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Révision : Théoreme Central Limite (TCL)

Théoreme (TCL) : Soient Xy, Xo, ... des variables aléatoires
indépendantes et identiquement distribuées (iid), et telles que
E[Xi] = et Var(X;) = 02 < oo existent. Alors, la distribution de

X1+ 4+ Xy —np
o\/n

se rapproche d'une distribution normale lorsque n — oo.

C.-a-d. : Plus n est grand (‘suffisament grand’), plus /a loi de la
somme (ou la moyenne) se rapproche d'une distribution normale.

= Donc,7~N(,u, "72) ﬁNN(p7 M)

n
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Révision : Etapes d'un test d’hypotheéses

Identifier le parameétre de la population
Formuler les hypotheses NULLE et ALT
Calculer la statistique de test

Calculer la p-valeur pyps

B pops est la probabilité d’obtenir une valeur de T aussi
extréme ou plus (aussi loin de ce qu'on espére ou mre

plus, dans la direction de I'ALT) que ce qu'on a obtenu,

EN SUPPOSANT QUE L’HYPOTHESE NULLE EST
VRAIE

Reégle de décision et interprétation pratique : on REJETTE
I'hypothese NULLE H si pops <
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A propos des échantillons petits...

m Le z-test qu'on a étudié suppose que la distribution
d’'échantillonage de la statistique de test T est Normale, soit

B exactement, ou
W approximativement, selon le TCL

m Pourtant :
m Si les données sont Normalement distributées, ET
B si I'écart-type (SD) de la population o est inconnu, ET
m la taille de I'échantillon est petite (par exemple,
au-dessous de 30)
ALORS : la vraie distribution d'échantillonage de T posséede
des queues plus lourds que ceux de la distribution Normale

m Dans ce cas, on utilise le t-test
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‘Student’ (= William Sealy Gosset)

W. S. Gosset Guinness

GUINNESS
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Distribution de T quand o2 est inconnue

m Rappelons la statistique de test T = (X — po)/(c/\/n)
m Si la taille de I'echantillon n est ‘suffisament grande’, alors
sous H, T ~ N(0,1) quelle que soit la distribution de X (TCL)

m Si les observations X1, ..., X, ~ N(ug,0?), alors T ~ N(0,1)

pour o2 connue, quelle que soit la taille de I'echantillon n

m MAIS : Si la taille de I'echantillon n est petite, et la variance
o2 est inconnue, la vraie distribution de T a davantage de
variabilité que la distribution normale (due a I'estimation

imprécise de o basée sur peu d'obs)
m Dans le cas (1) Xi,..., X, ~ N(uo,02); (2) n est petite; et

O . t, 1, la distribution t
S n

de Student, avec n—1 degrés de liberté (df; 'degrees of
freedom’)

(3) 02 est inconnue, alors T =

m (La distribution de T dépend du nombre d'observations n)
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Table de la distribution t de Student

