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Revision : 1-way ANOVA (anova a une voie)
Model evaluation (video only, NOT EXAMINED)
Multiple comparisons

Factorial experiments

2-way ANOVA (anova a deux voies)

General Linear Model
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m Abréviation de ANalysis Of VAriance (analyse de variance)

Révision : ANOVA

m Mais c'est un test de différences des moyennes
m L'idée :

T T T
M 5 b
Popmlation { Populaton2 ~ Popoltiond |
Tableau d’ANOVA

source df | SC (SS) CM (MS) (=SC/df) F p-valeur
traitements | k —1 | SCE¢rs SCE¢rts/(k - 1) CMtrts [ CMerreur | P(Fobs > Fi—1,n—k)

erreur | n—k | SCEmeur | SCEareur/(n— K)(= 5%
total (corr.) [ n—1 | SCE;ota/e
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**% Assumptions ***

m /ndependence : The k groups (samples) are independent, as
well as the individuals within groups; the ensemble of the n
individuals are placed at random (randomization) between the
k modalities for the controled factor A, with n; individuals
receiving treatment /.

m Homoscedasticity : The k populations have the same

variance ; the factor A acts only on the mean of the variable X
and does not change its variance

m Normality : The variable studied follows a Normal distribution
in the k populations compared (or the CLT applied to the
means if the n; are 'sufficiently large’)

m Evaluation of model assumptions WILL NOT BE
EXAMINED
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Model evaluation : Normality

m Boxplots of observations (or residuals) should be rather
symmetric

m A graph of the sample mean vs. variaces should not display
any pattern

m QQ-plot (normal) plot of the observations (or residuals)
should form a straight line

m Check whether there are any unusual or influential values
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QQ-plot

m Quantile-quantile plot (graph)

m Used to determine if a sample follows a particular distribution
(for example the Normal distribution) (or to compare two
samples)

m A method for identification of outliers when the data are
approximativelv Normallv distributed

Sample

Sample =y
quantile is 3
0.125

Value from Normal distribution’ N€0retical
which yields a quantile of 0.125 (= -1.15)
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Characteristic deviations from a straight line

Outliers
Curvature at both extremities (long or short tails)
Convex or concave curvature (asymmetry)

Horizontal segments, plateaus (discretization)
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Frequency

50

30

10

Histogram of x

Outliers

Normal @-Q Plot

Sample Quantiles

Theorsfical Quantiles
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Frequency

200

150

100

Histogram of x

Long tails

Normal @-Q Plot

Sample Quantiles
5
L

Theorefical Quantiles
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Frequency

Histogram of x1

Short tails

Normal Q-Q Plot

10

Sample Quantiles
0

Theoretical Quantiles
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Frequency

Histogram of x

Asymmetry

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles
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Frequency

10

Histogram of x

Discretization

Normal @-@ Plot

Sample Quantiles
0
L

T T
1 0

Theoretical Quantiles
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Model evaluation : Homogeneity of variance

m Boxplots of the observations should show similar variability

m Variability of the residuals should be similar in the graph of
residuals versus fitted values

m It is also possible to carry out formal hypothesis tests (e.g.
Bartlett, Levene), but these are not useful for diagnosing
problems
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Diagnostic plots
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Evaluation of the model : Independence

m Graphics : residuals vs. group mean, might indicated
autocorrelation for example

m Normally, treat the question of independence during the
conception of the expermient, for example using
randomization or perhaps other methods
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What does it mean when we reject H?

m The null hypothesis H is a joint (global) one : that all the
population means are equal

m When we reject the null hypothesis, that does not mean that
all the means are different!!

m It means that at least one is different

m To know which is different, we can carry out ‘post hoc'/a
posteriori tests (pairs of tests, for example)
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ANOVA : after the test

Once all the conditions for an ANOVA have been verified and
the analysis carried out, two conclusions are possible :

m we reject H

m we do not have enough evidence to reject H
If H is not rejected, we conclude that there are not significant
differences between group means
If we DO reject H, typically we are interested in identifying

the modalities/factor levels that are responsible for the
significant result
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Problem : control of the Type | error rate «

m For a number k of comparisons, the probability of not
rejecting a true H is (1 - a)*

m P. ex. : for 4 treatments, there are 6 pairs of means, thus
(1-a)k=(0.95)°=0.735

m So « for the ensemble (or family) of tests is ae = 0.265

m Thus, we are expecting to reject a true H for at least 1 pair »
27% of the time, even if the treatments are identical

m — the error @ must be controled while ajusting for the
number of comparisons
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Bonferroni method

To maintain the global level a, at level o, we must ajust « for
each comparison by the total number of comparisons

In this way, e is independent of the number of comparisons

Simples method : method od Bonferroni
o =afk,

where k = number os comparisons (tests)

Pajusté = min(kp, 1)
Bonferroni’s method assures that the global level is smaller
than the desired level

