GC — Probabilités et Statistique
http://moodle.epfl.ch/course/view.php?id=14271

m (Brief!!) review : CLT, Cl, hypothesis tests
m Student’s t distribution, t-test

Research process, scientific investigations
Statistical modeling

Bivariate data

Modeling bivariate data

Simple linear regression

Distribution of Y conditional on X

Sampling distribution of parameter estimates
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Review : Central Limit Theorem (CLT)

The Central Limit Theorem is one of the most important
results in probability/statistics, and is widely used as a
problem-solving tool

Theorem (CLT) : Let Xy, Xz, ... be a sequence of
independent and identically distributed (iid) RVs, each having
mean £ and variance o

Then for n ‘sufficiently large’, the distribution of

n
® the sum : ZX; is approximately N(nu, no?)
i-1

m the mean : X is approximately N(u, o2/n)
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Review : steps in hypothesis testing

Identify the population parameter being tested
Formulate the NULL and ALT hypotheses
Compute the test statistique (TS)

Compute the p-value pyps

B pops is the probability of obtaining a value of T as or
more extreme (as far away from what we expected or
even farther, in the direction of the ALT) than the one
we got, ASSUMING THE NULL IS TRUE

Decision rule and practical interpretation : REJECT the NULL
hypothesis H if pops <
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Regarding small samples...

m The z-test that we have studied assumes that the sampling
distribution of the test statistic T is Normal
B exactly, or
m approximately, by the CLT

m However :
m [f the data are Normally distributed, AND
m if the population SD ¢ is unknown, AND
m the sample size is small (for example, under 30)
THEN : the true sampling distribution of T has heavier tails
than the Normal distribution

m In this case, you should use the t-test

4/59



‘Student’ (= William Sealy Gosset)

W. S. Gosset Guinness

GUINNESS
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Distribution of T when o2 is unknown

m Recall the test statistic T = (X — pg)/(c/\/n)

m If the sample size n is ‘sufficiently large’, then under H,
T ~ N(0,1) regardless of the distribution of X (CLT)

m If the observations Xi,..., X, ~ N(juo,0?), then T ~ N(0,1)

for known o2, regardless of the sample size n

m BUT : If the sample size n is small, and the variance o2 is

unknown, the true distribution of T has more variability than
the Normal distribution (due to the imprecise estimation of o
based on few obs)
m For the case (1) Xi,..., X, ~ N(uo,02); (2) nsmall; and
X-ho t, 1, the Student t
s/\/n

distribution, with n—1 degrees of freedom (df)

(3) 02 is unknown, then T =

m The distribution de T depends on the number of observations

n)
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Table of the t distribution

