GM - Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=18431

Review : random variables
Expectation and variance
Review : binomial distribution

Poisson distribution

Approximation of the binomial distribution by the Poisson
distribution
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Review : discrete RVs

m Random Variable (RV) : a real function defined on the
sample space
m RV : CAPITAL LETTERS; specific values : lower case
letters

m Discrete RV :
probability mass function (pmf) : p(x) = P(X = x)

cumulative distribution function (cdf) :

F(x)= P(X <x) = Y. p(i)

i<x
m Solving problems with RVs
Identify the RV
Determine the distribution (loi/pmf) of the RV
Translate the question
B Respond to the question
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Expected value

For a discrete RV X with pmf p(x), we define the
expectation (or the mean) by :

EX]= Y xp(x)

all possible
values x

Thus, it's a weighted mean of possible values of X, where the
weights are P(X = x)

It is also possible to calculate the expectation of a function of
the (discrete) RV X (let's say g(X)) in the same fashion

g(X) is also a discrete RV, so to calculate E[g(X)] it is
sufficient to find its pmf (distribution) p(g(x))

We should be able to deduce the distribution from that of X
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Example

Example 4.1| Let X = sum of the numbers when we toss 2 fair
dice (independently).

E[X] =

36 36 36 36 36 36 36 36 36 36 36

6 10 15 21 26 30 33 35 36 _
F(X) 36 36 36 36 36 36 36 36 36 36 36 [_ 1]

[Due to the symmetry of the pmf of X, this is what we would have
guessed without a probability course ! !]
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Example

Example 4.2| Calculate E[X?] for the following pmf for X :
P(X=-1)=02 P(X=0)=05 P(X=1)=0.3.

Solution : We define a new RV Y = X2. Now find the distribution
of Y directly :

P(Y =1)
P(Y =0)

P(X=-1)+P(X=1)=02+03=0.5
P(X =0)=0.5.

Thus E[X?] = E[Y]=1(0.5) +0(0.5) = 0.5

Note : (E[X])? E[X?]
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Elg(X)] again

Another way to look at E[g(X)] :

in noting that g(X) = g(x) when X = x, it is reasonable to
thing that E[g(X)] should be a weighted average of the
values of g(x), with weights P(X = x)

Theorem : For a discrete RV X taking on values x;, i > 1,
with respective probabilities p(x;), then for any real-valued
function g we have

E[g(X)] = Zg(x,

For any pair of constants (a, b), E[aX + b] = aE[X]+ b
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Summaries of a distribution

m For a given RV X and its cumulative distribution function F
(or pmf p(x)), it would be useful to summarize the properties
of F in two or three measures

m One such measure is given by E[X], the expected value of X,
which tells us something about the ‘central’ value of the
distribution

m However, it tells us nothing about the variability of X around
the expectation
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Example

m Consider the RVs W, Y, and Z :

W =0

v - -1 with probability
© | +1 with probability

NI= N|=

—100 with probability
+100 with probability

N N|=

m All 3 of these have the same expected value (= 77), but the
deviations between the different values of Y are bigger than
those of W, and smaller than those of Z
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Variance and standard deviation

Since we expect X to take on values around its mean E[X],
one way to measure variation would be to look at the average
(absolute) distance between X and its mean E[X],

E[| X — ], where u= E[X]

It is more mathematically convenient to consider instead the
average squared distance between X and its mean

For a RV X with mean u, the variance of X is defined as :

Var(X) = E[(X - n)*]

We can establish an alternative formula for calculating
Var(X) (easier to use in practice) :

Var(X) = E[X?] - (E[X])?
The standard deviation of X (o) is the square root of

Var(X) :
o =+/Var(X)
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Variance of a linear function of a RV X
m For any pair of constants (a, b),
Var(aX + b) = a®Var(X)
m Easy to demonstrate :

Var(aX +b) = E[(aX +b)-E(aX +b)]?
= E[aX+b-(aE[X]+b)]?
= E[aX -aE[X]]?
= E[ 2(X - E[XD]]

= PE[(X-p)?]
= a’Var(X)
m Thus for a linear function of X, we have :
SD(aX +b) =| a| SD(X)
m ('SD’ = 'standard deviation')
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Bernoulli RV

m A Bernoulli RV takes on only values 0 and 1
m The pmf for a Bernoulli RV is :
x| 0 1
p(x)[(1-p) p
m Used for modeling situations where there are 2 possible

outcomes on a trial : heads/tails (coin tossing) ; yes/no;
success/failure ; etc.

m For a Bernoulli RV X :
E(X) = 0x(1-p)+1xp=p;

E[X?] - (E[X])*=[0*x (1-p)+ 1% x p] - p°
p-p*>=p(1-p)

Var(X)
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Probability mass function for a binomial RV

m Easy to derive using fundamental principles (as we have
already done!)

m There are 4 conditions to satisfy :

® a fixed (not random) number n of trials

m result for each trial : either 1, or 0

m the same probability p for each trial of obtaining 1
m the trials are independent

m Thus, if X ~ Bin(n,p), the pmfis :

P(X:x):( )px(l—p)"_x; x=0,1,...,n

n
X
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Expected value and variance of a binomial RV

m | toss a fair coin 10 times (independently) How many times do
you expect the coin to land Heads 7 7

m | toss a fair 6-sided die 60 times. How many times do you
expect the number ‘1’ to come up 7?7

m The expected value of X ~ Bin(n,p) is E[X] = np
(corresponding to our intuition)

m The variance is Var(X) = np(1 - p) (which is less intuitive ! !)
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Proof : E[X] (DON'T NEED TO KNOW THIS)

EIX] = Y kP(X - k)-zk (7)eta-m
k=0
n nl ne
= kZ::lk—( k)'p (1 p) k
= ke D (g pyk

o1 ke (k=1)(n-k)!

