GC — Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=18431

Multivariate data

Multiple regression

|
|
m R software / interpretion of R output
m Geometry of regression

|

Introduction : 1-way ANOVA (anova a une voie)
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Multivariate data

Individuals X; Xz ... X;, ... X,
i X11 X12 X1j X1p
2 X21 X22 X2j X2p
li Xi1 X2 Xjj Xip
In Xnl Xn2 Xnj Xnp
vector of means : (X1,...,Xp)

matrix of variances-covariances (or dispersion matrix) :

2
51 51,2
2
2.1 S5
52
Sp1 Sp2

Si,p
52,p
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Example

m A sample of cherry trees was cut and measures were taken of :

® Diameter (inches)
B Height (feet)
m Volume (cubic feet)

m The goal of the collection of these data was to furnish a
means of predicting wood volume of the trees, knowing height
and diameter Le but de la collecte de ces données était de
fournir un moyen de prédire le volume de bois dans les arbres,
sachant la hauteur et le diametre

m Use a regression model
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Exploratory analysis of multivariate data
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Multiple regression

m We can have several explanatory variables x :

y=PBo+P1x1+Paxa+ +Bpxpte

m Same assumptions as for simple regression : € ~ iid N(0,0?)
m Assumptions summarization :

m Linear model (in the parameters)
m Independent errors / observations
m Normal errors / observations

m Equal error variances
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Matrix algebra for (simple) regression

m The model :

i 1 x €1
2 |_| 1 x ( Bo )+ €2
; P 51 :

Yn 1 xp €n
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(Ordinary) least squares for multiple regression
my=XB+e = E(y|X)=Xp
m Find a solution B that minimizes the sum of the squared
residuals (ordinary least squares solution (OLS)) :

n (X, e?
minZe,-2 - M:O, j=0,...,p
i-1 p;
n ~ ~ ~
— ZXIJ(yI _ﬁo _61Xi1 - _Bpxip) = 07 j= Oa"'vp
i=1

X'(y-XB)=0 = X'XB=X'y

= B=(X'X)"'Xy,

where X is the design matrix and X' is the transpose of X
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Software : R

Why R?
m Powerful, flexible, extensible language and environment for
statistical calculation/computation

Large number of integrated statistical functions statistiques
and ‘packages’

High quality, excellent graphical capacities
Available for Unix / Linux, Windows, Mac
All this and ... R is free!
http://cran.r-project.org/
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Regression estimation output

> trees.fit <- 1lm(Volume ~ Diameter + Height, trees.dat)
> summary (trees.fit)

Call:
1lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:
Min 10 Median 30 Max
-6.4065 —-2.6493 -0.2876 2.2003 8.4847

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 **x*
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

u}
)
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Regression estimation output

> trees.fit <- 1lm(Volume ~ Diameter + Height, trees.dat)
, > supmary(trees.fit)
equation ~ y X, X,
Call:
1lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:
Min 10 Median 30 Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847

ﬁ Coefficients:

0 Estimate Std. Error t value Pr(>|t])
ﬁ \‘(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
1=>Diameter 4.7082 0.2643 17.816 < 2e-16 ***
ﬁzdvﬂeight 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

gy  Volume =-57.99 + 4.71 x Diameter + 0.34 x Height

10/40



*** Interpretation of the parameters ***

m The regression coefficients correspond to expected changes in
the response for a change of 1 unit in an explanatory /
predictor variable

m For simple regression :

m the slope is the expected change in the response variable
(y) if the explantory variable (x) increases by 1 unit

B the intercept is the predicted value of the response (y)
when x =0

m A very important distinction — when there are several
predictor variables in the equation :

m each coefficient 31,..., 3, corresponds to the
contribution of a variable when all the other variables
in the equation are held constant

m the coefficient Gy is the predicted value of the response
(y) when all variables xq,...,x, =0
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Properties of the least squares estimator (OLS)
In the case
| E(e) =0, i— NN K
B Var(e;) = 0% (constant);
B Cov(ej, €j) = Cor(ei, €/) =0, i #
we have :
m Expected value : E(3) =3
m Variance : Var(3) = 02 (X'X)!
((X'X) symmetric)
m Optimality :
m The Gauss-Markov theorem tells us that among all
linear unbiased estimators, the least squares estimator
(OLS) has minimum variance
m We can summarize that by saying that the OLS
estimator is the <« BLUE > (Best Linear Unbiaised
Estimator)
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Test/confidence interval for the coefficients

m If we also suppose that €1, ..., €, ~ iid N(0, 02), we have

B~MVN(B, o*(X'X)™)

