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Cours 7

Échantillonnage

Méthodes d’estimation ponctuelle

∎ méthode de maximum de vraisemblance (EMV)

Propriétés de l’EMV

Information (statistique / de Fisher)

Intervalles de confiance (asymptotiques)
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Probabilité par rapport à statistique

Pour une valeur connue de p, on peut calculer la probabilité
d’une issue possible

Ce qui est la probabilité

Dans de nombreuses situations pratiques, cependant, nous ne
savons pas p, mais plutôt, nous disposons de données qui sera
utilisée pour l’estimation de p

Ce qui est la statistique
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Échantillonage

Le but d’une étude statistique est d’obtenir des connaissances
sur l’ensemble de la population, c.-à-d. l’estimation d’un
paramètre

Puisque un dénombrement complet de la population est très
souvent pratiquement impossible, il faut d’autres moyens plus
pratique

⇒ Un échantillonnage consiste à choisir parmi les éléments
de la population un certain nombre d’unités pour lesquelles
nous obtiendrons des observations (données)

Nos données sont considérées comme la suite d’un processus
aléatoire : si la collecte de données ont été répétées, le
résultat serait probablement différent, qui peuvent influer sur
les conclusions tirées sur la base de données

C.-à-d., nos conclusions sont sujettes à la variation aléatoire
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Utilité d’échantillonnage

Un jardinier possède deux millions de graines pratiquement
identiques, qui donnent soit des fleurs blanches, soit des fleurs
rouges

Il désire connâıtre en avance le pourcentage des fleurs blanches
(afin d’être en mesure de les vendre sans tromper ses clients)

S’il veut être absolument certain du type de fleurs produit, il
sera obligé de semer toutes les graines

Donc, il n’aura plus des graines à vendre ! !

⇒ Il faut un échantillon

(Même si le processus n’est pas déstructif, il est le plus
souvent impossible ou irréalisable (le temps, les coûts) de
mesurer chaque individu de la population)
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Représentativité

Sur la base de ses observations, le jardinier fera une
estimation du nombre de fleurs blanches/rouges parmi les
deux millions de graines

⇒ On généralise à l’ensemble de la population les
connaissances acquises sur la base de quelques observations

On ne peut pas être absolument certain de notre prédiction,
puisque l’on ne considère qu’une fraction seulement de la
population totale : ⇒ Imprécision due à l’échantillonnage

Généralement il y aura un écart entre les observations faites
sur l’échantillon et celles effectuées sur la totalité de la
population

Mais : si l’échantillon est choisi de façon scientifique, il est
possible de faire une évaluation probabiliste

⇒ Possible d’évaluer l’erreur, et déterminer la précision de
l’estimation
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Méthodes d’échantillonnage
Échantillonnage arbitraire

Impossible de quantifier les probabilités associées, donc
difficile d’estimer les paramètres et l’écart-type d’estimation
(erreur standard d’estimation (ES))

p. ex. les dix premiers à entrer dans la salle

⇒ PAS recommandé ! !

Échantillonnage aléatoire

Correspond à des méthodes de tirage où chaque unité de la
population a une probabilité positive et connue d’être
sélectionnée

Ces méthodes permettent d’estimer les paramètres de la
population, et aussi d’obtenir une mesure de l’ES

Pour nous, les méthodes le plus important correspond à soit
AVEC remise (indépendant), soit SANS remise
(échantillonnage aléatoire simple (EAS))
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Estimation (ponctuelle)

La procédure d’utilisation des informations obtenues à partir
de l’échantillon qui permet de déduire des résultats concernant
l’ensemble de la population est appelée estimation

La valeur inconnue d’une population (à estimer à partir d’un
échantillon) est appelée un paramètre

p. ex. : la moyenne (µ) ; la proportion (le pourcentage) (p)

Le paramètre de la population est estimé à partir d’une
statistique calculée sur la base d’un échantillon
⇒ une statistique est une fonction des données obtenues

