
GC – Probabilités et Statistique
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Cours 9

(Bref ! !) révision : TCL, tests d’hypothèses

Distribution t de Student, t-test

Processus de recherche, études

Modélisaton statistique

Données bivariées

Modélisation des données bivariées

Régression linéaire simple

Distribution de Y conditionnelle sur X

Distribution d’échantillonnage des paramètres
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Révision : Théorème Central Limite (TCL)

Théorème (TCL) : Soient X1,X2, . . . des variables aléatoires
indépendantes et identiquement distribuées (iid), et telles que
E [Xi ] = µ et Var(Xi) = σ2 < ∞ existent. Alors, la distribution de

X1 +⋯ +Xn − nµ
σ
√
n

se rapproche d’une distribution normale lorsque n →∞.

C.-à-d. : Plus n est grand (‘suffisament grand’), plus la loi de la
somme (ou la moyenne) se rapproche d’une distribution normale.

⇒ Donc, X ∼ N (µ, σ2

n ) ; p̂ ∼ N (p, p(1−p)
n )
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Révision : Étapes d’un test d’hypothèses

1 Identifier le paramètre de la population

2 Formuler les hypothèses NULLE et ALT

3 Calculer la statistique de test

4 Calculer la p-valeur pobs
∎ pobs est la probabilité d’obtenir une valeur de T aussi

extrême ou plus (aussi loin de ce qu’on espère ou mm̂e
plus, dans la direction de l’ALT) que ce qu’on a obtenu,
EN SUPPOSANT QUE L’HYPOTHÈSE NULLE EST
VRAIE

5 Règle de décision et interprétation pratique : on REJETTE
l’hypothèse NULLE H si pobs ≤ α

3 / 59



À propos des échantillons petits...

Le z-test qu’on a étudié suppose que la distribution
d’échantillonage de la statistique de test T est Normale, soit

∎ exactement, ou
∎ approximativement, selon le TCL

Pourtant :

∎ Si les données sont Normalement distributées, ET
∎ si l’écart-type (SD) de la population σ est inconnu, ET
∎ la taille de l’échantillon est petite (par exemple,

au-dessous de 30)

ALORS : la vraie distribution d’échantillonage de T possède
des queues plus lourds que ceux de la distribution Normale

Dans ce cas, on utilise le t-test
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‘Student’ (= William Sealy Gosset)

W. S. Gosset Guinness
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Distribution de T quand σ2 est inconnue
Rappelons la statistique de test T = (X − µ0)/(σ/

√
n)

Si la taille de l’echantillon n est ‘suffisament grande’, alors
sous H, T ∼ N(0,1) quelle que soit la distribution de X (TCL)

Si les observations X1, . . . ,Xn ∼ N(µ0, σ
2), alors T ∼ N(0,1)

pour σ2 connue, quelle que soit la taille de l’echantillon n

MAIS : Si la taille de l’echantillon n est petite, et la variance
σ2 est inconnue, la vraie distribution de T a davantage de
variabilité que la distribution normale (due à l’estimation
imprécise de σ basée sur peu d’obs)

Dans le cas (1) X1, . . . ,Xn ∼ N(µ0, σ
2) ; (2) n est petite ; et

(3) σ2 est inconnue, alors T = X − µ0

s/
√
n
∼ tn−1, la distribution t

de Student, avec n − 1 degrés de liberté (df ; ’degrees of
freedom’)

(La distribution de T dépend du nombre d’observations n)
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Distribution t de Student
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Table de la distribution t de Student
t  Table

cum. prob t .50 t .75 t .80 t .85 t .90 t .95 t .975 t .99 t .995 t .999 t .9995

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%

Confidence Level

t-table.xls 7/14/2007
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Intervalle de confiance

Dans le cas

1 X1, . . . ,Xn ∼ N(µ,σ2)
2 n est petite ; et

3 σ2 est inconnue :

on peut faire un intervalle de confiance (IC) comme avant,
mais en utilisant la distribution t au lieu de la normale (z)

IC pour la moyenne de la population : x ± tn−1,1−α/2 s /
√
n
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Test d’hypothèses : trouver la région de rejet

H: µ = µ
H

A: µ ≠ µ
H

H: µ = µ
H

A: µ < µ
H

H: µ = µ
H

A: µ > µ
H
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Exemple�� ��Exemple 9.1 Prise quotidienne d’énergie (kJ) pour 11 femmes :

5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Faire un IC de 95% pour la moyenne prise (kJ) de la
population des femmes ...

