
GC – Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=18431

Lecture 10

Multivariate data

Multiple regression

R software / interpretion of R output

Geometry of regression

Introduction : 1-way ANOVA (anova à une voie)
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Multivariate data

Individuals X1 X2 . . . Xj . . . Xp

i1 x11 x12 . . . x1j . . . x1p
i2 x21 x22 . . . x2j . . . x2p
. . .
ii xi1 xi2 . . . xij . . . xip
. . .
in xn1 xn2 . . . xnj . . . xnp

vector of means : (x1, . . . , xp)
matrix of variances-covariances (or dispersion matrix) :

⎛
⎜⎜⎜
⎝

s21 s1,2 ⋯ s1,p
s2,1 s22 ⋯ s2,p
⋯ s2i si ,j ⋯
sp,1 sp,2 ⋯ s2p

⎞
⎟⎟⎟
⎠
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Example

A sample of cherry trees was cut and measures were taken of :

∎ Diameter (inches)
∎ Height (feet)
∎ Volume (cubic feet)

The goal of the collection of these data was to furnish a
means of predicting wood volume of the trees, knowing height
and diameter Le but de la collecte de ces données était de
fournir un moyen de prédire le volume de bois dans les arbres,
sachant la hauteur et le diamètre

Use a regression model
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Exploratory analysis of multivariate data
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Multiple regression

We can have several explanatory variables x :

y = β0 + β1 x1 + β2 x2 +⋯ + βp xp + ϵ

Same assumptions as for simple regression : ϵ ∼ iid N(0, σ2)
Assumptions summarization :

∎ Linear model (in the parameters)
∎ Independent errors / observations
∎ Normal errors / observations
∎ Equal error variances
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Matrix algebra for (simple) regression

The model :

⎛
⎜⎜⎜
⎝

y1
y2
⋮
yn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 x1
1 x2
⋮ ⋮
1 xn

⎞
⎟⎟⎟
⎠
( β0

β1
) +
⎛
⎜⎜⎜
⎝

ϵ1
ϵ2
⋮
ϵn

⎞
⎟⎟⎟
⎠
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(Ordinary) least squares for multiple regression
y = Xβ + ϵ ⇒ E(y ∣ X) = Xβ

Find a solution β̂ that minimizes the sum of the squared
residuals (ordinary least squares solution (OLS)) :

min
n

∑
i=1

e2i Ô⇒
∂ (∑n

i=1 e
2
i )

∂β̂j
= 0, j = 0, ...,p

Ô⇒
n

∑
i=1

xij(yi − β̂0 − β̂1xi1 −⋯ − β̂pxip) = 0, j = 0, ...,p

X ′(y −X β̂) = 0 Ô⇒ X ′X β̂ = X ′y

Ô⇒ β̂ = (X ′X)−1X ′y ,
where X is the design matrix and X ′ is the transpose of X
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Software : R

Why R ?

Powerful, flexible, extensible language and environment for
statistical calculation/computation

Large number of integrated statistical functions statistiques
and ‘packages’

High quality, excellent graphical capacities

Available for Unix / Linux, Windows, Mac

All this and ... R is free !

http://cran.r-project.org/
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

y                x1 x2
Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877 8.6382  -6.713 2.75e-07 ***

Diameter 4.7082 0.2643  17.816  < 2e-16 ***

Height 0.3393 0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

équation

β̂2

Volume = -57.99 + 4.71 x Diameter + 0.34 x Height

β̂1

β̂0
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*** Interpretation of the parameters ***

The regression coefficients correspond to expected changes in
the response for a change of 1 unit in an explanatory /
predictor variable

For simple regression :

∎ the slope is the expected change in the response variable
(y) if the explantory variable (x) increases by 1 unit

∎ the intercept is the predicted value of the response (y)
when x = 0

A very important distinction – when there are several
predictor variables in the equation :

∎ each coefficient β1, . . . , βp corresponds to the
contribution of a variable when all the other variables
in the equation are held constant

