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Lecture 11

Revision : 1-way ANOVA (anova à une voie)

Model evaluation (video only, NOT EXAMINED)

Multiple comparisons

Factorial experiments

2-way ANOVA (anova à deux voies)

General Linear Model
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Révision : ANOVA
Abréviation de ANalysis Of VAriance (analyse de variance)
Mais c’est un test de différences des moyennes
L’idée :

Tableau d’ANOVA
source df SC (SS) CM (MS) (=SC/df) F p-valeur

traitements k − 1 SCEtrts SCEtrts /(k − 1) CMtrts /CMerreur P(Fobs > Fk−1,n−k)
erreur n − k SCEerreur SCEerreur /(n − k)(= σ̂2)

total (corr.) n − 1 SCEtotale
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*** Assumptions ***

Independence : The k groups (samples) are independent, as
well as the individuals within groups ; the ensemble of the n
individuals are placed at random (randomization) between the
k modalities for the controled factor A, with ni individuals
receiving treatment i .

Homoscedasticity : The k populations have the same
variance ; the factor A acts only on the mean of the variable X
and does not change its variance

Normality : The variable studied follows a Normal distribution
in the k populations compared (or the CLT applied to the
means if the ni are ‘sufficiently large’)

Evaluation of model assumptions WILL NOT BE
EXAMINED
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Model evaluation : Normality

Boxplots of observations (or residuals) should be rather
symmetric

A graph of the sample mean vs. variaces should not display
any pattern

QQ-plot (normal) plot of the observations (or residuals)
should form a straight line

Check whether there are any unusual or influential values
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QQ-plot
Quantile-quantile plot (graph)
Used to determine if a sample follows a particular distribution
(for example the Normal distribution) (or to compare two
samples)
A method for identification of outliers when the data are
approximatively Normally distributed
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Theoretical

Sample 

quantile is 

0.125

Value from Normal distribution

which yields a quantile of 0.125 (= -1.15)
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Characteristic deviations from a straight line

Outliers

Curvature at both extremities (long or short tails)

Convex or concave curvature (asymmetry)

Horizontal segments, plateaus (discretization)
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Outliers
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Long tails
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Short tails
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Asymmetry
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Discretization
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Model evaluation : Homogeneity of variance

Boxplots of the observations should show similar variability

Variability of the residuals should be similar in the graph of
residuals versus fitted values

It is also possible to carry out formal hypothesis tests (e.g.
Bartlett, Levene), but these are not useful for diagnosing
problems
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Diagnostic plots
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Evaluation of the model : Independence

Graphics : residuals vs. group mean, might indicated
autocorrelation for example

Normally, treat the question of independence during the
conception of the expermient, for example using
randomization or perhaps other methods
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What does it mean when we reject H ?

The null hypothesis H is a joint (global) one : that all the
population means are equal

When we reject the null hypothesis, that does not mean that
all the means are different ! !

It means that at least one is different

To know which is different, we can carry out ‘post hoc’/a
posteriori tests (pairs of tests, for example)
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ANOVA : after the test

Once all the conditions for an ANOVA have been verified and
the analysis carried out, two conclusions are possible :

∎ we reject H
∎ we do not have enough evidence to reject H

If H is not rejected, we conclude that there are not significant
differences between group means

If we DO reject H, typically we are interested in identifying
the modalities/factor levels that are responsible for the
significant result
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Problem : control of the Type I error rate α

For a number k of comparisons, the probability of not
rejecting a true H is (1 − α)k

P. ex. : for 4 treatments, there are 6 pairs of means, thus
(1 − α)k = (0.95)6 = 0.735

So α for the ensemble (or family) of tests is αe = 0.265

Thus, we are expecting to reject a true H for at least 1 pair ≈
27% of the time, even if the treatments are identical

Ô⇒ the error α must be controled while ajusting for the
number of comparisons
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Bonferroni method

To maintain the global level αe at level α, we must ajust α for
each comparison by the total number of comparisons

In this way, αe is independent of the number of comparisons

Simples method : method od Bonferroni

α′ = α/k ,

where k = number os comparisons (tests)

pajusté = min(kp,1)

Bonferroni’s method assures that the global level is smaller
than the desired level

(That property makes this method conservative, and thus less
powerful than other methods, but it is applicable for any
situation)
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Multiple comparisons

Comparing means of pairs of treatments

Carried out after a significant ANOVA

Types of comparisons

∎ planned (a priori) : indpendent of the ANOVA results ;
the theory predicts which treatments should be different

∎ unplanned (a posteriori) : the comparisons are decided
based on the ANOVA results

H ∶ µi = µj vs. A ∶ µi ≠ µj

Test statistic

t =
y i − y j

√

σ̂2 (1/ni + 1/nj)

(σ̂2 =MSerror ) ; df = dferror
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Example 11.1

Study on different types of brain dominance (left brain, right
brain, integration (= both))

Three groups (eight subjects each) : left brain (active, verbal,
logical ; group1), right brain (receptive, spatial, intuitive ;
group 2), or integration (group 3)

ANOVA Table

source df S MX F p-valeur

group 2 1362.33 681.17 44.614 2.749 × 10−8

error 21 320.63 15.27

total (corr.) 23 1682.96

We REJECT H, but which group(s) is/are different ? ?

y1 = 33.625, y2 = 15.375, y3 = 26.875
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Example 11.1, cont.
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Factorial experimental design and interaction

Example 11.2 : The lifetime (hours) of a battery could depend
on the type of material and the temperature of the apparatus
used

n = 4 batteries are tested for each combination of type and
temperature

The study addresses the questions :

∎ What are the effects of type and temperature on lifetime
∎ Is there a type that uniformly affects lifetime, whatever

the temperature ?