Tester l’hypothèse que la moyenne est égale à la valeur
recommandée (7725 kJ) ...
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Test de comparaison de 2 moyennes : variances égales

On veut comparer les moyennes de deux suites de mesures :

∎ Groupe 1 (p. ex. ‘contrôle’) : x1, . . . , xn
∎ Groupe 2 (p. ex. ‘traitement’) : y1, . . . , ym

On peut modeliser de telles données comme :
xi = µ + ϵi ; i = 1, . . . ,n ;
yj = µ +∆ + τi ; j = 1, . . . ,m,

où ∆ signifie l’effet du traitement (par rapport au groupe
‘contrôle’)

H ∶∆ = 0 vs. A ∶∆ ≠ 0 ou A ∶∆ > 0 ou A ∶∆ < 0
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Variances égales, cont.

T = diff. observée. / ES(diff. observée.) =
∆√
V̂ar (̂ )∆

;

∆̂ = ȳ − x̄ ; Var(∆̂) = σ2

n
+ σ2

m
= n +m

nm
σ2

On suppose que :

∎ les variances des 2 échantillons sont égales :
Var(ϵ) = Var(τ)

∎ les observations sont indépendantes
∎ les 2 échantillons sont indépendants

On peux estimer les variances séparement :
s2x = ((x1 − x̄)2 +⋯ + (xn − x̄)2)/(n − 1)
s2y = ((y1 − ȳ)2 +⋯ + (ym − ȳ)2)/(m − 1)
Quand les variances sont égales, on peut combiner les deux
estimateurs : s2p = ((n − 1)s2x + (m − 1)s2y )/(n +m − 2)

⇒ tobs =
ȳ − x̄√

s2p(n +m)/(nm)
∼ tn+m−2 sous H
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Test de comparaison de 2 moyennes : variances inégales

Si σ2
x ≠ σ2

y , on peut utiliser

TWelch =
Y −X√

S2
x /n + S2

y /m

La distribution de cette statistique TWelch n’est
qu’approximativement t, avec un nombre de degrés de liberté
calculé à la base de sx , sy , n et m

Welch test

Dans la pratique, si les variances sont assez différentes
(rapport plus de 3), on utilise cette statistique (au lieu de
celle avec la variance s2p)
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Exemple�� ��Exemple 9.2 Dépenses d’énergie dans les groupes de femmes
minces et obèses :
mince 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11
obese 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

Tester l’hypothèse que les moyennes des deux populations
sont égales ...
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Expériences appariées

Pour une expérience effectuée en blocs de deux unités, la
puissance du t-test pourrait être augmentée

Cette idée permet d’éliminer les influences d’autres variables
(p. ex. l’àge, le sexe, etc.), en leur donnant des ‘traitements’
différents

Ainsi, on a une comparaison des deux conditions plus précise
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t-test pour une expérience appariée
Les données sont de forme :

1 2 n
contrôle x1 x2 ⋯ xn espérance µ
traitement y1 y2 ⋯ yn espérance µ +∆

Chaque bloc nous permet d’évaluer l’effet du traitement

En effet, on considère les différences

d1 = y1 − x1, . . . ,dn = yn − xn

comme un échantillon de mesures provenant d’une
distribution d’espérance ∆

H ∶∆ = 0 vs. A ∶∆ ≠ 0 ou A ∶∆ > 0 ou A ∶∆ < 0
T = t-apparié = d

sd /
√

n
, où

s2d = ((d1 − d)2 +⋯ + (dn − d)2)/(n − 1)
Sous H, t-apparié ∼ tn−1
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Exemple 9.1, cont.
Exemple 2.2, cont. : Prise quotidienne d’énergie des 11 femmes
pré- et post-menstruel :

pré 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770
post 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

Tester l’hypothèse qu’il n’y a pas de différence de prise
quotidienne pré et post ...
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Processus de recherche

Question d’intérêt scientifique

Décider : quelles données à recueillir (et comment)

Collecte et analyse des données

Conclusions, généralisations : inférence sur la population

Communication et diffusion des résultats
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Question Générique :
Est-ce qu’un ‘traitement’ produit-il un ‘effet’ ?

Exemples :

Fumer provoque-t-il le cancer, les maladies cardiaques, etc ?

Est-ce que la consommation d’avoine diminue le taux de
cholestérol ?

L’échinacée prévient-elle le maladies ?

