

GM – Probabilités et Statistique

<http://moodle.epfl.ch/course/view.php?id=18431>

Lecture 1

- Basic options
- Graphical Representations
- Numerical summaries
- Today's material **will not be examined explicitly** it is provided (only) for your information

Population

- The **population** is the set of elements (individuals) of interest for a specific study
 - In a study of breast cancer therapies, the population could be the set of persons suffering from breast cancer
 - In a study of the effect of light on the plant *Arabidopsis thaliana*, the population would be the set of *Arabidopsis thaliana* plants
 - (You can make your own examples)
- Not only applicable to human populations
- A population is constituted of **individuals**, also referred to as **statistical units**

Variables (I)

- Statisticians call *characteristics that can differ* across individuals in the population **variables**
- The **modalities** of a variable consist of the set of *possible values*
- Types of variables :
 - **Qualitative (categorical) variables** : the modalities are 'labels' that we call *categories*
Examples : eye color ('blue', 'brown', 'green') ; favorite television program
 - **Quantitative (numerical) variables** : the possible values are numeric
Examples : age, number of family members, weight in kg

Variables (II)

- **Qualitative variables** can be classified as :

- *Nominal* – the categories have names, but no ordering (e.g. eye color, gender)
 - *Even if* the modalities are expressed using numeric codes (e.g. gender = '0' for 'male', = '1' for 'female')
- *Ordinal* – the categories have an ordering (e.g. 'always', 'sometimes', 'never')

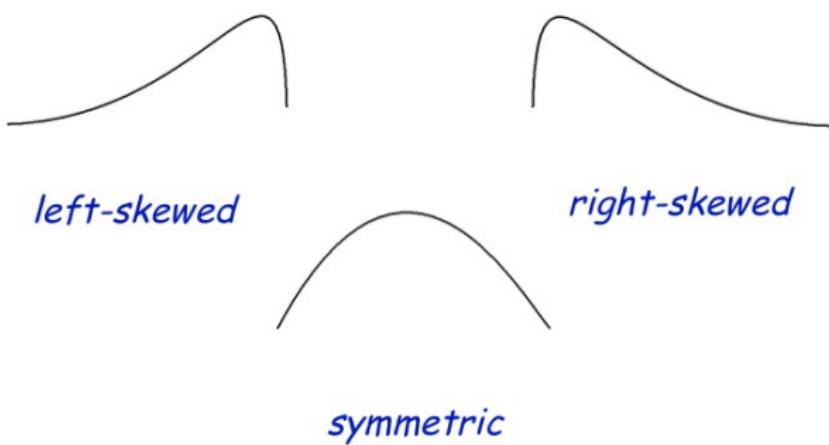
- **Quantitative variables** are distinguished as :

- *Discrete* – possible values can be enumerated in the form of a (*possibly infinite*) list of numbers (most commonly counting values 0, 1, 2, ...)
- *Continuous* – can take on any value within *one* (*or several*) intervals (e.g. any positive value)

Observations and data

- The observed results of one or several *variables* for some individuals from a population constitute the **observations** ;
e.g. :
 - gender, weight, height and cranial perimeter of newborns in a specific hospital
 - survival, histological classification and stage TNM of breast tumors
- A generic dataset :

Individuals	Variables					
	X_1	X_2	\dots	X_j	\dots	X_p
i_1	x_{11}	x_{12}	\dots	x_{1j}	\dots	x_{1p}
i_2	x_{21}	x_{22}	\dots	x_{2j}	\dots	x_{2p}
\dots						
i_i	x_{i1}	x_{i2}	\dots	x_{ij}	\dots	x_{ip}
\dots						
i_n	x_{n1}	x_{n2}	\dots	x_{nj}	\dots	x_{np}


Exploratory data analysis

- Also called *descriptive statistics*, this term is used to describe the process of 'looking at the data' prior to formal analysis
- In this phase of analysis, data are examined for quality and 'cleaned' as well as displayed to provide an overall impression of results
- We will look at two types of summaries :
 - graphical summaries
 - numerical summaries
- Necessary to use *statistical software* (e.g. **R**)