We compare 2 sets of conditions in the same experiment
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Interaction plot
Interaction = ‘difference of differences’
There is an interaction when the effect of the association of
combined treatments is not the sum of treatment effects
In the case of interaction, the effect of a treatment varies
according to whether it is associated with the other treatment
The interpretation of individual effects is therefore more
difficult when interation is present
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Advantages of factorial experiments

More efficient (powerful) than a series of experiments
studying one factor at a time

Permits estimation of interaction between sets of conditions
that may affect the response

All data are used for effect estimation
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BREAK
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2-way ANOVA – Introduction

Simulataneous study of a factor A with I levels and a factor B
with J levels

For each pair of levels (A,B) :

∎ we have a sample
∎ all samples are of the same size n (balanced design)

Suppositions :

∎ the populations studies are Normally distributed
∎ the population variances are all equal

(homoscedasticity)
∎ the samples are taken randomly and independently in

the populations
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Example 7.1, cont. : data
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Complete model

The complete model : with interaction

yijk = µ + αi + βj + γij + ϵijk

E [ϵijk] = 0, Var(ϵijk) = σ
2, Cov(ϵijk , ϵi ′j ′k ′) = 0 if

(ijk) ≠ (i ′j ′k ′)

ANOVA table
source df SS MS F

A I − 1 nJ∑I
i=1(y i ⋅⋅ − y

⋅⋅⋅
)2 SSA/dfA MSA/MSerr

B J − 1 nI ∑J
j=1(y ⋅j ⋅ − y

⋅⋅⋅
)2 SSB /dfB MSB /MSerr

AB (I − 1)(J − 1) n∑J
j=1∑

I
i=1(yij ⋅ − y i ⋅⋅ − y

⋅j ⋅ + y
⋅⋅⋅
)2 SSAB /dfAB MSAB /MSerr

error IJ(n − 1) ∑n
k=1∑

J
j=1∑

I
i=1(yijk − y ij ⋅)2 SSerr /dferr

total (corr.) nIJ − 1 ∑n
k=1∑

J
j=1∑

I
i=1(yijk − y

⋅⋅⋅
)2

* : n = number PER cell (not total sample size)
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Example 7.1, cont. : output

What are your conclusions ? ?
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Example 11.2, cont. : interaction plot, 2 views

These 2 graphs show THE SAME INTERACTIONS
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Hypothesis tests

Test for interaction
H ∶ γij = 0, i = 1, . . . , I ; j = 1, . . . , J

Test statistic :
FAB = CMAB/CMerreur ∼ F(I−1)(J−1),IJ(n−1) under H

Test for effect of factor A
H ∶ αi = 0, i = 1, . . . , I

Test statistic :
FA = CMA/CMerreur ∼ FI−1,IJ(n−1) under H

Test for effect of factor B
H ∶ βj = 0, j = 1, . . . , J

Test statistic :
FB = CMB/CMerreur ∼ FJ−1,IJ(n−1) under H
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Additive model

The additive model : without interactions

yijk = µ + αi + βj + ϵijk

E [ϵijk] = 0, Var(ϵijk) = σ
2, Cov(ϵijk , ϵi ′j ′k ′) = 0 id

(ijk) ≠ (i ′j ′k ′)

ANOVA Table
source df SS MS F

A I − 1 nJ∑I
i=1(y i ⋅⋅ − y

⋅⋅⋅
)2 SSA/dfA MSA/MSerr

B J − 1 nI ∑J
j=1(y ⋅j ⋅ − y

⋅⋅⋅
)2 SSB /dfB MSB /MSerr

error nIJ − I − J + 1 ∑n
k=1∑

J
j=1∑

I
i=1(yijk − y i ⋅⋅ − y

⋅j ⋅ + y
⋅⋅⋅
)2 SSerr /dferr

total (corr.) nIJ − 1 ∑n
k=1∑

J
j=1∑

I
i=1(yijk − y

⋅⋅⋅
)2

* : n = number PER cell (not total sample size)
What are the hypotheses and test statistics ? ?