Est-ce que l’exercice ralentit le processus de vieillissement ?
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Genres d’études
Une méthode simple pour résoudre ce type de question
consiste à comparer deux groupes de sujets de l’étude :

∎ Groupe contrôle : fournit une base de comparaison
∎ Groupe traitement : groupe recevant le ‘traitement’

Étude expérimentale : sujets affectés aux groupes (traitement,
contrôle) par l’investigateur

∎ randomisation : protège contre les biais dans
l’attribution aux groupes

∎ ‘aveugle’, ‘double-aveugle’ : protège contre les biais
dans l’évaluation des résultats

∎ placebo : traitement artificiel

Étude d’observation : sujets ‘attribuent’ eux-mêmes aux
groupes

∎ facteur de confusion : un facteur qui présente une
association avec le facteur de risque examiné et avec le
résultat

24 / 59



Quelques commentaires

Avec une expérience contrôlée bien planifiée et exécutée, il est
possible de déduire la causalité

Ceci n’est pas possible avec les études d’observation en raison
de la présence de facteurs de confusion

En présence de facteurs de confusion, il n’est pas possible de
dire si la différence observée entre les groupes est due au
traitement ou au facteur de confusion

Pas toujours possible de mener une étude expérimentale, pour
des raisons pratiques et éthiques
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Modèles statistiques
Un modèle statistique est une description mathématique
approximative du mécanisme qui a généré les observations, qui
tient compte des erreurs aléatoires et imprévisibles :

∎ donne une représentation idéalisée de la réalité
∎ fait des suppositions explicites (qui peuvent être

fausses ! !) sur les processus étudiés
∎ permet un raisonnement abstrait

Le modéle s’exprime par une famille de distributions théorique
qui contient des cas ‘idéaux’ pour les VAs inclues

∎ p. ex. : jets d’une pièce ...

Un modèle utile offert un bon compromis entre

∎ description juste de la réalité (paramètres nombreux,
suppositions correctes)

∎ facilité de manipulation mathématique
∎ production de solutions/prédictions proches de

l’observation(s)
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Un modèle simple
Un cas simple : on effectue plusieurs mesures d’une quantité
physique µ, p. ex. longueur d’un champ, taille d’une personne ...

De telles mesures possèdent en général une composante
aléatoire due aux erreurs de mesure

Un mécanisme d’erreur possible :

mesure = vraie valeur théorique + erreur de mesure
y = µ + ϵ

c.-à-d. : des mesures avec des erreurs additives

S’il n’y a pas d’erreur systématique (biais), l’erreur aléatoire
doit être ‘centrée’ (E [ϵ] = 0)
Souvent raisonnable de penser que la précision de chaque
mesure est la même (Var(ϵ) = σ2 pour chaque mesure)

Une spécification possible pour la distribution de l’erreur est la
loi normale N(0, σ2)
All models are wrong ; some are useful
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Estimation des paramètres inconnus

Une fois un modèle est choisi, l’interêt se tourne vers
l’estimation des inconnus : les paramètres du modèle

On observe des réalisations d’une VA dont on connâıt la
distribution (sauf les valeurs des paramètres)

Donc, on doit estimer les paramètres à l’aide des observations
X1, . . . ,Xn

µ̂ = X = 1

n

n

∑
i=1

Xi

σ̂2 = S2 = 1

n − 1
n

∑
i=1

(Xi −X )2

L’estimateur S2 est nonbiaisé pour σ2, et est indépendant de
celui de µ (X )
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PAUSE
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Données bivariées

Mesures de deux variables ; p. ex. X et Y

On considère le cas de deux variables continues

On veut découvrir la relation entre les deux variables

∎ longueur de l’avant-bras et taille
∎ taille et poids
∎ expressions de gène A et gène B

Considérons les ensembles de données qui sont (au moins
approximativement)

normales bivariées ⇔ forme ovale

(X ,Y ) ∼ BVN((µx , µy), (σ2
x , σ

2
y), ρ)
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Analyse exploratoire : Diagramme de dispersion
Résumé graphique d’un jeu de données bivariées à l’aide
d’un diagramme (ou nuage) de dispersion

Les valeurs d’une variable sur l’axe horizontal et les valeurs de
l’autre sur l’axe vertical

Peut être utilisé pour voir comment les valeurs de 2 variables
tendent à évoluer les unes avec les autres (c’est-à-dire
comment les variables sont associées)

(a) association positive (b) association négative
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Diagramme (nuage) de dispersion

(a) (b)

QCM : Quelle est l’association entre X et Y ? ?