t Table

cum. prob. tso trs teo tes too tos Lors ton oos osg onos
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails. 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df|
1| 0000 1000 1376 1963 3078 6314 1271 3182 6366 31831 636.62
2 0000 0816 1061 1386 1886 2920 4303 6965 9925 22327 31599
3 0000 0765 0978 1250 1638 2353 3182 4541 5841 10215 12924
4| 0000 0741 0941 1190 1533 2132 2776 3747 4604 7173 8610
5| 0000 0727 0920 1156 1476 2015 2571 3365 4032 5893 6869
6] 0.000 0718 0.906 1134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7| 0000 0711 0896 1119 1415 1895 2365 2998 3499 4785  5.408
8 0000 0706 0889 1108 1397 1860 2306 2896 3355 4501 5041
o 0000 0703 0883 1100 1383 1833 2262 2821 3250 4297  4.781
10| 0000 0700 0879 1093 1372 1812 2228 2764 3169 4144 4587
11| 0000 0697 0876 1088 1363 1796 2201 2718  3.106 4025  4.437
12| 0000 0695 0873 1083 1356 1782 2179 2681 305 3930 4318
13| 0000 0694 0870 1079 1350 1771 2160 2650 3012 3852 4221
14| 0000 0692 0868 1076 1345 1761 2145 2624 2977 3787 4140
15| 0000 0691 0866 1074 1341 1753 2131 2602 2947 3733 4073
16| 0000 0690 0865 1071 1337 1746 2120 2583 2921 3686 4015
17| 0000 0689 0863 1069 1333 1740 2110 2567 2898 3646  3.965
18] 0.000 0.688 0.862 1.067 1.330 1734 2.101 2552 2.878 3610 3.922
19| 0.000 0.688 0.861 1.066 1328 1729 2.093 2539 2.861 3579 3.883
20 0.000 0.687 0.860 1.064 1.325 1725 2.086 2528 2.845 3.552 3.850
21| 0000 0686 0859 1063 1323 1721 2080 2518 2831 3527 3819
22| 0000 0686 0858 1061 1321 1717 2074 2508 2819 3505 3792
23| 0000 0685 0858 1060 1319 1714 2069 2500 2807 3485 3768
24| 0000 0685 0857 1059 1318 1711 2064 2492 2797 3467 3745
25| 0000 0684 0856 1058 1316 1708 2060 2485 2787 3450 3725
26| 0000 0684 0856 1058 1315 1706 2056 2479 2779 3435 3707
271 0000 0684 0855 1057 1314 1703 2052 2473 2771 3421 3690
28| 0000 0683 0855 1056 1313 1701 2048 2467 2763 3408 3674
29| 0000 0683 0854 105 1311 1699 2045 2462 2756 3396  3.659
30| 0000 0683 0854 105 1310 1697 2042 2457 2750 3385 3646
40[ 0000 0681 0851 1050 1303 1684 2021 2423 2704 3307 3551
60| 0000 0679 0848 1045 1206 1671 2000 2390 2660 3232  3.460
80| 0000 0678 0846 1043 1202 1664 1990 2374 2639 3195  3.416
100/ 0000 0677 0845 1042 1290 1660 1984 2364 2626 3174  3.390
1000( 0000 0675 0842 1037 1282 1646 1962 2330 2581 3098  3.300
z 0.000 0.674 0.842 1.036 1282 1645 1.960 2.326 2576 3.090 3.291
0% 50%  60% _ 70% 80% 90%  95%  98%  99% 99.8% 99.9%

Confidence Level
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Intervalle de confiance

Dans le cas
Xi,..., Xn~ N(p,0?)
n est petite; et
o2 est inconnue :

m on peut faire un intervalle de confiance (IC) comme avant,
mais en utilisant la distribution t au lieu de la normale (z)

m |C pour la moyenne de la population : Yi/\/ﬁ
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Test d’hypotheses : trouver la région de rejet

H: p=py H: p=py H: p=py
A p# py A< py A p> py
Reject1  Donot : Reject Reject : Do not reject H, Do not reject Hy : Reject
Hy | rejectHy | Ho Ho 1 I Ho
|
: i i |
| [ | |
| | | |
| | | |
| i al2 a a
L t L t t
—lup 0 tar2 —t, 0 0 ty
Two-tailed Left-tailed Right-tailed
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Exemple

Exemple 9.1| Prise quotidienne d'énergie (kJ) pour 11 femmes :

5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

m Faire un IC de 95% pour la moyenne prise (kJ) de la
population des femmes ...

m Tester I'hypothése que la moyenne est égale a la valeur
recommandée (7725 kJ) ...
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Test
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Test de comparaison de 2 moyennes : variances égales

m On veut comparer les moyennes de deux suites de mesures :

m Groupe 1 (p. ex. ‘contrdle’) : xi,..., X%,
m Groupe 2 (p. ex. 'traitement’) : y1,...,¥m
m On peut modeliser de telles données comme :
Xi=p+e;i=1...,n;
yi=p+A+T1;j=1,...,m,
ou A signifie I'effet du traitement (par rapport au groupe
‘contréle’)

mH:A=0vs. A:A+00uA:A>00u A: A0
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Variances égales, cont.
A
m T = diff. observée. / ES(diff. observée.) = ——;