t Table

cum. prob. tso trs teo tes too tos Lors ton oos osg onos
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails. 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df|
1| 0000 1000 1376 1963 3078 6314 1271 3182 6366 31831 636.62
2 0000 0816 1061 1386 1886 2920 4303 6965 9925 22327 31599
3 0000 0765 0978 1250 1638 2353 3182 4541 5841 10215 12924
4| 0000 0741 0941 1190 1533 2132 2776 3747 4604 7173 8610
5| 0000 0727 0920 1156 1476 2015 2571 3365 4032 5893 6869
6] 0.000 0718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7| 0000 0711 0896 1119 1415 1895 2365 2998 3499 4785  5.408
8 0000 0706 0889 1108 1397 1860 2306 2896 3355 4501 5041
o 0000 0703 0883 1100 1383 1833 2262 2821 3250 4297  4.781
10| 0000 0700 0879 1093 1372 1812 2228 2764 3169 4144 4587
11| 0000 0697 0876 1088 1363 1796 2201 2718  3.106 4025  4.437
12| 0000 0695 0873 1083 1356 1782 2179 2681 305 3930 4318
13| 0000 0694 0870 1079 1350 1771 2160 2650 3012 3852 4221
14| 0000 0692 0868 1076 1345 1761 2145 2624 2977 3787 4140
15| 0000 0691 0866 1074 1341 1753 2131 2602 2947 3733 4073
16| 0000 0690 0865 1071 1337 1746 2120 2583 2921 3686 4015
17| 0000 0689 0863 1069 1333 1740 2110 2567 2898 3646  3.965
18] 0.000 0.688 0.862 1.067 1.330 1734 2.101 2552 2.878 3610 3.922
19| 0.000 0.688 0.861 1.066 1328 1729 2.093 2539 2.861 3579 3.883
20 0.000 0.687 0.860 1.064 1.325 1725 2.086 2528 2.845 3.552 3.850
21| 0000 0686 0859 1063 1323 1721 2080 2518 2831 3527 3819
22| 0000 0686 0858 1061 1321 1717 2074 2508 2819 3505 3792
23| 0000 0685 0858 1060 1319 1714 2069 2500 2807 3485 3768
24| 0000 0685 0857 1059 1318 1711 2064 2492 2797 3467 3745
25| 0000 0684 0856 1058 1316 1708 2060 2485 2787 3450 3725
26| 0000 0684 0856 1058 1315 1706 2056 2479 2779 3435 3707
271 0000 0684 0855 1057 1314 1703 2052 2473 2771 3421 3690
28| 0000 0683 0855 1056 1313 1701 2048 2467 2763 3408 3674
29| 0000 0683 0854 105 1311 1699 2045 2462 2756 3396  3.659
30| 0000 0683 0854 105 1310 1697 2042 2457 2750 3385 3646
40[ 0000 0681 0851 1050 1303 1684 2021 2423 2704 3307 3551
60| 0000 0679 0848 1045 1206 1671 2000 2390 2660 3232  3.460
80| 0000 0678 0846 1043 1202 1664 1990 2374 2639 3195  3.416
100/ 0000 0677 0845 1042 1290 1660 1984 2364 2626 3174  3.390
1000( 0000 0675 0842 1037 1282 1646 1962 2330 2581 3098  3.300
z 0.000 0.674 0.842 1.036 1282 1645 1.960 2.326 2576 3.090 3.291
0% 50%  60% _ 70% 80% 90%  95%  98%  99% 99.8% 99.9%

Confidence Level
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Confidence interval

In the case
Xi,..., Xn~ N(p,0?)
n small; and
o2 is unknown :

m we can make a confidence interval (Cl) as before, but using
the t distribution instead of the Normal (z)

m Cl for the population mean : Yi/\/ﬁ
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Hypothesis test : find the rejection region

H: p=py H: p=py H: p=py
A p# py A< py A p> py
Reject Do not Reject Reject : Do not reject H, Do not reject Hy : Reject
Hy reject Hy Hy Hy | I Ho

o [23

L t L t . t
oo 0 tup 1t 0 0 ty

Two-tailed Left-tailed Right-tailed
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Example

Example 9.1 | Daily intake of energy (kJ) for 11 women :

5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

m Make a 95% for the mean daily energy intake (kJ) of the
population of women ...

m Test the hypothesis that the mean is equal to the
recommended value (7725 kJ) ...
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Test
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Test for comparing two (independent) means : equal
variances

m We want to compare the means of two sets of measures :
® Group 1 (p. ex. ‘control’) @ x1,..., X,
m Group 2 (p. ex. ‘treatment’) : y1,...,¥m
m We can model these data as :
Xi=pu+e;i=1...,n;
yi=p+A+T1;j=1...,m,
where A signifies the effect of the treatment (compared to
the ‘control’ group)

mH:A=0vs. A:A00orA:A>00r A: A0
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Equal variances, cont.
m T = obs. diff. / ES(obs. diff.) = a