Graphical data summaries : histogram

- A **histogram** is a special kind of bar plot
- It allows you to visualize the *distribution* of values for a numerical variable
- When drawn with a **density scale** :
 - the **AREA** (NOT height) of each bar is *the proportion* of observations in the interval
 - The *height* represents *the density* (amount of *crowding*)
- **The total area under the histogram is 100% (or 1)**
- *Example* : NYC : 8.6 million people, 800 km^2 ;
Switzerland : 8.6 million people, 41.200 km^2

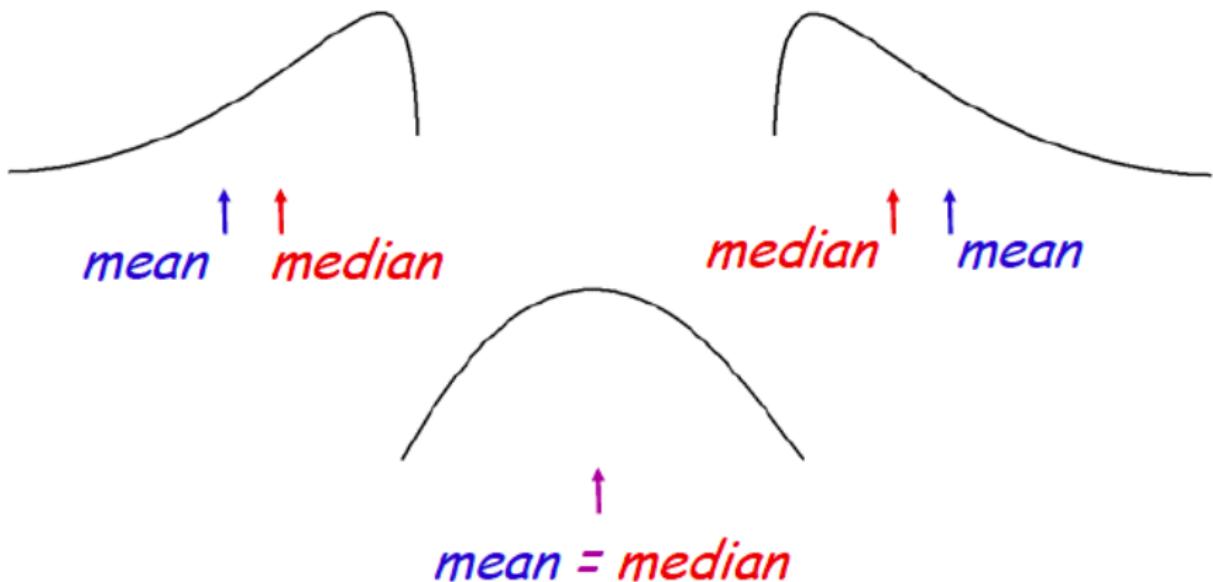
Some general histogram forms

Numerical summaries

- **Categorical/qualitative variables** : frequency table (Prob-Stat II)
- **Numerical/quantitative variables** :
 - measures of *center*
 - measures de *spread*

Measures of center : mean

- **The (arithmetic) mean** \bar{x} is the sum of observed values divided by the total number of values : n :


$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

- The mean is an appropriate for measure of center for distributions that are fairly *symmetrical*
- Since all values contribute *equally*, the mean is *sensitive* to the presence of outliers
- The mean is the 'balance-point' for a histogram

Measures of center : median

- A **median** ($med(x)$) value of a variable is the ‘middlemost number’ : that is, the number having 50% (half) of the values smaller than it (and the other half bigger)
- The $((n + 1)/2)^{\text{th}}$ biggest value among x_1, \dots, x_n defines the median
- If there is an **even** number of observations n , the median can take any value between the $(\frac{n}{2})^{\text{th}}$ observation and the $(\frac{n+2}{2})^{\text{th}}$ observation – by convention, typically we take the mean value of these two as a median value
- The median *is not sensitive* to the presence of outliers, because it does not ‘take into account’ almost any value (only values in the middle matter for the median)
- The median is therefore generally a more appropriate summary of center for *asymmetric* distributions

