

In class

Exercise 1 Let Y_1, \dots, Y_n iid $N(\mu, \sigma^2)$.

- (a) Find the bias of $\hat{\mu} = \bar{x}$
- (b) Find the bias of $\hat{\sigma}^2 = \frac{\sum(x_i - \bar{x})^2}{n}$

(use the fact that the bias of $S^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = 0$, c.-à-d. $E(S^2) = \sigma^2$).

- (c) Find the asymptotic bias of $\hat{\sigma}^2$ from part (b)).

Exercise 2 Let X_1, \dots, X_n iid $Pois(\lambda)$ random variables, and Y_1, \dots, Y_m iid $Pois(2\lambda)$ random variables, indépendants de X_1, \dots, X_n . Find

- (a) $L(\lambda)$
- (b) $\ell(\lambda)$
- (c) $\hat{\lambda}_{MLE}$
- (d) $J(\lambda)$
- (e) $I(\lambda)$
- (f) Is $\hat{\lambda}_{MLE}$ biased ?
- (g) Give an approximate 95% confidence interval for λ .

At home

Exercise 1 Let X_1, \dots, X_n iid $Pareto(a, b)$; that is, $f(x) = \frac{a b^a}{x^{a+1}}$, $a > 0$, $b > 0$, $b \leq x < \infty$. Suppose that the value of b is known.

Calculate $L(a)$, $\log L(a)$, \hat{a}_{MLE} . Verify that you have found a maximum.

Exercise 2 Soient Y_1, \dots, Y_n iid $Exp(\lambda)$; c.-à-d., $f(y) = \lambda e^{-\lambda y}$, $\lambda > 0$.

- (a) Calculer $L(\lambda)$, $\log L(\lambda)$, $\hat{\lambda}_{MLE}$. Verify that you have found a maximum.
- (b) Calculate $J(\lambda)$ and $I(\lambda)$, and give the form of an approximate 95% CI for λ .

Exercise 3 Let Y_1, \dots, Y_n iid $Bernoulli(p)$. Find the MLE of $p(1 - p)$.