(a) nulle (b) positive (c) négative (d) impossible à déterminer

Figure (a) : Figure (b) :
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Résumés numeriques

Typiquement, les données bivariées sont résumées
(numériquement) avec 5 statistiques

Celles-ci fournissent un bon résumé pour les nuages de points
avec la même forme générale que nous venons de voir (ovale)

On peut résumer chaque variable séparément : X , sX ;Y , xY

Mais ces valeurs ne disent pas comment les valeurs de X et Y
varient ensemble
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Corrélation

Soient X et Y VAs, et Var(X ) > 0,Var(Y ) > 0. La
corrélation ρ(X ,Y ) est définie ainsi :

ρ(X ,Y ) = Cov(X ,Y )√
Var(X )Var(Y )

= E [(X − EX ) × (Y − EY )]√
Var(X )Var(Y )

ρ est une quantité sans unités, −1 ≤ ρ ≤ 1
La corrélation ρ, comme la covariance, est une mesure
d’association linéaire (le degré de linéarité) des VAs X et Y

Les valeurs ρ proches de 1 ou -1 indiquent une linéarité
quasiment rigoueuse entre X et Y , tandis que des valeurs
proches de 0 indique une absence de toute relation linéaire

Le signe de ρ indique la direction de l’association (positive ou
négative, correspondant à la pente de la droite)

Lorsque ρ(X ,Y ) = 0, X et Y sont non-corrélées
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Coefficient de corrélation de l’échantillon

Le coefficient de corrélation de l’échantillon r (ou ρ̂) est
défini comme la valeur moyenne du produit (normalisé) XY :

r = E [(X centrée-réduite) ∗ (Y centrée-réduite)]

centrée-réduite = standardisée (normalisée)
= (X− moyenne(X ))/écart-type(X )

r est une quantité sans unités

−1 ≤ r ≤ 1
r est une mesure d’ASSOCIATION LINÉAIRE
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Corrélation ≠ Causalité
On ne peut pas en déduire que, puisque X et Y sont
fortement corrélées (r proche de -1 ou 1) que X est à l’origine
(ou la cause) d’un changement dans Y

Y pourrait être la cause de X

X et Y les deux pourraient varier avec un tiers, un facteur
peut-être inconnu (soit de causalité ou pas, souvent le temps)
∎ polio et boissons non alcoolisées
∎ nombre de pompiers envoyés à un incendie et montant

des dégâts
∎ Les enfants qui reçoivent un soutien scolaire obtiennent

de moins bonnes notes que ceux qui ne le reçoivent pas

Si r ≈ 0, il n’y a pas d’ASSOCIATION LINÉAIRE

– ceci n’est PAS à dire qu’il n’y a AUCUNE ASSOCIATION

On ne peut pas en déduire la forme du diagramme de
dispersion seulement à partir de la valeur de r
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r ≈ 0

(a) dispersion au hasard

(b) courbe

obs. 

aberrantes

(c) observations aberrantes

(d) parallélisme (e) deux droites différentes
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Modélisation d’un nuage de forme ovale

Variable à expliquer / variable réponse : Y

Variable explicatrice / prédictrice : X

∎ La valeur de X est supposée connue sans erreur
∎ On suppose que les variations de Y sont influencées par

X
∎ Le modèle permet d’exprimer sous la forme d’une

relation mathématique la liaison supposée

La connaissance de ces variables permettent à l’aide du
modèle de prédire Y

∎ Estimater les valeurs de Y :
– ponctuellement
– par intervalle

Le modèle permet de mesurer l’impact (ou l’effet) d’une
variable explicative sur Y
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Relation déterministe ou statistique

(a) déterministe (b) statistique

Une seule valeur de Y
pour une valeur de X

Plusieurs valeurs de Y
pour une valeur de X

‘Probabiliser’ Y pour une
valeur fixe de X
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Régression linéaire simple

Se réfère à tracer une droite (particulière) à travers un nuage
de points

Utilisé pour les 2 objectifs :

∎ Explication
∎ Prédiction

Modèle linéaire statistique :

∎ Y = β0 + β1X + ϵ ⇒ E [Y ∣ X ] = β0 + β1X
∎ E(ϵ) = 0; Var(ϵ) = σ2

L’équation d’une droite de prédire Y quand on connâıt la
valeur spécifique x : Ŷ = β̂0 + β̂1x
β0 = l’ordonnée à l’origine ; β1 = la pente (dans la
population)
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Quelle droite ?
Il y a beaucoup de droites qui pourraient être faites à travers
le nuage de points
Comment choisir ?

