon aléatoire iid tiré d’une distribution F� de fonction
de densité/masse f (x ; �) et soit �̂ tel que

L(�) � L(�̂); 8 � 2 �:

Alors �̂ est appelé un estimateur du maximum de vraisemblance (EMV) de �.
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Détermination de l’EMV

Notons que l’EMV est défini indirectement, comme l’optimum d’une fonction
objective. Alors comment le déterminer ?

Lorsque la vraisemblance est une fonction dérivable de �, le maximum de la
fonction L(�) doit être une solution de l’équation

r�L(�) = 0;

Avant de déclarer qu’une solution �̂ de cette équation est un EMV, nous
devons d’abord vérifier que c’est bien un maximum (et non un minimum !).

Si la vraisemblance est deux fois dérivable, ceci peut être fait en vérifiant que

� r2
�L(�)

��
�=�̂
� 0;

i.e que (�1) multiplié par la matrice hessienne est définie positive.

Lorsque le paramètre est de dimension un, ceci se réduit à vérifier que la
seconde dérivée est négative lorsqu’elle est évaluée à la solution de l’équation
de vraisemblance.
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Détermination de l’EMV – La logVraisemblence

Afin de résoudre r�L(�) = 0, il faut déterminer la dérivée d’un produit de n
fonctions, ce qui peut être un calcul fastidieux.

Afin d’éviter ceci, nous nous concentrons habituellement à maximiser la
log-vraisemblance

`(�) := logL(�)

au lieu de la vraisemblance.

Puisque la fonction log est monotone, la vraisemblance et la
log-vraisemblance ont les maximums et les minimums pour les mêmes �.

L’avantage de la log-vraisemblance est que nous travaillons avec une somme
de n fonctions plutôt qu’un produit,

`(�) = log

 
nY

i=1

f (Xi ; �)

!
=

nX
i=1

log f (Xi ; �):

Encore une fois, si la fonction log-vraisemblance est deux fois dérivable, un
EMV �̂ de � satisfera

r�`(�)j�=�̂ = 0 & � r2
�`(�)

��
�=�̂
� 0:
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Example (EMV pour la loi de Bernoulli)

Soit X1; : : : ;Xn
iid� Bern(p) et supposons que nous voulons utiliser la méthode

du maximum de vraisemblance afin de construire un estimateur de p 2 (0; 1). La
vraisemblance est :

L(p) =

nY
i=1

f (Xi ; p) =

nY
i=1

pXi (1� p)1�Xi = p

P
n

i=1
Xi (1� p)n�

P
n

i=1
Xi :

En prenant le logarithme de chaque côté de l’équation, nous obtenons la fonction
de log-vraisemblance

`(p) = log p

nX
i=1

Xi + log(1� p)
 
n �

nX
i=1

Xi

!
:

Nous pouvons noter que cette fonction est deux fois dérivable par rapport à p et
calculer

d

dp
`(p) = p�1

nX
i=1

Xi � (1� p)�1
 
n �

nX
i=1

Xi

!
:
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Example (EMV pour la loi de Bernoulli, suite)

Résoudre l’équation `0(p) = 0 en fonction de p est équivalent à résoudre

p�1
nX

i=1

Xi � (1� p)�1
 
n �

nX
i=1

Xi

!
= 0;

et nous pouvons voir que cette dernière équation à un unique racine donnée par
1
n

Pn

i=1Xi = X . Appelons cette racine p̂, nous devons maintenant vérifier qu’elle
correspond bien à un maximum. Notez que

d2

dp2
`(p) = �p2

nX
i=1

Xi � (1� p)�2
 
n �

nX
i=1

Xi

!
;

et que cette expression est toujours non-positive, car 0 �Pn

i=1Xi � n presque
sûrement et p 2 (0; 1). Ainsi

p̂ = X =
1

n

nX
i=1

Xi

est l’unique EMV de p. □
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Example (EMV pour la loi exponentielle)

Soit X1; : : : ;Xn
iid� Exp(�) et supposons que nous voulons utiliser la méthode du

maximum de vraisemblance afin de construire un estimateur de � 2 (0;1). La
vraisemblance est :

L(�) =

nY
i=1

f (Xi ;�) =

nY
i=1

�e��Xi = �n exp

(
��

nX
i=1

Xi

)
:

En prenant le logarithme de chaque côté de l’équation, nous obtenons la fonction
de log-vraisemblance

`(�) = n log �� �
nX

i=1

Xi :

Nous pouvons noter que cette fonction est deux fois dérivable par rapport à � et
calculer

d

d�
`(�) = n��1 �

nX
i=1

Xi :
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Example (EMV pour la loi exponentielle, suite)

Résoudre l’équation `0(�) = 0 en fonction de � nous donne l’unique racine 
1

n

nX
i=1

Xi

!�1
= 1=X :

Appelons celle-ci �̂, nous devons maintenant vérifier qu’elle correspond bien à un
maximum. Notez que

d2

d�2
`(�) = � n

�2

et que cette expression est toujours négative, car � > 0. Ainsi

�̂ =

 
1

n

nX
i=1

Xi

!�1
= 1=X

est l’unique EMV de �. □
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Example (EMV pour la loi gaussienne)

Soit X1; : : : ;Xn
iid� N (�; �2) et supposons que nous voulons utiliser la méthode

du maximum de vraisemblance afin de construire un estimateur de
� = (�; �2) 2 R� (0;1). La vraisemblance est :

L(�; �2) =

nY
i=1

f (Xi ;�; �
2) =

�
1p
2��2

�n

exp

�
�
Pn

i=1(Xi � �)2
2�2

�
:

En prenant le logarithme de chaque côté de l’équation,

`(�; �2) = �n
2
log(2��2)� 1

2�2

nX
i=1

(Xi � �)2:

Noter que les dérivés secondes par rapport à � et �2 existent et

@

@�
`(�; �2) =

1

�2

nX
i=1

(Xi � �)

@

@�2
`(�; �2) = � n

2�2
+

1

2�4

nX
i=1

(Xi � �)2:
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Example (EMV pour la loi gaussienne, suite)

Résoudre l’équation r(�;�2)`(�; �
2) = 0 en fonction de (�; �2) donne un système

de deux équations à deux inconnues. L’unique solution de ce système est 
X ;n�1

nX
i=1

(Xi �X )2

!
:

Appelons cette solution (�̂; �̂2), nous devons maintenant vérifier qu’elle
correspond bien à un maximum. Notez que

@2

@�2
`(�; �2) = � n

�2
;

@2

@(�2)2
`(�; �2) =

n

2�4
� 1

�6

nX
i=1

(Xi � �)2

@2

@�@�2
`(�; �2) =

@2

@�2@�
`(�; �2) = �

Pn

i=1(Xi � �)
�4

=
n�� nX

�4
:

En évaluant ces dérivés secondes en (�̂; �̂2), nous obtenons

@2

@�2
`(�; �2)

����
(�;�2)=(�̂;�̂2)

= � n

�̂2
;

@2

@(�2)2
`(�; �2)

����
(�;�2)=(�̂;�̂2)

= � n

2�̂4
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Example

@2

@�@�2
`(�; �2)

����
(�;�2)=(�̂;�̂2)

=
@2

@�2@�
`(�; �2)

����
(�;�2)=(�̂;�̂2)

=
n �̂� n �̂

�̂4
= 0:

Nous obtenons que la matrice�
� r2

(�;�2)`(�; �
2)
���
(�;�2)=(�̂;�̂2)

�
est diagonale. Afin de montrer qu’elle est définie positive, il suffit de montrer que
les éléments de sa diagonale sont positifs. C’est bien le cas ici, puisque �̂2 est
positif avec probabilité 1. Ainsi l’unique EMV de (�; �2) est donné par

(�̂; �̂2) =

 
X ;

1

n

nX
i=1

(Xi �X )2

!
:

□

Notons que l’estimateur EMV de �2 est biaisé.
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Equivariance de l’EMV

Il y a des situations où nous ne sommes pas intéressés à estimer �, mais
plutôt une transformation � = g(�) de celui-ci.
Si la fonction g est une bijection, nous n’avons pas besoin de répéter le
processus entier d’estimation

Proposition (Equivariance bijective de l’EMV)

Soit ff (� ; �) : � 2 �g un modèle paramétrique où � � Rp . Supposons que �̂ soit
un EMV de �, sur la base de l’échantillon X1; : : : ;Xn tiré de f (x ; �). Soit
g : �! � � Rp une fonction bijective, alors, �̂ = g(�̂) est un EMV de � = g(�).

Example

Soit X1; : : : ;Xn

iid� N (�; 1), et supposons que nous sommes intéressés par l’estimation de
P[X1 � x ], pour un x 2 R donné. Notons que

P[X1 � x ] = P[X1 � � � x � �] = �(x � �);

où � est la fonction de répartition normale standard. La fonction � 7! �(x � �) est une

bijection, car � est monotone ; donc, l’EMV de P[X1 � x ] est �(x � �̂), où �̂ est l’EMV de �

(par l’exemple précédent �̂ = X ). □
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Equivariance de l’EMV

Example (Paramètre usuel vs naturel dans les familles exponentielles)

Soit X1; : : : ;Xn
iid� f , avec

f (x ) = exp f�T (x )� 
(�) + S(x )g ; x 2 X

où � 2 � � R est le paramètre naturel. Supposons maintenant que nous pouvons
aussi écrire � = �(�), où � 2 � est le paramètre usuel et � : �! � est une
certaine fonction bijective et dérivable (et donc 
(�) = 
(�(�)) = d(�), pour
d = 
 � �). Avec cette notation, la fonction de densité/masse de la famille
exponentielle prend la forme :

exp f�T (x )� 
(�) + S(x )g = exp f�(�)T (x )� d(�) + S(x )g :

La proposition précédente implique que si �̂ est l’EMV de �, alors �(�̂) est l’EMV
de � = �(�). La réciproque est elle aussi vraie : si �̂ est l’unique EMV de �, alors
��1(�̂) est l’unique EMV de � = ��1(�). □
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EMV dans les familles exponentielles

Ce n’était pas par hasard que l’EMV existait et était unique dans les exemples
traités : c’est un phénomène général chez les familles exponentielles.

Proposition (EMV pour la famille exponentielle à 1-paramètre)

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution dont la fonction de
densité/masse appartient à une famille exponentielle à 1-paramètre,

f (x ;�) = expf�T (x )� 
(�) + S(x )g; x 2 X ; � 2 �

avec T une fonction non constante et l’espace des paramètres � � R un ouvert.
Alors l’EMV �̂ de � est unique lorsqu’il existe, et est donnée par l’unique solution
par rapport à u de l’équation


0(u) = T :

Ici,

T =
1

n

nX
i=1

T (Xi ) =
1

n
� (X1; :::;Xn):
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Propriétés de l’EMV quand n !1
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Le cas Gaussien

Commenȩns avec le cas spécifique Gaussien.

EMV au cas Gaussien

l’estimateur du maximum de vraisemblance pour le paramètre (�; �2) d’une
distribution gaussienne, basé sur un échantillon iid X1; : : : ;Xn , est

(�̂n ; �̂
2
n) =

 
1

n

nX
i=1

Xi ;
1

n

nX
i=1

(Xi � �X )2

!
=

�
�Xn ;

n � 1

n
S2
n

�
;

L’EMV de �, �̂n , est non-biaisé pour tout n .

Pour tout n , sa distribution est normale, avec variance égale à �2=n .

Ainsi, l’erreur quadratique moyenne est exactement �2=n , et ce, peu importe
la vraie valeur de �.

Il s’ensuit que �̂n est un estimateur consistant.
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Le cas Gaussien

L’EMV de �2, �̂2n est biaisé pour tout n , son biais étant égal à :

biais(�̂2n ; �
2) = E[�̂2n ]� �2 = E

�
n � 1

n
S2

�
� �2 = n � 1

n
�2 � �2 = � 1

n
�2:

Ainsi, �̂2n sous-estime �2, même si asymptotiquement, le biais se réduit à zéro.

