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Lecture 4

Review : random variables

Expectation and variance

Review : binomial distribution

Poisson distribution

Approximation of the binomial distribution by the Poisson
distribution
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Review : discrete RVs

Random Variable (RV) : a real function defined on the
sample space

∎ RV : CAPITAL LETTERS ; specific values : lower case
letters

Discrete RV :

1 probability mass function (pmf) : p(x) = P(X = x)

2 cumulative distribution function (cdf) :
F (x) = P(X ≤ x) = ∑

i≤x

p(i)

Solving problems with RVs
1 Identify the RV
2 Determine the distribution (loi/pmf) of the RV
3 Translate the question
4 Respond to the question
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Expected value

For a discrete RV X with pmf p(x), we define the
expectation (or the mean) by :

E [X ] = ∑
all possible
values x

xp(x)

Thus, it’s a weighted mean of possible values of X , where the
weights are P(X = x)

It is also possible to calculate the expectation of a function of
the (discrete) RV X (let’s say g(X )) in the same fashion

g(X ) is also a discrete RV, so to calculate E [g(X )] it is
sufficient to find its pmf (distribution) p(g(x))

We should be able to deduce the distribution from that of X
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Example�� ��Example 4.1 Let X = sum of the numbers when we toss 2 fair

dice (independently).

E [X ] =

x 2 3 4 5 6 7 8 9 10 11 12

p(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

F (x) 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36

36
36 [= 1]

[Due to the symmetry of the pmf of X , this is what we would have
guessed without a probability course ! !]
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Example

�� ��Example 4.2 Calculate E [X 2] for the following pmf for X :

P(X = −1) = 0.2 P(X = 0) = 0.5 P(X = 1) = 0.3.

Solution : We define a new RV Y = X 2. Now find the distribution
of Y directly :

P(Y = 1) = P(X = −1) + P(X = 1) = 0.2 + 0.3 = 0.5

P(Y = 0) = P(X = 0) = 0.5.

Thus E [X 2] = E [Y ] = 1(0.5) + 0(0.5) = 0.5

Note : (E [X ])2 ≠ E [X 2]
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E [g(X )] again

Another way to look at E [g(X )] :
in noting that g(X ) = g(x) when X = x , it is reasonable to
thing that E [g(X )] should be a weighted average of the
values of g(x), with weights P(X = x)

Theorem : For a discrete RV X taking on values xi , i ≥ 1,
with respective probabilities p(xi), then for any real-valued
function g we have

E [g(X )] = ∑
i

g(xi)p(xi)

For any pair of constants (a,b), E [aX + b] = aE [X ] + b
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Summaries of a distribution

For a given RV X and its cumulative distribution function F
(or pmf p(x)), it would be useful to summarize the properties
of F in two or three measures

One such measure is given by E [X ], the expected value of X ,
which tells us something about the ‘central’ value of the
distribution

However, it tells us nothing about the variability of X around
the expectation
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Example

Consider the RVs W , Y , and Z :

W = 0

Y =

⎧⎪⎪
⎨
⎪⎪⎩

−1 with probability 1
2

+1 with probability 1
2

Z =

⎧⎪⎪
⎨
⎪⎪⎩

−100 with probability 1
2

+100 with probability 1
2

All 3 of these have the same expected value (= ? ?), but the
deviations between the different values of Y are bigger than
those of W , and smaller than those of Z

8 / 26



Variance and standard deviation
Since we expect X to take on values around its mean E [X ],
one way to measure variation would be to look at the average
(absolute) distance between X and its mean E [X ],
E [∣ X − µ ∣], where µ = E [X ]

It is more mathematically convenient to consider instead the
average squared distance between X and its mean

For a RV X with mean µ, the variance of X is defined as :

Var(X ) = E [(X − µ)2]

We can establish an alternative formula for calculating
Var(X ) (easier to use in practice) :

Var(X ) = E [X 2
] − (E [X ])2

The standard deviation of X (σ) is the square root of
Var(X ) :

σ =
√
Var(X )
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Variance of a linear function of a RV X
For any pair of constants (a,b),

Var(aX + b) = a2Var(X )

Easy to demonstrate :

