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Méthodes d’estimation ponctuelle
B méthode de maximum de vraisemblance (EMV)
Propriétés de 'EMV

Information (statistique / de Fisher)

Intervalles de confiance (asymptotiques)
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Probabilité par rapport a statistique

m Pour une valeur connue de p, on peut calculer la probabilité
d’'une issue possible

m Ce qui est la probabilité

m Dans de nombreuses situations pratiques, cependant, nous ne
savons pas p, mais plutét, nous disposons de données qui sera
utilisée pour /'estimation de p

m Ce qui est la statistique

2/35



Echantillonage

Le but d'une étude statistique est d'obtenir des connaissances
sur I'ensemble de la population, c.-a-d. I'estimation d’un
parametre

Puisque un dénombrement complet de la population est tres
souvent pratiquement impossible, il faut d’autres moyens plus
pratique

= Un échantillonnage consiste a choisir parmi les éléments
de la population un certain nombre d'unités pour lesquelles
nous obtiendrons des observations (données)

Nos données sont considérées comme la suite d'un processus
aléatoire : si la collecte de données ont été répétées, le
résultat serait probablement différent, qui peuvent influer sur
les conclusions tirées sur la base de données

C.-a-d., nos conclusions sont sujettes a la variation aléatoire
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Utilité d'échantillonnage

Un jardinier posseéde deux millions de graines pratiquement
identiques, qui donnent soit des fleurs blanches, soit des fleurs
rouges

Il désire connaitre en avance le pourcentage des fleurs blanches
(afin d'étre en mesure de les vendre sans tromper ses clients)

S'il veut étre absolument certain du type de fleurs produit, il
sera obligé de semer toutes les graines

Donc, il n'aura plus des graines a vendre!!
= |l faut un échantillon

(Méme si le processus n'est pas déstructif, il est le plus
souvent impossible ou irréalisable (le temps, les colits) de
mesurer chaque individu de la population)
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Représentativité

Sur la base de ses observations, le jardinier fera une
estimation du nombre de fleurs blanches/rouges parmi les
deux millions de graines

= On généralise a I'ensemble de /a population les
connaissances acquises sur la base de quelques observations

On ne peut pas étre absolument certain de notre prédiction,
puisque I'on ne considéere qu’une fraction seulement de la
population totale : = Imprécision due a I'échantillonnage
Généralement il y aura un écart entre les observations faites
sur |'échantillon et celles effectuées sur /a totalité de la
population

Mais : si I'échantillon est choisi de facon scientifique, il est
possible de faire une évaluation probabiliste

= Possible d’évaluer I'erreur, et déterminer la précision de
I'estimation
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Méthodes d'échantillonnage
Echantillonnage arbitraire
m Impossible de quantifier les probabilités associées, donc
difficile d'estimer les parameétres et I'écart-type d’estimation
(erreur standard d’estimation (ES))
m p. ex. les dix premiers a entrer dans la salle
m = PAS recommandé!!
Echantillonnage aléatoire
m Correspond a des méthodes de tirage ou chaque unité de la

population a une probabilité positive et connue d'étre
sélectionnée

m Ces méthodes permettent d'estimer les parameétres de la
population, et aussi d'obtenir une mesure de I'ES

m Pour nous, les méthodes le plus important correspond a soit
AVEC remise (indépendant), soit SANS remise
(échantillonnage aléatoire simple (EAS))
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Estimation (ponctuelle)

La procédure d'utilisation des informations obtenues a partir
de I'échantillon qui permet de déduire des résultats concernant
I’ensemble de la population est appelée estimation

La valeur inconnue d'une population (3 estimer a partir d'un
échantillon) est appelée un parameétre

p. ex. : la moyenne (1) ; la proportion (le pourcentage) (p)

Le parametre de la population est estimé a partir d'une
statistique calculée sur la base d’un échantillon
= une statistique est une fonction des données obtenues