La distribution de �̂2n est la même que celle d’une variable aléatoire khi carré
multipliée par �2=n , i.e.

n

�2
�̂2n � �2n�1:

Par conséquent, l’erreur quadratique moyenne de �̂2n est

EQM (�̂2n ; �
2) = biais2(�̂2n ; �

2) + Var[�̂2n ] =
(2n � 1)�4

n2
:

Il s’ensuit que �̂2n est un estimateur consistant.

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 120 / 246



Le cas général

Il n’est habituellement pas possible de déterminer de façon exacte la
distribution d’échantillonnage de l’EMV. Par contre, nous devons recourir à
des approximations en utilisant la notion de convergence en loi

Mais nous avons vu que, pour les familles exponentielles à un-paramètre,

T n

d� N (
0(�);n�1
00(�)).

Alors comme le EMV satisfait 
0(�̂) = T n , si la solution de l’équation dépend
de T n de façon � dérivable � , alors la méthode delta pourrait être utilisée

En fait, c’est exactement le cas ! On utilisera :

Théorème de la fonction inverse

Soit h(x ) : R! R une fonction continûment dérivable, avec une dérivée
différente de zéro au point xo 2 R. Alors,

1 il existe un � > 0 tel que h�1 2 C 1(h(x0)� �; h(x0) + �).

2 (h�1)0(y) = [h 0(h�1(y))]�1 pour jy � h(x0)j < �.
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Convergence faible du EMV

Théorème

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution dont la fonction de
densité/masse f (x ;�0) appartient à une famille exponentielle à 1-paramètre
non-dégénérée,

f (x ;�) = expf�T (x )� 
(�) + S(x )g; x 2 X ; � 2 �:

telle que

1 L’espace des paramètres � � R est un ensemble ouvert
(qui implique que 
(�) est deux fois continûment dérivable).

2 La fonction T n’est pas une constante sur le support de f

Soit �̂n l’estimateur du maximum de vraisemblance �0, dont on suppose
l’existence, alors

0 <
1


00(�0)
<1 et

p
n(�̂n � �0) d�! N

�
0 ;

1


00(�0)

�
:
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Pour des grandes valeurs de n , l’EMV �̂ est approximativement
N (�0; [n


00(�0)]�1).

Biais asymptotique = zéro.

Et la variance ? Notons que

E[(`0(�))2] = E

(�
@

@�
(�� (X1; : : : ;Xn)� n
(�))

�2)
= E

h
(� (X1; : : : ;Xn)� n
0(�))2

i
= Var[� (X1; : : : ;Xn)]

= n
00(�):

L’EMV atteint asymptotiquement la borne de Cramér-Rao ! .

l’estimateur du maximum de vraisemblance de � a une performance
quasiment optimale (pour n grand !)
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Pourquoi 1=[n
 00(�)] ?

0.0 0.5 1.0 1.5 2.0 2.5 3.0

σ2

lo
gL
ik
el
ih
oo
d

MLE of σ2

True σ2

(p) Fonctions de log-vraisemblance pour le
paramètre de variance correspondant à 25
réplications d’un échantillon iid N (0; 1) de
taille 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

σ2

lo
gL
ik
el
ih
oo
d

MLE of σ2

True σ2

(q) Fonctions de log-vraisemblance pour le
paramètre de variance correspondant à 25
réplications d’un échantillon iid N (0; 1) de
taille 50.
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Pourquoi 1=[n
 00(�)] ?

0.0 0.5 1.0 1.5 2.0 2.5 3.0

σ2

lo
gL
ik
el
ih
oo
d

MLE of σ2

True σ2

(r) Fonctions de log-vraisemblance pour le
paramètre de variance correspondant à 25
réplications d’un échantillon iid N (0; 1) de
taille 150.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

σ2

lo
gL
ik
el
ih
oo
d

MLE of σ2

True σ2

(s) Fonctions de log-vraisemblance pour le
paramètre de variance correspondant à 25
réplications d’un échantillon iid N (0; 1) de
taille 450.
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Consistance de l’EMV

Corollaire (Consistance de l’EMV dans les familles exponentielles)

Dans le même cadre et les mêmes conditions que pour le théorème précèdent,
nous avons

�̂n
p�! �0; lorsque n !1:

Et le paramètre usuel ?
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Convergence faible du EMV

Corollaire

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution dont la fonction de
densité/masse f (x ; �0) appartient à une famille exponentielle non-dégénérée à
1-pramètre

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 �:

Supposons que

1 L’espace des paramètres � � R est une ensemble ouvert.

2 La fonction �(�) est une bijection C 2 entre � et � = �(�).

3 La fonction T n’est pas une constante sur le support de f .

Soit �̂n l’estimateur du maximum de vraisemblance de �0, alors

p
n(�̂n � �0) d�! N

�
0 ;

[�0(�0)]
d 00(�0)�0(�0)� d 0(�0)�00(�0)

�
:

Exercice : Prouvez ce corollaire.
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Biais asymptotique = zéro.

Et la variance ? Si � = �(�) et 
(�) = d(��1(�)), notons

E[(`0(�))2] = E

"�
@`(�)

@�(�)

@�(�)

@�

�2
#

= (�0(�))2E[(`0(�))2]

= (�0(�))2Var[� (X1; : : : ;Xn)]

= n(�0(�))2
d 00(�)�0(�)� d 0(�)�00(�)

[�0(�)]3

= n
d 00(�)�0(�)� d 0(�)�00(�)

[�0(�)]
;

L’EMV atteint asymptotiquement la borne de Cramér-Rao dans le cas usuel
aussi !
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Autres méthodes d’estimation
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Motivation

Pourquoi utiliser d’autres méthodes si l’EMV est quasiment optimal pour
grand n ?
Une raison est que, parfois, le EMV n’est pas explicitement disponible.

Example (EMV pour la loi de Cauchy)

Supposons que X1; : : : ;Xn sont des variables aléatoires iid suivant une
distribution de Cauchy dont la fonction de densité est

f (x ; �) =
1

�(1 + (x � �)2) ; x 2 R:

La fonction de log-vraisemblance dans ce cas est
`(�) = �Pn

i=1 log[1 + (Xi � �)2]� n log(�): L’EMV doit satisfaire `0(�̂) = 0, ou
de façon équivalente

nX
i=1

2(Xi � �̂)
1 + (Xi � �̂)2

= 0:

L’équation ci-dessus ne peut pas être résolue explicitement afin de trouver l’EMV.
Solution numérique ! Point de départ ? □
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Itération de Newton-Raphson

Supposons que nous ayons une valeur initiale �̂(0) qui est près du vrai maximum �̂.

Puisque �̂ est le maximum global, il satisfait `0(�̂) = 0. Supposons maintenant que
` soit telle qu’il est possible de faire un développement en série de Taylor. Nous
aurions alors :

0 = `0(�̂) = `0(�̂(0)) + (�̂ � �̂(0))`00(�̂(0)) + 1

2
(�̂ � �̂(0))2`000(��);

où �� = ��̂ + (1� �)�̂(0) pour un certain � 2 [0; 1]. En supposant maintenant que

j�̂ � �̂(0)j est petit, nous obtenons que le terme (�̂ � �̂(0))2 est négligeable par

rapport au terme (�̂ � �̂(0)). Alors, lorsque `000 est bornée, nous pouvons écrire

`0(�̂(0)) + (�̂ � �̂(0))`00(�̂(0)) ' 0;

ce qui suggère que

�̂ ' �̂(0) �
`0(�̂(0))

`00(�̂(0))
:

La procédure peut maintenant être itérée en définissant �̂(1) = �̂(0) � `0(�̂(0))

`00(�̂(0))
, ...
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Comment peut-on trouver une valeur initiale �̂(0) raisonnable ?

Example (EMV pour la loi de Cauchy, suite)

Notez que la densité f (x ; �) est symétrique par rapport à �,

f (x ; �) =
1

�(1 + (x � �)2) ; x 2 R:

Une valeur initiale potentielle pour � est donc la médiane de X1; : : : ;Xn , celle-ci
peut être utilisée afin d’initialiser une itération de Newton-Raphson. □
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Dans d’autres cas, les choses peuvent ne pas être si claires.

Example (EMV de la distribution gamma)

Soit X1; : : : ;Xn
iid� Gamma(r ; 1) et supposons que nous voulons estimer le

paramètre r par la méthode du maximun de vraisemblance. La vraisemblance est

L(r) =

nY
i=1

1

�(r)
X r�1

i e�Xi ;

avec la log-vraisemblance correspondante

`(r) = �n log �(r) + (r � 1)

nX
i=1

logXi �
nX

i=1

Xi :

En dérivant et en posant l’expression obtenue égale à zéro, nous obtenons que
l’EMV r̂ doit satisfaire

�0(r̂)
�(r̂)

=
1

n

nX
i=1

logXi :

Cette équation ne peut pas être résolue explicitement. Pire encore, il n’y a pas de
valeur plausible immédiate pour r lorsqu’on examine la forme de la densité. □
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Méthode des moments

Motivation :
1 Trouver un estimateur qu’on peut déterminer explicitement.
2 L’estimateur doit êter assez bon (proche à �) mais pas nécessairement

optimal.

Heuristique des moments

1 Soient X1; ::;Xn
iid� f�0 et supposons que EjX1j <1:

2 LGN =) 1
n

Pn

i=1Xi
p�! E[X1] =

R +1
�1 xf (x ; �0)dx = m(�0)

3 En d’autres mots : 1
n

Pn

i=1Xi
p�! m(�0)

4 Alors pour grand n on aura 1
n

Pn

i=1Xi ' m(�0)

5 Alors si �̂ est près de �, nous nous attendons à ce qu’il satisfasse

1

n

nX
i=1

Xi ' m(�̂):
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Méthode des moments

Définition (la méthode des moments - Cas pour un seul paramètre)

Soit X1, . . .,Xn un échantillon aléatoire iid tiré d’une distribution F� de fonction
de densité/masse f (x ; �). Supposons que EjX1j <1 pour tout � 2 � � R. Soit
�̂ tel que

1

n

nX
i=1

Xi = m(�̂);

où

m(�) =

Z +1

�1
xf (x ; �)dx ; � 2 R:

Alors �̂ est appelé l’estimateur par la méthode des moments (MoM) de �.
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Méthode des moments - Commentaires

La méthode des moments dit que nous devons poser le premier moment
théorique égal au premier moment empirique observé.

Ceci nous donne une équation dont l’inconnue est le paramètre à estimer ; en
résolvant cette équation par rapport à cet inconnue, nous obtenons un
estimateur de �, qui est l’estimateur par la méthode des moments.

Cette équation est habituellement plus facile à résoudre que l’équation
obtenue en posant la dérivée de la log-vraisemblance égale à zéro, car la
plutôt que d’avoir une équation de la forme

g(X1; : : : ;Xn ; �) = 0;

nous avons un problème généralement plus facile de la forme

g(�) = h(X1; : : : ;Xn):

(séparation des variables)
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Example (Estimateur par la MoM pour la loi uniforme)

Soit X1; : : : ;Xn
iid� Unif (0; �), et supposons que nous voulons estimer � 2 R+.