Var(aX + b) = E [(aX + b) − E(aX + b)]2

= E [aX + b − (aE [X ] + b)]2

= E [aX − aE [X ]]2

= E [a2(X − E [X ])2]]

= a2E [(X − µ)2]

= a2Var(X )

Thus for a linear function of X , we have :

SD(aX + b) =∣ a ∣ SD(X )

(‘SD’ = ‘standard deviation’)
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Bernoulli RV

A Bernoulli RV takes on only values 0 and 1

The pmf for a Bernoulli RV is :

x 0 1

p(x) (1 − p) p

Used for modeling situations where there are 2 possible
outcomes on a trial : heads/tails (coin tossing) ; yes/no ;
success/failure ; etc.

For a Bernoulli RV X :

E(X ) = 0 × (1 − p) + 1 × p = p;

Var(X ) = E [X 2
] − (E [X ])2 = [02 × (1 − p) + 12 × p] − p2

= p − p2 = p(1-p)
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Probability mass function for a binomial RV

Easy to derive using fundamental principles (as we have
already done !)

There are 4 conditions to satisfy :

∎ a fixed (not random) number n of trials
∎ result for each trial : either 1, or 0
∎ the same probability p for each trial of obtaining 1
∎ the trials are independent

Thus, if X ∼ Bin(n,p), the pmf is :

P(X = x) = (
n

x
)px(1 − p)n−x ; x = 0,1, . . . ,n
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Expected value and variance of a binomial RV

I toss a fair coin 10 times (independently) How many times do
you expect the coin to land Heads ? ?

I toss a fair 6-sided die 60 times. How many times do you
expect the number ‘1’ to come up ? ?

The expected value of X ∼ Bin(n,p) is E [X ] = np
(corresponding to our intuition)

The variance is Var(X ) = np(1 − p) (which is less intuitive ! !)
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Proof : E [X ] (DON’T NEED TO KNOW THIS)

E [X ] =
n

∑
k=0

kP(X = k) =
n

∑
k=0

k ⋅ (
n

k
)pk(1 − p)n−k

=
n

∑
k=1

k ⋅
n!

k!(n − k)!
pk(1 − p)n−k

=
n

∑
k=1

k ⋅
n ⋅ (n − 1)!

k ⋅ (k − 1)!(n − k)!
p ⋅ pk−1(1 − p)n−k

= np
n

∑
k=1

(n − 1)!

(k − 1)!(n − k)!
pk−1(1 − p)n−k

Re-label the indices of the sum : m = n − 1; i = k − 1. This does not
change the value of the sum, but it is easier to see that we are in
fact summing over all possible values of a binomial RV :

= np
m

∑
i=0

m!

i !(m − i)!
pi(1 − p)m−i = np ⋅ 1 = np

(The derivation for the variance is similar.)
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Discrete RV : another example�� ��Example 4.3 The pmf of X is : p(i) = cλi/i !, i = 0,1,2, . . .,
where λ is a positive real value. Find :

(a) P(X = 0) (b) P(X > 2)�� ��Solution

First, we find the value c ; since
∞

∑
i=0

p(i) = 1 :

c
∞

∑
i=0

λi

i !
= 1

Recalling that
∞

∑
i=0

x i

i !
= ex , we have ceλ = 1 Ô⇒ c = e−λ

This RV is a Poisson RV
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Solution, cont.

Thus :

(a) P(X = 0) = e−λλ0/0! = e−λ [substitution (i = 0) in p(i)]

(b)

P(X > 2) = 1 − P(X ≤ 2) [prob. complementary ev.]

= 1 − P(X = 0) − P(X = 1) − P(X = 2) [ME events]

= 1 − e−λ − λe−λ −
λ2e−λ

2
[substitution for p(i)]
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BREAK
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Approximation of the binomial dist by that of Poisson
We can use a Poisson RV to approximate a binomial RV with
parameters (n,p) in the case where n is large and with
parameters (n,p) in the case where :

n is large and p is small but np is of a moderate size

Proof : Let X ∼ Bin(n,p) and λ = np ; then

P(X = i) =
n!

(n − i)!i !
pi(1 − p)n−i =

n!

