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Probability vs. statistics

For a known value of p, we can calculate the probability of
any possible result

This is probability
In many practical situations though, we do not know the value

of p, but instead have some data that will be used to estimate
the value of p

This is statistics
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Sampling

The goal of a statistical study is to obtain some knowledge
about a population, that is, estimation of a parameter

Since a complete enumeration of the population is rarely
practical, we need other, more practical means

= Sampling consists of choosing among the population a
certain number of individuals (‘sampling units’) for which we
will obtain observations (data)

Our data can be considered as arising from a random
process : if we were to repeat the collection of the data, the
results would be different, and this could influence any
conclusions drawn based on the data

That is, our conclusions are subject to random variation
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Utility of sampling

m A gardener has two million practically identical seeds, some of
which produce white flower and some of which produce red
flowers

m He would like to know in advance the percentage of white
flowers des fleurs blanches (so that he can sell them without
deceiving his clients)

m If he wants to be absolutely certain which color flowers are
produced, he would need to plant every seed

m And thus he would have no more seeds to sell!'!
m = A sample is necessary

m (Even when the process is not destructive, it is most often
impossible or infeasible (time, cost) to measure every
individual from the population)
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Representativeness

Based on his observations, the gardener could make an
estimate of the number of white/red flowers among the two
million seeds

= Then generalize to the population the knowledge acquired
on the basis of some observations

We cannot be absolutely certain of our prediction, since we
only consider a fraction of the total population : =
Imprecision due to sampling

Generally, there will be a deviation between the observations
obtained from the sample and those from the totality of the
population

But : if the sample is chosen in a scientific manner, it is
possible to make a probabilistic evaluation

= Possible to evaluate the error, and determine the precision
of the estimation
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Sampling methods
Arbitrary sampling
m Impossible to quantify the associated probabilities, thus
difficult to estimate parameters and standard deviation of the
estimation (standard error, SE)
m For example, the first ten people to enter the room
m = NOT recommended!!
Random sampling

m Corresponds to methods of sampling draws where each unit in
the population has a positive, known probability of being
chosen
m These methods permit population parameter estimation, and
also allow us to obtain a measure of the SE
m For us, the most important methods correspond to sampling
WITH replacement (independent), and sampling WITHOUT
replacement (simple random sampling (SRS) /
échantillonnage aléatoire simple (EAS))
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Estimation

The procedure of using sampling information that permits us
to make deductions regarding the entire population is called
estimation

The unknown population value (to estimate based on the
sample) is called a parameter

For example : the mean (u); the proportion (or percentage)
(p)

The population parameter is estimated by a statistic
calculated based on the sample

= a statistic is a function of the data

An estimator is a statistic used to estimate (guess the value
of) a parameter #; that is, it is a rule that lets us calculate an
approximation of # based on the sample values Xi,..., X,

An estimate is a value observed (calculated) of the estimator
for a sample
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Quality of an estimator

m To answer the question : ‘how to choose between candidate
estimators’, we should examine what makes a ‘good’ estimator

m Thus, we consider the (statistical) qualities of the estimators

m Some important qualities :

bias

variance

mean square error (MSE) / erreur quadratique moyenne
(EQM)

consistent (tends toward the correct result)

robustness
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Bias
m The bias of an estimator T of the parameter 0 is defined by :
b(T) = E[T] —9,

(that is, the difference between the expected value of the
sampling distribution of the estimator T and the true value of
the parameter 6)

® An estimator is unbiased) if the bias equals 0

Example7.1] What is the bias of the estimator X for the
population mean g ...
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Variance

m Another quality that we can consider is the variance of the
estimator :

Var(T) = E[(T - E[T])?]

m Among two unbiased estimators of €, one is more efficient
than the other if its variance is smaller

Example 7.2| Now let's consider the variance of some
C

andidate estimators of the population mean p ...
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Bias and variance of an estimator T

big bias, big variance no bias, big variance

big bias, low variance no bias, low variance
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Mean Square Error (MSE)

Another quality that we can consider is the mean square
error (MSE) / erreur quadratique moyenne (EQM) of an
estimator