Dans ce cas, nous avons qu’un seul paramètre, alors l’estimateur par la MoM de
�, disons �̂, doit être tel que

1

n

nX
i=1

Xi = m(�̂):

Dans ce cas,

m(�) =

Z �

0

x

�
dx =

�

2
:

Ainsi, l’estimateur par la méthode des moments est

�̂ =
2

n

nX
i=1

Xi :

Comparez avec l’EVM qui est égal à X(n). □
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Méthode des moments – cas � 2 Rp

Définition (Méthode des moments — Cas pour plusieurs paramètres)

Soit X1, . . .,Xn un échantillon aléatoire iid tiré d’une distribution F� de fonction
de densité/masse f (x ; �). Supposons que EjX1jp <1, pour tout � 2 � � Rp .
Soit �̂ tel que

1

n

nX
i=1

X k
i = mk (�̂); k = 1; : : : ; p

où

mk (�) =

Z +1

�1
x k f (x ; �)dx ; � 2 Rp ; k = 1; : : : ; p:

Alors �̂ est appelé l’estimateur par la méthode des moments (MoM) de �.
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Example (Estimateur par la MoM pour la loi gamma)

Supposons que X1; : : : ;Xn
iid� Gamma(r ; �) et que nous voulons estimer le

vecteur (r ; �)>. Les équations des deux premiers moments sont :

1

n

nX
i=1

Xi = m1(r̂ ; �̂) et
1

n

nX
i=1

X 2
i = m2(r̂ ; �̂):

De plus, nous avons vu que

m1(r ; �) = r=� et

m2(r ; �) = E2[X1] + Var[X1] = r2=�2 + r=�2 = r(r + 1)=�2:

En résolvant le système des équations des moments par rapport aux paramètres
inconnus, nous obtenons les estimateurs

r̂ =
n �X 2Pn

i=1(Xi � �X )2
et �̂ =

n �XPn

i=1(Xi � �X )2
:

□
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Inconvénient de la méthode de moments �! il n’est pas garanti qu’elle fonctionne
tout le temps...

...pour un problème à p paramètres, nous avons besoin de l’existence d’un pe

moment absolu !

Example (L’échec de la MoM dans le cas de la loi de Cauchy)

Soit X1; : : : ;Xn des variables aléatoires iid suivant une distribution de Cauchy
avec fonction de densité

f (x ; �) =
1

�(1 + (x � �)2) ; x 2 R:

Notez que

m1(0) =
1

�

Z +1

�1

x

1 + x 2
dx =1:

Ainsi les équations des moments ne sont pas définies et la méthode des moments
ne fonctionne donc pas. □

En général : lorsque la fonction génératrice des moments existe, alors la méthode
des moments est bien définie.

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 140 / 246



Parenthèse
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Quantiles

Question : étant donné x 2 R, quelle est la probabilité P[X � x ] que X soit plus
petit ou égal à x ? Réponse : fonction de répartition
Question opposée :

étant donnée une probabilité � 2 (0; 1); quel est le x 2 R tel que P[X � x ] = � ?

Réponse : Souvent pas unique – motive la définition des quantiles.

Définition (Fonction quantile et quantiles)

Soient X une variable aléatoire prenant des valeurs dans X � R, et FX sa
fonction de répartition. Nous définissons la fonction quantile de X comme étant
la fonction

F�X : (0; 1)! R F�X (�) = infft 2 R : FX (t) � �g:

Pour une valeur de � 2 (0; 1) donné, nous appelons le nombre réel

q� = F�X (�)

le �-quantile de X (ou, de façon équivalente, de FX ).
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Quantiles

0
0

1

F−
X (α)

α

x

FX(x)
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Quantiles

1
0

1

1− p

FX(x)

x0 = F−
X (1− p)
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Quantiles

0
0

1

1 = F−

X (α) x

FX(x)

α

1− p
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Tests d’hypothèse
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Le problème d’estimation dans notre cadre générale

1 Il y a une distribution F (x ; �) qui dépend d’un paramètre inconnu � 2 Rp .

2 Nous observons la réalisation de n variables aléatoires X1; : : : ;Xn ,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas le vraie valeur de � qui a generé les Xi !

3 Problème de tests d’hypothèse : Comment utiliser les n observations (les
réalisations de X1; : : : ;Xn) afin de décider si � 2 �0 ou � 2 �1 pour
�0 \�1 donnés.

Au lieu d’estimer la valeur précise du paramétre on s’intéresse plutôt a juger si il
fait partie d’un sous-ensemble particulier ou non (per exemple, si il dépasse ou non
une certaine borne)

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 147 / 246



Example (Lancé d’une pièce de monnaie)

Considérons une situation où nous voulons vérifier si une pièce de monnaie
est équilibrée ou biaisée.

Nous pouvons lancer la pièce n fois et enregistrer le résultat de chaque lancé.

Nous souhaitons alors utiliser ces résultats afin de décider si la probabilité
d’obtenir � face � est égale à 1/2 ou différente de 1/2.

Nous ne somme pas vraiment interessés à savoir la valeur exacte : au lieu de
concentrer nos efforts a déterminer la valeur précise, on veut utiliser
l’échantillon de manière efficace pour décider si la pièce est équilibrée ou
biaisée.

Nous pourrions formaliser ce problème en disant que X1; : : : ;Xn
iid� Bern(p)

et que nous voulons décider si p 2 f 12g ou p 2 (0; 1) n f 12g.
□
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Le Cadre

Afin de rendre les choses plus concrètes :

1 Nous savons que le paramètre appartient à l’un des deux ensembles suivants :
�0 ou �1, avec �0 \�1 = ;.

2 Nous voulons utiliser l’échantillon X1; ::;Xn que nous avons à disposition afin
de décider à quel ensemble il appartient.

3 Cette situation se produit très souvent en science lorsqu’il y a deux
hypothèses scientifiques concurrentes pour un même phénomène :

1 l’hypothèse nulle H0 qui dit que � 2 �0,

H0 : � 2 �0;

et

2 l’hypothèse alternative qui postule plutôt que � 2 �1,

H1 : � 2 �1:
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Example (Recherche du boson de Higgs)

Une des plus grandes questions du dernier quart de siècle en physique : savoir
si le fameux boson de Higgs existait ou non.

En utilisant le Modèle standard de la physique des particules, nous pouvons
calculer combien de diphotons seraient produits en moyenne s’il n’y avait pas
de boson de Higgs. Appelons ce nombre b.

De façon similaire, nous pouvons calculer combien de diphotons de plus
seraient produits en moyenne si le boson de Higgs existait. Dénotons ce
nombre par s .

Par des moyens de characterisation on sait que les événements correspondant
à l’observation de diphotons suivent une distribution de Poisson avec une
certain moyenne, disons �.

Ainsi, l’hypothèse nulle (qui correspond à l’état de la nature si le boson de Higgs
n’existait pas) est

H0 : � = b;

et l’hypothèse alternative concurrente (qui décrit l’état de la nature si le boson de
Higgs existait) est

H1 : � = b + s :

□
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Fonctions de test

Notre décision sera basée sur léchantillon, on aura donc :

Définition (Fonction de test)

Une fonction de test � est n’importe quelle fonction � : X n ! f0; 1g.

On obtien 0 ou 1 dépendamment de si l’échantillon satisfait une certaines
condition ou non :

�(X1; : : : ;Xn) =

(
1; si T (X1; : : : ;Xn) 2 C ;
0; si T (X1; : : : ;Xn) =2 C ;

où

T est une statistique appelée statistique de test et

C est un sous-ensemble de l’image de T , appelé région critique.

De façon plus compacte :

�(X1; : : : ;Xn) = 1fT (X1; : : : ;Xn) 2 Cg:
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Fonctions de test et types d’erreur

Notez que � est toujours une variable aléatoire de Bernoulli,

� =

(
1; avec probabilité P[T (X1; : : : ;Xn) 2 C ];

0; avec probabilité P[T (X1; : : : ;Xn) =2 C ]:

Alors une bonne fonction de test doit être telle que sa loi est concentré
autour de la bonne décision.

Est-ce qu’il y a une critère pareil à l’erreur quadratique moyenne pour
quantifier cette concentration ?
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Types d’erreur

Dans les tests d’hypothèse, il y a deux états possibles de la nature, et deux
décisions possibles que l’on peut prendre.

Ainsi, les erreurs qui peuvent être commises sont données par le tableau
suivante :

Décision / Vérité H0 H1

0 Pas d’erreur Erreur de type II
1 Erreur de type I Pas d’erreur

Ainsi une bonne règle de décision devrait être concentrée autour de i , lorsque
Hi est vraie, pour i 2 f0; 1g.
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Types d’erreur

Par un léger abus de notation, nous pouvons considerer une sorte de � erreur
quadratique moyenne �,

EQM (�;Hi ) = E�[(� � i)2]; i 2 f0; 1g:

Puisque � est une variable de Bernoulli et que i prend des valeurs dans
f0; 1g, nous avons que

EQM (�;Hi ) = E�[(� � i)2] = E�[j� � i j] =

(
E�[�]; si � 2 �0;

1� E�[�]; si � 2 �1:

=

(
P�[� = 1]; si � 2 �0;

1� P�[� = 1]; si � 2 �1:

=

(
P�[� = 1]; si � 2 �0;

P�[� = 0]; si � 2 �1:

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 154 / 246



Définition (Les probabilités d’erreurs)

Soient H0 : � 2 �0 et H1 : � 2 �1 deux hypothèses à tester. La probabilité de
commettre une erreur de type I est définie comme la fonction h : �0 ! [0; 1],

h(�) = P�[� = 1]; � 2 �0:

La probabilité de commettre une erreur de type II est définie comme la fonction
g : �1 ! [0; 1],

g(�) = P�[� = 0]; � 2 �1:

Remarque

Le fait que les deux probabilités d’erreurs soient des fonctions de � nous indique
que nos erreurs dépendent du vrai état de la nature : il sera plus facile de
distinguer entre �0 et �1 pour certains valeurs du vrai � que pour d’autres.

Remarque (Avertissement sur les probabilités d’erreurs)

Notez que h(�) 6= 1� g(�) puisque les deux fonctions ne sont pas définies sur le
même domaine. C’est une erreur commune qu’il faut éviter.
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La gravité des erreurs...

Remarque (Erreur de type I vs erreur de type II)

Dans plusieurs contextes pratiques, les deux hypothèses sont asymétriques :
faire une sorte d’erreur est beaucoup plus grave que faire une erreur de
l’autre type.

Le type d’erreur le plus sérieux est appelé le type I et l’autre est l’erreur de
type II. Ainsi, dans toutes les situations pratiques, H0 est l’hypothèse dont le
rejet erroné (i.e. lorsque H0 est en fait vraie), est le plus dommageable.
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Compte-Rendu

1 On veut décider entre fH0 : � 2 �g et fH1 : � 2 �1g sur la base de

X1; :::;Xn
iid� f�.

2 On va utiliser une fonction de test �(X1; :::;Xn) = 1fT (X1; ::;Xn) 2 Cg,
définie à l’aide d’une statistique de test T et d’une région critique C .

3 Afin de choisir de bonnes fonctions de test, il faut essayer de minimiser les
probabilités des deux types d’erreur,

h(�) = P�[� = 1]; � 2 �0:

g(�) = P�[� = 0]; � 2 �1:

4 Est-il toujours possible de rendre ces deux probabilités petites pour tous les
paramètres � contenus dans les ensembles �0 et �1 respectivement ?

5 Malheureusement, la réponse est non
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Voici pourquoi : soit �(X1; : : : ;Xn) = 1fT (X1; : : : ;Xn) 2 Cg et supposons que
nous voulons diminuer sa probabilité d’erreur de type I,

h(�) = P�[� = 1]; � 2 �0;

pour tous les � 2 �0.

Pour cela, remplacer C par un ensemble C� � C , en obtenant

�� = 1fT (X1; : : : ;Xn) 2 C�g:

Observez que, 8 � 2 �0,

P�[�� = 1] = P[T (X1; : : : ;Xn) 2 C�] � P[T (X1; : : : ;Xn) 2 C ] = P�[� = 1]

Notez cependant que C� � C =) C c
� � C c et alors 8 � 2 �1

P�[�� = 0] = P[T (X1; : : : ;Xn) =2 C�] � P[T (X1; : : : ;Xn) =2 C ] = P�[� = 0]:

En essayant de diminuer la probabilité de l’erreur de type I, nous avons augmenté
celle de l’erreur de type II !
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Le cadre Neyman-Pearson
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Cadre de Neyman-Pearson

Le paradigme fondamental du cadre de Neyman-Pearson est informellement que :

1 puisque l’erreur de type I est la plus importante, nous devons premièrement
fixer la probabilité de l’erreur de type I à un certain niveau

2 Une fois ce niveau fixé, nous pouvons nous concentrer sur le problème
d’obtenir une petite probabilité de l’erreur de type II
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Définition (Cadre de Neyman-Pearson)

Soient H0 : � 2 �0 et H1 : � 2 �1 deux hypothèses à tester.

