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Combinatorics

In several situations, we desire to have an efficient method to
count the number of possible results

In fact, many problems in probability theory can be solved
simply by counting the number of different ways that a
particular event can occur

The mathematical theory of counting : combinatorics
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Basic counting principle/Principe fondamental de
dénombrement

Suppose that two experiments are to be performed

Then : If experiment 1 can result in any one of m possible
outcomes and if, and if for each outcome of experiment 1,
there are n possible outcomes of experiment 2

⇒ Then there are m × n possible outcomes of for the
two experiments taken together.�� ��Example 2.1 tossing 2 dice :

�� ��Solution : There are possible outcomes for the blue die

and possible outcomes for the red die and therefore

for the 2 experiments taken together
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Generalized basic principle/Principe fondamental généralisé

If r experiments that are to be performed are such that :

∎ the first one may result in any of n1 possible outcomes,
∎ if for each of these n1 possible outcomes there are n2

possible outcomes of the second experiment,
∎ if for each of the possible outcome of the first two

experiments there are n3 possible outcomes of the third
experiment,

∎ and so forth . . .

Then there is a total of n1 × n2 ×⋯ × nr possible
outcomes for the r experiments taken together
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Examples�� ��Exemple 2.2a How many different license plates (plaques) with
7 characters are possible if the first place is to be occupied by a
number, followed by 3 letters then 3 numbers ? ?

× × × × × ×

(= )�� ��Exemple 2.2b How many would be possible if repetition
among letters or numbers is not allowed ? ?

× × × × × ×

(= )
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Permutations : ordered arrangements

A permutation is an ordered arrangement of items

Example : How many different ordered arrangements of the
letters a, b, and c are possible ?

1 Direct enumeration : list all of the possibilities and count them
2 Basic counting principle :

∎ the first can be any of the 3,
∎ the second can then be chosen from the other 2,
∎ and the third is ‘chosen’ from the remaining 1

By applying the generalized basic counting principle, we can
see that :
the number of permutations of n distinct objects is n!
(n factorial = n ⋅ (n − 1) ⋅ (n − 2)⋯2 ⋅ 1)
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Example�� ��Example 2.3a 8 rats will be ranked according to their ability to
accomplish a task. Supposing that two rats cannot have exactly
the same ability, how many rankings are possible ? ?
[Hint : does order matter ? ]

�� ��Example 2.3b 3 rats are chosen from a group of 9, then placed

in 3 cages (C1,C2,C3). How many ways can this be done ? ?
[Hint : does order matter ? ]
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Permutations : indistinguishable objects�� ��Exemple 2.4 How many different letter arrangements can be
formed using the letters P E P P E R ?�� ��Solution First, let’s count the number of permutations when
the 3 P’s and 2 E ’s are distinguished from each other
(P1E1P2P3E2R) =

However, consider any one of these permutations, such as
P1P2E1P3E2R. If we permute the P’s among themselves and
the E ’s among themselves, the resulting arrangement still
looks like PPEPER
∎ How many permutations of the P’s :

How many permutations of the E ’s :
∎ ⇒ How many permutations (in total) :

⇒ The number of permutations of n objects, of which n1 are
indistinguishable, n2 are indistinguishable, . . ., nr are

indistinguishable :
n!

n1!n2!⋯nr !
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Combinations : unordered selection

Consider now that we want to determine the number of
groups of r objects that could be formed from a total of n
objects (here, order does not matter)�� ��Example 2.5 How many different groups of 3 mice could be

selected from 5 mice (A, B, C , D, E ) ? ?�� ��Solution We can work this out by reasoning as follows :

Since there are ways to choose the first letter, then

to choose the next, and to choose the last, then there are

ways to select the group of 3 when order matters.

However, a given triplet, such as A, B, D, will be counted

times.

Thus, the total number of groups that can be formed is
.
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Binomial coefficients

The expression (n
r
) (n choose r / r parmi n), r ≤ n, is defined

as :

(n
r
) = n!

r !(n − r)!
This number is also called a binomial coefficient

Any subset of r objects chosen (without
replacement/repetition) from a set containing n objects is
called a combination of r objects chosen from among n

The number (n
r
) is the number of combinations of r objects

chosen from n when order does not matter

This expression represents what we just figured out using
reasoning based on the Generalized Basic Counting Principle
(GBCP) / Principe fondamental de dénombrement généralisé
(PFDG)
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Examples�� ��Example 2.6 A committee of 3 is to be formed from a group of
20 people. How many different committees are possible ? ?
[Hint : does order matter ? ]

�� ��Example 2.7a From a group of 5 women and 7 men, how
many different committees consisting of 2 women and 3 men can
be formed ? ?
[Hint : does order matter ? + GBCP]
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Example 2.7b�� ��Example 2.7b What if 2 of the men refuse to serve on the
committee together ? ?
[Hint : does order matter ? + GBCP + addition or subtraction]
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Multinomial coefficients

From the generalized basic counting principle, we find that the
number of possible divisions of n items into r groups of sizes
n1,n2, . . . ,nr , respectively, is :

( n

n1,n2, . . . ,nr
) = n!

n1! n2! ⋯ nr !
.

