

Please note : the **reasoning/justifications** for the steps in your solution are also important (not only the final result).

In class

Exercise 1 (a) By the **Generalized basic counting principle**, there are 3 (bases) \cdot 2 (cheeses) \cdot 5 (toppings) = **30** possible pizzas.

(b) There are $\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$ combinations of 2 toppings for the pizza for each combination of base and cheese, thus by the **Generalized basic counting principle**, there are $3 \cdot 2 \cdot \binom{5}{2} = 3 \cdot 2 \cdot 10 = **60** possible pizzas.$

Exercise 2 (a) Without restriction, there are 10 possible choices for president. For each of these, there are 9 possible choices for treasurer, and for each combination there are 8 possible choices for secretary. By the **Generalized basic counting principle**, there are thus $10 \cdot 9 \cdot 8 = **720** possible choices.$

(b) By the **Generalized basic counting principle**, there are $8 \cdot 7 \cdot 6 = 336$ choices with neither A nor B , and $3 \cdot 8 \cdot 7 = 168$ choices where A (but not B) has an office (since there are 3 possibilities for A 's office for each combination (of which there are $8 \cdot 7$) of two other people for the other offices). Similarly, there are $3 \cdot 8 \cdot 7 = 168$ choices where B (but not A) has an office. Thus, there are $336 + 2 \cdot 168 = **672** possible choices.$

[You could just as well count the number of committees with both A and B and subtract from 720, the total number of possible committees. There are 3 choices for A , then 2 choices for B , and finally 8 choices for the remaining officer. By the **Generalized basic counting principle**, there are thus $3 \cdot 2 \cdot 8 = 48$ committees with both of them, thus $720 - 48 = **672** possible choices.]$

(c) In the same fashion as for (b), by the **Generalized basic counting principle**, the number of choices with C and D is $3 \cdot 2 \cdot 8 = 48$: 3 offices possible for C , and for each choice of office for C there are 2 choices of office for D ; there are 8 remaining people possible to take the last office. The number with neither C nor D is $8 \cdot 7 \cdot 6 = 336$ (By the **Generalized basic counting principle**). Thus the total is $48 + 336 = **384** possible choices.$

(d) There are 3 choices for E , and for each of these there are $9 \cdot 8$ choices for the 2 other officers. By the **Generalized basic counting principle**, there are $3 \cdot 9 \cdot 8 = **216** possible choices.$

(e) This is the total of the number of committees without F and the number of committees for which F is president. By the **Generalized basic counting principle**, the number of committees without F is $9 \cdot 8 \cdot 7 = 504$. The number for which F is president is $1 \cdot 9 \cdot 8 = 72$, thus $504 + 72 = **576** possible choices.$

Exercise 3 (a) All $\binom{10}{5}$ exams are **equally likely**, of which $\binom{7}{5}$ the student is able to solve; thus, the probability is $\binom{7}{5}/\binom{10}{5} = \frac{1}{12}$.

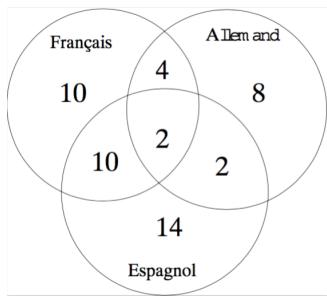
(b) Applying the Generalized basic counting principle, the number of exams for which the students can solve 4 out of 5 questions (and doesn't know how to solve 1) is $\binom{7}{4} \binom{3}{1}$, thus the probability that the student knows how to solve 4 questions is $\binom{7}{4} \binom{3}{1} / \binom{10}{5} = \frac{5}{12}$.

The probability that he knows how to solve at least 4 is the sum of the probabilities of knowing how to solve 4 and of knowing how to solve 5 (these two events are disjoint/ mutually exclusive), thus $\frac{1}{12} + \frac{5}{12} = \frac{1}{2}$.

At home

Exercise 1 By the Generalized basic counting principle, there are $5 \cdot 2 \cdot 4 = 40$ replicates for the experiment.

Exercise 2



Event A : “is taking German (allemand)”.

Event F : “is taking French (français)”.