A ~ 02 o* n% %ar(b
A=y-Xx; Var(A)=—+—= o2
n m nm

m We assume that :
B the variances of the 2 samples are equal :
Var(€) = Var(7)
m the observations are independent
B the 2 samples are independent
m We can estimate the variances separately :
2= ((x - )% + -+ (xg - X)2)/(n 1)
sp= (=92 ++(ym-7)*)/(m-1)
m When the variances are equal, we can combine the two
estimators : sg =((n-1)s2+ (m- 1)53)/(n +m-2)

-X
= tops = Y ~ them-2 under H

\/53(n+m)/(nm)
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Test for comparing two (independent) means : unequal
variances

mIf o2z 0)2,, we can use

Y-X
TwWeich = —F———=
\/S2/n+S2[/m

m The distribution of the statistic Tyeicn IS only approximately
t, with a number of degrees of liberty calculated based on s,
sy, nand m

m Welch test

m In practice, if the variances are rather different (ratio more
than 3), we could use this statistic (instead of the one with

: 2
variance s)
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Example

Example 9.2| Energy expenditure for groups of thin and obese

women
mince 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11
obese 9.21 11.561 12.79 11.85 9.97 8.79 9.69 9.68 9.19

m Test the hypothesis that the two population means are equal

16 /59



Test
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Paired experiments

m For an experiment carried out in blocks of two units, the
power of the t-test can be increased

m This idea permits us to eliminate the influences of other
variables (e.g. age, sex, etc.), in giving them different
‘treatments’

m Thus, we have a more precise comparison of the two
conditions
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t-test for a paired experiment

The data are of the form :

1 2

n

contrble |xp|xo |-

Xn

traitement [ yy | yo |-+

Yn

di=y1-x1,...

expected value p
expected value p+ A

m Each block allows us to evaluate the effect of the treatment
m Here, we consider the differences

ydn = Yn—Xp

as a sample of measurements coming from a distribution with

expected value A

] H:A:Ovs.A:ﬁAiOorA:A>OorA:A<O

d
B T = tpajred = NG where

3= (=) 4+ (do = d)2)/(n-1)

Under H, tpaired ~ tn-1
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Example 9.1, cont.

Example 2.2, cont. : Daily intake of energy of 11 women pre- and
post-menopausal :

pré 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770
post 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

m Test the hypothesis that there is no difference in daily energy
intake before and after menopause ...
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Test
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Research process

Scientific question of interest

Decide what data to collect (and how)

Collection and analysis of data

Conclusions, generalizations : inference on the population

Communication and dissemination of results
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Generic question :
Does a ‘treatment’ have an ‘effect’ ?

Exemples :

Does smoking cause cancer, heart disease, etc?
m Does eating oat bran lower cholesterol ?

m Does échinacea prevent illness?
[

Does exercise slow the aging process ?
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Types of studies

m A basic means to address this type of question involves
comparing two groups of study subjects :
m Control group : provides a baseline for comparison
B Treatment group : group receiving the ‘treatment’

m Experimental study : subjects assigned to groups by the
investigator
B randomization : protects against bias in assignment to
groups
m ‘blind’, ‘double-blind’ : protects against bias in outcome
assessment/measurement
B placebo : artificial /fake treatment
m Observational study : subjects ‘assign’ themselves to groups
m confounder : associated with both group
membership/risk factor and with the outcome of
interest
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A few comments

m With a well-planned and well executed controlled experiment,
it is possible to infer causality

m This is not possible with observational studies due to the
presence of confounders

m With confounding, it is not possible to tell whether the
observed difference between groups is due to the treatment or
to the confounding factor

m Not always possible to carry out an experiment, for pratical
and ethical reasons
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Statistical models

m A statistical model is an approximate mathematical
description of the mechanism that generated the observations,
which takes into account unexpected random errors :

B gives an idealistic representation of reality

B makes explicit assumptions (that could be false!!)
about the process under study

W permits an abstract reasoning

m The model is expressed by a Le modéle s'exprime par une
family of theoretical distributions that contains the ‘ideal’
cases for the included RVs