1 Fixer un � 2 (0; 1) et l’appeler seuil (ou niveau) de signification du test.

2 Considérer seulement les � : X n ! f0; 1g qui respectent ce seuil,

D(�0; �) =

�
� : X n ! f0; 1g

��� sup
�2�0

P�[� = 1] � �
�
:

3 A l’intérieur de la classe D(�0; �), comparer les fonctions de test en
considérant laquelle a la plus petite probabilité d’une erreur de type II

g(�) = P�[� = 0]; � 2 �1:

De façon équivalente, on compare les fonctions de test en considérant
laquelle a la plus grande puissance

�(�) = 1� g(�) = P�[� = 1]; � 2 �1:
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Méthodes pour tester des hypothèses
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Type de méthode $ Type d’hypothèses

La façon de construire des fonctions de test dépend fortement du type
d’hypothèse à tester

1 Simple vs simple (H0 : � = �0, H1 : � = �1, pour un certain �0 6= �1 donné).

2 Unilatéral gauche vs unilatéral droit : (H0 : � � �0, H1 : � > �0, pour un
certain �0 donné).

3 Unilatéral droit vs unilatéral gauche. (H0 : � � �0, H1 : � < �0, pour un
certain �0 donné).

4 Simple vs bilatéral : (H0 : � = �0, H1 : � 6= �0, pour un certain �0 donné).

En résumé,

�
H0 : � = �0
H1 : � = �1

�
| {z }
simple vs simple

ou

�
H0 : � � �0
H1 : � > �0

�
ou

�
H0 : � � �0
H1 : � < �0

�
| {z }

unilatéral vs unilatéral

ou

�
H0 : � = �0
H1 : � 6= �0

�
| {z }
simple vs bilatéral
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Pourquoi faire cette catégorisation ?

Il s’avère que dans certain cas, il existe une fonction de test optimale
,! Alors si c’est le cas, on a pas besoin de considèrer autre chose !

Specifiquement :

(a) Simple vs simple : Dans ce cas, nous allons être capable de trouver des tests
optimaux, et ce, indépendamment du modèle de probabilité sous-jacent.

(b) Unilatéral : Dans ce cas, nous allons être capable de trouver des tests
optimaux pour des classes spécifiques de modèles, plus spécifiquement pour
la famille exponentielle.

(c) Bilatéral. Dans ce cas, nous allons démontrer, qu’en général, il n’existe pas
de tests optimaux. Nous allons néanmoins proposer deux méthodes générale,
inspirée par le concept de vraisemblance.

�
H0 : � = �0
H1 : � = �1

�
| {z }
simple vs simple

ou

�
H0 : � � �0
H1 : � > �0

�
ou

�
H0 : � � �0
H1 : � < �0

�
| {z }

unilatéral vs unilatéral

ou

�
H0 : � = �0
H1 : � 6= �0

�
| {z }
simple vs bilatéral
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Tests Optimaux

Avant de commencer, il nous reste de définir la notion d’optimalité d’un test.

Définition (Tests optimaux)

Une fonction de test � pour H0 : � 2 �0 vs H1 : � 2 �1 est appelée optimale au
seuil � (ou uniformément plus puissante au seuil �) si les deux conditions
suivantes sont respectées.

1 � 2 D(�0; �), c’est à dire, sup�2�0
P�[� = 1] � �.

2 P�1 [ = 1] � P�1 [� = 1] pour tout �1 2 �1 et pour tout  2 D(�0; �).

Observation utile : Comme � est toujours une variable Bernoulli on a

P�[� = 1] = E�[�]; 8� 2 �0 [�1:
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simple vs simple
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simple vs simple : lemme fondamental de Neyman-Pearson

Lemme (Neyman-Pearson)

Supposons que X = (X1; : : : ;Xn) a la fonction de densité/masse conjointe
fX(x; �) et que nous voulons tester

H0 : � = �0 vs H1 : � = �1;

à un certain seuil � 2 (0; 1), pour �0 6= �1 donnés. Si la variable aléatoire

�(X) =
fX(X1; : : : ;Xn ; �1)

fX(X1; : : : ;Xn ; �0)
=
L(�1)

L(�0)
;

est telle qu’il existe Q > 0 satisfaisant

P�0 [� > Q ] = �;

alors le test dont la fonction de test est donnée par

�(X) = 1f�(X) > Qg;
est un test optimal de H0 versus H1 à au niveau de signification �.
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Example

Soit X1; : : : ;Xn
iid� Exp(�) et soient �1 > �0 deux constantes. Considérons le

problème consistant à tester la paire d’hypothèses :(
H0 : � = �0

H1 : � = �1:

La vraisemblance est

f (X1; : : : ;Xn ;�) =

nY
i=1

�e��Xi = �ne��
P

n

i=1
Xi :

Par le lemme de Neyman-Pearson, nous savons que nous devons baser notre test
sur la statistique

�(X1; : : : ;Xn) =
f (X1; : : : ;Xn ;�1)

f (X1; : : : ;Xn ;�0)
=

�
�1
�0

�n

exp

"
(�0 � �1)

nX
i=1

Xi

#
;

et rejeter l’hypothèse nulle si � > Q , pour Q tel que
P�0 [�(X1; : : : ;Xn) > Q ] = �, lorsqu’un tel Q existe.
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Example (suite)

Notons que �(X1; : : : ;Xn) est une fonction décroissante de
� (X1; : : : ;Xn) =

Pn

i=1X1 (puisque �0 < �1). Ainsi,

�(X1; : : : ;Xn) > Q () � (X1; : : : ;Xn) � q ;

pour un certain q , tel que

� = P�0 [� > Q ] () � = P�0 [� (X1; : : : ;Xn) � q ] :

Sous la distribution nulle, nous savons que � (X1; : : : ;Xn) suit une distribution
gamma de paramètres n et �0 .

Ainsi, il existe un q tel que � = P�0 [� (X1; : : : ;Xn) � q ], et ce q est donné par le
q�-quantile de la distribution gamma(n ; �0).

En résumé, le test optimal consiste à rejeter H0 au seuil � si la statistique
� (X1; : : : ;Xn) est inférieure au �-quantile d’une distribution gamma(n ; �0). □

Le test dépend sur la statistique exhaustive ! Ce n’est pas une coincidence
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Example (Test simple vs simple pour les familles exponentielles)

Soit X1; : : : ;Xn
iid� f (x ; �), où

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g

avec � une fonction croissante. Supposons que nous voulons tester H0 : � = �0
contre H1 : � = �1. Sans perte de généralité, supposons que �0 < �1.
Le lemme de Neyman-Pearson nous dit que nous devons chercher une statistique
de test de la forme

� = 1fL(�1)=L(�0) > Qg = 1flogL(�1)� logL(�0) > logQg:

Grâce à la forme de f (x ; �) (famille exponentielle), nous obtenons que

� = 1

(
(�(�1)� �(�0))

nX
i=1

T (Xi )� n(d(�1)� d(�0)) > logQ

)

= 1

(
nX

i=1

T (Xi ) >
logQ + n(d(�1)� d(�0))

�(�1)� �(�0)

)
:
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Example (Test simple vs simple pour les familles exponentielles)

Notez que �(�1)� �(�0) > 0, puisque � est croissante, et n(d(�1)� d(�0)) est
une constante.

Nous pouvons alors simplement écrire

� = 1f� (X1; : : : ;Xn) > qg:

1 Si � est une variable aléatoire continue, alors q va être le (1� �)-quantile de
G0(t) = P�0 [� (X1; : : : ;Xn) � t ], i.e. le (1� �)-quantile de la distribution
d’échantillonnage de � (X1; : : : ;Xn), lorsque l’on utilise le paramètre �0

2 Si nous avons plutôt que � est une fonction décroissante, alors pour �0 < �1,
nous avons que �(�1)� �(�0) < 0. Dans ce cas, nous pouvons voir que la
statistique de test optimal devient

� = 1f� (X1; : : : ;Xn) � qg:

Cette fois-ci, si � est continue et que nous voulons un test avec un seuil �, q
doit être le �-quantile de G0(t) = P�0 [� (X1; : : : ;Xn) � t ].
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Example (Test simple vs simple pour les familles exponentielles)

Nous pouvons observer que la forme du test dépend :

1 du comportement de � (si elle est croissante ou décroissante), et

2 de si �0 < �1 ou �0 > �1.

Le tableau suivant résume les formes de statistique de test pour les différents cas
possibles.

Dans chaque cas, qs représente le s-quantile de la distribution
G0(t) = P�0 [� (X1; : : : ;Xn) � t ].

�0 < �1 �0 > �1

�(�) croissante 1f� (X1; : : : ;Xn) > q1��g 1f� (X1; : : : ;Xn) � q�g
�(�) décroissante 1f� (X1; : : : ;Xn) � q�g 1f� (X1; : : : ;Xn) > q1��g

Une observation intéressante est que la fonction de test ne dépend pas de la
valeur précise de �1, mais seulement de si �1 < �0 ou �1 > �0. □
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Existence d’un test NP pour chaque �

Notons que G0(t) = P�0 [� (X1; : : : ;Xn) � t ] n’est pas toujours une distribution
continue. Ceci signifie qu’il se peut que nous ne soyons pas capable de trouver un
test optimal pour tous les � !

Example

Soit X1; : : : ;Xn
iid� Poisson(�) et considérons la paire d’hypothèses

H0 : � = �0 vs H1 : � = �1:

Notons que c’est la paire d’hypothèses que nous avons vu dans l’exemple du
boson de Higgs, si nous posons �0 = b et �1 = b + s .

Ceci est un exemple avec une famille exponentielle à 1-paramètre, il donc facile de
voir que la statistique exhaustive est

� (X1; : : : ;Xn) =

nX
i=1

Xi ;

et que la fonction �(�) est strictement croissante (�(�) = log(�)).
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Example

Puisque �1 > �0, nous obtenons, par notre travail, que la statistique de test
optimale, dictée par le cadre de Neyman-Pearson, est la suivante :

�(X1; : : : ;Xn) = 1

(
nX

i=1

X1?q1��

)
;

lorsqu’il existe un q1�� tel que G0(q1��) = P�0 [� (X1; : : : ;Xn) � q1��] = 1��.
Puisque les variables aléatoires Xi sont indépendantes et qu’elles suivent une loi
de Poisson, c’est un exercice simple de montrer que

� (X1; : : : ;Xn)
H0� Poisson(n�0):

Puisque c’est une distribution discrète, les seuls � pour lesquels ce sera le cas sont

e�n�0 ; e�n�0 (1 + n�0) ; e
�n�0

�
1 + n�0 +

(n�0)
2

2

�
; : : : et ainsi de suite

Cependant, une observation intéressante est que lorsque n augmente, cette
suite de valeurs devient de plus en plus dense près de l’origine.

□
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Existence d’un test NP pour chaque �

Même si G0(t) = P�0 [� (X1; : : : ;Xn) � t ] n’est pas :

une distribution continue

ou n’est pas exactement connue,

on a déjà montré que (sous de conditions),

p
n

�
n�1� (X1; : : : ;Xn)� d 0(�)

�0(�)

�
d�! N

�
0;
d 00(�)�0(�)� d 0(�)�00(�)

[�0(�)]3

�
:

Cette dernière expression nous suggère d’approximer la distribution
G0(t) = P�0 [� (X1; : : : ;Xn) � t ] par une distribution

N

�
n
d 0(�0)
�0(�0)

; n
d 00(�0)�0(�0)� d 0(�0)�00(�0)

[�0(�0)]3

�
;

lorsque n est suffisamment grand.

qui est une loi continue, et donc on peut choisir un q approximatif pour tout �
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Cas unilatéral
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Cas unilatéral

Théorème (Tests unilatéraux optimale pour les familles exponentielles)

Soit X1; : : : ;Xn un échantillon iid tiré d’une famille exponentielle à 1-paramètre avec fonction de
densité

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 � � R;
avec

1 � un ouvert.