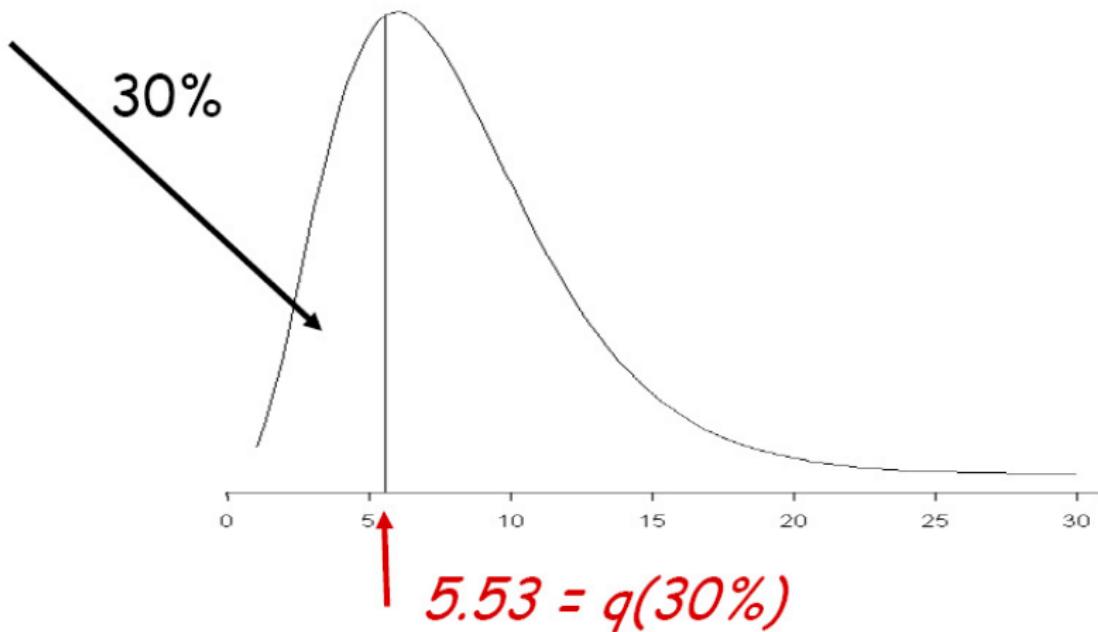
Relative location of mean and median

BREAK

Measures of spread : variance and standard deviation

- The **variance** s^2 of a variable is the mean* of the squared deviations from the mean :

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$


- The **standard deviation** s of a variable is *the square root of the variance* :

$$s = \sqrt{s^2}$$

- *For 'technical' reasons, instead of dividing by the number of values n , in general the sum is divided by $n - 1$
- The standard deviation s is a measure of spread that is appropriate when the *mean* is used to measure center

Quantiles

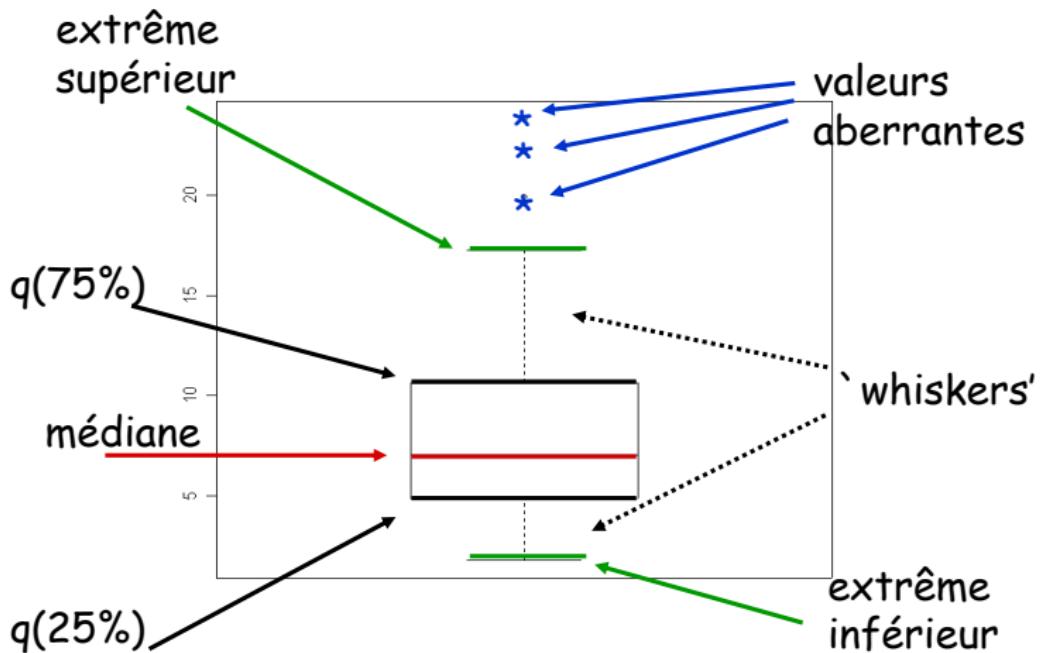
- The **quantile (empirical)** $\hat{q}(p)$ is the value such that *a proportion p of observations are at most $\hat{q}(p)$*