41 / 59



Prédiction par régression

On peut faire une prédiction en utilisant la droite de
régression :

lorsque X augmente de 1 (écart-type), la valeur prédite Y
augmente ** PAS de 1 (écart-type) **,
mais seulement de r (écart-type) (vers le bas si r est négatif) :

∎ Ŷ −Y
sY

= r
X −X
sX

Cette prédiction pourrait s’exprime également dans la forme :

préd. y = ord. + pente × x , avec

∎ pente = β̂1 = r sY /sX
∎ ord. = β̂0 = y− pente × x
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Moindres carrés
Q : D’où vient cette équation ?
R : C’est la droite qui est ‘meilleure’ dans le sens que la somme des
carrés des erreurs dans le plan vertical (Y ) est au minimum

*

*

*

erreurs

(résidus)

X

Y

*

*
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*** Interprétation des paramètres ***

L’équation de droite de régression comprend 2 paramètres :
la pente et l’ordonnée à l’origine

La pente est le changement moyen de Y pour un changement
de X de 1 unité

L’ordonnée à l’origine est la valeur de Y estimée lorsque X = 0
Si la pente = 0, alors X n’aide pas à prédire Y (prédiction
linéaire)
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Une autre vue de la droite de régression

On peut diviser le nuage de points dans les régions
(X-bandes) fondées sur des valeurs de X

Au sein de chaque X -bande, mettez la valeur moyenne de Y
(en utilisant uniquement les valeurs de Y possèdant des
valeurs X dans le X -bande)

Il s’agit de la courbe des moyennes

La droite de régression pourrait être considérée comme une
version lissée de la courbe des moyennes
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Diagramme de dispersion (encore une fois)
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Création des X -bandes
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Graphique des moyennes
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Démarche de la régression

A partir d’un échantillon de valeurs pour la variable réponse Y et
la (ou les) variables prédictrices X :

Vérifier la possibilité d’une liaison linéaire entre Y et X

∎ représentation graphique
∎ coefficient de correlation

Estimation des paramètres

∎ coefficients βi ⇒ β̂i
∎ écart-type pour les erreurs σ⇒ σ̂

Evaluation du modèle (la semaine prochaine)

∎ indices de qualité R2, R2
aj

∎ évaluation globale de l’ajustement (F de Fisher)
∎ test(s) de coefficients individuellement
∎ étude des résidus, détection des points abérrants,

influentiels

49 / 59



Résumé : Régression linéaire simple (conceptuelle)

Pour un diagramme de dispersion qui est de forme ovale, nous
pouvons trouver une droite qui sert à résumer les points

Un principe souvent utilisé pour l’ajustement de cette droite
est moindres carrés : le total des carrés des erreurs (verticales)
est réduit au minimum

Selon ce principe, la prédiction de régression pour Y sachant
X nous dit que :
lorsque X augmente de 1 fois l’écart-type, Y (en espérance)
augment de r fois l’écart-type

On peut trouver l’équation de la droite des moindres carrés en
utilisant les 5 statistiques :

X ,SD(X ),Y ,SD(Y ), r
La pente (estimée) égale à β̂1 = r

sY
sX

,

l’ordonnée à l’origine (estimée) est β̂0 = Y − β̂1X
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Régression linéaire simple – cadre mathématique
Ici, on considère un modèle où la variable expliquée (ou
réponse) yi a une association linéaire à une variable
explicative (ou régresseur ou prédictrice) xi :
yi = β0 + β1xi + ϵi , i = 1, . . . ,n,
ϵ1, . . . , ϵn sont supposés variables aléatoires : non corrélées ;
espérance = 0 ; variance = σ2, i = 1, . . . ,n (homoscédastique)

xi sont supposés être des constantes (mesurés sans erreur)

⇒ Si les erreurs sont aussi supposées normalement distribuées,
on peut faire les tests et les intervalles de confiance (IC)

Resumé des suppositions :

∎ Linear model (modèle linéaire ; dans les paramètres)
∎ Independent errors / observations (erreurs /

observations indépendantes)
∎ Normal errors / observations (erreurs / observations

Normalement distribuées)
∎ Equal error variances (variances des erreurs égales)
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Erreurs homoscédastiques, heteroscédastiques