2 �(�) est strictement croissante et continûment dérivable,

Si � =
P

n

i=1
T (Xi ) est une variable aléatoire continue, alors :

1 Pour � 2 (0; 1), la statistique de test � = 1f� � q1��g est Uniformément la Plus
Puissante (UPP) pour tester n

H0 : � � �0
H1 : � > �0

o
au seuil �. Ici, q1�� est le (1� �)-quantile de G0(t) = P�0 [� � t ].

2 Pour � 2 (0; 1), la statistique de test � = 1f� � q�g est uniformément la plus puissante
pour tester n

H0 : � � �0
H1 : � < �0

o
au seuil �. Ici, q� est le �-quantile de G0(t) = P�0 [� � t ].
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Cas unilatéral

Remarque

Si �(�) est strictement décroissante, alors définissons

�1(�) = ��(�) & T1 = �T :

Nous avons une famille exponentielle

f (x ; �) = expf�1(�)T1(x )� d(�) + S(x )g; x 2 X ; � 2 � � R;

avec �1(�) strictement croissante.

Dans le tableau suivant, nous avons résumé le forme de la statistique de test, qui
dépend de la direction des hypothèses et de la monotonicité de �.�

H0 : � � �0
H1 : � > �0

� �
H0 : � � �0
H1 : � < �0

�
�(�) croissante 1f� (X1; : : : ;Xn) > q1��g 1f� (X1; : : : ;Xn) � q�g
�(�) décroissante 1f� (X1; : : : ;Xn) � q�g 1f� (X1; : : : ;Xn) > q1��g
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Cas unilatéral

1 Notez que la forme du test est exactement la même que celle du test pour la
famille exponentielle d’une paire d’hypothèses simple vs simple

2 Cela est possible car pour une famille exponentielle, la forme du test de
Neyman-Pearson ne dépend pas de la valeur précise de �1, mais seulement de
si �1 < �0 ou �1 > �0, et de la valeur de �0.

3 Ceci n’est pas vrai en général, mais ça l’est pour les familles exponentielles à
1-paramètre, en raison de leur forme spéciale.
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� 7! E�[�]
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Cas bilatéral
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Cas bilatéral

Aucun espoir pour trouver des tests optimales dans ce cas :

Pour que � : X n ! f0; 1g soit optimal en même temps pour :

(1) H0 : � = �0 vs H1 : � = �1, pour tout �1 > �0

et

(2) H0 : � = �0 vs H1 : � = �1, pour tout �1 < �0

Mais la forme du test optimal est différente dans les deux cas !

Rappelons le cas d’une famille exponentielle :

�0 < �1 �0 > �1

�(�) croissante 1f� (X1; : : : ;Xn) > q1��g 1f� (X1; : : : ;Xn) � q�g
�(�) décroissante 1f� (X1; : : : ;Xn) � q�g 1f� (X1; : : : ;Xn) > q1��g

On abandonne donc l’exigence d’un test optimal et on cherche pour de tests
raisonnables.
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de nouveau la vraisemblance...

d’où commencer ?
,! Peut-être generaliser les tests de la forme Neyman-Pearson ?
,! Peut-être utiliser un estimateur de vraisemblance pour juger si �0 est proche
au EMV �̂ ?

1 le prémier nous mènd vers les test du rapport de vraisemblance

2 le deuxième vers le test de Wald
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Test du rapport de vraisemblance
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Test du rapport de vraisemblance

Définition (Test du rapport de vraisemblance)

Soit X1; : : : ;Xn
iid� f (x ; �), qui nous donne la vraisemblance

L(�) =

nY
i=1

f (Xi ; �);

et soient H0 : � 2 �0 et H1 : � 2 �1 deux hypothèses à tester. Le rapport de
vraisemblance est défini comme suit

�(X1; : : : ;Xn) =
sup�2�1

L(�)

sup�2�0
L(�)

:

Le test du rapport de vraisemblance (TRV) au seuil � 2 (0; 1) est défini comme
étant le test dont la fonction de test est :

�(X1; : : : ;Xn) = 1f�(X1; : : : ;Xn) > Qg;

où Q > 0 est tel que sup�2�0
P�[�(X1; : : : ;Xn) > Q ] = �, lorsqu’il existe.
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TRV pour d’hypothèses bilatérales

Lorsque
H0 : � = �0 & H1 : � 6= �0;

nous avons
�0 = f�0g & �1 = R n f�0g;

et donc, si L est une fonction continue de � et qu’elle atteint son supremum,

�(X1; : : : ;Xn) =
sup�2�1

L(�)

sup�2�0
L(�)

=
sup�2Rnf�0g L(�)

L(�0)
=

sup�2R L(�)
L(�0)

=
L(�̂)

L(�0)
;

où �̂ est l’estimateur du maximum de vraisemblance de �.

Donc, pour les cas qui nous concernent :

Le test du rapport de vraisemblance (TRV) de H0 : � = �0 vs H0 : � 6= �0 au seuil
� 2 (0; 1) est défini comme étant le test dont la fonction de test est :

�(X1; : : : ;Xn) = 1fL(�̂)=L(�0) > Qg;

où Q > 1 est tel que sup�2�0
P�[L(�̂)=L(�0) > Q ] = �, lorsqu’il existe.
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Example

Soient X1; : : : ;Xn
iid� N (�; �2) avec �2 connue. Considérons

H0 : � = �0 vs H1 : � 6= �0:

Puisque l’EMV de � est �X , nous avons

L( �X ) =

�
1

2��2

�n=2

exp

(
� 1

2�2

nX
i=1

(Xi � �X )2

)
;

L(�0) =

�
1

2��2

�n=2

exp

(
� 1

2�2

nX
i=1

(Xi � �0)2
)
:

Par conséquent,

�(X1; : : : ;Xn) =
L( �X )

L(�0)
= exp

(
� 1

2�2

"
nX

i=1

(Xi �X )2 �
nX

i=1

(Xi � �0)2
#)

:

Notons quePn

i=1(Xi � �0)2 =
Pn

i=1(Xi �X +X � �0)2 =
Pn

i=1(Xi �X )2 + n(X � �0)2;
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Example (continuation)

Il s’ensuit que le rapport de vraisemblance se réduit à

�(X1; : : : ;Xn) = exp
n n

2�2
( �X � �0)2

o
:

Nous pouvons en déduire que �(X1; : : : ;Xn) est une fonction croissante de

S(X1; : : : ;Xn) =

�
�X � �0
�=
p
n

�2

:

Notons que lorsque H0 est vraie, S � �21. Ainsi,

� = 1fS(X1; : : : ;Xn) > �21;1��g;
où �21;1�� dénote le (1� �)-quantile d’une distribution �21.
Notons que ceci est équivalent à rejeter l’hypothèse nulle si et seulement si���� �X � �0�=

p
n

���� > z1��=2;

où z1��=2 est le (1� �=2)-quantile d’une distribution N (0; 1).
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Presence d’un paramètre de nuisance

Supposons que X1; : : : ;Xn
iid� f (x ; �; �), où � 2 R et � 2 Rp sont deux

paramètres inconnus. Nous pouvons être intéressés à tester

H0 : � = �0 vs H1 : � 6= �0

au seuil � > 0, pour un certain �0 2 R, sans faire aucune référence au (et sans se
soucier du) paramètre �. Observez que ce paire d’hypothèses est équivalent à

H0 : (�; �) 2 f�0g � Rp vs H1 : (�; �) 2
�
R n f�0g

	� Rp

Dans ce cas, si L est continue, le rapport de vraisemblance est donné par

� =
sup�2Rnf�0g;�2Rp L(�; �)

sup�2f�0g;�2Rp L(�; �)
=

sup�2R;�2Rp L(�; �)

sup�2Rp L(�0; �)
=

L(�̂; �̂)

sup�2Rp L(�0; �)
;

où (�̂; �̂) est l’EMV de (�; �). Le test du rapport de vraisemblance au seuil
� 2 (0; 1) sera encore une fois défini comme étant le test dont la fonction de test
est

�(X1; : : : ;Xn) = 1f�(X1; : : : ;Xn) > Qg;
où Q > 0 est tel que P�0 [�(X1; : : : ;Xn) > Q ] = �, lorsqu’il existe.
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Example (Test bilatéral pour les moyennes de lois gaussiennes)

Soit X1; : : : ;Xn
iid� N (�; �2), où � et �2 sont inconnus. Considerons

H0 : � = �0 vs H1 : � 6= �0

au seuil � > 0, pour une certaine valeur fixée �0 2 R. Nous devons déterminer

�(X1; : : : ;Xn) =
L(�̂; �̂2)

sup�2>0 L(�0; �
2)
;

où (�̂; �̂2) est l’EMV de (�; �2). Pour le dénominateur, nous pouvons calculer que

@

@�2
`(�0; �

2) = � n

2�2
+

1

2�4

nX
i=1

(Xi � �0)2:

Nous concluons que

arg sup
�2>0

L(�0; �
2) =

1

n

nX
i=1

(Xi � �0)2:
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Example (Test bilatéral pour les moyennes de lois gaussiennes)

En d’autres mots, le supremum du dénominateur est�
1

2�(1=n)
Pn

i=1(Xi � �0)2
�n=2

exp

�
�

Pn

i=1(Xi � �0)2
(2=n)

Pn

i=1(Xi � �0)2
�

=

�
ne�1

2�
Pn

i=1(Xi � �0)2
�n=2

:

Au numérateur, rappelons que l’EMV de (�; �2) est
�
X ; 1

n

Pn

i=1(Xi �X )2
�

L(�̂; �̂2) =

�
1

2�(1=n)
Pn

i=1(Xi �X )2

�n=2
exp

�
�

Pn

i=1(Xi �X )2

(2=n)
Pn

i=1(Xi �X )2

�

=

�
ne�1

2�
Pn

i=1(Xi �X )2

�n=2
:

Par conséquent le rapport de vraisemblance est

�(X1; : : : ;Xn) =
L(�̂; �̂2)

sup�2>0 L(�0; �
2)

=

�Pn

i=1(Xi � �0)2Pn

i=1(Xi �X )2

�n=2
:
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Example (continuation)

Nous pouvons simplifier cette expression encore plus en observant que

nX
i=1

(Xi � �0)2 =
nX

i=1

(Xi �X +X � �0)2 =
nX

i=1

(Xi �X )2 + n(X � �0)2;

puisque les termes croisés s’annulent. En utilisant ce fait, nous pouvons écrire

� =

�Pn

i=1(Xi �X )2 + n(X � �0)2Pn

i=1(Xi �X )2

�n=2
=

�
1 +

n(X � �0)2Pn

i=1(Xi �X )2

�n=2

:

Observez maintenant que

� > Q () n(X � �0)2P
n

i=1
(Xi �X )2=(n � 1)| {z }

T2

> (n � 1)(Q2=n � 1)| {z }
:=C

()
����X � �0

S=
p
n

����| {z }
jT j

>
p
C :

Le test du rapport de vraisemblance est donc

�(X1; : : : ;Xn) = 1f� > Qg = 1

�����X � �0S=
p
n

���� > pC� :
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Example (continuation)

Içi
p
C doit être choisi afin que

PH0

�����X � �0S=
p
n

���� > pC� = �:

Mais, lorsque H0 est vraie, nous avons que

T � tn�1;

où tn�1 représente une distribution de Student avec n � 1 degrés de liberté

Ceci nous donne que p
C = tn�1;1��=2;

où tn�1;1��=2 est le (1� �=2) quantile d’une distribution tn�1. En conclusion, le
TRV est

� = 1

�����X � �0S=
p
n

���� > tn�1;1��=2

�
:

□
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Valeurs Critiques

Dans le cas Gaussien, nous avons pu trouver la bonne valeur critique Q pour
que le TRV � = 1f� > Qg respecte le seuil �.