Measures of spread : IQR

- The quantiles $\hat{q}(25\%)$, median, and $\hat{q}(75\%)$ divide a set of observations into *four equal parts* (each containing 25% of the observations)
- These special quantiles are called **quartiles**
- The distance (range) between the quartiles $\hat{q}(25\%) = Q_1$ and $\hat{q}(75\%) = Q_3$ is the **interquartile range (IQR)** :

$$IQR = Q_3 - Q_1$$

- The *IQR* provides a measure of spread when the measure of center is the *median*


Measures of spread : MAD

- The *median absolute deviation*, or **MAD**), is obtained by :
 - 1 calculate the median $med(x)$ of the observations x_i ,
 $i = 1, \dots, n$
 - 2 calculate the deviations $|x_i - med(x)|$
 - 3 find the median of the calculated deviations (from step 2)
- Analogous to the standard deviation
- The *MAD* is a *more resistant* measure of spread than the standard deviation
- The *MAD* is another way (besides IQR) to measure spread when center is measured with the *median*

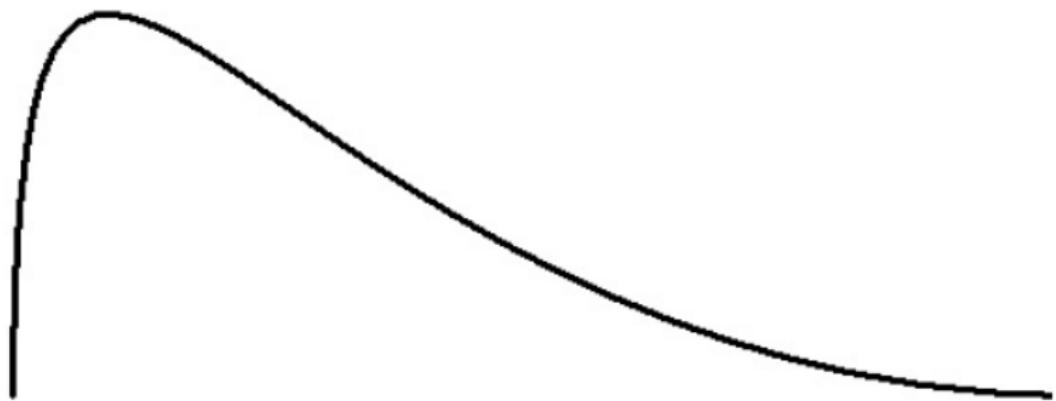
Five number summary and boxplot

- An overall summary of the distribution of variable values is given by the **five number summary** :
 - 1 the minimum
 - 2 $\hat{q}(25\%) (= Q_1)$
 - 3 the median
 - 4 $\hat{q}(75\%) (= Q_3)$
 - 5 the maximum
- A **boxplot** (or 'box and whiskers' plot / *boîte-à-moustaches*) gives *graphical representation* of these values
- (**Note** : The 5-number summary in PP is *different*; internet search '5-number summary')