~

2 2 Var(Q

N N n+m
A:y—i;Var(A)za—Jra—: o2
n m nm

m On suppose que :
m les variances des 2 échantillons sont égales :
Var(€) = Var(7)
B les observations sont indépendantes
B /es 2 échantillons sont indépendants
m On peux estimer les variances séparement :
2= ((x = %)%+ + (= %)D)/(n-1)
sp= (=92 ++(ym-7)*)/(m-1)
m Quand les variances sont égales, on peut combiner les deux
estimateurs : sg =((n-1)s2+ (m- 1)53)/(n +m-2)

- X
= tobs = Y ~ tpim-2 sous H

\/53(n+m)/(nm)
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Test de comparaison de 2 moyennes : variances inégales

mSio2z 0}2;, on peut utiliser
Y-X
TWelch = —F———=
\/S2/n+S2/m

m La distribution de cette statistique Tyyejen n'est
qu'approximativement t, avec un nombre de degrés de liberté
calculé a la base de s, s,, net m

m Welch test
m Dans la pratique, si les variances sont assez différentes

(rapport plus de 3), on utilise cette statistique (au lieu de

celle avec la variance sﬁ)
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Exemple

Exemple 9.2| Dépenses d'énergie dans les groupes de femmes

minces et obeses :
mince 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05 7.48 7.58 8.11
obese 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

m Tester I'hypothése que les moyennes des deux populations
sont égales ...
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Test
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Expériences appariées

m Pour une expérience effectuée en blocs de deux unités, la
puissance du t-test pourrait étre augmentée

m Cette idée permet d'éliminer les influences d’'autres variables
(p. ex. I'age, le sexe, etc.), en leur donnant des ‘traitements’
différents

m Ainsi, on a une comparaison des deux conditions plus précise
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t-test pour une expérience appariée

Les données sont de forme :
1 2

n

controle |xq|xo |-

Xn

espérance [

traitement [ yy | yo |-+

Yn

espérance u+ A

Chaque bloc nous permet d'évaluer |'effet du traitement

En effet, on considere les différences

di=y1—X1,...

ydn = Yn—Xp

comme un échantillon de mesures provenant d'une

distribution d'espérance A

H:A:OVS.A:AiOouA:A>OouA:A<0

d
sq/v/n’

T = t-apparié = ou

$2= ((dy—d)2+-+ (do—d)?)/(n—1)

Sous H, t-apparié ~ t,_1
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Exemple 9.1, cont.

Exemple 2.2, cont. : Prise quotidienne d'énergie des 11 femmes
pré- et post-menstruel :

pré 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770
post 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

m Tester I'hypothése qu'il n'y a pas de différence de prise
quotidienne pré et post ...
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21/59



Processus de recherche

Question d'intérét scientifique

Décider : quelles données a recueillir (et comment)
Collecte et analyse des données

Conclusions, généralisations : inférence sur la population

Communication et diffusion des résultats
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Question Générique :
Est-ce qu'un ‘traitement’ produit-il un ‘effet’ ?

Exemples :
m Fumer provoque-t-il le cancer, les maladies cardiaques, etc?

m Est-ce que la consommation d’avoine diminue le taux de
cholestérol ?

m L’'échinacée prévient-elle le maladies?

m Est-ce que I'exercice ralentit le processus de vieillissement ?
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Genres d'études

m Une méthode simple pour résoudre ce type de question
consiste a comparer deux groupes de sujets de |'étude :

m  Groupe contrédle : fournit une base de comparaison

m Groupe traitement : groupe recevant le ‘traitement’

m Etude expérimentale : sujets affectés aux groupes (traitement,

contrdle) par I'investigateur
m randomisation : protége contre les biais dans
["attribution aux groupes
m ‘aveugle’, ‘double-aveugle’ : protege contre les biais
dans I'évaluation des résultats
B placebo : traitement artificiel
m Etude d'observation sujets ‘attribuent’ eux-mémes aux
groupes
m facteur de confusion : un facteur qui présente une

association avec le facteur de risque examiné et avec le

résultat
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Quelques commentaires