Que faire dans d’autre cas ?

Par exemple : que faire dans le cadre d’un test bilatérale pour une famille
exponentielle quelconque ?

Mais, bien-sur, nous allons de nouveau recourir à des approximations.

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 194 / 246



Valeurs critiques approximatives pour le TRV

Théorème

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution de fonction de
densité/masse f (x ; �) qui appartient à une famille exponentielle non-dégénérée à,

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 �

Supposons que :

1 L’espace des paramètres � � R est un ensemble ouvert.

2 La fonction � : �! � = �(�) est une bijection de classe C 2.

Soit �̂n l’estimateur du maximum de vraisemblance de �, et soit �0 2 � un
élément fixe de l’espace des paramètres, tel que �0(�0) 6= 0. Si
�(X1; : : : ;Xn) = L(�̂n)=L(�0) est le rapport de vraisemblance, alors

2 log �(X1; : : : ;Xn) = 2(`(�̂n)� `(�0)) d�! �21;

lorsque fH0 : � = �0g est vraie.
Remarque : le suppositions garantissent que d est C 2 à �0, voir Remarque 2.15
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Valeurs critiques approximatives pour le TRV

Comment utiliser ce résultat ?

1 Choisissons Q = exp
n
�21;1��

2

o
, où où �21;1�� représente le (1� �)-quantile

d’une distribution �21.

2 Alors, comme 2 log �
d! �21, on aura

P�0 [� > Q ] = P�0 [log � > logQ ]

= P�0 [2 log � > �21;1��]
n!1�! �

En conclusion, le TRV est approximativement (pour grand n) équivalent à :

1
n
2(`(�̂n)� `(�0)) > �21;1��

o
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Tests de Wald
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Utiliser la théorie d’estimation ponctuelle pour de tests
bilatéraux ?

1 On veut tester fH0 : � = �g vs fH1 : � 6= �0g
2 Si on a un estimateur ponctuel �̂(X1; :::;Xn) du vrai paramèter, alors on peut

comparer la valeur nulle �0 avec la valeur observée de �̂(X1; : : : ;Xn).

3 Si ces deux valeurs sont séparées par un distance � significative �, alors il est
clair que nous devrions rejeter H0 : � = �0 en faveur de H1 : � 6= �0.

4 De quelle taille doit-elle être une distance pour qu’on la considère comme
� significative � ?

5 Cette distance ne peut pas être exprimée en terme absolue !

6 ...car nous devons tenir compte de la variabilité de �̂

Exprimer la distance en terme de la variance de �̂. Ceci nous donne une statistique
de test de la forme :

j�̂ � �0jq
Var(�̂)
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Test de Wald

Le seul problème est : souvent on ne connait pas la variance de �̂

(car elle peut dépendre de la vraie valeur du paramètre �)

Définition (Test de Wald)

Soient X1; : : : ;Xn
iid� f (�; �) et �̂ un estimateur de � basé sur l’échantillon

X1; : : : ;Xn . Un test de Wald pour la paire d’hypothèses

fH0 : � = �0; H1 : � 6= �0g

au seuil � est un test dont la fonction de test est

�(X1; : : : ;Xn) = 1

(
(�̂ � �0)2cVar(�̂) > Q

)
;

où P�0
�
(�̂��0)2cVar(�̂) > Q

�
= �, lorsqu’un tel Q existe.
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Test de Wald basé sur la vraisemblance

Nous savons que l’EMV a une performance asymptotique quasiment optimale.

Alors :
1 Choisissons comme l’EMV pour jouer le rôle de �̂
2 Et pour cVar(�̂) ?

Quand n !1, la variance de l’EMV dans une famille exponentielle est

� 1

n

[�0(�0)]
d 00(�0)�0(�0)� d 0(�0)�00(�0)

Alors definissons

cVar(�̂) := 1

n

[�0(�̂n)]

d 00(�̂n)�0(�̂n)� d 0(�̂n)�00(�̂n)
est posons bJn = cVar�1(�̂). Le test de Wald devient :

Test de Wald basé sur la vraisemblance

1fcJn(�̂n � �0)2 > Qg
où P�0

hcJn(�̂ � �0)2 > Q
i
= �, lorsqu’un tel Q existe.
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Théorème (Valeurs critiques approximatives pour les tests Wald)

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution ayant une fonction de
densité/masse f (x ; �) appartenant à une famille exponentielle non-dégénérée à
1-paramètre,

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 �:

Supposons que :

1 L’espace des paramètres � � R est un ensemble ouvert.

2 La fonction �(�) est une bijection deux fois continûment dérivable entre � et
� = �(�).

Soient �̂n l’estimateur du maximum de vraisemblance de �, etcJn = n
d 00(�̂n )�

0(�̂n )�d 0(�̂n )�
00(�̂n )

[�0(�̂n )]
. Soit �0 2 � un élément fixe de l’espace des

paramètres tel que �0(�0) 6= 0. Alors,

cJn(�̂n � �0)2 d�! �21;

lorsque fH0 : � = �0g est vraie.
Remarque : le suppositions garantissent que d est C 2 à �0, voir Remarque 2.15
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Le résultat ci-dessus peut être utilisé afin de déterminer la valeur critique
d’un test de Wald avec un seuil �.

La fonction de test de Wald au seuil �, est approximativement (pour grand n)
équivalent à

1
ncJn(�̂n � �0)2 > �21;1��

o
;

où �21;1�� représente le (1� �)-quantile d’une distribution �21.

En d’autres termes, pour de grandes valeurs de n , la valeur critique
approximative devrait être Q � �21;1��.
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p-valeur de Fisher
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N.–P. et la pratique

Neyman–Pearson : une théorie mathématique Élégante et raisonnable.

Mais : parfois il y a des problèmes pratiques :

1 Il n’est pas toujours clair à priori quel est le � bon � seuil de signification à
utiliser.

,! il se peut que, pour les même données, H0 soit rejetée pour � = 0:05, mais
pas pour � = 0:01 !

2 Une fois que le seuil est fixé, nous utilisons un test optimal (s’il est
disponible), et nous prenons une décision basée sur nos données. Le problème
maintenant est que nous n’avons pas d’indications claires afin de savoir à
quel point notre décision était � sûre � ou � marginale �

,! Les scientifiques souhaitent parfois non seulement pouvoir prendre une
décision, mais aussi pouvoir quantifier la confiance qu’ils ont dans cette
décision.
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p-valeur de Fisher : une approche duale à celle de N.–P.

1 Plutôt que de prendre une décision explicite (i.e. � = 0 ou � = 1), définissons
une mesure qui indique à quel point les données supportent l’hypothèse nulle.

2 Nous laissons par la suite le scientifique juger s’il y a oui ou non assez
d’évidences contre H0.
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p-valeur de Fisher : une approche duale à celle de N.–P.

Définition (p-valeur)

Soient X1; : : : ;Xn
iid� f (�; �) et H0 : � 2 �0 une hypothèse de la forme :

fH0 : � = �0g ou fH0 : � � �0g ou fH0 : � � �0g:

Soit �� une fonction de test pour H0, ayant l’une des deux formes suivantes :

��(X1; : : : ;Xn) := 1fT (X1; : : : ;Xn) > q1��g

ou

��(X1; : : : ;Xn) := 1fT (X1; : : : ;Xn) � q�g;
où T est une certaine statistique de test, et qz est le z -quantile de la distribution
G0(t) = P�0 [T (X1; : : : ;Xn) � t ]. Alors

p(X1; : : : ;Xn) := inff� 2 (0; 1) : ��(X1; : : : ;Xn) = 1g:
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Calculs des valeurs-p

La définition de la p-valeur semble un peu compliquée, il est donc naturel de
se demander s’il est possible de la calculer dans des exemples concrets.

Cela est en effet le cas lorsque l’hypothèse nulle est d’une des formes que
nous avons considérées jusqu’à présent. Les calculs sont en fait plutôt simples

Lemme (Calculs des valeurs-p)

Dans le même contexte que celui de la définition précédente, si G0 est continue a

et strictement croissante, alors

1 Si �� est de la forme ��(X1; : : : ;Xn) := 1fT (X1; : : : ;Xn) > q1��g, alors

p(X1; : : : ;Xn) = 1�G0(T (X1; : : : ;Xn)):

2 Si �� est de la forme ��(X1; : : : ;Xn) := 1fT (X1; : : : ;Xn) � q�g, alors

p(X1; : : : ;Xn) = G0(T (X1; : : : ;Xn)):

a. continuité n’est pas nécessaire
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Calculs des valeurs-p – Interprétation

Le lemme nous donne une autre façon de comprendre les valeurs-p.

Concentrons nous sur le cas (1), où nous rejetons pour des grandes valeurs de T .

1 Notez que 1�G0(T (X1; : : : ;Xn)) est égal à la probabilité d’observer
quelque chose d’aussi grand, ou même plus grand que ce que nous avons
observé, lorsque H0 est vraie.

2 Ainsi, lorsque la p-valeur est petite, nous avons en fait observé quelque chose
qui serait très improbable si H0 était en effet vraie.

3 Nous nous attendons alors à ce que H0 soit fausse.

Remarque (Avertissement)

Une erreur commune est d’interpréter la p-valeur comme la probabilité que H0

soit vraie. Ceci est faux, et n’a en fait pas de sens, car le paramètre � n’est pas
une variable aléatoire.
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Example (Calculs des valeurs-p, cas normal)

Soit X1; : : : ;Xn
iid� N (�; 1) et considérons la paire d’hypothèses :

H0 : � = 0 vs H1 : � 6= 0:

Rappelons que le TRV pour cette paire est donné par :

�(X1; : : : ;Xn) = 1

(�
�X

1=
p
n

�2

> �21;1��

)
;

où �21;1�� est le (1� �)-quantile d’une distribution �21.

Nous pouvons donc définir la p-valeur correspondante comme étant :

1�G�21

�
n �X 2

�
(notons que G�21

est une fonction monotone croissante de (0;1) à (0; 1) puisque

la fonction de densité d’une �21 est strictement positive sur tout (0;1)). □

Victor M. Panaretos (EPFL) Statistique pour Mathématiciens 210 / 246



Lien entre Neyman-Pearson et Valeurs-p

Est-ce qu’il y a un lien entre les approches de Fisher et de Neyman & Pearson en
ce qui concerne les tests d’hypothèse ?
Il y a une relation particulièrement simple et élégante :

Corollaire

Dans le même contexte que celui du dernier lemme, soit �0 2 (0; 1) et supposons
que G0 est continue et strictement croissante. Si nous définissons

 (X1; : : : ;Xn) := 1fp(X1; : : : ;Xn) � �0g;

alors  (X1; : : : ;Xn) = ��0(X1; : : : ;Xn). En d’autres mots, si nous rejetons
l’hypothèse nulle lorsque la p-valeur est plus petite que �0, alors notre test se
réduit à ��0 .
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Intervalle de Confiance
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Rappel : notre cadre général

1 On dispose d’une distribution F (x ; �) qui dépend d’un paramètre inconnu
� 2 Rp .

2 Nous observons la réalisation de n variables aléatoires X1; : : : ;Xn ,
indépendantes et identiquement distribuées, qui suivent cette distribution.
Mais nous ne conaissons toujours pas la vraie valeur de � qui a generé les Xi !

3 Nous voulons utiliser les n observations (les réalisations de X1; : : : ;Xn) afin
de faire des assertions concernant la vraie valeur de �, et afin de quantifier
l’incertitude associée à ces assertions.
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Quelle sorte d’affirmations concernant la vraie valeur de � ?