EQM(T) = E[(T - 6)°]
This is different from the variance when the estimator T is
biased

Sometimes we would like to use a slightly biased estimator if
its variance is much smaller than thet best unbiased estimator
(bias-variance tradeoff)

It is simple to demonstrate that the MSE can be expressed as
a combination of the bias and variance :

EQM(T) = Var(T) + [b(T)?]
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Methods of point estimation

Method of maximum likelihood (which often produces
‘intuitive’ estimators)

Method of moments — will be illustrated on (VIDEO ONLY),
but
= willt NOT be part of the exam

Method of least squares (later, with ‘regression’)
Method of minimum absolute deviations

Bayesian estimation
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Likelihood

m For a known value p, we can express the probability of any set
of possible data

m On the other hand, we can consider the observations as
known and consider the probability as a function of the
unknown parameter p

m The probability function viewed in this way is called the
likelihood
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Likelihood illustrated

20 tosses of a coin; we observe 77 Heads

Binomial( 20, 0.1) Binomial( 20 , 0.5)
.
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Of these two distributions, from which is it more likely that the
sample came?
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Definition of the likelihood

Definition : Let X ~ f(x;#). The likelihood and log
likelihood are :

L(6) < f(x;0), £(0)=logL(0),
considered as functions of 8 for given x.
Let x = (x1,...,Xn) be a realization of iid RVs Xi,..., X,.

Then
L(9)=f(X;9)=I£If(X;;9), Z(G)zilogf(x;;&),
i=1 i1

where f(x;;0) is the law/density of x;.

NOTE : log = log base e = natural log.
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Estimation by maximum likelihood

m An intuitive estimation method is maximum likehihood
estimation

m For example, the most ‘obvious’ estimator of p is p= X/n
turns out to be the maximum likelihood estimator (MLE)

m In general, the MLE is the value that makes the probability as
large as possible — it's the value that makes the observed data
most probable

m The usual way of finding the MLE : using calculus — find the

derivative of the (log) likelihood function, set equl to zero and
solve : . N
dlog L(0) 0 d?log L(A)
do ’ do?
m (This method does not always work)

<0

m We are supposing that the first equation has a unique solution
(not alway true though)
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MLE, cont

m The MLE § satisfies the condition
L(0) > L(0) for all 0,

which is equivalent to log L() > log L(0), L(6) and log L(f)
are obtained at the same (maximizing) value 6
m The MLE can :

B exist and be unique
® not be unique, or
B not exist

m In practice, it is typically necessary to use numerical
algorithms to obtain # and d?log L(6)/d6?
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Advantages/disavantages of the method

m For a ‘sufficiently large’ sample size, the MLE is :

® unbiased

B consistent

m efficient (minimal MSE; thus at least as powerful as
MOM)

m Normally distributed

m therefore practical for statistical inference

m On the other hand, the MLE :

B can be very biased is the sample size is small
B can be very complicated to evaluate (possibly necessary
to evaluate numerically)
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Example

Example 7.3 | Let X ~ Bin(n,p). Find the MLE of p ...
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Example

Example 7.4 | Let Xi,...,X, ~ iid Pois()\), A > 0. Calculate

LN
log L(A)

NvLE (verify that the extremum is a maximum)
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Solution

L()\) = H e_)\)\—; o< e_n)‘)\zxi(: e—n)\)\n;()
i=1 Xj*

2(X) = nxlog A\ — n\

di(\) X
d\ A
m Verify max :

X ~

AMLE :

d20(N\)  dE(N) [ nx X
X2 dx [T_"]__Fw'

since nx >0, >0, so%>0:>—%<0,

thus the extremum (S\MLE) is a maximum
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Example

NOT important for us!!
Let Yi,..., Yy~ N(u,0o2). Find the MLEs of p

and o2.