Avec une expérience contrdlée bien planifiée et exécutée, il est
possible de déduire /a causalité

Ceci n'est pas possible avec les études d'observation en raison
de la présence de facteurs de confusion

En présence de facteurs de confusion, il n'est pas possible de
dire si la différence observée entre les groupes est due au
traitement ou au facteur de confusion

Pas toujours possible de mener une étude expérimentale, pour
des raisons pratiques et éthiques
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Modeles statistiques

m Un modele statistique est une description mathématique
approximative du mécanisme qui a généré les observations, qui
tient compte des erreurs aléatoires et imprévisibles :

m donne une représentation idéalisée de la réalité

m fait des suppositions explicites (qui peuvent étre
fausses!!) sur les processus étudiés

B permet un raisonnement abstrait

m Le modéle s'exprime par une famille de distributions théorique

qui contient des cas ‘idéaux’ pour les VAs inclues
B p. ex. : jets d'une piece ...
m Un modele utile offert un bon compromis entre

m description juste de la réalité (paramétres nombreux,
suppositions correctes)

m facilité de manipulation mathématique

m production de solutions/prédictions proches de
I'observation(s)
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Un modele simple
Un cas simple : on effectue plusieurs mesures d'une quantité
physique u, p. ex. longueur d'un champ, taille d'une personne ...
m De telles mesures possedent en général une composante
aléatoire due aux erreurs de mesure
m Un mécanisme d’erreur possible :
mesure = vraie valeur théorique + erreur de mesure
y = M + €
m c.-a-d. : des mesures avec des erreurs additives
m S'il n'y a pas d'erreur systématique (biais), 'erreur aléatoire
doit &tre ‘centrée’ (E[e] =0)
m Souvent raisonnable de penser que /a précision de chaque
mesure est la méme (Var(e) = 0 pour chaque mesure)
m Une spécification possible pour la distribution de I'erreur est la
loi normale N(0,0?)
m All models are wrong; some are useful
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Estimation des parameétres inconnus

Une fois un modele est choisi, I'interét se tourne vers
I'estimation des inconnus : les paramétres du modéle

On observe des réalisations d’'une VA dont on connait la
distribution (sauf les valeurs des paramétres)

Donc, on doit estimer les paramétres a |'aide des observations
X1,...,Xn

/}:7:12)(/
niz1
52-5 ni Z(X X)?

L’estimateur 52 est nonbiaisé pour o2, et est indépendant de
celui de p (X)
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Données bivariées

Mesures de deux variables; p. ex. X et Y
On considére le cas de deux variables continues
On veut découvrir la relation entre les deux variables

m longueur de I'avant-bras et taille
m taille et poids
B expressions de gene A et gene B

Considérons les ensembles de données qui sont (au moins
approximativement)

‘ normales bivariées < forme ovale ‘

(X> Y) ~ BVN((MX, My): (U>2<7 0}2/)7 ,0)
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Analyse exploratoire : Diagramme de dispersion

m Résumé graphique d'un jeu de données bivariées a I'aide
d'un diagramme (ou nuage) de dispersion

m Les valeurs d'une variable sur |'axe horizontal et les valeurs de
I"autre sur |'axe vertical

m Peut étre utilisé pour voir comment les valeurs de 2 variables
tendent a évoluer les unes avec les autres (c'est-a-dire
comment les variables sont associées)

(a) association positive (b) association négative
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Diagramme (nuage) de dispersion

QCM :

(a) nulle (b) positive (c) négative (d) impossible a déterminer

Figure (a) :

Height (ininches)
T

I L
Weight fin pounds)
20 )

(b)

Quelle est I'association entre X et Y 77

Figure (b) :