B e.g. : tosses of a coin ...
m A useful model offers a good compromise between
m true description of the reality (many parameters correct
assumptions)
B ease of mathematical manipulation
m production of solutions/predictions close to the
observation(s) 26 /50



A simple model
A simple case : several measures of a physical quantity p are taken,
e.g. length of a field, person’s height ...

m Such measures possess in general a random component due to
measurement errors

m One possible error mechanism :
measure = true theoretical value + measurement error
y = M + €

m that is : measures with additive errors

m If there is no colitsystematic error (biais), the random error
should be ‘centered’ (E[e] =0)

m Often reasonable to think that the precision of each measure
is the same (Var(€) = o for each measurement)

m One possible specification for the error distribution is Normal
N(0,c?)

m All models are wrong; some are useful
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Estimation of the unknown parametres

Once a model is chosen, we are interested in estimating
unknowns : the parameters of the model

We observe realizations of a RV for which the distribution is
known (other than the parameter values)

Thus, we must estimate the parameters using the observations
X1,...,Xn

p-X-

S
.M:
x

1l
= e

n

: > (Xi-X)?

i=1
The estimator S2 is unbiased for o2, and is independent of
that for 1 (X)

52=56%=

]
|
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Bivariate data

Measures on two variables; e.g. X and Y
We will consider the case of two continuous variables
Want to discover the relationship between the two variables

m forearm length and height
m height and weight
m expression of gene A and gene B

We will consider datasets that are (at least approximately)

’ bivariate norma/‘ < oval-shaped

(X, Y) ~ BVN((pix, y), (0%, 73), p)
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Exploratory analysis : scatterplot
m Graphical summary of a bivariate dataset using a scatterplot
(or cloud)
m Values of one variable are plotted on the horizontal axis and
values of the other on the vertical axis

m Can be used to see how values of 2 variables tend to move
with each other (that is, how the variables are associated)

(a) positive association (b) negative association
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Scatterplot

Height (ininches)

20 Weight (m pounds)
EY )

(a) (b)
QCM : What is the association between X and Y 77

(a) none (b) positive (c) negative (d) impossible to determine
Figure (@) : Figure (b) :
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Numerical summaries

m Typically, bivariate data are summarized (numerically) with 5
statistics

m These give a good summary for point clouds with the same
general form that we just saw (oval)

m We can summarize each variable separately : X,sx; Y, xy

m But these values don’t say how the values of X and Y vary
together

33/59



Correlation

m Let X and Y be RVs, with Var(X) >0, Var(Y) >0. The
correlation p(X,Y) is defined as :

p(X,Y) = Cov(X,Y) _ E[(X-EX) x (Y -EY)]

\/ Var(X)Var(Y) Var(X)Var(Y)

B p is a unitless quantity, -1 < p<1

m The correlation p, like the covariance, is a measure of linear
association (the degree of linearity) of RVs X and Y

m Values of p close to 1 or -1 indicate strong linearity between
X and Y, while values close to 0 indicate an absence of any
linear relationship

m the sign of p indicates the direction of the association
(positive or negative, corresponding to the slope of the line)

m When p(X,Y) =0, X and Y are uncorrelated
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Sample correlation coefficient

The sample correlation coefficient r (or p) is defined as the
mean value of the (normalized) product XY :

r = E[(X centered-scaled) * (Y centered-scaled)]
centered-scaled = standardized (normalized)
= (X- mean(X))/SD(X)
r is a unitless quantity

-1<r<1

ris a measure of LINEAR ASSOCIATION
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Correlation # Causation

We cannot deduce that, when X and Y are strongly
correlated (r close to -1 or 1) that X causes a change in Y
Y could be causing X
X and Y could be varying with a third variable, perhaps an
unknown factor (whether causal or not, often time)
m polio and soft drinks
® number of firefighters sent to a fire and amount of
damage
m Children who get tutored get worse grades than children
who do not get tutored

