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Review : RVs (univariate)

Discrete RV :

1 probability mass function : p(x) = P(X = x)

2 cumulative distribution function : F (x) = P(X ≤ x) = ∑
i≤x

p(i)

Continuous RV : probability density function :

∎ P(X ∈ B) = ∫
B
f (x)dx

∎ f (x) ≥ 0 for each x

∎ ∫x f (x)dx = 1

Continuous RV : cumulative distribution function :

∎ F (x) = P(X ≤ x) = ∫
x

0
f (u)du

∎ F (−∞) = 0

∎ F (∞) = 1
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Joint cumulative distribution function

Until now we have considered only distributions of RVs one at
a time

In practice, it is often necessary to consider events concerning
two (or even more) variables simultaneously

To handle this type of problem, we define a Pour traiter de
tels problèmes on définit une joint cumulative distribution
function F for any pair of RVs X and Y :

F (a,b) = P(X ≤ a,Y ≤ b) −∞ < a,b < ∞

Just like before, if we know the cumulative distribution
function of a set of RVs (or the pmf or density), we can
address questions concerning probabilities
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Marginal cumulative distribution function

The marginal cumulative distribution function for a RV is
the cumulative distribution function of the single RV, without
regard to the other RVs

The cumulative distribution function of X is obtai-
ned from the joint cumulative distribution function of X and Y :
FX (a) = P(X ≤ a) [definition]

= P(X ≤ a,Y < ∞) [joint cdf]
= P(limb−>∞X ≤ a,Y ≤ b) [subst. limit]
= limb−>∞ P(X ≤ a,Y ≤ b) [change order lim / P]
= limb−>∞ F (a,b) = F (a,∞) [definition]

Similarly, we find the cumulative distribution function of Y ,
FY (b) = F (∞,b)
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Joint probability mass function
For two discrete RVs X and Y , we can define the joint
probability mass function (joint pmf) as :

p(x , y) = P(X = x ,Y = y)

The marginal pmf of X can be obtained from the joint pmf
p(x , y) :

pX (x) = P(X = x)

= ∑
y ∶p(x ,y)>0

p(x , y),

i.e., the marginal pmf of X is obtained by summing the joint
pmf over all possibilities of Y

The marginal pmf of Y is obtained similarly :
pY (y) = ∑

x ∶p(x ,y)>0
p(x , y)
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Joint probability density function
The RVs X and Y are jointly continuous if there is a
function f (x , y) defined for all real x and y such that for
every set C of pairs of real numbers

P((X ,Y ) ∈ C) = ∫ ∫(x ,y)∈C
f (x , y)dx dy

The function f (x , y) is called the joint probability density
function of X and Y
Let A and B denote two sets of real numbers,
C = {(x , y) ∶ x ∈ A, y ∈ B)} ; we have

P(X ∈ A,Y ∈ B) = ∫
B
∫
A
f (x , y)dx dy

The joint density function can be obtained from the joint
cumulative distribution function by differentiation :

f (a,b) =
∂2

∂a∂b
F (a,b)

(where the partial derivatives are defined) 6 / 31



Marginal density

For X and Y jointly continuous RVs, they are also individually
continuous

We obtain the marginal density of each RV as follows :

P(X ∈ A) = P(X ∈ A, Y ∈ (−∞,∞))

= ∫
A
[∫

∞

−∞
f (x , y)dy] dx = ∫

A
fX (x)dx ,

where fX (x) = ∫
∞

−∞
f (x , y)dy is the (marginal) density of X

Similarly, we obtain the (marginal) density of Y :

fY (y) = ∫
∞

−∞
f (x , y)dx
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Example�� ��Example 6.1 The joint density of X and Y is given by

f (x , y) = 2e−xe−2y , 0 < x < ∞, 0 < y < ∞ (f (x , y) = 0 otherwise).

