

PROBABILITY AND STATISTICS I – CORRECTIONS 6

Please note : the **reasoning/justifications** for the steps in your solution are also important (not only the final result).

Exercise 1 (a) (1) $\int_{-\infty}^{\infty} f(x) dx = 1 = \int_0^1 (ax + bx^2) dx = \frac{a}{2} + \frac{b}{3}$ [int. dens. = 1, eval. int.]

(2) $E[X] = 0.6 = \int_0^1 x(ax + bx^2) dx = \frac{a}{3} + \frac{b}{4}$ [problem info., defn. exp., eval. int.]

Then (1) $\Rightarrow a + 2b/3 = 2 \Rightarrow a = 2 - 2b/3$;

substitution in (2) : $(2 - 2b/3)/3 + b/4 = 0.6 \Rightarrow 1/15 = -b/36 \Rightarrow b = -12/5 = -2.4$;

$\Rightarrow a = 2 - 2(-2.4)/3 \Rightarrow a = 18/5 = 3.6$; thus $\boxed{a = 3.6, b = -2.4}$

(b) $P\left(X < \frac{1}{2}\right) = \int_0^{1/2} (3.6x - 2.4x^2) dx = (1.8x^2 - 0.8x^3) \Big|_{x=0}^{1/2} = \boxed{0.35}$ [prob. cont. RV]

(c) $E[X^2] = \int_0^1 (3.6x^3 - 2.4x^4) dx = 0.9x^4 - 0.48x^5 \Big|_{x=0}^1 = 0.9 - 0.48 = 0.42$ [E(g(X)), eval. int.]

$\Rightarrow Var(X) = E[X^2] - (E[X])^2 = 0.42 - 0.36 = \boxed{0.06}$ [alternative formula Var(X)]

Exercise 2 (a) 1. Let \underline{X} represent the mean rainfall (number of inches)

2. $\underline{X} \sim N(\mu = 40.2, \sigma^2 = 8.4^2)$ (according to the problem information)

3. Probability that the average rainfall \underline{X} exceeds 44 inches : $P(X > 44)$

4. $P(X > 44) = P\left(\frac{\underline{X} - 40.2}{8.4} > \frac{44 - 40.2}{8.4}\right)$ [standardize both sides]

$= P(Z > 0.45) = 1 - \underbrace{P(Z \leq 0.45)}_{\Phi(0.45)} = 1 - 0.6736 = 0.3264 \approx \boxed{0.33}$ [$Z \sim N(0, 1)$; table, simp.]

(b) 1. Let \underline{Y} be the number of years that the rainfall exceeds 44 inches

2. $\underline{Y} \sim Bin(n = 7, p = 0.33)$

Verification of the 4 conditions :

- (i) fixed number of trials : $n = 7$ (according to the problem)
- (ii) Bernoulli trials : 2 possibilities (exceed 44/not)
- (iii) independent trials : by supposition
- (iv) same probability of ‘success’ (exceed 44) for each year : $p = 0.33$ according to (a)

3. Probability that the number of years (that rainfall exceeds 44) equals 3 : $P(Y = 3)$

4. $P(Y = 3) = \boxed{\binom{7}{3}(0.33)^3(0.67)^4} \approx 0.25$

Exercise 3

1. Let \underline{X} be the number of inches of rainfall, \underline{Y} the number of years until $\underline{X} > 50$
2. $\underline{Y} \sim \text{Geom}(p = P(X > 50) = \underline{0.0062})$

Verification of the 4 conditions :

- (i) fixed number of ‘success’ : $r = 1$ (according to the problem)
- (ii) Bernoulli trials : 2 possibilities (exceed 50/not)
- (iii) independent trials : by supposition
- [*](iv) same probability of ‘success’ for each year : $P(\text{number of inches} > 50) :$
 $\underline{p = 0.0062}$