(That property makes this method conservative, and thus less
powerful than other methods, but it is applicable for any
situation)
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Multiple comparisons

Comparing means of pairs of treatments
Carried out after a significant ANOVA
Types of comparisons

m planned (a priori) : indpendent of the ANOVA results;
the theory predicts which treatments should be different

® unplanned (a posteriori) : the comparisons are decided
based on the ANOVA results

H:pj=pjvs. Az # pj

Test statistic o
Yi—VYj

\/6‘2 (1/n,~ + 1/nj)
(6'2 = MSerror); df = dferror

t:
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Example 11.1

m Study on different types of brain dominance (left brain, right
brain, integration (= both))

m Three groups (eight subjects each) : left brain (active, verbal,
logical ; groupl), right brain (receptive, spatial, intuitive;
group 2), or integration (group 3)

ANOVA Table
source df S MX F p-valeur
group 2[1362.33|681.17 | 44.614 | 2.749 x 10 ®
error 21| 320.63| 15.27
total (corr.) | 23 |1682.96

m We REJECT H, but which group(s) is/are different 77
m y, =33.625, y, = 15.375, y3 = 26.875
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Example 11.1, cont.

«4O0> «F>r « >

« =

Dac
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Factorial experimental design and interaction

m Example 11.2 : The lifetime (hours) of a battery could depend
on the type of material and the temperature of the apparatus
used

m n = 4 batteries are tested for each combination of type and
temperature

m The study addresses the questions :

m What are the effects of type and temperature on lifetime
m Is there a type that uniformly affects lifetime, whatever
the temperature ?

m We compare 2 sets of conditions in the same experiment
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Interaction plot

Interaction = 'difference of differences’
There is an interaction when the effect of the association of
combined treatments is not the sum of treatment effects
In the case of interaction, the effect of a treatment varies
according to whether it is associated with the other treatment
The interpretation of individual effects is therefore more
difficult when interation is present

pas d'interaction interaction
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Advantages of factorial experiments

m More efficient (powerful) than a series of experiments
studying one factor at a time

m Permits estimation of interaction between sets of conditions
that may affect the response

m All data are used for effect estimation

24 /44



BREAK



2-way ANOVA - Introduction

m Simulataneous study of a factor A with [ levels and a factor B
with J levels
m For each pair of levels (A, B) :
m we have a sample
m all samples are of the same size n (balanced design)
m Suppositions :
m the populations studies are Normally distributed
m the population variances are all equal
(homoscedasticity)
m the samples are taken randomly and independently in
the populations
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Example 7.1, cont. : data

Material Temperature (°F)
Type 15 70 125
1 130 155 34 40 20 70
74 180 80 75 82 58
2 150 188 136 122 25 70
159 126 106 115 58 45
3 138 110 174 120 96 104

168 160 150 139 82 60
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Complete model

m The complete model : with interaction

B Vi :M"‘ai"‘ﬁj"‘%’j‘"fijk

u E[G,‘jk] =0, Var(e,-jk) = 02, COV(G,‘jk,E,'/J'IkI) =0if
(ijk) = (i'j'k")

ANOVA table

source df SS MS F

A -1 nI¥_ T = 7..)’ SSa/dfa | MSa/MSer
B J-1 nl T4 (V. - ¥.)? SSg/dfg | MSg/MSer
AB (=1 =1) | nT)oy Shey Wy = T = Vg 4707 | SSap/dias | MSag/MSerr
error U(n-1) Srey Sy Bl Wi = ¥5)> | SSerr/dferr

total (corr.) nlJ -1 Shet Zj’:l Z,(:l (Yijk = v..)?

*:n = number PER cell (not total sample size)
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Example 7.1, cont. : output
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

type 2 10684 5342 7.9114 0.001976 ==+
temp 2 39119 19569 28.9677 1.909e-07 =***
type:temp 4 9614 2403 3.55695 0.018611 =
Residuals 27 18231 675

m What are your conclusions 7 7
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Example 11.2, cont.

. interaction plot, 2 views

m These 2 graphs show THE SAME INTERACTIONS
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Hypothesis tests

Test for interaction
H:vj=0,i=1,...,01;j=1,...,J

Test statistic :

Fag = CMag | CMerreur ~ F(1-1)(s-1),11(n-1) under H

Test for effect of factor A
H:a;=0,i=1,...,1

Test statistic :

Fa=CMa/CMerreur ~ Fi_1,1(n-1) under H
Test for effect of factor B
H:8;=0,j=1,...,J

Test statistic :

FB = CMB/CMerreur ~ FJ—l,IJ(n—l) under H
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Additive model

m The additive model : without interactions
By = o+ B+ €

u El:ﬁijk] =0, Var(e;jk) = 0'2, COV(G,'jk,E,'/jIkI) =0id
(k) # (i''k")

ANOVA Table

source df SS MS F

A -1 Sl 7 -v.)? SSa/dfa | MSa/MSer
B J-1 nl £ (7 -7.)? SSg/dfg | MSg/MSerr
error =1 =J+1 | Sy S Ty Gk = Vi = Vg + 9. | SSerr/dferr

total (corr.) nlJ -1 She1 Zle Z,(:l(.Vi/k -y.)2

*:n = number PER cell (not total sample size)

m What are the hypotheses and test statistics 7 7
|
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Example 11.3 : ToothGrowth

m “The response is the length of odontoblasts (teeth) in each of
10 guinea pigs at each of three dose levels of Vitamin C (0.5,
1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).”

