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Lecture 3

(Brief ! !) review : CLT, CI, hypothesis tests

Student’s t distribution, t-test

Research process, scientific investigations

Statistical modeling

Bivariate data

Modeling bivariate data

Simple linear regression

Distribution of Y conditional on X

Sampling distribution of parameter estimates
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Review : Central Limit Theorem (CLT)

The Central Limit Theorem is one of the most important
results in probability/statistics, and is widely used as a
problem-solving tool

Theorem (CLT) : Let X1,X2, . . . be a sequence of
independent and identically distributed (iid) RVs, each having
mean µ and variance σ2

Then for n ‘sufficiently large’, the distribution of

∎ the sum :
n

∑
i=1

Xi is approximately N(nµ, nσ2)

∎ the mean : X is approximately N(µ, σ2/n)
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Review : steps in hypothesis testing

1 Identify the population parameter being tested

2 Formulate the NULL and ALT hypotheses

3 Compute the test statistique (TS)

4 Compute the p-value pobs

∎ pobs is the probability of obtaining a value of T as or
more extreme (as far away from what we expected or
even farther, in the direction of the ALT) than the one
we got, ASSUMING THE NULL IS TRUE

5 Decision rule and practical interpretation : REJECT the NULL
hypothesis H if pobs ≤ α
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Regarding small samples...

The z-test that we have studied assumes that the sampling
distribution of the test statistic T is Normal

∎ exactly, or
∎ approximately, by the CLT

However :

∎ If the data are Normally distributed, AND
∎ if the population SD σ is unknown, AND
∎ the sample size is small (for example, under 30)

THEN : the true sampling distribution of T has heavier tails
than the Normal distribution

In this case, you should use the t-test
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‘Student’ (= William Sealy Gosset)

W. S. Gosset Guinness
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Distribution of T when σ2 is unknown
Recall the test statistic T = (X − µ0)/(σ/

√
n)

If the sample size n is ‘sufficiently large’, then under H,
T ∼ N(0,1) regardless of the distribution of X (CLT)

If the observations X1, . . . ,Xn ∼ N(µ0, σ
2), then T ∼ N(0,1)

for known σ2, regardless of the sample size n

BUT : If the sample size n is small, and the variance σ2 is
unknown, the true distribution of T has more variability than
the Normal distribution (due to the imprecise estimation of σ
based on few obs)

For the case (1) X1, . . . ,Xn ∼ N(µ0, σ
2) ; (2) n small ; and

(3) σ2 is unknown, then T =
X − µ0

s/
√
n
∼ tn−1, the Student t

distribution, with n − 1 degrees of freedom (df)

The distribution de T depends on the number of observations
n)
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Student t distribution
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Table of the t distribution
t  Table

cum. prob t .50 t .75 t .80 t .85 t .90 t .95 t .975 t .99 t .995 t .999 t .9995

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%

Confidence Level

t-table.xls 7/14/2007
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Confidence interval

In the case

1 X1, . . . ,Xn ∼ N(µ,σ
2)

2 n small ; and

3 σ2 is unknown :

we can make a confidence interval (CI) as before, but using
the t distribution instead of the Normal (z)

CI for the population mean : x ± tn−1,1−α/2 s /
√
n
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Hypothesis test : find the rejection region

H: µ = µ
H

A: µ ≠ µ
H

H: µ = µ
H

A: µ < µ
H

H: µ = µ
H

A: µ > µ
H
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Example�� ��Example 9.1 Daily intake of energy (kJ) for 11 women :

5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Make a 95% for the mean daily energy intake (kJ) of the
population of women ...

Test the hypothesis that the mean is equal to the
recommended value (7725 kJ) ...
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Test for comparing two (independent) means : equal
variances

We want to compare the means of two sets of measures :

∎ Group 1 (p. ex. ‘control’) : x1, . . . , xn
∎ Group 2 (p. ex. ‘treatment’) : y1, . . . , ym

We can model these data as :
xi = µ + ϵi ; i = 1, . . . ,n ;
yj = µ +∆ + τi ; j = 1, . . . ,m,

where ∆ signifies the effect of the treatment (compared to
the ‘control’ group)

H ∶∆ = 0 vs. A ∶∆ ≠ 0 or A ∶∆ > 0 or A ∶∆ < 0
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Equal variances, cont.