Suppositions : Rainfall $\underline{X} \sim N(\mu = 40, \sigma^2 = 4^2)$

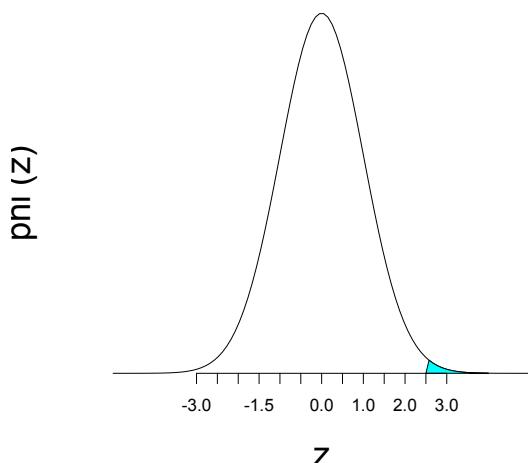
[*] Calculation of \underline{p} :

$$\underline{p} = P(X > 50) = P\left(\frac{X - 40}{4} > \frac{50 - 40}{4}\right) \quad [\text{standardize both sides}]$$

$$= P(Z > 2.5) = 1 - \underbrace{P(Z \leq 2.5)}_{\Phi(2.5)} = 1 - 0.9938 = \underline{0.0062} \quad [Z \sim N(0, 1); \text{table, simp.}]$$

3. Probability that the number of years is more than 10 : $P(Y > 10)$

$$4. P(Y > 10) = P(10 \text{ years of ‘failure’}) = (1-p)^{10} = (1-0.0062)^{10} = \boxed{(0.9938)^{10}} \quad [\text{geom. dist.}]$$



(a) ex. 2a

(b) ex. 3 – calculation of p

Exercise 4 (a) 1. Let \underline{X} = number of chocolates in the sample

$$2. \underline{X} \sim \text{Hypergeom}(n = 5, N = 24, m = 12)$$

$$3. P(\underline{X} = 2)$$

$$4. = \frac{\binom{12}{2} \binom{12}{3}}{\binom{24}{5}} = \frac{(12!/(2!(3!)) \times (12!/(3!(2!)))}{24!/(5!(19!))} = \frac{66 \times 220}{42504} \approx \boxed{0.34}$$

[subst. hypergeom,
simp.]

(b) 1. Let \underline{X} = number of chocolates in the sample

2. $\underline{X} \sim \text{Hypergeom}(n = 5, N = 24, m = 12)$

3. $P(\underline{X} \leq 2)$

4. $= P(\underline{X} = 0) + P(\underline{X} = 1) + P(\underline{X} = 2)$ [prob. ME events]

$$= \frac{\binom{12}{0} \binom{12}{5}}{\binom{24}{5}} + \frac{\binom{12}{1} \binom{12}{4}}{\binom{24}{5}} + \frac{\binom{12}{2} \binom{12}{3}}{\binom{24}{5}} = \frac{21252}{42504} = \boxed{0.5}$$
 [subst. hypergeom, simp.]

(c) Let \underline{X} = number of chocolates in the sample

$$E[X] = \sum_{x=0}^5 x \frac{\binom{12}{x} \binom{12}{5-x}}{\binom{24}{5}} = 0 \cdot P(0) + 1 \cdot P(1) + 2 \cdot P(2) + \dots + 5 \cdot P(5)$$
 [defn. $E[X]$, subst.]

$$= \dots = \boxed{2.5}$$
 [simplification]

(d) Let \underline{X} = number of chocolates in the sample

Use the **alternative formula** for variance : $Var(X) = E[X^2] - (E[X])^2$

$$E[X^2] = \sum_{x=0}^5 x^2 \frac{\binom{12}{x} \binom{12}{5-x}}{\binom{24}{5}} = 0^2 \cdot P(0) + 1^2 \cdot P(1) + 2^2 \cdot P(2) + \dots + 5^2 \cdot P(5)$$

[theorem for $E[g(X)]$, subst.]

$$= \dots = 7.28$$
 [simplification]

$$\Rightarrow Var(X) = 7.28 - (2.5)^2 = 7.28 - 6.25 \approx \boxed{1.03}$$
 [alternative formula, simp.]

NOTE : For parts (c) and (d), you could instead use the formulas on slide 18 of the lecture.