Thus, Var(3;) =o? [(X'X)7]., .,
m The Cl with level 1 — « for 3; takes the form :

B+ 3\/[(X'X)_1]i+1, i+1 tn-p-1,1-a/2

Totest H: 8;=0vs. A: 3; 0

Bi
6\/[(X'X)_1];+1,i+1

m We REJECT H if : [tobs| > tr_p-11-a/2
(equally, if the confidence interval does not contain 0)

tobs =
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Regression estimation output

> trees.fit <- 1lm(Volume ~ Diameter + Height, trees.dat)

> summary (trees.fit)

Call:

1lm(formula = Volume ~ Diameter + Height,

Residuals:
Min 10 Median 30 Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
t
Coefficients: \\‘

Estimate Std. Error t value Pr(>|t])
—6.713 2.75e-07 ***x

(Intercept) -57.9877 8.6382

Diameter 4.7082 0.2643 17.816
Height 0.3393 0.1302 2.607
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01

Residual standard error:
Multiple R-squared: 0.948,
F-statistic: 255 on 2 and 28 DF,

data = trees.dat)

/ p-valeur

niveau de
signification a
< 2e-16 ***

0.0145 *

‘%’ 0.05 .7 0.1 ' 1

3.882 on 28 degrees of freedom
Adjusted R-squared: 0.9442
p-value:

< 2.2e-16
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Pythagorean theorem

a’*tb*=c?
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Geometry of least squares

Consider y as a vector in n-dimensional space
The column vectors of X form a p-dim subspace

The predicted values y = XB
represent the point in the subspace that is closest to the
observations : OLS is the orthogonal projection of y on the
subspace of X
The residual e = y — y is orthogonal to vectors in the subspace
SSE =3 e,-2 = e’e is the square of the distance from the vector
of obs. to the closest point in the subspace
Partition y in two orthogonal components :

® y ((model subspace, p dims)

m y -y ((error subspace, n— p dims)

(degrees of freedom correspond to the subspace dims)

16 /40



Geometry of LS
Al

Figure 4.2 A geometrical interpretation of least squares.
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Analysis of variance table for regression

m Uses the Pythagorean theorem to partition the total sum of
squares (SST)

m Pythagorean theoreme :

m equally :

n
Sy?=
i=1

i(y/' ~y)? =

N

uM:

(vi - 91)?

n n
S @-¥)+ Dy -9i)?
i p

m We can present this equality in the form of a table :

ANOVA table
source df SS MS (=SS5/df) F p-value
regression p SSR=%7_1(9i -9)? SSR/p MSR/MSE | P(Fops > Fp n—p-1)
error n—-p-1 SSE:Z?:l(y,'ff/,')z SSE/(n—p—1)(= %)
total (corr.) n-1 SST =%,y -y)?

18/40



BREAK



F-test - regression

The statistic Fops = MS(source)/MSE tests the hypothesis
Ho:B1=...=B8p,=0vs. A:atleast 1 5; #0

The distribution of F,ps if H is true is the Fisher distribution
Fp,n—p—l

The numerator of F,ps is the variability explained by the
regression model

The denominator contains the residual variance

Under the null, the expected value of F is 1 and under the
alternative the expected value is bigger than 1

REJECT the null hypothesis H for large values of F
When testing a single coeffcient (H: 5; =0), Fi, = t2
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Regression estimation output

> trees.fit <- 1lm(Volume ~ Diameter + Height, trees.dat)
> summary (trees.fit)

Call:
lm(formula = Volume ~ Diameter + Height, data =
Residuals:

Min 10 Median 30 Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -57.9877 8.6382 -6.713 2.75e-07
Diameter 4.7082 0.2643 17.816 < 2e-16
Height 0.3393 0.1302 2.607 0.0145

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05

Residual standard error:
Multiple R-squared: 0.948,
F-statistic:

F

P,

n-p-1

trees.dat)

*k Kk
*kKk

’

0.1

3.882 on 28 degrees of freedom
Adjusted R-squared: 0.9442
255 on 2 and 28 DF, p-value: < 2.2e-16

™~ p-valeur

v

1
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Coefficient of determination

The value y; can be decomposed in two parts : one part
explained by the model and one part residual
The dispersion for the data can therefore be decomposed as :
variance explained by the regression, and
residual (unexplained) variance
The coefficient of determination (or multiple correlation) R? is
defined as the ratio between the explained and total variance
SSR/SST
Equally, R =1 - SSE/SST

In simple regression, this is just square of the correlation
coeffcient
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Adjusted coefficient of determination

The adjusted coefficient of determination R‘fj takes account of
the number of variables

In fact, the principal failing of R? is that it increases with the
number of explanatory variables

An excessive number of variables produces non-robust models

Thus, this measure (R‘fj) is more useful than R?