1 Estimation. Etant donné un échantillon X1; : : : ;Xn tiré d’une distribution
F� qui dépend d’un paramètre inconnu �, comment peut-on construire un
estimateur, i.e une fonction de l’échantillon dont le but est d’estimer � ?

2 Tests d’hypothèses. Etant donné une valeur plausible �0 pour � (ou
plusieurs valeurs plausibles formant un ensemble �0), est-ce que, sur la base
de l’échantillon X1; : : : ;Xn , cette valeur (ou cet ensemble) est un bon
indicateur de la vraie valeur de � ?

3 Intervalles de confiance. Plutôt que de tenter d’estimer la valeur précise du
paramètre � qui a généré notre échantillon X1; : : : ;Xn , est-ce qu’on peut
construire un ensemble de valeurs sous la forme d’un intervalle, qui aura une
grande probabilité de contenir le vrai paramètre � ?
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Définition (Intervalle de confiance bilatéral)

Soient X1; : : : ;Xn
iid� f (x ; �), où � 2 � � R, un échantillon aléatoire et � 2 (0; 1)

une constante. Soient L(X1; : : : ;Xn) et U (X1; : : : ;Xn) deux statistiques,
appelées respectivement la limite inférieure et la limite supérieure, telles que

inf
�2�

P�
h
L(X1; : : : ;Xn) � � � U (X1; : : : ;Xn)

i
= 1� �:

Alors, l’intervalle aléatoireh
L(X1; : : : ;Xn) ; U (X1; : : : ;Xn)

i
;

est appelé un intervalle de confiance bilatéral pour � avec un seuil de confiance
(1� �).
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Définition (Intervalle de confiance unilatéral)

Soient X1; : : : ;Xn
iid� f (x ; �), où � 2 � � R, un échantillon aléatoire et � 2 (0; 1)

une constante. Soit L(X1; : : : ;Xn) une statistique telle que

inf
�2�

P�
h
L(X1; : : : ;Xn) � �

i
= 1� �:

Alors, l’intervalle aléatoire h
L(X1; : : : ;Xn) ; +1

�
est appelé un intervalle de confiance unilatéral à gauche pour � avec un seuil de
confiance (1� �). De façon analogue, si U (X1; : : : ;Xn) satisfait

inf
�2�

P�
h
U (X1; : : : ;Xn) � �

i
= 1� �;

alors l’intervalle aléatoire �
�1 ; U (X1; : : : ;Xn)

i
est appelé un intervalle de confiance unilatéral à droite pour � au seuil (1� �).
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Interpretation

Il faut faire attention lorsqu’on interprète un intervalle de confiance.

Remarquez que

inf
�2�

P�
h
L(X1; : : : ;Xn) � � � U (X1; : : : ;Xn)

i
= 1� �;

est une affirmation équivalente à

inf
�2�

P�
n
� 2

h
L(X1; : : : ;Xn) ; U (X1; : : : ;Xn)

ioi
= 1� �:

Toutefois, la deuxième façon d’écrire l’affirmation peut nous amener à une
mauvaise interprétation de ce que signifie un intervalle de confiance.

En effet, c’est l’intervalle [L;U ] qui est aléatoire et non le paramètre �.

Dire que � la probabilité que le paramètre tombe à l’intérieur de l’intervalle
est au moins 1� � � est faux : le paramètre ne va ou ne tombe nul part, il
est fixe !

C’est l’intervalle qui peut changer pour différentes valeurs de l’échantillon
X1; ::;Xn , et qui peut donc couvrir ou non le paramètre.

Il faut donc dire � la probabilité que l’intervalle couvre le paramètre � est au
moins (1� �) �.
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Interpretation
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Interpretation

Une façon différente de clarifier la situation est de remarquer que :

P�
h
L(X1; : : : ;Xn) � � � U (X1; : : : ;Xn)

i
=

= P�
h
fL(X1; : : : ;Xn) � �gg \ fU (X1; : : : ;Xn) � �g

i
;

où le côté droit de l’expression accentue le fait que l’affirmation s’applique
aux bornes aléatoires de confiance L et U , plutôt qu’au paramètre
déterministe �.

Afin d’éviter toute confusion, il est préférable d’écrire P� f[L ; U ] 3 �g que
P� f� 2 [L ; U ]g.
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Exemple (presque le “seul exemple”)

Example (Intervalle de confiance pour la moyenne d’une loi normale)

Soit X1; : : : ;Xn
iid� N (�; �2), où � est inconnu et �2 est connu. Nous voulons

construire un intervalle bilatéral pour �. Nous standardisons pour obtenir :

�X � �
�=
p
n
� N (0; 1):

Ainsi, si z�
2
et z1��

2
sont les �=2 et 1� �=2 quantiles (respectivement) de la

distribution N (0; 1), nous avons :

P
�
z�
2
�

�X � �
�=
p
n
� z1��

2

�
= 1� �:

En manipulant l’expression à l’intérieur de la probabilité, nous obtenons :

P
�
z�
2

�p
n
� �X � � � z1��

2

�p
n

�
= 1� �
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Example (Cas Gaussien, suite)

() P
�
� �X + z�

2

�p
n
� �� � � �X + z1��

2

�p
n

�
= 1� �

() P
�
�X � z�

2

�p
n
� � � �X � z1��

2

�p
n

�
= 1� �

() P
�
�X � z1��

2

�p
n
� � � �X � z�

2

�p
n

�
= 1� �:

L’égalité ci-dessus est vraie quelque soit la vraie valeur de � 2 R. Donc si

L(X1; : : : ;Xn) = �X � z1��
2

�p
n

& U (X1; : : : ;Xn) = �X � z�
2

�p
n
;

alors [L;U ] est un intervalle de confiance au seuil 1��. Par symétrie de N (0; 1),26664 �X � z1��
2

�p
n| {z }

L(X1;:::;Xn )

; �X + z1��
2

�p
n| {z }

U (X1;:::;Xn )

37775
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Example (Cas Gaussien, suite)

Observez que l’intervalle est symétrique autour de �X , le EMV de �. Pour mettre
l’accent sur ce fait, on l’écrit souvent sous la forme

�X � z1��
2

�p
n

Nous pouvons ainsi faire quelques observations importantes :

La longueur de l’intervalle de confiance est 2z1��=2�=
p
n , ce qui dépend de

�2, n et �.

Le paramètre �2 échappe à notre contrôle, puisque c’est la variance de la
distribution N (�; �2) sous-jacente.

Nous pouvons cependant contrôler la taille de l’échantillon n et le seuil de
confiance 1� �. En augmentant n , la longueur de l’intervalle est
ré-échelonnée par un facteur de 1=

p
n .

D’un autre côté, diminuer � (i.e. augmenter la confiance 1� �) a pour effet
d’augmenter la longueur de l’intervalle : plus nous voulons avoir de la
confiance dans notre intervalle et plus l’intervalle sera grand (notons que la
longueur de l’intervalle tend vers l’infini lorsque �! 0).
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Example (Cas Gaussien, suite)

Maintenant, considérons le problème consistant à trouver un intervalle de

confiance unilatéral à droite. En utilisant le fait que
�X��
�=
p
n
� N (0; 1), nous

pouvons écrire

=) P
�
�X � �
�=
p
n
� z1��

�
= 1� �:

En manipulant l’expression, nous obtenons

P
h
�X + z1��

�p
n
� �

i
= 1� �;

et l’intervalle �
�1 ; �X + z1��

�p
n

�
:

est un intervalle de confiance unilatéral à droite avec au seuil 1� �. De façon
similaire, un intervalle de confiance unilatéral à gauche avec un seuil 1� � est
donné par �

�X � z1�� �p
n

; +1
�
:
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Pivots et Pivots Approximatifs

1 Quelle était l’idée essentielle derrière cette construction ?

2 Comment construire des intervalles plus généralement ?

La construction semble un peu ad-hoc, car l’étape cruciale était le resultat

�X � �
�=
p
n
� N (0; 1)

qui nous a permi d’écrire

P�
�
z�=2 �

�X � �
�=
p
n
� z1��=2

�
= 1� �;

qui était valide pour toute valeur de �. Nous étions alors capable de manipuler
l’expression à l’intérieur de la probabilité afin d’obtenir notre intervalle.

Il semblerait que ce soit le concept auquel nous devrions nous intéresser dans un
cadre plus abstrait...
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Pivots et Pivots Approximatifs

Définition (Pivot)

Soit X1; : : : ;Xn
iid� f (x ; �). Une fonction

g : X n ��! R;

est appelée un pivot si

1 � 7! g(x1; : : : ; xn ; �) est continue pour tout (x1; : : : ; xn) 2 X n .

2 P[g(X1; : : : ;Xn ; �) � x ] ne dépend pas de �.

Si nous sommes capables de trouver un pivot pour �, dont la distribution est
connue, nous sommes alors capables de trouver les quantiles q1 et q2 tels que

P[q1 � g(X1; : : : ;Xn ; �) � q2] = 1� �:
Si g a une forme nous permettant de manipuler l’inégalité à l’intérieur de la
probabilité on a espoir d’obtenir un intervalle explicite.

Sinon, nous pouvons toutefois tenter de déterminer de façon numérique l’ensemble

f� 2 � : q1 � g(X1; : : : ;Xn ; �) � q2g;
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Pivots et Pivots Approximatifs

Du point de vue concpetuel, tout va bien. Cependant, il y a deux défis auxquels
nous faisons maintenant face :

1 Comment trouver des pivots en général ?
2 Comment déterminer la distribution d’un pivot ?

Pour répondre à 2, nous définissons :

Définition (Pivot approximatif)

Soit X1; : : : ;Xn
iid� f (x ; �). Une fonction

g : X n ��! R;

est appelée un pivot approximatif si

1 Pour tout n 2 N, � 7! g(x1; : : : ; xn ; �) est continue pour tout
(x1; : : : ; xn) 2 X n .

2 Nous avons
g(X1; : : : ;Xn ; �)

d�! Y ;

où Y est une variable aléatoire dont la distribution ne dépend pas de �.
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Pivots et Pivots Approximatifs

Si nous connaissons la distribution asymptotique d’un pivot approximatif,
nous pouvons construire un intervalle de confiance approximatif.

Soit Y est une variable aléatoire continue. Si q1 et q2 sont les quantiles de
FY tels que

P[q1 � Y � q2] = 1� �:

Alors nous avons par définition de la convergence en loi,

g(X1; : : : ;Xn ; �)
d�! Y

=) P[q1 � g(X1; : : : ;Xn ; �) � q2]
n!1�! P[q1 � Y � q2] = 1� �:

Nous pouvons ainsi utiliser le pivot approximatif afin de construire un
intervalle de confiance approximatif.
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Example (Moyenne d’une distribution générale)

Soit X1; : : : ;Xn une collection de variables aléatoires iid de moyenne inconnue
� = E[X ] et de variance inconnue E[(X1 � �)2] = �2 <1. On cherche un pivot
approximatif afin de construire un intervalle pour �.

Par le théorème central limite, nous avons
p
n( �X � �) d! N (0; �2).

Par la loi forte des grands nombres, S2
n =

Pn

i=1(Xi � �)2=(n � 1)
p! �2:

Maintenant, nous pouvons utiliser le théorème de Slustky afin de conclure que

g(X1; : : : ;Xn ; �) =
�X � �
S=
p
n

d! Y � N (0; 1);

et nous avons donc trouvé un pivot approximatif. On obtient, maintenant :

P
�
�X � z1��

2

Sp
n
� � � �X � z�

2

Sp
n

�
= P[z�=2 �

�X � �
S=
p
n
� z1��=2]

= P[z�=2 � g(X1; : : : ;Xn ; �) � z1��=2]
n!1�! P[z�=2 � Y � z1��=2] = 1� �:

Qui donne l’intervalle approximatif �X � z1��
2

Sp
n
.
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Pivots Approximatifs pour les familles exponentielles

Que se passe-t-il si l’on s’intéresse pas à une moyenne, mais à un paramètre
général ?