Boxplots of Tooth Growth Data
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len

Example 11.3, cont : Graphics
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Example 11.3, cont. : Interaction plot

Interaction Plot
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Example 11.3, cont : ANOVA table output

> aov.out = aov(len ~ supp * dose, data=ToothGrowth)
> summary (aov.out)

Df Sum Sq Mean Sq F value Pr (>F)

supp 1 205.3 205.3 15.572 0.000231 **x*
dose 2 2426.4 1213.2 92.000 < 2e-16 ***
supp:dose 2 108.3 54.2 4.107 0.021860 *
Residuals 54 712.1 13.2

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 ‘
"1
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Unequal sample sizes

When all sample sizes are equal, the main effects and
interactions can be estimated independently independently

That’s because of the orthogonality of the sub-spaces that
correspond to the different model effects

This is no longer the case when the sample sizes are different
(unbalanced case) :
SSModel + SSA + SSB + SSAB
For an unbalanced design, effect estimation must be adjusted
(for the other effects in the model) : the estimated values
depend on the other terms in the model and their order of
entry

MSx

We can no longer carry out tests F = ———
MSerror

We must carry out sub-model tests
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Example 11.3, cont : Unbalanced subset

L

M

H

VC

4.2
11.5
7.3

16.5
16.5
15.2
17.3

23.6
18.5

OoJ

15.2

21.5
17.6
9.7

19.7
23.3

25.5
26.4
22.4
24.5
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Example 11.3, cont. : supp 1st

# supp entering first

vV V V V

fitl <-

# full interaction model with

Im(len ~ supp + doselev + supp:doselev,

data=toothun)
> anova (fitl)
Analysis of Variance Table

Response: len

Df Sum Sg Mean
supp 1 174.46 174.
doselev 2 375.75 187.
supp:doselev 2 17.70 8.
Residuals 13 130.60 10.

Sg F value Pr (>F)
46 17.3664 0.0011049
87 18.7012 0.0001495
85 0.8808 0.4377931
05
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Example 11.3, cont : doselev 1st

# full interaction model with doselev
# entering first

VvV V V V

fit2 <-

Im(len ~ doselev + supp + supp:doselev,
data=toothun)

> anova (fit2)

Analysis of Variance Table

Response: len

Df Sum Sg Mean Sg F value Pr (>F)
doselev 2 396.08 198.04 19.7131 0.0001158
supp 1 154.13 154.13 15.3428 0.0017685
doselev:supp 2 17.70 8.85 0.8808 0.4377931

Residuals 13 130.60 10.05
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Linear models

The regression model and the ANOVA model are linear models
A linear model is linear in the parameters
Examples — linear or not?

By =[50+ Puq + Balogxa+e
] y:60+eﬂlxlz+ﬁglogx2+e

my= eBo+Bix1+B2xa+e

Regression : X quantitative(s) — continuous, Y continuous
ANOVA : X qualitative(s), Y continuous
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General linear model

The model : Y =X3+€

Y a vector (or matrix) of measures (multivariate)

X a matrix of explanatory variables

(3 a vector (or matrix) of parameters

€ a vector (or matrix) of errors/noise

e~MVN(0,X)

Normally parameter estimations is carried out by the method
of least squares (other methods are also possible)
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Examples

m Regression (simple or multiple) : the reponse variable and the
predictor variables are continues (quantitatives)

m ANOVA (one or multiple factors) : the reponse variable is
continuous, the explanatory variables are qualitatives

m ANCOVA : a fusion of ANOVA and regression

m the reponse variable continuous (quantitative) is
modeled ad a function of two (or more) predictor
variables, of which at least one is qualitative

m ANCOVA tests whether the factors have an effect on
the response variabe after having removed the variance
for which the quantitative predictors (the covariates)
are responsible

m MANOVA, MANCOVA : the response is multivariate
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Indicator variables for the model

m The matrix form for the linear model :

Y=XB+e

m According to the form of the matrix X, we are in the case of :

B linear regression (X is then comprised of the constant 1
and p explanatory variables), or

m factorial model (X is comprised of indicator variables
associated with the levels of the factor(s))

m ancova (X is comprised of both qualitative and
quantitative variables)

m In general, the model can contain variables of different types
(General linear model)
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