Event E : “is taking Spanish (espagnol)”.

$$\begin{aligned}
 P(E) &= \frac{28}{100} & P(A) &= \frac{16}{100} & P(F) &= \frac{26}{100} \\
 P(E \cap F) &= \frac{12}{100} & P(E \cap A) &= \frac{4}{100} & P(F \cap A) &= \frac{6}{100} \\
 P(E \cap A \cap F) &= \frac{2}{100}
 \end{aligned}$$

$$\begin{aligned}
 (a) \text{ On a } P(\bar{E} \cap \bar{A} \cap \bar{F}) &= 1 - P(E \cup A \cup F) & [\text{deMorgan, complement}] \\
 &= 1 - [P(E) + P(A) + P(F)] & [\text{inclusion-exclusion}] \\
 &\quad - P(E \cap A) - P(E \cap F) - P(F \cap A) + P(E \cap A \cap F) \\
 &= 1 - \left[\frac{28}{100} + \frac{16}{100} + \frac{26}{100} - \frac{4}{100} - \frac{12}{100} - \frac{6}{100} + \frac{2}{100} \right] = \frac{50}{100} = \frac{1}{2}
 \end{aligned}$$

(b) First, denote for events G and H , the event $G \cap \bar{H} = G \setminus (G \cap H)$ (*) (that is, the part of G not contained in $G \cap H$). You can make a Venn diagram to visualize this fact. Then, in the same fashion as for part (a), we have :

$$\begin{aligned}
 &P(E \cap \bar{A} \cap \bar{F}) + P(\bar{E} \cap A \cap \bar{F}) + P(\bar{E} \cap \bar{A} \cap F) \\
 &= P(E \cap (\bar{A} \cup \bar{F})) + P(A \cap (\bar{E} \cup \bar{F})) + P(F \cap (\bar{A} \cup \bar{E})) & [\text{associativity, deMorgan}] \\
 &= [P(E) - P(E \cap (A \cup F))] + [P(A) - P(A \cap (E \cup F))] + [P(F) - P(F \cap (A \cup E))]. \text{ [*]}
 \end{aligned}$$

Now, let's calculate (for example) $\underline{P(E \cap (A \cup F))}$:

$$\begin{aligned}
 \underline{P(E \cap (A \cup F))} &= P(E) + \boxed{P(A \cup F)} - \underline{P(E \cup A \cup F)} && \text{[inclusion-exclusion]} \\
 \boxed{P(A \cup F)} &= P(A) + P(F) - P(A \cap F) && \text{[inclusion-exclusion]} \\
 \underline{P(E \cup A \cup F)} &= P(E) + P(A) + P(F) && \text{[inclusion-exclusion]} \\
 &\quad - P(E \cap A) - P(E \cap F) - P(A \cap F) + P(E \cap F \cap A) \\
 \implies \underline{P(E \cap (A \cup F))} &= P(E) + P(A) + P(F) - P(A \cap F) && \text{[substitution]} \\
 &\quad - [P(E) + P(A) + P(F) - P(E \cap A) - P(E \cap F) - P(A \cap F) + P(E \cap F \cap A)] \\
 &= P(E \cap A) + P(E \cap F) - P(E \cap F \cap A) \quad \text{[and similarly for the other terms]}
 \end{aligned}$$

$$\begin{aligned}
 \text{Et donc } [*] &= [P(E) - \boxed{P(E \cap A)} - \boxed{P(E \cap F)} + \underline{P(E \cap A \cap F)}] \\
 &\quad [P(A) - \boxed{P(A \cap E)} - \boxed{P(A \cap F)} + \underline{P(E \cap A \cap F)}] \\
 &\quad [P(F) - \boxed{P(F \cap A)} - \boxed{P(F \cap E)} + \underline{P(E \cap A \cap F)}] \\
 &= P(E) + P(A) + P(F) - 2 \boxed{P(A \cap F)} - 2 \boxed{P(A \cap E)} - 2 \boxed{P(F \cap E)} + 3 \underline{P(E \cap A \cap F)} \\
 &= \frac{28}{100} + \frac{16}{100} + \frac{26}{100} - 2 \times \frac{6}{100} - 2 \times \frac{4}{100} - 2 \times \frac{12}{100} + 3 \times \frac{2}{100} = \frac{32}{100}
 \end{aligned}$$

(c) Let X_i denote the event that “student i is taking at least one course” ($i = 1, 2$) ; then,

$$P(X_1 \cup X_2) = P(X_1) + P(X_2) - P(X_1 \cap X_2) = \frac{1}{2} + \frac{1}{2} - \frac{50}{100} \times \frac{49}{99} = 1 - \frac{49}{198} = \frac{149}{198}$$