On verra qu’il est possible de trouver des pivots approximatifs dans le cas d’une
famille exponentielle. Nous considérons deux types d’intervalles de confiance
découlant de deux types de pivots :

1 Intervalles de Wald.

2 Intervalles du rapport de vraisemblance.
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Proposition (Pivots approximatifs de Wald)

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution avec une fonction de
densité/masse f (x ; �) appartenant à une famille exponentielle non-dégénérée,

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 �:

Supposons que

1 L’espace des paramètres � � R est un ensemble ouvert.

2 La fonction �(�) est une bijection deux fois continûment dérivable entre �
and � = �(�) telle que �0 6= 0.

Soit �̂n l’EMV de �, et Ĵn = n
d 00(�̂n )�

0(�̂n )�d 0(�̂n )�
00(�̂n )

[�0(�̂n )]
. Définissons

g(X1; : : : ;Xn ; �) := bJ 1=2n (�̂n � �):

Alors
g(X1; : : : ;Xn ; �)

d�! N (0; 1);

et g(X1; : : : ;Xn ; �) est donc un pivot approximatif pour �.
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Intervalles de confiance approximatifs de Wald

En utilisant la même notation que celle de la proposition précédente, on voit que
le tableau suivant contient les intervalles de confiance approximatifs avec seuil
(1� �) pour � :

Confiance approximative 1� � L(X1; : : : ;Xn) U (X1; : : : ;Xn)

Bilatéral �̂ � z1��=2bJ�1=2n �̂ + z1��=2bJ�1=2n

Unilatéral à gauche �̂ � z1��bJ�1=2n +1
Unilatéral à droite �1 �̂ + z1��bJ�1=2n
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Pivots du rapport de vraisemblance

Proposition (Pivots approximatifs du rapport de vraisemblance)

Soit X1; : : : ;Xn un échantillon iid tiré d’une distribution avec un fonction de
densité/masse f (x ; �) appartenant à une famille exponentielle non-dégénérée,

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 �:

Supposons que :

1 L’espace des paramètres � � R est un ensemble ouvert.

2 La fonction �(�) est une bijection deux fois continûment dérivable entre �
and � = �(�) telle que �0 6= 0.

Soient �̂n l’EMV de �, et g(X1; : : : ;Xn ; �) = 2(`(�̂)� `(�)). Alors,

g(X1; : : : ;Xn ; �)
d�! �21;

et g(X1; : : : ;Xn ; �) est donc un pivot approximatif pour �.
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Pivots du rapport de vraisemblance

Notons que le pivot approximatif du rapport de vraisemblance
g(X1; : : : ;Xn ; �) = 2(`(�̂)� `(�)) n’a pas nécessairement une forme que l’on
peut manipuler afin d’obtenir un intervalle de confiance explicite.

Cependant, nous pouvons trouver de façon numérique l’intervalle de
confiance approximatif, en déterminant l’ensemble

f� 2 � : g(X1; : : : ;Xn ; �) � q1��(�21)g;

où q1��(�21) set le (1� �)-quantile d’une distribution �21.
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La dualité avec les tests d’hypothèse
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La dualité avec les tests d’hypothèse

Il semble y avoir de liens entre les intervalles de confiance et les tests d’hypothèse :

Estimation par intervalle : trouver une région qui contient le paramètre.
Tests d’hypothèses, est-ce qu’une région donnée econtient le paramètre ?

Tests d’hypothèses : seuil donné par �.
Estimation par intervalle : confiance 1� �.
Tests d’hypothèse : tests du rapport de vraisemblance et des tests de Wald.
Estimation par intervalle : intervalles de Wald et du rapport de vraisemblance.

Est-il possible que nous soyons en train de regarder les deux côtés d’une même
pièce de monnaie ?
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Dualité

Théorème (Théorème de la dualité)

Soient X1; : : : ;Xn
iid� f (x ; �) une variable aléatoire et � 2 � � R.

1 Si [L(X1; : : : ;Xn);U (X1; : : : ;Xn)] est un intervalle de confiance bilatéral
avec seuil (1� �) pour �, alors le test dont la fonction de test est

�(X1; : : : ;Xn) = 1f�0 =2 [L(X1; : : : ;Xn);U (X1; : : : ;Xn)]g

est un test de fH0 : � = �0g contre fH1 : � 6= �0g avec un seuil de
signification égal à �.

2 Réciproquement, supposons que pour n’importe quel �0 2 �,
�(X1; : : : ;Xn ; �0) est une fonction de test pour la paire d’hypothèses
fH0 : � = �0g et fH1 : � 6= �0g avec une probabilité d’erreur de type I égale à
�. Alors,

R(X1; : : : ;Xn) := f# 2 � : �(X1; : : : ;Xn ;#) = 0g

est une région de confiance avec seuil (1� �) pour �.
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Dualité

Lorsque nous suivons la procédure décrite dans la deuxième partie du
théorème afin d’obtenir une région R à partir d’une fonction de test, nous
parlons d’inverser un test.

Notez que dans la partie (2), nous disons que R(X1; : : : ;Xn) est une région
et non un intervalle.

Pour certaines formes de � et pour certains modèles f (x ; �), la région
R(X1; : : : ;Xn) est bel et bien un intervalle.
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Dualité

Example (Cas Gaussien)

Le TRV au niveau � pour fH0 : � = �0 vs H1 : � 6= �0g dans le cas N (�; �2) (�
inconnu) était :

�(X1; : : : ;Xn) = 1

����� �X � �0S=
p
n

���� > tfn�1;1��=2g

�
L’intervalle de confiance au niveau 1� � était :

�X � tfn�1;1��=2gS=
p
n :
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Dualité unilatérale ?

Pour des résultats unilatéraux, une direction est très facile.

Si (�1;U ] est un intervalle unilatéral à droite avec seuil (1� �) pour �,
alors � = 1fU < �0g est un test avec un seuil � pour fH0 : � � �0g vs
fH1 : � < �0g
L’obtention d’un intervalle unilatéral à partir d’un test unilatéral dépend de la
forme de la fonction de test ainsi que de la forme du modèle considéré...

Mais ca marche bien dans le cas d’une famille exponentielle !
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Proposition (Intervalles unilatéraux à partir de tests unilatéraux)

Soit X1; : : : ;Xn un échantillon aléatoire iid tiré d’une famille exponentielle à
1-paramètre avec une fonction de densité/masse

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 � � R;

telle que �(�) est strictement croissante et dérivable, et que d(�) est dérivable.
Supposons que � =

Pn

i=1T (Xi ) est une variable aléatoire continue, et que sa loi
P�[� � t ] = G(t ; �) est continue par rapport à �.

Soit �(X1; : : : ;Xn ; �0) le test UPP de�
H0 : � � �0
H1 : � > �0

�
au seuil �, tel que défini avant. Alors, la région

R(X1; : : : ;Xn) = f# 2 � : �(X1; : : : ;Xn ;#) = 0g;

est un intervalle unilatéral à gauche avec seuil (1� �) de la forme
[L(X1; : : : ;Xn);+1).
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Soit �(X1; : : : ;Xn ; �0) le test UPP de�
H0 : � � �0
H1 : � < �0

�
au seuil �, tel que défini avant. Alors, la région

R(X1; : : : ;Xn) = f# 2 � : �(X1; : : : ;Xn ;#) = 0g:

est un intervalle unilatéral à droite avec seuil (1� �) de la forme
(�1;U (X1; : : : ;Xn)].

Remarques :

En termes non techniques : sous certaines conditions, inverser un test
unilatéral pour une famille exponentielle va nous donner un intervalle de
confiance unilatéral.

Observez de plus qu’il s’agit de tests unilatéraux optimaux peuvant être
utilisés afin d’obtenir des intervalles de confiance.

Puisque les tests sont optimaux, est-ce que les intervalles sont aussi
optimaux ? Mais qu’entendons-nous par intervalles de confiance optimaux ?
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Optimalité dans l’estimation par intervalle
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Optimalité dans l’estimation par intervalle

Comment pouvons-nous définir la notion d’optimalité ? Il semble que n’importe
quelle définition d’optimalité devrait satisfaire les deux critères suivants :

1 Intuitivement, les intervalles de confiance optimaux devraient être le plus
� petit � possible en moyenne, tout en respectant leur seuil de confiance :
plus l’intervalle est petit et plus la localisation du paramètre est précise.

2 Mathématiquement, nous avons vu qu’il existe une dualité naturelle entre les
intervalles de confiance et les tests d’hypothèse.

Ainsi, toute notion d’optimalité pour des intervalles de confiances devrait être
duale à la notion d’optimalité pour les tests d’hypothèse.

En d’autres mots, inverser un test d’hypothèse optimal devrait nous donner un
intervalle de confiance optimal.

Puisque nous avons vu qu’en général il n’y a pas de test optimal pour une paire
d’hypothèses bilatérale, le deuxième critère élimine tout espoir d’obtenir un
intervalle bilatéral optimal. Qu’en est-il des intervalles unilatéraux ?
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Définition (Intervalles à gauche uniformément plus précis)

Soient [L(X1; : : : ;Xn);+1) et [M (X1; : : : ;Xn);+1) deux intervalles de
confiance unilatéraux avec seuil (1� �) pour �. Si pour tout � 2 �,

P�[� � L � �] � P�[� �M � �]; 8 � > 0;

alors on dit que [L(X1; : : : ;Xn);+1) est plus précis que [M (X1; : : : ;Xn);+1).

Si [L;+1) est plus précis que tout intervalle à gauche au seuil (1��), alors il est
appelé l’intervalle de confiance unilatéral à gauche uniformément plus précis

Définition (Intervalles à droite uniformément plus précis)

Soient (�1;U (X1; : : : ;Xn)] et (�1;M (X1; : : : ;Xn)] deux intervalles de
confiance unilatéraux avec seuil (1� �) pour �. Si pour tout � 2 �,

P�[U � � � �] � P�[M � � � �]; 8 � > 0;

alors on dit que (�1;U (X1; : : : ;Xn)] est plus précis que (�1;M (X1; : : : ;Xn)].
Si (�1;U ] est plus précis que tout intervalle à droite au seuil (1� �), alors il est
appelé l’intervalle de confiance unilatéral à droite uniformément plus précis.
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Optimality = Tightness

Intuition

Etant donné que L tombe à gauche au moins 95% des fois, one veut de plus qui’il
soit toujours plus probable que ca soit proche à � que pour une autre borne M
(pour tout �!)

1 Nous constatons que notre définition satisfait notre premier critère :
intuitivement, la notion d’optimalité est équivalente à la notion de � plus
petit � intervalle de confiance.

2 La proposition qui suit nous montre qu’elle respecte aussi (au moins pour le
cas des familles exponentielles) notre deuxième critère concernant la dualité.
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Intervalles optimales

Proposition (Tests UPP ) intervalles UMA chez les familles exp.)

Soit X1; : : : ;Xn un échantillon aléatoire iid tiré d’une distribution exponentielle à
1-paramètre avec fonction de densité/masse

f (x ; �) = expf�(�)T (x )� d(�) + S(x )g; x 2 X ; � 2 � � R;

telle que �(�) est strictement croissante et dérivable, et d(�) est dérivable.
Supposons que � =

Pn

i=1T (Xi ) est une variable aléatoire continue dont loi la loi
P�[� � t ] = G(t ; �) est continue en �.
Pour n’importe quel �0 2 �, définissons �(X1; : : : ;Xn ; �0) comme étant le test
UPP �

H0 : � � �0
H1 : � > �0

�
au seuil �. Alors, la région,

R(X1; : : : ;Xn) = f# 2 � : �(X1; : : : ;Xn ;#) = 0g;

est un intervalle de confiance unilatéral à gauche uniformément plus précis avec
seuil (1� �).
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