Boxplot

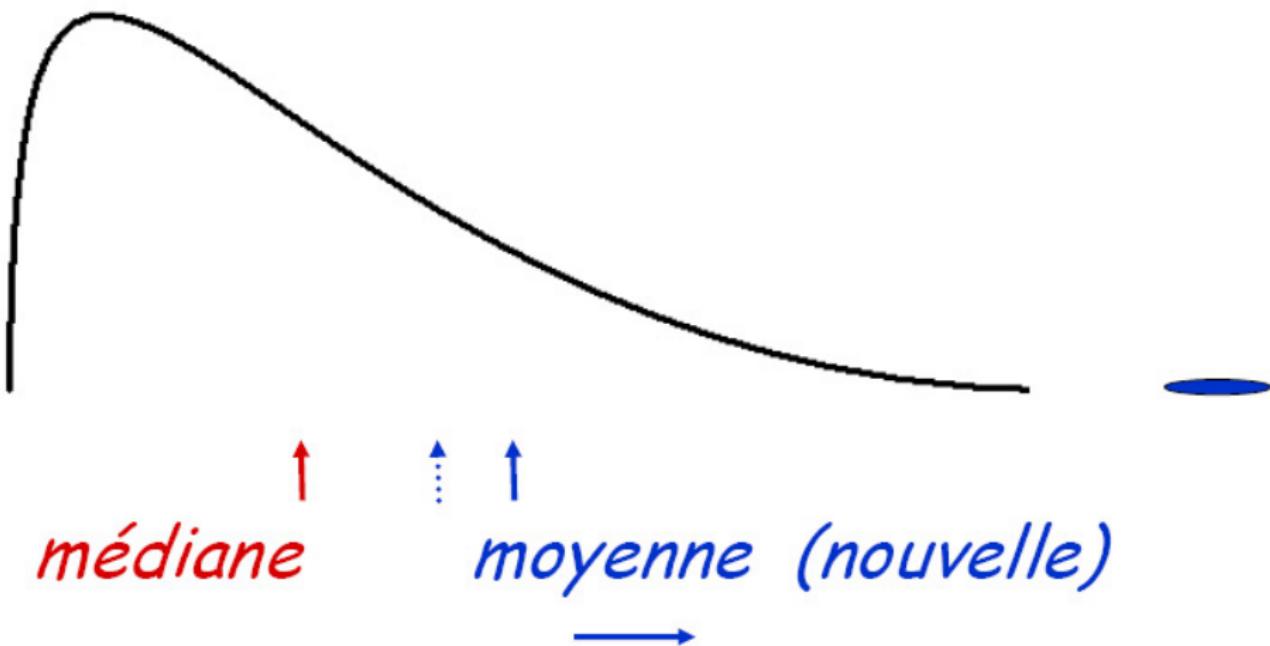
Steps for making a boxplot

- 1 Order the values
- 2 Calculate the 5 number summary
- 3 Identify potential outliers by calculating (for example)
 $d = 1.25^* \times (Q_3 - Q_1)$ and looking for values


$$x_i < \text{lower fence} = Q_1 - d \quad \text{and} \quad x_i > \text{upper fence} = Q_3 + d$$

- 4 Sketch the graph :
 - make the box (Q_1, Q_3)
 - draw a line in the box at the median
 - add the lines ('whiskers') and connect them to the box
 - if there are outliers, note them individually using stars
- *NOT a hard and fast 'rule', just use this value as a guideline

Resistance


- **Resistance** refers to lack of sensitivity to 'bad behavior' of the data : assumed distributions and effects of a small number of values or outliers
- An analysis or a summary is **resistant** if *an arbitrary change in any part of the data does not produce a large change* in the results of the analysis or the summary
- Resistance of a summary is **desirable** : you don't want inferences to be strongly influenced by only a small part of the data set
- *Example* : 'typical' income with or without Mark Zuckerberg
- The mean is very sensitive (not resistant) to outlying values, the median is very resistant

Resistance of the mean and the median (1)

↑ ↑
médiane *moyenne (originale)*

Resistance of the mean and the median (2)