If r~0, thereisno [LINEAR| ASSOCIATION

— this is to say that there is NO ASSOCIATION
We cannot deduce the form of the scatterplot based only on
the value of r
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(a) random scatter

™~ obs.
—aberrantes

(b) curve (c) outliers

(d) parallelism

(e) two different lines
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Modeling an oval-shaped point cloud

m Variable to be explained / response variable : Y
m Explanatory / predictor variables : X
m The value of X is assumed to be known without error
m We assume that variation in Y are influenced by X
B The model expressed the assumed connection using a
mathematical relationship
m Knowing these variables allows us to use the model to predict
Y
m Estimate the values of Y :
— pointwise
— using an interval
m The model also allows us to measure the impact (or effect) of
an explanatory variable on Y
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Deterministic or statistical relation

200,
K =800 Stock limite

Courbe dose-effet des cancers chez les survivants d'Hiroshima et Nagasaki

700, % §:§
o0 s |53
s00. g g%
= a
400,
300
200. !
100, Dose (Gy)
Ni) = 50
i 2 3 Temps
(a) deterministic (b) statistical
m Only one value of Y for m Multiple values of Y for
a given value of X a given value of X

m ‘Probabilize’ Y for a
fixed value of X
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Simple linear regression

Refers to drawing a (particular) line through a cloud of points

Used for 2 objectives :

m Explanation
m Prediction

Statistical linear model (linear in the parameters) :
B Y=03+/X+e = E[Y]|X]=06+0X
B E(e)=0; Var(e) =02

The equation to predict Y when a specific value x is known :

Y = Bo + le
m (o = the intercept; B1 = the slope (in the population)
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Which line?
m There are many lines that could be drawn through a cloud of
points
m How to choose one?
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Prediction by regression

m We can make a prediction using the regression line :

when X goes up by 1 (SD), the predicted value of Y goes up

¥ NOT by 1 (SD) **, but only by r (SD) (goes down if r is
negative) :
Y-Y X-X
| =r
Sy Sx

m This prediction can also be expressed as :

pred. y = int. 4 slope x x, with
m slope = /3 = rsy/sx

m int. = 30 =y- slope x X
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Least squares

Q : Where does this equation come from ?
A : It's the line that is ‘best’ in the sense that the sum of the
squared errors in the vertical direction (Y is a minimum

Y

erreurs

(résidus)

X
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*** Interpretation of the parameters ***

m The equation of the regression line has 2 parameters :
the slope and the intercept

m The slope is the mean (expected) change in Y for a change of
1 unit of X

m The intercept is the estimated value of Y when X =0

m If the slope = 0, then X does not help in predicting Y (for a
linear prediction)
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Another view of the regression line

m We can split the cloud of points into regions (X-bands) based
on the values of X

m Within each X-band, mark the average value of Y (using only
the values of Y whose X values are in that X-band)

m This is the curve/graph of the means

m The regression line can be considered as a smoothed versione
of the curve of the means
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Scatterplot (again)
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Creation of the X-bands
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Graph of the means
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Steps in regression

Starting with a sample of values for the response variable Y and
the predictor variable(s) X :
m Verify the possibility of a linear relation between Y and X
m graphical representation
m correlation coefficient
m Parameter estimation
m coefficients 3; = B,-
m standard deviation for the errors o0 = &
m Model evaluation (next week)
® measures of quality R2, Rfdj
m global evaluation of model fit (Fisher's F)
m test(s) for individual coefficients
B examination of residuals, outlier detection, detection of
influential points
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Summary : simple linear regression (conceptual)

m For a scatterplot that is oval-shaped, we can find a line that
serves to summarize the points

m A principle commonly used for fitting this line is /east squares :
the total of the squares of the (vertical) errors is minimized

m According to the principle, the regression prediction for Y
knowing X tells us that :
when X goes up by 1 SDx, (the expected value of) Y goes
up by rSDx

m We can find the equation for the least squares line using the 5
statistics :