= npi(k i )k)!P“(l—p)”k

Re-label the indices of the sum : m=n—-1;i=k—1. This does not
change the value of the sum, but it is easier to see that we are in
fact summing over all possible values of a binomial RV :

an ,),p(l p)" ' =np-1=np

(The derivation for the variance is similar.)
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Discrete RV : another example

Example 4.3| The pmf of X is : p(i) = cA//il, i=0,1,2,...,

where A is a positive real value. Find :

(a) P(X=0) (b) P(X >2)

m First, we find the value c; since Zp(i) =1:
i=0

N
_I_

2
m Recalling that Z— = e*, we have ce’ =1 — -

m ThisRVisa PO/sson RV
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Solution, cont.

Thus :

(a) P(X =0)=e*\0/0! = [substitution (i = 0) in p(i)]

(b)

P(X>2) = 1-P(X<2)

[prob. complementary ev.]

1-P(X=0)-P(X=1)-P(X=2) [ME events|

= l-e - Xe? -

A2e=A

2

[substitution for p(/)]
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Approximation of the binomial dist by that of Poisson

m We can use a Poisson RV to approximate a binomial RV with
parameters (n, p) in the case where n is large and with
parameters (n, p) in the case where :

n is large and p is small but np is of a moderate size

m Proof : Let X ~ Bin(n,p) and A = np; then

n! ; i n! A\ A\
oo PAP T = (E) (17)
n(n=1)-(n-i+1) X (1-=X/n)"

ni il (L= M/n)
m For n large and A moderate,

(1_5)"%_A n(n-1)-(n-i+1) (1_5)"%1

n ni

P(X =)

m= Thus| P(X=i)~meN/il; x=0,1,2,...
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Applications of the Poisson distribution

m Some examples of RV ~ Poisson :

number of typos per page of a book

number of false telephone numbers dialed in a day
number of clients entering a particular post office in a
day

number of « particles emitted by a radioactive
substance during a certain time lapse

number of bacterial colonies multiplying in a Petri dish
in a nutritious medium

number of mutants resulting from an experiment

m In each of these examples (and in many others) the RV is
always distributed as approximately Poisson, following a
binomial distribution with parameter n large and parameter p
small (even if we don't know the ‘true’ value n)
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Example

Example 4.4| Suppose that the number of typographical errors
on a single page of a particular book has a Poisson distribution

with parameter \ = % Calculate the probability that there is at
least one error on page 27 ...
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Another example
Consider an experiment that consists of counting
the number of a-particles given off in a 1-second interval by 1
gram of radioactive material. on average, the number of a-particles
emitted is 3.2.
Give a good approximation to the probability that at most two
a-particles will appear ...

Let's represent the gram of radioactive material as a

collection of a large number n of atoms. Each one can disintegrate,
this having a probability of 3.2/n during the measured duration
and giving off an a-particle during this time.

We can then say that X = number of a-particles emitted has an
approximate Poisson distribution with parameter A =

Then P(X<2) = ...
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Expected value and Variance for Poisson RVs :

m Recall that a Poisson RV is an approximation of a binomial RV
with parameters n and p when n large, p is small and A = np
m Let X ~ Bin(n,p) (n large, p small, np moderate) :
B )\=np=E[X]
m Var(X)=np(l-p)=X(1-p)=~A(if pissmall)
m So it would seem that BOTH the expected value and
variance should be EQUAL to the parameter \

m We can verify this intuition with a calculation (which will not
be examined)

m [if it’s interesting for you, see these calculations on
moodle]
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Expected value of Poisson RVs : |Calculation |
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Variance of Poisson RVs

) 12 —/\)\l

2

E[X?]

. | Calculation |
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]

(posing j=i-1)

[substitution E(X), Zp(i) =1]
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Example

Example 4.5| In a microbial mutagenesis assay, a plate of
bacteria is exposed to a test compound, and the number of

mutants is counted after incubation. Suppose that in the assay of a
particular compound, the number of mutants has a Poisson
distribution with A = 9.

Calculate the probability that an assay of the compound will
produce :

(a) 0 mutants

(b) more than 3 mutants
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Another example

Example 4.6 | Let Y be the number of assays with at least one

mutant in 5 independent assays of the compound from Example
4.5,

(a) What is a reasonable probability model for Y 7 7 Explain.
(b) What are the parameter values for the model 7 7

(c) What is the probability that there is at least 1 mutant in
(exactly) 2 of the 5 assays 77 [Hint : use the 4 steps...]
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