T = obs. diff. / ES(obs. diff.) =
∆

√
̂
Var (̂ )∆

;

∆̂ = ȳ − x̄ ; Var(∆̂) =
σ2

n
+
σ2

m
=
n +m

nm
σ2

We assume that :

∎ the variances of the 2 samples are equal :
Var(ϵ) = Var(τ)

∎ the observations are independent
∎ the 2 samples are independent

We can estimate the variances separately :
s2x = ((x1 − x̄)

2 +⋯ + (xn − x̄)
2)/(n − 1)

s2y = ((y1 − ȳ)
2 +⋯ + (ym − ȳ)

2)/(m − 1)

When the variances are equal, we can combine the two
estimators : s2p = ((n − 1)s

2
x + (m − 1)s

2
y )/(n +m − 2)

⇒ tobs =
ȳ − x̄

√
s2p(n +m)/(nm)

∼ tn+m−2 under H
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Test for comparing two (independent) means : unequal
variances

If σ2
x ≠ σ

2
y , we can use

TWelch =
Y −X

√
S2
x /n + S

2
y /m

The distribution of the statistic TWelch is only approximately
t, with a number of degrees of liberty calculated based on sx ,
sy , n and m

Welch test

In practice, if the variances are rather different (ratio more
than 3), we could use this statistic (instead of the one with
variance s2p)
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Example�� ��Example 9.2 Energy expenditure for groups of thin and obese
women :
mince 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11
obese 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

Test the hypothesis that the two population means are equal
...
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Paired experiments

For an experiment carried out in blocks of two units, the
power of the t-test can be increased

This idea permits us to eliminate the influences of other
variables (e.g. age, sex, etc.), in giving them different
‘treatments’

Thus, we have a more precise comparison of the two
conditions
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t-test for a paired experiment
The data are of the form :

1 2 n
contrôle x1 x2 ⋯ xn expected value µ
traitement y1 y2 ⋯ yn expected value µ +∆

Each block allows us to evaluate the effect of the treatment

Here, we consider the differences

d1 = y1 − x1, . . . ,dn = yn − xn

as a sample of measurements coming from a distribution with
expected value ∆

H ∶∆ = 0 vs. A ∶∆ ≠ 0 or A ∶∆ > 0 or A ∶∆ < 0

T = tpaired =
d

sd /
√
n
, where

s2d = ((d1 − d)
2 +⋯ + (dn − d)

2)/(n − 1)

Under H, tpaired ∼ tn−1
19 / 59



Example 9.1, cont.

Example 2.2, cont. : Daily intake of energy of 11 women pre- and
post-menopausal :

pré 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770
post 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

Test the hypothesis that there is no difference in daily energy
intake before and after menopause ...
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Research process

Scientific question of interest

Decide what data to collect (and how)

Collection and analysis of data

Conclusions, generalizations : inference on the population

Communication and dissemination of results
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Generic question :
Does a ‘treatment’ have an ‘effect’ ?

Exemples :

Does smoking cause cancer, heart disease, etc ?

Does eating oat bran lower cholesterol ?

Does échinacea prevent illness ?

Does exercise slow the aging process ?
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Types of studies

A basic means to address this type of question involves
comparing two groups of study subjects :

∎ Control group : provides a baseline for comparison
∎ Treatment group : group receiving the ‘treatment’

Experimental study : subjects assigned to groups by the
investigator

∎ randomization : protects against bias in assignment to
groups

∎ ‘blind’, ‘double-blind’ : protects against bias in outcome
assessment/measurement

∎ placebo : artificial/fake treatment

Observational study : subjects ‘assign’ themselves to groups

∎ confounder : associated with both group
membership/risk factor and with the outcome of
interest
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A few comments

With a well-planned and well executed controlled experiment,
it is possible to infer causality

This is not possible with observational studies due to the
presence of confounders

With confounding, it is not possible to tell whether the
observed difference between groups is due to the treatment or
to the confounding factor

Not always possible to carry out an experiment, for pratical
and ethical reasons
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Statistical models
A statistical model is an approximate mathematical
description of the mechanism that generated the observations,
which takes into account unexpected random errors :
∎ gives an idealistic representation of reality
∎ makes explicit assumptions (that could be false ! !)

about the process under study
∎ permits an abstract reasoning

The model is expressed by a Le modéle s’exprime par une
family of theoretical distributions that contains the ‘ideal’
cases for the included RVs
∎ e.g. : tosses of a coin ...