R3j is not a true ‘square’ — it can even be negative

_SCE/(n—p—l)zl_(l_RQ) n-1

2 _ [
Raj=1 SCT/(n-1) n-p-1
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(Intercept)
Diameter

Residual standard error:
Multiple R-squared: 0.948,
F-statistic:

Regression estimation output

> trees.fit <- 1lm(Volume ~ Diameter + Height, tr
> summary (trees.fit)

Residuals:

lm(formula = Volume ~ Diameter + Height, data =
10 Median 30 Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:

Estimate Std. Error t value Pr(>|t])

-57.9877 8.6382 -6.713 2.75e-07
4.7082 0.2643 17.816 < 2e-16
0.3393 0.1302 2.607 0.0145

codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05

3.882 on 28 degrees of
Adjusted R-squar

255/on 2 and 28 DF, p-value: < 2

R2

ees.dat)

trees.dat)

*kk

* %k %

*

101 Y1

freedom

ed: 0.9442

.2e-16 ~
R2-ajusté
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R? or adjusted-R??
UTILISEZ LE R AJUSTE !

MARRE DU R?7 Comine monsieur Statos, optez pour
une qualité de régression plus sire 1

w« Avant, j'utilisais un R* normal, j'étais fatigué et ¢a se
voyait sur mon visage ; depuis que j"ai découvert le R?
ajusté, ma vie a compiétement changé ! »

Derniére minute :

Pourvous souhaiter
la bienvenue, la
somme des carrés
des résidus vous est
offerte!

SATISFAIT ou REMBOURSE (*)

() voir conditions
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Testing submodels
m Full model (Q) : y =0+ Bix1+...+ Bpxp
m Submodel (w) : y=Po+Bix1+...+ BgXq, G<p

mH:Bg1==0Pp=0vs. A:atleast 18;#0, g+1<i<p
ANOVA Table
source df SS MS (=S5S/df)
w q SSM(w) SSM/q
suppl. terms| p-q |SSE(w)—-SSE(Q) | (SSE(w)-SSE(2))/(p-q)
error n-p-1 SSE(Q2) SSE(Q)/(n-p-1)
total (corr.) | n-1 SCT

m The F-statistic for testing the significance of the extra terms
in Qs :
g (S5E(w) - SSE(Q))/(p-q)
obs SSE(Q)/(n-p-1)

Fo—g,n-p-1 under H

m Thus we REJECT H when Fops > Fp_g.n-p-1(1 - @)

26 /40



Example 10.1

For a random sample of 66 communes, we have the following data :
m Y = percentage of adults who vote
X1 = percentage of adults who own property

Xo = percentage of adults who are persons of color

L]
L]
m X3 = median family income (thousands of CHF)
m X; = median age

L]

X5 = percentage of adults resident at least 10 years
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Example 10.1,

(a) Complete the output :

Regression
Residual
Total

Variable
Intercept
x1
x2
x3
x4
x5

Sum of
Squares

2940.0
3753.3

DF

Parameter

Estimate
70.0000
0.1000
-0.1500
0.1000
-0.0400
0.1200

Mean
Square

Standard
Error

0.0450
0.0750
0.2000
0.0500
0.0500

cont.

Sig

Sig

R-Square

Root MSE
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(b) Write the predicEc))(r?reT&leago%Oa'r;ld inter tret the coefficient for
‘% adults who own property’

(c) Does it seem necessary to include all of these explanatory
variable in the model ? Explain.

(d) The F-value is used for which test ? Interpret the result of this
test.

(e) The t-value for the variable Xj is used for which test ?
Interpret the result of this test.

(f) Give a 95% ClI for the average change in Y when the
percentage of property owners increases by 1, controlling for
the effects of the other variables; interpret.

(g) Give a 95% Cl for the average change in Y when the

percentage of property owners increases by 50, controlling for
the effects of the other variables; interpret.
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m Abbreviation for ANalysis Of VAriance (analyse de variance)
m But it's a test for a difference in means

m The idea :

ANOVA

M
Fopultion |

B
Pnplﬂahnn 2

3}
Pnrmlaﬁnn 3
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Test principle

m 1-factor analysis of variance tests the effect of one factor A
having k modalities on the means of a quantitative variable X

m The tested hypotheses are :

H:MIZMZZ'“:Mk:MV&A:Elﬁiiﬂj

m Test if the ratio of 2 variance estimators is close to 1
m The associated variance estimators are :

m Total variance : SSyota1/(n—1)

m Variance due to factor A (MStts) @ SSers/(k —1)
— estimator of o2 is H is true

B Residual variance (MSerror) @ SSerror/(n — k)
— estimator of o> whichever model
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The models

m ¢~ iid N(0,0?)
m Under H, the model is :

x,-j=,u+e,~j

m Under A, the model is :

Xjj = p+ o+ €,
where «; ia the effect of modality/level i of factor A on the
variable X

m For each model, we can derive an estimator for the residual
variance
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Pairs of tests : why not?