∎ the coefficient β0 is the predicted value of the response
(y) when all variables x1, . . . , xp = 0
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Properties of the least squares estimator (OLS)
In the case

1 E(ϵi) = 0, i = 1, . . . ,n ;
2 Var(ϵi) = σ2 (constant) ;

3 Cov(ϵi , ϵj) = Cor(ϵi , ϵj) = 0, i ≠ j
we have :

Expected value : E(β̂) = β
Variance : Var(β̂) = σ2 (X ′X)−1

((X ′X) symmetric)

0ptimality :

∎ The Gauss-Markov theorem tells us that among all
linear unbiased estimators, the least squares estimator
(OLS) has minimum variance

∎ We can summarize that by saying that the OLS
estimator is the ≪ BLUE ≫ (Best Linear Unbiaised
Estimator)
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Test/confidence interval for the coefficients

If we also suppose that ϵ1, . . . , ϵn ∼ iid N(0, σ2), we have

β̂ ∼MVN (β, σ2 (X ′X)−1)

Thus, Var(β̂i) = σ2 [(X ′X)−1]
i+1, i+1

The CI with level 1 − α for βi takes the form :

β̂i ± σ̂
√
[(X ′X)−1]i+1, i+1 tn−p−1,1−α/2

To test H : βi = 0 vs. A : βi ≠ 0

tobs =
β̂i

σ̂
√
[(X ′X)−1]i+1, i+1

We REJECT H if : ∣tobs ∣ > tn−p−1,1−α/2
(equally, if the confidence interval does not contain 0)
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816 < 2e-16 ***

Height        0.3393     0.1302   2.607 0.0145 * 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

t p-valeur

niveau de 

signification α
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Pythagorean theorem
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Geometry of least squares

Consider y as a vector in n-dimensional space

The column vectors of X form a p-dim subspace

The predicted values ŷ = X β̂
represent the point in the subspace that is closest to the
observations : OLS is the orthogonal projection of y on the
subspace of X
The residual e = y − ŷ is orthogonal to vectors in the subspace

SSE = ∑ e2i = e ′e is the square of the distance from the vector
of obs. to the closest point in the subspace

Partition y in two orthogonal components :

∎ ŷ ((model subspace, p dims)
∎ y − ŷ ((error subspace, n − p dims)

(degrees of freedom correspond to the subspace dims)
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Geometry of LS
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Analysis of variance table for regression
Uses the Pythagorean theorem to partition the total sum of
squares (SST)

Pythagorean theoreme :

n

∑
i=1

y2i =
n

∑
i=1

ŷ2i +
n

∑
i=1
(yi − ŷi)2

equally :

n

∑
i=1
(yi − y)2 =

n

∑
i=1
(ŷi − y)2 +

n

∑
i=1
(yi − ŷi)2

We can present this equality in the form of a table :

ANOVA table
source df SS MS (=SS/df) F p-value

regression p SSR = ∑
n
i=1(ŷi − y)2 SSR/p MSR/MSE P(Fobs > Fp,n−p−1)

error n − p − 1 SSE = ∑
n
i=1(yi − ŷi )

2 SSE/(n − p − 1)(= σ̂2
)

total (corr.) n − 1 SST = ∑
n
i=1(yi − y)2
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BREAK
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F -test - regression

The statistic Fobs =MS(source)/MSE tests the hypothesis
H0 ∶ β1 = . . . = βp = 0 vs. A ∶ at least 1 βi ≠ 0
The distribution of Fobs if H is true is the Fisher distribution
Fp,n−p−1
The numerator of Fobs is the variability explained by the
regression model

The denominator contains the residual variance

Under the null, the expected value of F is 1 and under the
alternative the expected value is bigger than 1

REJECT the null hypothesis H for large values of F

When testing a single coeffcient (H ∶ βi = 0), F1,n = t2n

20 / 40



Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16

p-valeurFp,n-p-1
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Coefficient of determination

The value yi can be decomposed in two parts : one part
explained by the model and one part residual

The dispersion for the data can therefore be decomposed as :