A useful model offers a good compromise between
∎ true description of the reality (many parameters correct

assumptions)
∎ ease of mathematical manipulation
∎ production of solutions/predictions close to the

observation(s) 26 / 59



A simple model
A simple case : several measures of a physical quantity µ are taken,
e.g. length of a field, person’s height ...

Such measures possess in general a random component due to
measurement errors

One possible error mechanism :

measure = true theoretical value + measurement error
y = µ + ϵ

that is : measures with additive errors

If there is no colitsystematic error (biais), the random error
should be ‘centered’ (E [ϵ] = 0)

Often reasonable to think that the precision of each measure
is the same (Var(ϵ) = σ2 for each measurement)

One possible specification for the error distribution is Normal
N(0, σ2)

All models are wrong ; some are useful
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Estimation of the unknown parametres

Once a model is chosen, we are interested in estimating
unknowns : the parameters of the model

We observe realizations of a RV for which the distribution is
known (other than the parameter values)

Thus, we must estimate the parameters using the observations
X1, . . . ,Xn

µ̂ = X =
1

n

n

∑
i=1

Xi

σ̂2
= S2

=
1

n − 1

n

∑
i=1
(Xi −X )

2

The estimator S2 is unbiased for σ2, and is independent of
that for µ (X )
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BREAK
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Bivariate data

Measures on two variables ; e.g. X and Y

We will consider the case of two continuous variables

Want to discover the relationship between the two variables

∎ forearm length and height
∎ height and weight
∎ expression of gene A and gene B

We will consider datasets that are (at least approximately)

bivariate normal ⇔ oval-shaped

(X ,Y ) ∼ BVN((µx , µy), (σ
2
x , σ

2
y), ρ)
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Exploratory analysis : scatterplot

Graphical summary of a bivariate dataset using a scatterplot
(or cloud)

Values of one variable are plotted on the horizontal axis and
values of the other on the vertical axis

Can be used to see how values of 2 variables tend to move
with each other (that is, how the variables are associated)

(a) positive association (b) negative association
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Scatterplot

(a) (b)

QCM : What is the association between X and Y ? ?

(a) none (b) positive (c) negative (d) impossible to determine

Figure (a) : Figure (b) :
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Numerical summaries

Typically, bivariate data are summarized (numerically) with 5
statistics

These give a good summary for point clouds with the same
general form that we just saw (oval)

We can summarize each variable separately : X , sX ;Y , xY

But these values don’t say how the values of X and Y vary
together
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Correlation

Let X and Y be RVs, with Var(X ) > 0,Var(Y ) > 0. The
correlation ρ(X ,Y ) is defined as :

ρ(X ,Y ) =
Cov(X ,Y )

√
Var(X )Var(Y )

=
E [(X − EX ) × (Y − EY )]
√
Var(X )Var(Y )

ρ is a unitless quantity, −1 ≤ ρ ≤ 1

The correlation ρ, like the covariance, is a measure of linear
association (the degree of linearity) of RVs X and Y

Values of ρ close to 1 or -1 indicate strong linearity between
X and Y , while values close to 0 indicate an absence of any
linear relationship

the sign of ρ indicates the direction of the association
(positive or negative, corresponding to the slope of the line)

When ρ(X ,Y ) = 0, X and Y are uncorrelated

34 / 59



Sample correlation coefficient

The sample correlation coefficient r (or ρ̂) is defined as the
mean value of the (normalized) product XY :

r = E [(X centered-scaled) ∗ (Y centered-scaled)]

centered-scaled = standardized (normalized)
= (X− mean(X ))/SD(X )

r is a unitless quantity

−1 ≤ r ≤ 1

r is a measure of LINEAR ASSOCIATION
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Correlation ≠ Causation
We cannot deduce that, when X and Y are strongly
correlated (r close to -1 or 1) that X causes a change in Y

Y could be causing X

X and Y could be varying with a third variable, perhaps an
unknown factor (whether causal or not, often time)