(a) P(X > 1,Y < 1) =

(b) P(X < Y ) =

(c) P(X < a) =
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Independent random variables

We have already seen the concept of independence of events

Now we define independence for random variables

RVs X and Y are independent if for any two sets of real
numbers A and B,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

That is, the RVs X and Y are independent if the events X ∈ A
and Y ∈ B are independent for all A and B
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Independent random variables

Theorem : RVs X and Y are independent if and only if the
joint pmf (discrete RVs) or the joint density (continuous RVs)
can be factored :

pX ,Y (x , y) = g(x)h(y) for all x and all y ;

fX ,Y (x , y) = g(x)h(y), −∞ < x < ∞, −∞ < y < ∞

More generally, RVs X1,X2, . . . ,Xn are independent if for any
choice of n sets of real numbers A1,A2, . . . ,An,

P(X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An) =
n

∏
i=1

P(Xi ∈ Ai)
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Example�� ��Example 6.2

(a) The joint density of X and Y is given by
f (x , y) = 6e−2xe−3y , 0 < x < ∞, 0 < y < ∞ (f (x , y) = 0
otherwise). Are X and Y independent ? ?

(b) The joint density of X and Y is given by
f (x , y) = 24xy , 0 < x < 1, 0 < y < 1, 0 < x + y < 1 (f (x , y) = 0
otherwise). Are X and Y independent ? ?
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Example�� ��Example 6.3 If X and Y are independent Poisson RVs,

X ∼ Pois(λ1),Y ∼ Pois(λ2), find the distribution of X +Y .�� ��Solution The event X +Y = n is the union of disjoint events
(X = k ,Y = n − k) for k = 0,1, . . . ,n ; thus

P(X +Y = n) =
n

∑
k=0

P(X = k ,Y = n − k)

=
n

∑
k=0

P(X = k)P(Y = n − k)

=
n

∑
k=0

e−λ1
λk
1

k!
e−λ2

λn−k
2

(n − k)!
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Solution, cont.

= e−(λ1+λ2)
n

∑
k=0

λk
1λ

n−k
2

k!(n − k)!

=
e−(λ1+λ2)

n!

n

∑
k=0

n!

k!(n − k)!
λk
1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)

n

What distribution is this ? ?
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PAUSE
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What is your IQ ? ?

IQ test

1 Does Father Christmas exist ?

2 Who is the best footballer in the world ?

3 Evaluate :

∫

∞

x=−∞
1

√
2πσ

e−
1
2
( x−µ

σ
)2 dx
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Sampling

The goal of a statistical study is to obtain some knowledge
about a population, that is, estimation of a parameter

Since a complete enumeration of the population is rarely
practical, we need other, more practical means

⇒ Sampling consists of choosing among the population a
certain number of individuals (‘sampling units’) for which we
will obtain observations (data)

Our data can be considered as arising from a random
process : if we were to repeat the collection of the data, the
results would be different, and this could influence any
conclusions drawn based on the data

That is, our conclusions are subject to random variation

16 / 31



Sampling distribution

A statistic is a function of the data

The (exact) distribution of a statistic T is called the
sampling distribution

The sampling distribution of a statistic is determined by the
sampling program (method) – that is what defines the
probability associated with each possible sample
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Distribution of the sum of independent Normal RVs

For VAs X1, . . . ,Xn :

E [X1 +⋯ +Xn] = E [X1] + ⋯ + E [Xn]

For RVs X1, . . . ,Xn independent :

Var[X1 +⋯ +Xn] = Var[X1] + ⋯ +Var[Xn]

Theorem : Let X1, . . . ,Xn be independent Normal RVs with
parameters Xi ∼ N(µi , σ

2
i ), i = 1, . . . ,n

Then,
n

∑
i=1

Xi ∼ N (
n

∑
i=1

µi ,
n

∑
i=1

σ2
i )
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Central Limit Theorem (CLT / TCL)

The Central Limit Theorem is one of the most important
results in probability/statistics, and is widely used as a
problem-solving tool.

Theorem (CLT / TCL) : Let X1,X2, . . . be a sequence of
independent and identically distributed (iid) RVs, each having

mean µ and variance σ2. Then the distribution of

X1 +⋯ +Xn − nµ

σ
√
n

tends to the standard normal distribution as n →∞.