(n − i)!i !
(
λ

n
)

i

(1 −
λ

n
)

n−i

=
n(n − 1)⋯(n − i + 1)

ni
⋅
λi

i !
⋅
(1 − λ/n)n

(1 − λ/n)i

For n large and λ moderate,

(1 −
λ

n
)

n

≈ e−λ
n(n − 1)⋯(n − i + 1)

ni
≈ 1 (1 −

λ

n
)

i

≈ 1

⇒ Thus P(X = i) ≈ e−λλi
/i ! ; x = 0,1,2, . . .
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Applications of the Poisson distribution

Some examples of RV ∼ Poisson :

∎ number of typos per page of a book
∎ number of false telephone numbers dialed in a day
∎ number of clients entering a particular post office in a

day
∎ number of α particles emitted by a radioactive

substance during a certain time lapse
∎ number of bacterial colonies multiplying in a Petri dish

in a nutritious medium
∎ number of mutants resulting from an experiment

In each of these examples (and in many others) the RV is
always distributed as approximately Poisson, following a
binomial distribution with parameter n large and parameter p
small (even if we don’t know the ‘true’ value n)
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Example�� ��Example 4.4 Suppose that the number of typographical errors
on a single page of a particular book has a Poisson distribution
with parameter λ = 1

2 . Calculate the probability that there is at
least one error on page 27 ...
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Another example�� ��Example 4.5 Consider an experiment that consists of counting
the number of α-particles given off in a 1-second interval by 1
gram of radioactive material. on average, the number of α-particles
emitted is 3.2.
Give a good approximation to the probability that at most two
α-particles will appear ...�� ��Solution Let’s represent the gram of radioactive material as a
collection of a large number n of atoms. Each one can disintegrate,
this having a probability of 3.2/n during the measured duration
and giving off an α-particle during this time.

We can then say that X = number of α-particles emitted has an
approximate Poisson distribution with parameter λ =

Then P(X ≤ 2) = ...
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Expected value and Variance for Poisson RVs : Intuition

Recall that a Poisson RV is an approximation of a binomial RV
with parameters n and p when n large, p is small and λ = np

Let X ∼ Bin(n,p) (n large, p small, np moderate) :

∎ λ = np = E [X ]
∎ Var(X ) = np(1 − p) = λ(1 − p) ≈ λ (if p is small)

So it would seem that BOTH the expected value and
variance should be EQUAL to the parameter λ

We can verify this intuition with a calculation (which will not
be examined)

[if it’s interesting for you, see these calculations on
moodle]
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Expected value of Poisson RVs : Calculation

E [X ] =
∞

∑
i=0

ie−λλi

i !

= λ
∞

∑
i=1

e−λλi−1

(i − 1)!

= λe−λ
∞

∑
j=0

λj

j!
(posing j = i − 1)

= λ
⎛

⎝
since

∞

∑
j=0

λj

j!
=

⎞

⎠
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Variance of Poisson RVs : Calculation

E [X 2
] =

∞

∑
i=0

i2e−λλi

i !

= λ
∞

∑
i=1

ie−λλi−1

(i − 1)!

= λ
∞

∑
j=0

(j + 1)e−λλj

j!
(posing j = i − 1)

= λ

⎡
⎢
⎢
⎢
⎢
⎣

∞

∑
j=0

je−λλj

j!
+
∞

∑
j=0

e−λλj

j!

⎤
⎥
⎥
⎥
⎥
⎦

= λ (λ + 1) [substitution E(X ), ∑
i

p(i) = 1]
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Example�� ��Example 4.5 In a microbial mutagenesis assay, a plate of
bacteria is exposed to a test compound, and the number of
mutants is counted after incubation. Suppose that in the assay of a
particular compound, the number of mutants has a Poisson
distribution with λ = 9.

Calculate the probability that an assay of the compound will
produce :

(a) 0 mutants

(b) more than 3 mutants
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Another example�� ��Example 4.6 Let Y be the number of assays with at least one
mutant in 5 independent assays of the compound from Example
4.5.

(a) What is a reasonable probability model for Y ? ? Explain.

(b) What are the parameter values for the model ? ?

(c) What is the probability that there is at least 1 mutant in
(exactly) 2 of the 5 assays ? ? [Hint : use the 4 steps...]
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