∎ polio and soft drinks
∎ number of firefighters sent to a fire and amount of

damage
∎ Children who get tutored get worse grades than children

who do not get tutored

If r ≈ 0, there is no LINEAR ASSOCIATION

– this is NOT to say that there is NO ASSOCIATION

We cannot deduce the form of the scatterplot based only on
the value of r
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r ≈ 0

(a) random scatter

(b) curve

obs. 

aberrantes

(c) outliers

(d) parallelism (e) two different lines
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Modeling an oval-shaped point cloud

Variable to be explained / response variable : Y

Explanatory / predictor variables : X

∎ The value of X is assumed to be known without error
∎ We assume that variation in Y are influenced by X
∎ The model expressed the assumed connection using a

mathematical relationship

Knowing these variables allows us to use the model to predict
Y

∎ Estimate the values of Y :
– pointwise
– using an interval

The model also allows us to measure the impact (or effect) of
an explanatory variable on Y
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Deterministic or statistical relation

(a) deterministic (b) statistical

Only one value of Y for
a given value of X

Multiple values of Y for
a given value of X

‘Probabilize’ Y for a
fixed value of X

39 / 59



Simple linear regression

Refers to drawing a (particular) line through a cloud of points

Used for 2 objectives :

∎ Explanation
∎ Prediction

Statistical linear model (linear in the parameters) :

∎ Y = β0 + β1X + ϵ ⇒ E [Y ∣ X ] = β0 + β1X

∎ E(ϵ) = 0; Var(ϵ) = σ2

The equation to predict Y when a specific value x is known :

Ŷ = β̂0 + β̂1x

β0 = the intercept ; β1 = the slope (in the population)
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Which line ?
There are many lines that could be drawn through a cloud of
points
How to choose one ?
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Prediction by regression

We can make a prediction using the regression line :

when X goes up by 1 (SD), the predicted value of Y goes up
** NOT by 1 (SD) **, but only by r (SD) (goes down if r is
negative) :

∎
Ŷ −Y

sY
= r

X −X

sX

This prediction can also be expressed as :

pred. y = int. + slope × x , with

∎ slope = β̂1 = r sY /sX

∎ int. = β̂0 = y− slope × x
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Least squares
Q : Where does this equation come from ?
A : It’s the line that is ‘best’ in the sense that the sum of the
squared errors in the vertical direction (Y ) is a minimum

*

*

*

erreurs

(résidus)

X

Y

*

*
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*** Interpretation of the parameters ***

The equation of the regression line has 2 parameters :
the slope and the intercept

The slope is the mean (expected) change in Y for a change of
1 unit of X

The intercept is the estimated value of Y when X = 0

If the slope = 0, then X does not help in predicting Y (for a
linear prediction)
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Another view of the regression line

We can split the cloud of points into regions (X-bands) based
on the values of X

Within each X -band, mark the average value of Y (using only
the values of Y whose X values are in that X -band)

This is the curve/graph of the means

The regression line can be considered as a smoothed versione
of the curve of the means
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Scatterplot (again)
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Creation of the X -bands
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Graph of the means
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Steps in regression

Starting with a sample of values for the response variable Y and
the predictor variable(s) X :

Verify the possibility of a linear relation between Y and X

∎ graphical representation
∎ correlation coefficient

Parameter estimation

∎ coefficients βi ⇒ β̂i
∎ standard deviation for the errors σ⇒ σ̂

Model evaluation (next week)

∎ measures of quality R2, R2
adj

∎ global evaluation of model fit (Fisher’s F )
∎ test(s) for individual coefficients
∎ examination of residuals, outlier detection, detection of

influential points
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Summary : simple linear regression (conceptual)

For a scatterplot that is oval-shaped, we can find a line that
serves to summarize the points

A principle commonly used for fitting this line is least squares :
the total of the squares of the (vertical) errors is minimized

According to the principle, the regression prediction for Y
knowing X tells us that :
when X goes up by 1 SDX , (the expected value of) Y goes
up by rSDX

We can find the equation for the least squares line using the 5
statistics :

X ,SD(X ),Y ,SD(Y ), r

The (estimated) slope is equal to β̂1 = r
sY
sX

,

the (estimated) intercept equals β̂0 = Y − β̂1X
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Simple linear regression – mathematical framework
Here, we consider a model where the response variable yi has
a linear association with an explanatory variable (or regressor
or predictor) xi : yi = β0 + β1xi + ϵi , i = 1, . . . ,n