X,SD(X),Y,SD(Y),r
. . A S
m The (estimated) slope is equal to 51 = r—Y,

5X
the (estimated) intercept equals o = Y - 51 X
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Simple linear regression — mathematical framework

Here, we consider a model where the response variable y; has
a linear association with an explanatory variable (or regressor
or predictor) x; : yi=Po+ Pixi+€;, i=1,...,n
€1,...,€p are assumed to be random variables

® uncorrelated

B expectation =0

m variance = o2 for all i = 1,..., n (homoscedastic)
x; are assumed to be constants (measured without error)

= If the errors are also assumed to be Normally distributed,
we can carry out tests and make confidence intervals (Cl)
Assumptions summarization :

®m Linear model (in the parameters)

® Independent errors / observations

m Normal errors / observations

m Equal error variances
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Homoscedastic, heteroscedastic errors

h 4
Y

Homoscedasticity w Heteroscedasticity 0
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Method of least squares
(The details WILL NOT BE EXAMINED)

m The data are only a sample (and not the entire population)

m Thus, we must estimate the values of the parameters (g
(intercept) et (1 (slope) (as well as the error variance o) :

Vi=Bo+B1xi+e€

m According to the least squares principle, we are looking for
estimators that minimize :

n n
SS() =2 (yi-9)? =Y €
i=1 i=1
m ‘SS’ = 'sum of squares’
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Method of least squares, cont.
This is now an optimization problem, of finding the values 30 and

31 that minimize

S55(Bo, 1) = zn:(yi - Bo - Pxi)*.
i

To solve this, differentiate with respect to By, 51 ; find the zeros :

d

dfo

> =2(yi = fo— P1xi) =0
i1

i(y,' - Bo-P1x;) =0

M:

n/BO_/Bl ZXI =

i=1

= /30+[31ZX, (*)

Il
Jy

M:

1l
—_
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Least squares, cont.

-5 - Z 2X:(yl BO - /lel) 0
=> i(X,yl Boxi — f1x?) =0
XiYi — /BOZXI p1 ZX =

Xjyi = Z (%)

Simultaneous solution of (*) and (**) for the parameters [y et 51
gives us the regression estimates.
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Conditional Normal distribution : graphically

o
[e0]

final
75

70

65
|
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Conditional Normal distribution : algebraically

m The (univariate) Normal distribution depends on 2
parameters : the mean and the variance (equivalently, the SD)

m The conditional expectation is the regression prediction of Y

given X : }A/ZBO‘FBlX

m The conditional error (RMSE) is a new variability measure :
the variability of the conditional expectation of Y knowing X,
i.e., the variability around the regression line; it's the square
root of the mean square error (MSE)

m MSE = arithmetic mean® of the squared deviations between
the predictions and the observations

m *(instead of dividing by n, divide by degrees of freedom)

B |RMSE(Y) =sy\/(1-r?)
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Properties of the estimator for the slope

Estimated regression line : Y= BO + Bl X

The least squares estimate for the slope 31 can be written as :

B - y1(x1 =X) + -+ yn(xp—X)
LT T - X)2 4+ (xp - X)2

Expected value of the estimator : E[51] = 1
Variance of the estimator : :

A 2
Var(f1) =

(x1 =X)2+ -+ (xp — X)?

We need an estimator for 02 (e = y; - yi) :
o e+ ve?
6= —=—-—1

n-2
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Test /confidence interval for the slope

m Totest H: (3 =ﬂf against A : 51 q&ﬂf :
By - Y
&)/ (x1 = X)2+ - + (xp — X)?
m We REJECT H if : |t-slopeops| > -2, 1-0/2
m The IC with level 1 -« for the slope ]3; est :

t-slope,ps =

A 6
P1 £ tn-2,1-a/2

Vxa =%)2+ -+ (xp — X)2
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