∎

∎
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Example 11.3 : ToothGrowth

“The response is the length of odontoblasts (teeth) in each of
10 guinea pigs at each of three dose levels of Vitamin C (0.5,
1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).”
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Example 11.3, cont : Graphics
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Example 11.3, cont. : Interaction plot
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Example 11.3, cont : ANOVA table output

> aov.out = aov(len ~ supp * dose, data=ToothGrowth)

> summary(aov.out)

Df Sum Sq Mean Sq F value   Pr(>F)    

supp         1  205.3   205.3 15.572 0.000231 ***

dose         2 2426.4  1213.2  92.000  < 2e-16 ***

supp:dose 2  108.3    54.2   4.107 0.021860 *  

Residuals   54  712.1    13.2                     

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘

’ 1 
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Unequal sample sizes

When all sample sizes are equal, the main effects and
interactions can be estimated independently independently

That’s because of the orthogonality of the sub-spaces that
correspond to the different model effects

This is no longer the case when the sample sizes are different
(unbalanced case) :
SSModel ≠ SSA + SSB + SSAB

For an unbalanced design, effect estimation must be adjusted
(for the other effects in the model) : the estimated values
depend on the other terms in the model and their order of
entry

We can no longer carry out tests F =
MSx

MSerror
We must carry out sub-model tests
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Example 11.3, cont : Unbalanced subset

5.4  Unbalanced designs 
 
 
We have seen that the balanced two-way anova 
design allows the main effects and interactions to be 
estimated independently of each other. This is due to 
the orthogonality of the subspaces corresponding to 
the different effects in the model. 
 
When the design is unbalanced this property no 
longer holds, and a more general regression-based 
analysis is necessary. In particular, if the design is 
unbalanced, effects must be adjusted for other effects 
in the model. 
 
 
Example: Consider the following unbalanced subset 
of the Tooth Growth data.  
 

 L M H 

VC
4.2 
11.5 
7.3 

16.5 
16.5 
15.2 
17.3

23.6 
18.5

OJ

15.2 
21.5 
17.6 
9.7 

19.7 
23.3

25.5 
26.4 
22.4 
24.5
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Example 11.3, cont. : supp 1st
First we fit the saturated model, with “supp” as the 
first main effect: 
 
> # full interaction model with  
> # supp entering first 
>  
> fit1 <-  
   lm(len ~ supp + doselev + supp:doselev,  
     data=toothun) 
> anova(fit1) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
supp          1 174.46  174.46 17.3664 0.0011049  
doselev       2 375.75  187.87 18.7012 0.0001495 
supp:doselev  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05       
 
Refit the same model with “doselev” as the first main 
effect: 
 
> # full interaction model with doselev  
> # entering first 
>  
> fit2 <-  
   lm(len ~ doselev + supp + supp:doselev,  
     data=toothun) 
> anova(fit2) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
doselev       2 396.08  198.04 19.7131 0.0001158 
supp          1 154.13  154.13 15.3428 0.0017685  
doselev:supp  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05           
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Example 11.3, cont : doselev 1st

First we fit the saturated model, with “supp” as the 
first main effect: 
 
> # full interaction model with  
> # supp entering first 
>  
> fit1 <-  
   lm(len ~ supp + doselev + supp:doselev,  
     data=toothun) 
> anova(fit1) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
supp          1 174.46  174.46 17.3664 0.0011049  
doselev       2 375.75  187.87 18.7012 0.0001495 
supp:doselev  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05       
 
Refit the same model with “doselev” as the first main 
effect: 
 
> # full interaction model with doselev  
> # entering first 
>  
> fit2 <-  
   lm(len ~ doselev + supp + supp:doselev,  
     data=toothun) 
> anova(fit2) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
doselev       2 396.08  198.04 19.7131 0.0001158 
supp          1 154.13  154.13 15.3428 0.0017685  
doselev:supp  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05           
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Linear models

The regression model and the ANOVA model are linear models

A linear model is linear in the parameters

Examples – linear or not ?

∎ y = β0 + β1x
2
1 + β2 log x2 + ϵ

∎ y = β0 + e
β1x

2
1 + β2 log x2 + ϵ

∎ y = eβ0+β1x1+β2x2+ϵ

Regression : X quantitative(s) – continuous, Y continuous

ANOVA : X qualitative(s), Y continuous
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General linear model

The model : Y = Xβ + ϵ

Y a vector (or matrix) of measures (multivariate)

X a matrix of explanatory variables

β a vector (or matrix) of parameters

ϵ a vector (or matrix) of errors/noise

ϵ ∼MVN(0,Σ)

Normally parameter estimations is carried out by the method
of least squares (other methods are also possible)
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Examples

Regression (simple or multiple) : the reponse variable and the
predictor variables are continues (quantitatives)

ANOVA (one or multiple factors) : the reponse variable is
continuous, the explanatory variables are qualitatives

ANCOVA : a fusion of ANOVA and regression

∎ the reponse variable continuous (quantitative) is
modeled ad a function of two (or more) predictor
variables, of which at least one is qualitative

∎ ANCOVA tests whether the factors have an effect on
the response variabe after having removed the variance
for which the quantitative predictors (the covariates)
are responsible

MANOVA, MANCOVA : the response is multivariate
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Indicator variables for the model

The matrix form for the linear model :

Y = Xβ + ϵ

According to the form of the matrix X, we are in the case of :

∎ linear regression (X is then comprised of the constant 1
and p explanatory variables), or

∎ factorial model (X is comprised of indicator variables
associated with the levels of the factor(s))

∎ ancova (X is comprised of both qualitative and
quantitative variables)

In general, the model can contain variables of different types
(General linear model)
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