Un estimateur est une statistique utilisée afin d'estimer
(deviner la valeur d") un parametre 0 ; c.-a-d. il est une regle
qui nous permet de calculer une approximation de 6 basée sur
les valeurs de I'échantillon Xi,..., X,

Une estimation est une valeur observée (calculée) de
I'estimateur sur un échantillon
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Qualité d'un estimateur

m Pour répondre a la question : ‘comment choisir entre des
estimateurs candidats’, on doit examiner ce qui fait un ‘bon’
estimateur

m On consideére donc des qualités (statistiques) des estimateurs

m Certaines qualités importantes :

| biais
B variance
B erreur quadratique moyenne (EQM)
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Biais
m Le biais d'un estimateur T d'un parametre 6 est définit par :
b(T)=E[T]-0,

(c.-a-d. la différence entre /'espérance de la distribution
d’'échantillonnage de I'estimateur T et /a vraie valeur du
paramétre )

m Un estimateur est sans biais (ou non biaisé) si le biais égale
a0

Exemple 7.1] Quel est le biais de X en tant qu'estimateur de la
moyenne de la population x ...
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Variance

m Une autre qualité on peut considérer est le variance de
I'estimateur :

Var(T) = E[(T - E[T])?]

m Parmi deux estimateurs sans biais de 0, |'un sera plus efficace
que l'autre si sa variance est plus petite

Exemple 7.2| Considérons maintenant la variance des
estimateurs candidats de la moyenne de la population p ...
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Biais et variance d'un estimateur T

big bias, big variance no bias, big variance

big bias, low variance no bias, low variance
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Erreur Quadratique Moyenne (EQM)

Une autre qualité que nous pouvons considérer est le erreur
quadratique moyenne (EQM) d'un estimateur

EQM(T) = E[(T - 6)?]
Ceci est différent de la variance lorsque I'estimateur T est
biaisé
Parfois, nous pourrions utiliser un estimateur qui a un peu de

biais s'il a une variance beaucoup plus petite que la meilleure
estimateur sans biais (compromis biais-variance)

Il est simple a démontrer que I'EQM peut étre exprimée
comme une combinaison de biais et la variance :

EQM(T) = Var(T) + [b(T)?]
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Méthodes d'estimation ponctuelle

Meéthode de maximum de vraisemblance (qui donne souvent
des estimateurs ‘intuitifs’)

Meéthode des moments — on va l'illustrer

(VIDEO SEULEUMENT), mais

= cela ne fait PAS partie de I'’examen

Meéthode des moindres carrés (plus tard, avec ‘régression’)
Méthode du minimum des déviations absolues

Estimation bayesian
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Vraisemblance

m Pour une valeur p connue, on peut exprimer la probabilité de
n'importe quelles données possibles

m En revanche, on peut considérer les observations comme
connues et considérer la probabilité en fonction du paramétre
inconnu p

m La fonction de probabilité vue de cette facon est appelée la
vraisemblance
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Vraisemblance illustrée

20 lancements d'une piece; on observe 77 piles

Binomial( 20, 0.1) Binomial( 20, 0.5)
2 2
£, L f
H :
2 2
: d
0.05 - - ‘ ‘
[ i . Ol \ . ]
) S

De ces deux distributions, de laquelle est-il le plus vraisemblable
que I'échantillon soit issu ?
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Définition de la vraisemblance

m Définition : Soit x ~ f(x; ). La vraisemblance et log
vraisemblance sont :

L(0)=f(x;0), £(0)=IlogL(h),

considérés comme des fonctions du paramétre 6.

m Soient x = (xy,...,X,) une réalisation des VAs Xi,..., X,.