52 / 59



Méthode des moindres carrés

(Les détailles NE SERONT PAS EXAMINÉES)

Les données ne sont qu’un échantillon (et ne sont pas
l’ensemble de la population)

Donc il faut estimer les valeurs des paramètres β0 (ordonnée à
l’origine) et β1 (pente) (également la variance des erreurs
σ2) :

ŷi = β0 + β1 xi + ϵi
Selon le principe des moindres carrés, on cherche les
estimateurs qui réduisent au minimum :

SC(ŷ) =
n

∑
i=1

(yi − ŷi)2 =
n

∑
i=1

e2i

(‘SC’ = ‘somme des carrés’ = ‘sum of squares’ en anglais)
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Méthode de moindres carrés, cont.
C’est maintenant un problème d’optimisation, de trouver des
valeurs β̂0 et β̂1 qui réduisent au minimum

SC(β0, β1) =
n

∑
i=1

(yi − β0 − β1xi)2.

Pour résoudre ceci, dériver par rapport à β0, β1 ; trouver les zéros :

d

dβ0
=

n

∑
i=1

−2(yi − β0 − β1xi) = 0

=>
n

∑
i=1

(yi − β0 − β1xi) = 0

=>
n

∑
i=1

yi − nβ0 − β1
n

∑
i=1

xi = 0

=>
n

∑
i=1

yi = nβ0 + β1
n

∑
i=1

xi (∗)
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Moindres carrés, cont.

d

dβ1
=

n

∑
i=1

−2xi(yi − β0 − β1xi) = 0

=>
n

∑
i=1

(xiyi − β0xi − β1x2i ) = 0

=>
n

∑
i=1

xiyi − β0
n

∑
i=1

xi − β1
n

∑
i=1

x2i = 0

=>
n

∑
i=1

xiyi = β0
n

∑
i=1

xi + β1
n

∑
i=1

x2i (∗∗)

Solution simultanée de (*) et de (**) pour les paramètres β0 et β1
nous donne l’estimation de régression.
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Distribution normale conditionelle : graphiquement

L’espérance est la prédiction ŷ = β̂0 + β̂1 x
L’erreur-type est la racine carrée de l’erreur quadratique
moyenne :
EQM = la moyenne arithmétique des carrés des écarts entre
les prédictions et les observations

REQM(Y ) = sY
√
(1 − r2)
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Distribution normale conditionelle : algèbre

La distribution Normale (univariée) depende de 2 paramt̀res :
la moyenne et la variance (equivalent, le SD)
L’espérance conditionnelle est la prédiction de regression de Y

sachant X : ŷ = β̂0 + β̂1 x
L’erreur conditionnelle (RMSE) (racine carré de l’erreur
quadratique moyenne EQM) est une nouvelle mesure de
variabilité : la variabilité de l’espérance conditionnelle de Y
sachant X , i.e., la variabilité autour de la droite de regression ;
c’esst la racine carré de l’erreur quadratique moyenne EQM

MSE(EQM) = moyenne arithmétique∗ des carrés des
déviations entre les prédictions et les observations
∗(au lieu de diviser par n, on divise par le nombre de degrees
of freedom (degrés de liberté))

RMSE(Y ) = sY
√
(1 − r2)
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Propriétés de l’estimateur de la pente

L’estimation de la droite de régression : Ŷ = β̂0 + β̂1X
L’estimateur des moindres carrés pour la pente β1 pourrait
être écrit comme :

β̂1 =
y1 (x1 − x) +⋯ + yn (xn − x)
(x1 − x)2 +⋯ + (xn − x)2

L’espérance de l’estimateur : E [β̂1] = β1
La variance de l’estimateur :

Var(β̂1) =
σ2

(x1 − x)2 +⋯ + (xn − x)2

Il nous faut un estimateur de σ2 (ei = yi − ŷi ) :

σ̂2 = e21 +⋯ + e2n
n − 2
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Test/Intervalle de confiance pour la pente

Pour tester H : β1 = βH
1 contre A : β1 ≠ βH

1 :

t-penteobs =
β̂1 − βH

1

σ̂/
√
(x1 − x)2 +⋯ + (xn − x)2

On REJETTE H si : ∣t-penteobs ∣ > tn−2 ,1−α/2
Le IC de niveau 1 − α pour la pente β1 est :

β̂1 ±
σ̂√

(x1 − x)2 +⋯ + (xn − x)2
tn−2 ,1−α/2
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