Why not start off by carrying out tests (z or t) for each pair of
samples ?

m For m comparisons (independent), the probability of rejecting
at least one H can be expressed as a, =1— (1 — )™ ; now,
for « =0.05 :

m 3 tests = Type | error = 0.14

m 5 tests = Type | error = 0.23

m 10 tests = Type | error = 0.4

m 21 tests = Type | error = 0.66

== Type | error no longer controlled at level o =0.05
(anti-conservative/liberal test)
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Test statistic
Under H, SSiyts/(k —1) and SSepror/(n— k)
= estimators of the same parameter o
SSirs/(k-1) N
55error/(” - k)
Under A, at least 1 «; # 0 and SSeror/(n — k) is a unique
estimator of 62 ; SSits/(k = 1) >> SCepror/(n — k)
SStrts/(k - 1)
SSerror/(n - k)
= F-Test unilateral in every case
SSins/(k—1)
Sserror/(n - k)
Test statistic is distributed according to a Fisher F
distribution, with k —1 (numerator) and n— k (denominator)
degrees of freedom (df)

Thus (under H), the ratio

Thus (under A), the ratio much larger than 1

F. obs = = Mstrts/ Mserror
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ANOVA table

ANOVA table

source

5SS

MS (=55/df)

F

p-value

treatments
error

SStrts
5 S error

SSins/(k-1)
SSerror/(n = k) (= &2)

MStI’tS/MSeI‘I‘OI‘

P(bes>
Fr-1,n-k)

total (corr.)

SS1.“01.‘2/

m Sortie d'ordinateur — ANOVA

> redcell.aov<-aov (Folate~Group)
> summary (redcell.aov)
Df Sum Sq Mean Sq F value

Group

Residuals

Signif.

2 15516
19 39716

codes: 0

7758
2090

Tkx%x' 0,001

k%' 0.01

Pr (>F)

3.7113 0.04359 *

%' 0.05 .

0.
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**% Assumptions ***

m Independence : The k groups (samples) are independent, as
well as the individuals within groups; the ensemble of the n
individuals are placed at random (randomization) between the
k modalities for the controlled factor A, with n; individuals
receiving treatment /.

m Homoscedasticity : The k populations have the same
variance; the factor A acts only on the mean of the variable X
and does not change its variance

m Normality : The variable studied follows a Normal distribution
in the k populations compared (or the CLT applied to the
means if the n; are ‘sufficiently large’)

m (watch video for model evaluation, which
WILL NOT BE EXAMINED)
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Example 10.2

m Mortar mixes are usually classified on the basis of compressive
strength and their bonding propoerties and flexibility.

® In a building project, engineers wanted to compare specifically
the population mean strengths of four trypes of mortars :
Ordinary cement mortar (OCM)
Polymer impregnated mortar (PIM)
Resin mortar (RM)
B Polymer cement mortar (PCM)

m Random samples of specimens of each mortar type were
taken. Each specimen was subjected to a compression test to
measure strength (MPa).
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m An initial question that engineers may have is the following :
‘Are the population mean mortar strengths equal among the

Example 10.2, cont.

four types of mortars? Or, are the population means

different ?’

m We take a sample of size n = 36, distributed as follows : 8
samples from group OCM; 10 samples from group PIM; 10

samples from group RM; 8 samples from group PCM.

Tableau d’ANOVA

source df SC M F p-valeur
506.96 9.576e-07

erreur

total (corr.) 2483.74

m What are your conclusions?
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What does it mean when we reject H?

m The null hypothesis H is a joint (global) one : that all the
population means are equal

m When we reject the null hypothesis, that does not mean that
all the means are different!!

m It means that at least one is different

m To know which is different, we can carry out ‘post hoc'/a
posteriori tests (pairs of tests, for example)
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ANOVA : after the test

Once all the conditions for an ANOVA have been verified and
the analysis carried out, two conclusions are possible :

m we reject H

m we do not have enough evidence to reject H
If H is not rejected, we conclude that there are not significant
differences between group means
If we DO reject H, typically we are interested in identifying

the modalities/factor levels that are responsible for the
significant result
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