Alors
L(0) - F(0) = TTFCsi0). - 46) = 3-log Fi0)

ol f(x;;0) est la loi de x;.
m A NOTER : log = log base e = log naturel
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Estimation par maximum de vraisemblance

Une méthode d'estimation intuitive est I’estimation par
maximum de vraisemblance
Par exemple, I'estimateur le plus ‘évident’ p est p= X/n se
révele étre I'estimateur du maximum de vraisemblance
(EMV / MLE)
En général, 'EMV est la valeur qui rend la probabilité aussi
grande que possible — c’est la valeur qui rend les données
observées le plus probable
La maniére habituelle de trouver 'EMV : le calcul — trouver la
dérivée de la fonction de (log) vraisemblance, annuler et
résoudre : N .

dlogL(0) 0 d?log L(6) <0

o 7 do?

m (Cette méthode ne fonctionne pas dans tous les cas)

m Nous supposons que la premiére équation a une solution

unique (ce n'est pas toujours vrai dans la réalité)
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EMV, cont

= L'EMV 4 remplit la condition
L(0) > L(A) pour toute 6,

ce qui équivaut 3 log L(8) > log L(#), car les valeurs maximales
de L(0) et log L(0) sont obtenues a la méme valeur 0

m L'EMV peut :

B exister et &tre unique,
B ne pas étre unique, ou
B ne pas exister

m Dans la pratique, il est normalement nécessaire d'utiliser des
algorithmes numériques pour obtenir § et d?log L(0)/d6?
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Avantages/désavantages de la méthode

m Pour un échantillon ‘suffisamment grand’, 'EMV est :

non-biaisé

consistent

efficace (EQM minimal ; donc au moins puissant que
I'estimateur EMM)

normalement distribué

donc, pratique pour l'inférence statistique

m En revanche, 'EMV :

pourrait étre trés biaisé si la taille de I'échantillon est
petite

pourrait étre trés compliqué d'évaluer (il faut le faire
numériquement)
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Exemple

Exemple 7.3 | Soit X ~ Bin(n,p). Trouver 'EMV de p ...
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Exemple
Exemple 7.4| Soient X1,...,X, ~ iid Pois(\), A >0. Calculer :
L(N)
log L(A)

Aemy (+ Vérifier que I'extremum est un maximum)
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Solution

n Yi _
L) =T] e*”—| oc @ MALYT (= ™A\
=1 Vi

(X)) = nylog A — n\

Q di(\) ny
)\ : = — — =
EMV P = 3 n=0 =

m Vérifier max :

~

=1=>)\EM\/=y

> <

2 —_ —_
d<l(N) _ di(N) [n_y_n] __ny <0
d\2 dhx LA .t _
- ny ny
car ny >0,A >0, donc ﬁ>0 & _ﬁ<0’

alors I'extremum (Agpy) est un maximum
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Exemple

PAS important pour nous!!

Example 7.5| Soient Yi,..., Y, ~ N(u,0?). Trouver les EMV

de p et o2

Solution : La densité normale est donnée par
1
V2mo?

donc le log vraisemblence pour un échantillon aléatoire (iid)
Yi,...,Yn €st

exp {—T;(y - u)2} :

n 1 Z
t(p,0) =logL(p,0) = ) log 0® - 202 Z(YI —N)z-
i=1
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Solution, cont

O(p,0?) 1
En dérivant, on a a(g/f):gzZ(y,-—u):O (*)
Al (p,0°)
ot S =t s S0 (+)

En résolvant (*), on a (pour toute valeur o2) :
Yi-w)=0 = >yi=np => p=)y/n=y

En résolvant (**) (en utilisant i au lieu de u), on a :
N N o 1 N
—no?+y (yi-)? =0 => Y (yi-f)*=no® => §°= - > (yi—p)?

A NOTER : cet estimateur est difffent de |'estimateur non biaisé
2= LSy p)?
n-1 !
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Solution, cont
I faut vérifier que le log vraisemblance est un maximum (non min)
pour la paire des valeurs (fi,52) : test de derivée seconde :

PlogL(fi,6?) *logl(fie?) _ (Plogl(psd)\' |
o2 9(02?)? Oud(a?)