This number is called a multinomial coefficient�� ��Example 2.8 In a comparative study, 16 people with thyroid
illness are to be split into 3 groups of 12, 2 and 2 people.

How many ways can this be done ? ?
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PAUSE
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Sample Space
Let’s think about an ‘experiment’ whose outcome is not
predictable with certainty in advance – for example, say one
toss of a fair die

Although the outcome will not be known in advance, we
might be able to suppose that the set of all possible outcomes
is known

This set of all possible outcomes is called the sample space,
denoted by S (or Ω in some books).

The sample space can be discrete or continuous

Activity : what is the sample space ?

∎ We toss 2 dice :

∎ We toss 2 dice and consider just the sum :

∎ Survival time after cancer diagnosis :

∎ Personal example :
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Events

Any subset E ⊂ S is called an event

For example : is an event from the sample space
S consisting of the outcomes of tossing 2 dice

For events E and F of S , the new event E ∪ F (the union of
E and F ) consists of all elements that are in E , in F , OR in
both E and F at the same time

Similarly, we define the new event E ∩ F , called the
intersection of E and F to consist of all outcomes that are
both in E and in F

∎ When E ∩ F = ∅ (the empty set), then E and F are
called mutually exclusive or disjoint

The new event E c , referred to as the complement of E
consists of all outcomes in S that are not in E
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Venn diagram – Union, Intersection
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Venn diagram – Complement
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Useful rules – event ‘algebra’

[NOTE : NOT important for us in this course]

Commutative laws :

∎ E ∪ F = F ∪ E
∎ E ∩ F = F ∩ E

Associative laws :

∎ (E ∪ F ) ∪G = E ∪ (F ∪G)
∎ (E ∩ F ) ∩G = E ∩ (F ∩G)

Distributive laws :

∎ (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G)
∎ (E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G)

DeMorgan’s laws :

∎ (⋃n
i=1 Ei)c = ⋂n

i=1 E
c
i ,

∎ (⋂n
i=1 Ei)c = ⋃n

i=1 E
c
i
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Long-run Frequency Interpretation of Probability

There are several interpretations of the concept of probability
but the one we primarily use is the (long-run) frequency
interpretation of probability

We consider an experiment with sample space S that is
repeatedly carried out under exactly the same conditions every
time

For an event E in S , let n(E) be the number of times that E
occurs in the first n repetitions of the experiment

Then P(E), the probability of the event E is defined as

P(E) = lim
n→∞

n(E)
n

.

The probability is thus the limiting frequency of occurrence
of the event E
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Axioms of probability

For each event E in S , we assume that a number P(E) (the
probability of the event E ) is defined and satisfies three axioms
of probability (that is, statements that we use to characterize
probability and that we accept without proof) :

Axioms of probability

1 0 ≤ P(E) ≤ 1
2 P(S) = 1
3 For any sequence of mutually exclusive events E1,E2, . . .,

P (⋃∞i=1 Ei) = ∑∞i=1 P(Ei).
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Some simple (but useful) theorems

1 P(E c) = 1 − P(E)
2 If E ⊂ F , then P(E) ≤ P(F )
3 General addition rule : P(E ∪ F ) = P(E) + P(F ) − P(E ∩ F )

‘Inclusion-exclusion’ rule :

P(E1 ∪ E2 ∪⋯ ∪ En) =
n

∑
i=1

P(Ei) − ∑
i1<i2

P(Ei1 ∩ Ei2)

+ ∑
i1<i2<i3

P(Ei1 ∩ Ei2 ∩ Ei3) −⋯

+ (−1)r+1 ∑
i1<i2<⋯<ir

P(Ei1 ∩ Ei2 ∩⋯ ∩ Eir )

+ ⋯ + (−1)n+1P(E1 ∩ E2 ∩⋯ ∩ En)
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Venn diagram – Addition/Inclusion-exclusion rule
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Equally likely outcomes
The simplest case : when there is a finite number of
elementary elements of the sample space, each with the same
probability of occurence (equiprobable)

Applying Axiom 3, we obtain that for any event E :

P(E) = number of points in E

number of points in S�� ��Exemple 2.9 Suppose that we toss 2 dice, and that each of the
36 possible outcomes is equally likely, what is the chance that the
sum is 8 ? ?�� ��Solution The event {sum = 8} corresponds to the outcomes :

so has (unconditional) probability =
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Sample space (blue, red)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Exemple 2.9, cont.

Now I tell you that the first die is

⇒ Given this information, P(sum = 8) = ? ?�� ��Solution
Our basic calculation of probability when outcomes are equally
likely :

P(E) = number of points in E

number of points in S

⇒ Now, how many outcomes are there in the sample space S ? ?

Given that the first die is :

∎ the sample space has changed
∎ Now, we consider only the outcomes for which the first die is

:
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Sample space

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Exemple 2.9, cont

There are outcomes in this new sample space

AMONG the outcomes in the new sample space, how
many correspond to the event : {sum = 8} ? ?

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Therefore, the probability that the sum is 8, GIVEN that the

first (blue) is 3 is :
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