ϵ1, . . . , ϵn are assumed to be random variables

∎ uncorrelated
∎ expectation = 0
∎ variance = σ2 for all i = 1, . . . ,n (homoscedastic)

xi are assumed to be constants (measured without error)

⇒ If the errors are also assumed to be Normally distributed,
we can carry out tests and make confidence intervals (CI)

Assumptions summarization :

∎ Linear model (in the parameters)
∎ Independent errors / observations
∎ Normal errors / observations
∎ Equal error variances
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Homoscedastic, heteroscedastic errors
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Method of least squares
(The details WILL NOT BE EXAMINED)

The data are only a sample (and not the entire population)

Thus, we must estimate the values of the parameters β0
(intercept) et β1 (slope) (as well as the error variance σ2) :

ŷi = β0 + β1 xi + ϵi

According to the least squares principle, we are looking for
estimators that minimize :

SS(ŷ) =
n

∑
i=1
(yi − ŷi)

2
=

n

∑
i=1

e2i

‘SS’ = ‘sum of squares’
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Method of least squares, cont.
This is now an optimization problem, of finding the values β̂0 and
β̂1 that minimize

SS(β0, β1) =
n

∑
i=1
(yi − β0 − β1xi)

2.

To solve this, differentiate with respect to β0, β1 ; find the zeros :

d

dβ0
=

n

∑
i=1
−2(yi − β0 − β1xi) = 0

=>
n

∑
i=1
(yi − β0 − β1xi) = 0

=>
n

∑
i=1

yi − nβ0 − β1
n

∑
i=1

xi = 0

=>
n

∑
i=1

yi = nβ0 + β1
n

∑
i=1

xi (∗)
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Least squares, cont.

d

dβ1
=

n

∑
i=1
−2xi(yi − β0 − β1xi) = 0

=>
n

∑
i=1
(xiyi − β0xi − β1x

2
i ) = 0

=>
n

∑
i=1

xiyi − β0
n

∑
i=1

xi − β1
n

∑
i=1

x2i = 0

=>
n

∑
i=1

xiyi = β0
n

∑
i=1

xi + β1
n

∑
i=1

x2i (∗∗)

Simultaneous solution of (*) and (**) for the parameters β0 et β1
gives us the regression estimates.
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Conditional Normal distribution : graphically
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Conditional Normal distribution : algebraically

The (univariate) Normal distribution depends on 2
parameters : the mean and the variance (equivalently, the SD)

The conditional expectation is the regression prediction of Y

given X : ŷ = β̂0 + β̂1 x

The conditional error (RMSE) is a new variability measure :
the variability of the conditional expectation of Y knowing X ,
i.e., the variability around the regression line ; it’s the square
root of the mean square error (MSE)

MSE = arithmetic mean∗ of the squared deviations between
the predictions and the observations

∗(instead of dividing by n, divide by degrees of freedom)

RMSE(Y ) = sY
√
(1 − r2)
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Properties of the estimator for the slope

Estimated regression line : Ŷ = β̂0 + β̂1X

The least squares estimate for the slope β1 can be written as :

β̂1 =
y1 (x1 − x) +⋯ + yn (xn − x)

(x1 − x)2 +⋯ + (xn − x)2

Expected value of the estimator : E [β̂1] = β1

Variance of the estimator : :

Var(β̂1) =
σ2

(x1 − x)2 +⋯ + (xn − x)2

We need an estimator for σ2 (ei = yi − ŷi ) :

σ̂2
=
e21 +⋯ + e

2
n

n − 2
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Test/confidence interval for the slope

To test H : β1 = β
H
1 against A : β1 ≠ β

H
1 :

t-slopeobs =
β̂1 − β

H
1

σ̂/
√
(x1 − x)2 +⋯ + (xn − x)2

We REJECT H if : ∣t-slopeobs ∣ > tn−2 ,1−α/2
The IC with level 1 − α for the slope ]β1 est :

β̂1 ±
σ̂

√
(x1 − x)2 +⋯ + (xn − x)2

tn−2 ,1−α/2
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