40
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Résumés numeriques

m Typiquement, les données bivariées sont résumées
(numériquement) avec 5 statistiques

m Celles-ci fournissent un bon résumé pour les nuages de points
avec la méme forme générale que nous venons de voir (ovale)

m On peut résumer chaque variable séparément : X,sx; Y, xy

m Mais ces valeurs ne disent pas comment les valeurs de X et Y
varient ensemble
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Corrélation
Soient X et Y VAs, et Var(X) >0, Var(Y)>0. La
corrélation p(X,Y') est définie ainsi :
Cov(X,Y E[(X-EX) x (Y -EY
Xy oVXY) | E[(X-EX) x (Y - EY)]

\/ Var(X)Var(Y) Var(X)Var(Y)

p est une quantité sans unités, -1 < p<1

La corrélation p, comme la covariance, est une mesure
d’association linéaire (le degré de linéarité) des VAs X et Y

Les valeurs p proches de 1 ou -1 indiquent une linéarité
quasiment rigoueuse entre X et Y, tandis que des valeurs
proches de 0 indique une absence de toute relation linéaire

Le signe de p indique la direction de |'association (positive ou
négative, correspondant a la pente de la droite)

Lorsque p(X,Y) =0, X et Y sont non-corrélées
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Coefficient de corrélation de I'échantillon

Le coefficient de corrélation de I’échantillon r (ou p) est
défini comme la valeur moyenne du produit (normalisé) XY :

r = E[(X centrée-réduite) = (Y centrée-réduite)]

centrée-réduite = standardisée (normalisée)

= (X- moyenne(X))/écart-type(X)
r est une quantité sans unités
-1<r<1

r est une mesure d' ASSOCIATION

LINEAIRE
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Corrélation # Causalité
On ne peut pas en déduire que, puisque X et Y sont

fortement corrélées (r proche de -1 ou 1) que X est a /'origine
(ou la cause) d'un changement dans Y

Y pourrait étre la cause de X

X et Y les deux pourraient varier avec un tiers, un facteur

peut-étre inconnu (soit de causalité ou pas, souvent le temps)
B polio et boissons non alcoolisées

m nombre de pompiers envoyés a un incendie et montant
des dégats

m Les enfants qui regoivent un soutien scolaire obtiennent
de moins bonnes notes que ceux qui ne le recoivent pas

Sirw0,il n'y a pas dASSOCIATION |LINEAIRE

— ceci n’est 3 dire qu'il n'y a AUCUNE ASSOCIATION
On ne peut pas en déduire la forme du diagramme de
dispersion seulement a partir de la valeur de r
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obs.
aberrantes

(b) courbe (c) observations aberrantes

(a) dispersion au hasard :

(d) parallélisme (e) deux droites différentes
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Modélisation d'un nuage de forme ovale

m Variable a expliquer / variable réponse : Y
m Variable explicatrice / prédictrice : X

m La valeur de X est supposée connue sans erreur
m On suppose que les variations de Y sont influencées par
X
B Le modéle permet d'exprimer sous la forme d'une
relation mathématique la liaison supposée
m La connaissance de ces variables permettent a I'aide du
modele de prédire Y
m Estimater les valeurs de Y :
— ponctuellement
— par intervalle
m Le modeéle permet de mesurer /'impact (ou /'effet) d'une
variable explicative sur Y
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Relation déterministe ou statistique

200,
K =800 Stock limite

Croissance lagistique

; 5 e

(a) déterministe

m Une seule valeur de Y
pour une valeur de X

Courbe dose-effet des cancers chez les survivants d'Hiroshima et Nagasaki

Domaine d'exirapolation,
aux faibles doses

Nombre de cancers

Dose (Gy)

(b) statistique
m Plusieurs valeurs de Y
pour une valeur de X

m 'Probabiliser’ Y pour une
valeur fixe de X
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Régression linéaire simple

m Se réféere a tracer une droite (particuliére) a travers un nuage

de points
m Utilisé pour les 2 objectifs :

m Explication
m Prédiction
m Modele linéaire statistique :
B Y=0+/X+e = E[Y|X]=0+X
m E(e) =0; Var(e) = 0?
m L'équation d'une droite de predlre Y quand on connatit la
valeur spécifique x : Y = ﬁo + Bix
m B9 = 'ordonnée a I'origine; 1 = la pente (dans la
population)
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Quelle droite ?