In words, the distribution of the sum (or average) of a
(sufficiently large) number of independent RVs is
approximately normal.
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Example

�� ��Example 6.4 An (imaginary) elevator has a maximum weight

capacity of 3.6 metric tonnes (3600 kg). A certain population has
an average weight of 70 kg, with an SD of 16 kg.

(a) What is the chance that a random sample of 49 ( ! !) people
from this population overloads the elevator ? ?

(b) Find the maximum number of people the elevator should
accommodate in order that the chance of being overloaded is
less that 1% ...
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Interval estimation

Usually it is not very informative to give only a point estimate
– a single number guess for the parameter value

It is also of interest to have some idea of the probable size of
the error

∎ standard error (SE) : estimated SD of a parameter
estimate

∎ For example, SD(X ) = σ√
n
, estimated by SE = s√

n

Another way to present your estimate is in the form of a
confidence interval (CI)
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Deriving a CI for the population mean

the details are not part of the exam

CLT : the sampling distribution of the sample mean is
approximately Normal, with mean µ and SD σ/

√
n

This means that there is a 95% chance that the (RV) X falls
within 1.96σ/

√
n of the true population mean µ :

P(µ − 1.96σ/
√
n ≤ X ≤ µ + 1.96σ/

√
n) = 0.95.

Now, the RV X being within 1.96σ/
√
n of µ is the same event

as µ being within 1.96σ/
√
n of X , so the events have the

same probability :

P(X − 1.96σ/
√
n ≤ µ ≤ X + 1.96σ/

√
n) = 0.95.
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CI for the population mean, cont

The interval (x − 1.96σ/
√
n, x + 1.96σ/

√
n) based on the

(observed) sample mean x is called a 95% confidence
interval for µ

The value 0.95 (95%) is called the confidence level

When (as is usually the case) the population SD σ is
unknown, it can be estimated by the sample SD s

Since 1.96 ≈ 2, we can express the 95% CI as : x ± 2
s
√
n
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Example – CI (mechanics)�� ��Eaemple 6.5 Suppose we want to estimate the mean income
of a particular population. A random sample of size n = 16 is
taken ; x = $23,412, s = $2000.
(a) Estimate the population mean µ

(b) Make an approximate 95% CI for µ ...
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Confidence level ≠ 95%? ?

The most commonly used confidence level is 95% or 90%, but
there is no rule saying that we need to use this level

The level can any value under 100%, depending on how
‘confident’ you want to be that the true parameter value will
be contained in an interval made according to the procedure
outlined above

When the confidence level changes the associated z-value
(1.96 for a 95% CE) needs to be changed as well

25 / 31



Illustration
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Another example – CI mechanics�� ��Example 6.6 Suppose we want to estimate µ = the average
exam note in a arge population. A random sample of size 25 is
obtained ; x = 72, s = 15.

Give an approximate 90% CI for µ.
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CI Interpretation

It is tempting BUT WRONG ! ! ! ! ! to believe that for a
specific 95% CI there is a 95% chance that the true parameter
value is in the CI – long-run frequency interpretation of
probability

With this interpretation, the population parameter is NOT a
RV, but rather a constant whose value is unknown

Before sampling, the sample mean X is a RV

After sampling, there is no longer a random variable

The parameter is either in or out of this particular interval

The 95% says something about the sampling procedure :
If we did the whole procedure over and over again (getting a
random sample and making a 95% CI), about 95% of the
intervals made in this way would contain the true
parameter value
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Illustration
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Another example

�� ��Example 6.7 In a particular year there are 100,000 army
recruits. The average weight is 75 kilos, with an SD of 15 kilos.

(a) If possible and appropriate, make a 95% CI for the average
weight of army recruits in that year. Explain.

(b) Suppose now that the population mean weight is unknown,
but a random sample of 400 is taken, and the average weight
in the sample is 75 kilos with an SD of 15 kilos. Can you
make a CI now ?

(c) Do you need to assume that the distribution of weights of
army recruits is normal ? Explain.
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CI – Suppositions

1 There is an unknown population parameter

2 There is a random sample (independent observations or SRS
from a large population, where the sample size is small
compared to the population size)

3 We can apply the CLT
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