Solution : The normal density is

1
V2ro?2

so the log likelihood for a random sample (iid) y1,...,yn is

exp {—T;(y - u)z} :

n 1 &
p,0) = log L(p, 0) = =7 logo® = =5 3 (yi = )*.
i=1
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Solution, cont
Taking the derivative, we have

o, o 1
) S0 ()
o, o
and LUET) 0L S0 (+%)

Solving (*), we have (for any value of ¢2) :
S(yi-p)=0 => Y yi=nu => fp=Yyj/n=y

Solving (**) (using /i in the place of p), we have :

N N a2 1 N
—not+ Y (yi=p)? =0 = Y(y-p)?=no? = 5= Y (yi-p)®

NOTE : this estimator is different from the unbiased estimator
2= (- )2
n-1 !
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Solution, cont
We must verify that the log likelihood is a maximum (not min) for
the pair of values (/i,52) : Second derivative test :

PlogL(fi,6?) O*logl(fie?) _ (9logl(psd)\' |
o2 9(02?)? Oud(a?)

2 NN 2 A AD
9" log L(f1,67) o . Ologl(p,6%)

AND ———A———=

op? < ' 9(0?)?
9*log L(f1,6%) _ & log L(p,6%) -n

Oud(o?) Z(y' ) = op? "2 < 0
O log L(p,6%) Z(y 0)? - n3 B n?
sty o T AL T LG
e
"2 <
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Uniform example — calculus does not work!!
Example 7.6

likelihood
P

=}
o

00

likelihood, MLE (red solid) vs. true parameter (blue dashed), n=3

Let y1,...,yn be a random sample from the
uniform distribution (0,6], with density f(y) =1/, 0<y <6 (=0
otherwise). Find the MLE 6 of 6 ...

0o
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Statistical information

m The observed information J(6) and the expected information
(sometimes also called Fisher information) 1(0) are :

2
. J(0) - dd§§9>

iy
m 1(0) = E{J(0)} = E{ dd§§9>}

m They measure the curvature of —£(0) :

the larger the values of J(0) and I(0), the more concentrated
are £(0) and L(0)
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Example : Normal distributions
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Properties of MLEs
Convergent : lim,_, o P(] 0, -0 |<e)=1,Ve>0

Invariance : if 6 is the MLE for the parameter 6, then h(f) is
the MLE for the parameter h(6)

Asymptotically unbiased : b(§) -0 as n—> oo
(for ‘small” samples the MLE can be very biased)

Asyptotically optimal efficiency : No other asymptotically
unbiased estimator can have a smaller variance than that of
the MLE

Asymptotic Normality : the distribution of 0, as n— oo is
Normal ; this fact gives us a basis for statistical inference
based on the MLE (for example, a Cl)

Approximate Cl (level 1-a) for 6 :| 0+ Zi_a)2 /\/J(GA)
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Regularity conditions (NOT EXAMINED)

The (not very interesting ') technical conditions that the
asymptotic normality proof depends on (just here for
completeness, you don’t need to study these!!) :

m The true value g of @ is interior to the parameter space ©,

which has finite dimension and is compact

m The densities defined by any two different values of 0 are
distinct; i.e., 0 is identifiable

m There is a neighborhood of 6y within which the first 3
derivatives of ¢ exist almost surely (i.e. with probability 1),
and for which the expectation of the 3rd derivative is
uniformly bounded for 8 in the neighborhood

m We can interchange differentiation and integration (i.e. we
can differentiate under the integral sign)
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Example

Example 7.7 | Suppose Xi,...,X, ~ iid Bernoulli(p).

alculate
L(p)

(p)

PEmvV

J(p)

I(p)
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Example 7.7, cont.

[@ an approximate 95% Cl for p using the data :

m n =10 (number of Heads = 9)

m n =20 (number of Heads = 16)

m n =100 (number of Heads = 67)
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Example

Example 7.8| Let Xi,...,X, ~ iid Pois(\), A > 0.

alculate

S\EMV supposing that Y X; >0
S\EMV supposing that Y X; =0
the MLE of P(X =0)

J(N)

1(\)

[@ an approximate 95% ClI for \ ...
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Warning

m Estimation by the method of maximum likelihood is
attractive :
m conceptually simple
B intuitive interpretation
m However, some difficulties; regularity conditions on the
likelihood function that cannot be ignored :
m difficult to establish
m difficult to interpret
m difficult to verify in practice
m Thus, even though very often useful, MLE is not a panacea
that makes other estimation methods obsolete
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