m Il y a beaucoup de droites qui pourraient étre faites a travers
le nuage de points
m Comment choisir?
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Prédiction par régression

m On peut faire une prédiction en utilisant /a droite de
régression :

lorsque X augmente de 1 (écart-type), la valeur prédite Y
augmente ** PAS de 1 (écart-type) **,

mais seulement de r (écart-type) (vers le bas si r est négatif) :
Y-y _ X-X

Sy SX

m Cette prédiction pourrait s'exprime également dans la forme :
préd. y = ord. + pente x x, avec
m pente = (3 = rsy/sx

m ord. = Bo =y- pente x X
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Moindres carrés
Q : D'ou vient cette équation ?
R : C'est la droite qui est ‘meilleure’ dans le sens que la somme des
carrés des errenrs dans le nlan vertical (Y) est au minimum

Y

erreurs

(résidus)

X
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**%* Interprétation des parameétres ***

L'équation de droite de régression comprend 2 parametres :
la pente et |'ordonnée a I'origine

La pente est le changement moyen de Y pour un changement
de X de 1 unité

L'ordonnée a l'origine est la valeur de Y estimée lorsque X =0

Si la pente = 0, alors X n'aide pas a prédire Y (prédiction
linéaire)
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Une autre vue de la droite de régression

m On peut diviser le nuage de points dans les régions
(X-bandes) fondées sur des valeurs de X

m Au sein de chaque X-bande, mettez la valeur moyenne de Y
(en utilisant uniquement les valeurs de Y possedant des
valeurs X dans le X-bande)

m Il s'agit de la courbe des moyennes

m La droite de régression pourrait étre considérée comme une
version lissée de la courbe des moyennes
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Diagramme de dispersion (encore une fois)
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Création des X-bandes
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Graphiaue des movennes
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Démarche de la régression

A partir d'un échantillon de valeurs pour la variable réponse Y et
la (ou les) variables prédictrices X :
m Vérifier la possibilité d'une liaison linéaire entre Y et X
m représentation graphique
m coefficient de correlation
m Estimation des parameétres
m coefficients 3; = BA,-
m écart-type pour les erreurs 0 = &
m Evaluation du modele (la semaine prochaine)
m indices de qualité R?, Rfj
m évaluation globale de I'ajustement (F de Fisher)
B test(s) de coefficients individuellement
m étude des résidus, détection des points abérrants,
influentiels
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Résumé : Régression linéaire simple (conceptuelle)

m Pour un diagramme de dispersion qui est de forme ovale, nous
pouvons trouver une droite qui sert a résumer les points

m Un principe souvent utilisé pour I'ajustement de cette droite
est moindres carrés : le total des carrés des erreurs (verticales)
est réduit au minimum

m Selon ce principe, la prédiction de régression pour Y sachant
X nous dit que :
lorsque X augmente de 1 fois I'écart-type, Y (en espérance)
augment de r fois I'écart-type

m On peut trouver |'équation de la droite des moindres carrés en
utilisant les 5 statistiques :
X,SD(X),Y,SD(Y),r
R <A S
m La pente (estimée) égale a (1 = X
Sx
I'ordonnée a I'origine (estimée) est o = Y — 51 X
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Régression linéaire simple — cadre mathématique

m Ici, on considere un modele ou la variable expliquée (ou
réponse) y; a une association linéaire a une variable
explicative (ou régresseur ou prédictrice) x; :
y,-:ﬁo+61x,-+e,~, i:1,...,n,

W oeq,..

espérance = 0; variance = ¢

, €, sont supposés variables aléatoires : non corrélées;
2 i=1,...,n (homoscédastique)

m x; sont supposés étre des constantes (mesurés sans erreur)

m = Si les erreurs sont aussi supposées normalement distribuées,
on peut faire les tests et les intervalles de confiance (IC)

m Resumé des suppositions :

Linear model (modele linéaire; dans les paramétres)
Independent errors / observations (erreurs /
observations indépendantes)

Normal errors / observations (erreurs / observations
Normalement distribuées)