1 variance explained by the regression, and
2 residual (unexplained) variance

The coefficient of determination (or multiple correlation) R2 is
defined as the ratio between the explained and total variance
SSR/SST

Equally, R2 = 1 − SSE/SST
In simple regression, this is just square of the correlation
coeffcient
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Adjusted coefficient of determination

The adjusted coefficient of determination R2
aj takes account of

the number of variables

In fact, the principal failing of R2 is that it increases with the
number of explanatory variables

An excessive number of variables produces non-robust models

Thus, this measure (R2
aj) is more useful than R2

R2
aj is not a true ‘square’ – it can even be negative

R2
aj = 1 −

SCE/(n − p − 1)
SCT /(n − 1) = 1 − (1 − R2) n − 1

n − p − 1
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

R2 R2-ajusté
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R2 or adjusted-R2 ?
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Testing submodels
Full model (Ω) : y = β0 + β1x1 + . . . + βpxp
Submodel (ω) : y = β0 + β1x1 + . . . + βqxq, q < p
H ∶ βq+1 = ⋯ = βp = 0 vs. A ∶ at least 1βi ≠ 0, q + 1 ≤ i ≤ p

ANOVA Table
source df SS MS (=SS/df)

ω q SSM(ω) SSM/q
suppl. terms p − q SSE(ω) − SSE(Ω) (SSE(ω) − SSE(Ω))/(p − q)

error n − p − 1 SSE(Ω) SSE(Ω)/(n − p − 1)

total (corr.) n − 1 SCT

The F -statistic for testing the significance of the extra terms
in Ω is :

Fobs =
(SSE(ω) − SSE(Ω))/(p − q)

SSE(Ω)/(n − p − 1) ∼ Fp−q,n−p−1 under H

Thus we REJECT H when Fobs > Fp−q,n−p−1(1 − α)
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Example 10.1

For a random sample of 66 communes, we have the following data :

Y = percentage of adults who vote

X1 = percentage of adults who own property

X2 = percentage of adults who are persons of color

X3 = median family income (thousands of CHF)

X4 = median age

X5 = percentage of adults resident at least 10 years
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Example 10.1, cont.

(a) Complete the output :

28 / 40



Example 10.1, cont.
(b) Write the prediction equation and interpret the coefficient for

‘% adults who own property’

(c) Does it seem necessary to include all of these explanatory
variable in the model ? Explain.

(d) The F -value is used for which test ? Interpret the result of this
test.

(e) The t-value for the variable X1 is used for which test ?
Interpret the result of this test.

(f) Give a 95% CI for the average change in Y when the
percentage of property owners increases by 1, controlling for
the effects of the other variables ; interpret.

(g) Give a 95% CI for the average change in Y when the
percentage of property owners increases by 50, controlling for
the effects of the other variables ; interpret.
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ANOVA
Abbreviation for ANalysis Of VAriance (analyse de variance)
But it’s a test for a difference in means
The idea :
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Test principle

1-factor analysis of variance tests the effect of one factor A
having k modalities on the means of a quantitative variable X

The tested hypotheses are :

H ∶ µ1 = µ2 = ⋯ = µk = µ vs. A ∶ ∃µi ≠ µj

Test if the ratio of 2 variance estimators is close to 1

The associated variance estimators are :

∎ Total variance : SStotal/(n − 1)
∎ Variance due to factor A (MStrts) : SStrts/(k − 1)
Ô⇒ estimator of σ2 is H is true

∎ Residual variance (MSerror ) : SSerror /(n − k)
Ô⇒ estimator of σ2 whichever model
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The models

ϵij ∼ iid N(0, σ2)
Under H, the model is :

xij = µ + ϵij
Under A, the model is :

xij = µ + αi + ϵij ,

where αi ia the effect of modality/level i of factor A on the
variable X

For each model, we can derive an estimator for the residual
variance
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Pairs of tests : why not ?

Why not start off by carrying out tests (z or t) for each pair of
samples ?