2 NN 2 A AD
9" log L(f1,67) o . Ologl(p,6%)

ET ————~
op? A ' 0(0?)2
0?log L(f1, AQ) - Plogl(p,6%) -n
opd(a?) Z(y' ) =0 op? "2 < 0
0% log L(f1,52) n3 n?
T 9022 = Y7 Z(}’: N)2 5 N2 2
(U ) g ZI l(yl /J’) ZI 1( /’[’)
_3
=
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Exemple uniforme — le calcul ne marche pas!!

Example 7.6 | Soient y1,...,y, un échantillon aléatoire tirée de

la distribution uniforme (0, 6], dont la densité est f(y) =1/6,
0<y <6 (= 0sinon). Trouver 'EMV 0 de 0 ...

likelihood, MLE (red solid) vs. true parameter (blue dashed), n=3

likelihood
s
|

=]
n
|

w4 —o—e

0o 05

27/35



Information (statistique)

m L'information observée J(6) et |'information espérée
(aussi appelée Fisher information) () sont :

2
. J(0) - dd§§9>

2
m 1(0) = E{J(0)} = E{ dd§§9>}

m Elles sont des mesures de la courbature de —£(0) :

plus les valeurs de J(0) et /(6) sont grandes, plus ¢(6) et
L(6) sont concentratés
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Exemple : distributions normales
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Propriétés de I'EMV
Convergent : lim,_o, P(] b,-0 |<e)=1,Ve>0

Invariance : si § est 'EMV pour le paramétre 0, alors h(é)
est 'EMV pour le paramétre h(0)

Asymptotiquement sans biais : b(0) — 0 lorsque n - oo
(pour les échantillons ‘petits’ I'EMV pourrait étre biaisé)

Efficacité asymptotique optimale : aucun estimateur
asymptotiquement sans biais peut avoir une variance plus
petite que celle de 'EMV

Normalité asymptotique : la distribution de 0, lorsque
n — oo est la distribution normale; cela nous donne une base
pour la statistique inferentielle a partir de I'EMV (p. ex. IC)

IC approximatif (niveau 1—«) pour 6 : éizl_ap /\/J(é)
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Conditions de régularité (NON-EXAMINEES)

Les conditions techniques (pas trés intéressantes!!) dont la
démonstration de normalité asymptotique dépend :

m La vraie valeur 0y de @ est un point interieur de
I'espace du parametre ©, qui a dimension finie et qui est
compact (sans ‘trous’ / contient les points limites)

m Pour deux valeurs de 6 différentes, les densités sont distinctes
(identifiabilité condition)

m |l existe une boule autour de 6y dans laquelle les 3 dérivées de
¢ existent presque slirement (c.-a-d. la probabilité = 1), et
dont I'espérance de la 3°™¢ dérivée est bornée uniformement
pour 6 dans la boule

m || est valable de changer I'ordre de dérivation et integration
(on peut dériver sous l'intégrale)

31/35



Exemple

Exemple 7.7| Soient Xi,..., X, ~ iid Bernoulli(p). Calculer :

L(p)
t(p)

PEMV

J(p)

I(p)
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Exemple 7.7, cont.

un |IC approximatif de 95% pour p pour les données avec :

n =10 (nombre de piles = 9)

n =20 (nombre de piles = 16)

n =100 (nombre de piles = 67)
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Exemple

Exemple 7.8 | Soient Xi,..., X, ~ iid Pois()\), A > 0. Calculer :

S\EMV en supposant Y. X; >0

S\EMV en supposant Y. X; =0
I'EMV de P(X =0)

J(N)

1(N)

@ un IC approximatif de 95% pour A ...
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Avertissement

m L'estimation par la méthode de maximum de vraisemblance
est séduisante :
B conceptuellement simple
m interprétation intuitive

m Cependant, quelques difficultés;
conditions de régularité sur la fonction de vraisemblance qu’on
ne peut pas ignorer :
m difficiles a établir
m difficiles a interpréter
m difficiles a vérifier pour les cas réels

m Donc, méme si tres souvent utile, 'EMV n’est pas une
panacée qui rendrait caduques les autres méthodes
d'estimation
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