Equal error variances (variances des erreurs égales)
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Erreurs homoscédastiques, heteroscédastiques

h 4
Y

Homoscedasticity w Heteroscedasticity 0
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Méthode des moindres carrés
(Les détailles NE SERONT PAS EXAMINEES)

m Les données ne sont qu'un échantillon (et ne sont pas
I’ensemble de la population)

m Donc il faut estimer les valeurs des parameétres 3y (ordonnée a
I'origine) et 31 (pente) (également la variance des erreurs
0?) :
Vi=Po+Br1xi+€
m Selon le principe des moindres carrés, on cherche les
estimateurs qui réduisent au minimum :

SCH) =D (i-y)*=> ¢
i P

m ('SC' = ‘somme des carrés’ = ‘sum of squares’ en anglais)
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Méthode de moindres carrés, cont.

C'est maintenant un probléeme d’optimisation, de trouver des
valeurs By et 31 qui réduisent au minimum

SC(po, 1) = Zn:()/i —Bo - 51Xi)2-
i-1

Pour résoudre ceci, dériver par rapport a 8o, 1 ; trouver les zéros :

d

dfo

> =2(yi = fo— P1xi) =0
i1

i(y,' - Bo-P1x;) =0

M:

n/BO_/Bl ZXI =

1 i=1

= /30+[31ZX, (*)

i

M:

/=1
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Moindres carrés, cont.

- 12; ~2xi(yi = Bo - P1xi) = 0

=> Z(lel Boxi — /31X) 0
i=1

n

=> ZX:)/: /BOZXI ﬁlzx =

[uy

E n
=> Xjyi = Z (%)
1

i= /:1 i=1

Solution simultanée de (*) et de (**) pour les parameétres S5y et 51
nous donne I’estimation de régression.
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Distribution normale conditionelle : graphiquement

m L'espérance est la prédiction y = Bo + ﬁAl X

m L’'erreur-type est la racine carrée de I'erreur quadratique
moyenne :
EQM = la moyenne arithmétique des carrés des écarts entre
les prédictions et les observations

m | REQM(Y) = sy\/(1-r?)

final
75 80

70

65
|

55 60 65
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Distribution normale conditionelle : algebre

m La distribution Normale (univariée) depende de 2 paramtres :
la moyenne et la variance (equivalent, le SD)
m L’'espérance conditionnelle est la prédiction de regression de Y

sachant X : y= BAO + ﬁlx

m L'erreur conditionnelle (RMSE) (racine carré de |'erreur
quadratique moyenne EQM) est une nouvelle mesure de
variabilité : la variabilité de I'espérance conditionnelle de Y
sachant X, i.e., la variabilité autour de la droite de regression ;
c'esst la racine carré de ['erreur quadratique moyenne EQM

m MSE(EQM) = moyenne arithmétique™ des carrés des
déviations entre les prédictions et les observations

m *(au lieu de diviser par n, on divise par le nombre de degrees
of freedom (degrés de liberté))

m |RMSE(Y) =sy\/(1-1r?)
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Propriétés de I'estimateur de la pente

L'estimation de la droite de régression : Y = 30 + BAlX

L'estimateur des moindres carrés pour la pente 51 pourrait
étre écrit comme :

B »n (x1=X) + -+ Yo (xn—X)
(x1 =X)2+ -+ (xp — X)?

L’espérance de I'estimateur : E[51] = A1
La variance de |'estimateur :

A 2
Var(f1) =

(x1 = X)2+ -+ (X — X)?

Il nous faut un estimateur de o2 (e; = y; — §i) :
o e+l
n-2
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Test/Intervalle de confiance pour la pente

m Pour tester H : 31 = B{" contre A: b1 # ﬁ{" :

By - B!
&/ (x1 =X)2 + - + (xp — X)?
m On REJETTE H si : |t-penteyps| > tho2,1-a/2

t-pente,ps =

m Le IC de niveau 1 — « pour la pente 57 est :

~

Bl:i: g t
V(xa =X)2+ -+ (xq —X)2

n_—2,1—a/2
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