For m comparisons (independent), the probability of rejecting
at least one H can be expressed as αm = 1 − (1 − α)m ; now,
for α = 0.05 :

3 tests Ô⇒ Type I error = 0.14

5 tests Ô⇒ Type I error = 0.23

10 tests Ô⇒ Type I error = 0.4

21 tests Ô⇒ Type I error = 0.66

Ô⇒ Type I error no longer controlled at level α = 0.05
(anti-conservative/liberal test)
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Test statistic
Under H, SStrts/(k − 1) and SSerror /(n − k)
⇒ estimators of the same parameter σ2

Thus (under H), the ratio
SStrts/(k − 1)
SSerror /(n − k)

≈ 1

Under A, at least 1 αi ≠ 0 and SSerror /(n − k) is a unique
estimator of σ2 ; SStrts/(k − 1) >> SCerror /(n − k)

Thus (under A), the ratio
SStrts/(k − 1)
SSerror /(n − k)

much larger than 1

⇒ F -Test unilateral in every case

Fobs =
SStrts/(k − 1)
SSerror /(n − k)

=MStrts/MSerror

Test statistic is distributed according to a Fisher F
distribution, with k − 1 (numerator) and n − k (denominator)
degrees of freedom (df)
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ANOVA table

ANOVA table
source df SS MS (=SS/df) F p-value

treatments k − 1 SStrts SStrts/(k − 1) MStrts/MSerror P(Fobs >
error n − k SSerror SSerror /(n − k)(= σ̂2) Fk−1,n−k)

total (corr.) n − 1 SStotal

Sortie d’ordinateur – ANOVA

> redcell.aov<-aov(Folate~Group)

> summary(redcell.aov)

Df Sum Sq Mean Sq F value  Pr(>F)  

Group        2  15516    7758  3.7113 0.04359 *

Residuals   19  39716    2090                  

---

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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*** Assumptions ***

Independence : The k groups (samples) are independent, as
well as the individuals within groups ; the ensemble of the n
individuals are placed at random (randomization) between the
k modalities for the controlled factor A, with ni individuals
receiving treatment i .

Homoscedasticity : The k populations have the same
variance ; the factor A acts only on the mean of the variable X
and does not change its variance

Normality : The variable studied follows a Normal distribution
in the k populations compared (or the CLT applied to the
means if the ni are ‘sufficiently large’)

(watch video for model evaluation, which
WILL NOT BE EXAMINED)
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Example 10.2

Mortar mixes are usually classified on the basis of compressive
strength and their bonding propoerties and flexibility.

In a building project, engineers wanted to compare specifically
the population mean strengths of four trypes of mortars :

1 Ordinary cement mortar (OCM)

2 Polymer impregnated mortar (PIM)

3 Resin mortar (RM)

4 Polymer cement mortar (PCM)

Random samples of specimens of each mortar type were
taken. Each specimen was subjected to a compression test to
measure strength (MPa).
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Example 10.2, cont.

An initial question that engineers may have is the following :
‘Are the population mean mortar strengths equal among the
four types of mortars ? Or, are the population means
different ?’

We take a sample of size n = 36, distributed as follows : 8
samples from group OCM ; 10 samples from group PIM ; 10
samples from group RM ; 8 samples from group PCM.

Tableau d’ANOVA
source df SC CM F p-valeur

506.96 9.576e-07
erreur
total (corr.) 2483.74

What are your conclusions ?
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What does it mean when we reject H ?

The null hypothesis H is a joint (global) one : that all the
population means are equal

When we reject the null hypothesis, that does not mean that
all the means are different ! !

It means that at least one is different

To know which is different, we can carry out ‘post hoc’/a
posteriori tests (pairs of tests, for example)
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ANOVA : after the test

Once all the conditions for an ANOVA have been verified and
the analysis carried out, two conclusions are possible :

∎ we reject H
∎ we do not have enough evidence to reject H

If H is not rejected, we conclude that there are not significant
differences between group means

If we DO reject H, typically we are interested in identifying
the modalities/factor levels that are responsible for the
significant result
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