Un estimateur est une statistique utilisée afin d’estimer
(deviner la valeur d’) un paramètre θ ; c.-à-d. il est une règle
qui nous permet de calculer une approximation de θ basée sur
les valeurs de l’échantillon X1, . . . ,Xn

Une estimation est une valeur observée (calculée) de
l’estimateur sur un échantillon
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Qualité d’un estimateur

Pour répondre à la question : ‘comment choisir entre des
estimateurs candidats’, on doit examiner ce qui fait un ‘bon’
estimateur

On considère donc des qualités (statistiques) des estimateurs

Certaines qualités importantes :

∎ biais
∎ variance
∎ erreur quadratique moyenne (EQM)
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Biais
Le biais d’un estimateur T d’un paramètre θ est définit par :

b(T ) = E [T ] − θ,

(c.-à-d. la différence entre l’espérance de la distribution
d’échantillonnage de l’estimateur T et la vraie valeur du
paramètre θ)

Un estimateur est sans biais (ou non biaisé) si le biais égale
à 0�� ��Exemple 7.1 Quel est le biais de X en tant qu’estimateur de la

moyenne de la population µ ...
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Variance

Une autre qualité on peut considérer est le variance de
l’estimateur :

Var(T ) = E [(T − E [T ])2]

Parmi deux estimateurs sans biais de θ, l’un sera plus efficace
que l’autre si sa variance est plus petite�� ��Exemple 7.2 Considérons maintenant la variance des

estimateurs candidats de la moyenne de la population µ ...
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Biais et variance d’un estimateur T
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Erreur Quadratique Moyenne (EQM)

Une autre qualité que nous pouvons considérer est le erreur
quadratique moyenne (EQM) d’un estimateur

EQM(T ) = E [(T − θ)2]

Ceci est différent de la variance lorsque l’estimateur T est
biaisé

Parfois, nous pourrions utiliser un estimateur qui a un peu de
biais s’il a une variance beaucoup plus petite que la meilleure
estimateur sans biais (compromis biais-variance)

Il est simple à démontrer que l’EQM peut être exprimée
comme une combinaison de biais et la variance :

EQM(T ) = Var(T ) + [b(T )2]
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Méthodes d’estimation ponctuelle

Méthode de maximum de vraisemblance (qui donne souvent
des estimateurs ‘intuitifs’)

Méthode des moments – on va l’illustrer
(VIDÉO SEULEUMENT), mais
⇒ cela ne fait PAS partie de l’examen

Méthode des moindres carrés (plus tard, avec ‘régression’)

Méthode du minimum des déviations absolues

Estimation bayesian
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Vraisemblance

Pour une valeur p connue, on peut exprimer la probabilité de
n’importe quelles données possibles

En revanche, on peut considérer les observations comme
connues et considérer la probabilité en fonction du paramètre
inconnu p

La fonction de probabilité vue de cette façon est appelée la
vraisemblance
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Vraisemblance illustrée

20 lancements d’une pièce ; on observe ? ? piles

Binomial( 20 , 0.1 )
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Binomial( 20 , 0.5 )

x

pr
ob

ab
ili

ty

0.00

0.05

0.10

0.15

0 5 10 15 20

De ces deux distributions, de laquelle est-il le plus vraisemblable
que l’échantillon soit issu ?
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Définition de la vraisemblance

Définition : Soit x ∼ f (x ; θ). La vraisemblance et log
vraisemblance sont :

L(θ) = f (x ; θ), ℓ(θ) = logL(θ),

considérés comme des fonctions du paramètre θ.

Soient x = (x1, . . . , xn) une réalisation des VAs X1, . . . ,Xn.
Alors

L(θ) = f (x ; θ) =
n

∏
j=1

f (xj ; θ), ℓ(θ) =
n

∑
j=1

log f (xj ; θ),

où f (xj ; θ) est la loi de xj .

À NOTER : log = log base e = log naturel
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Estimation par maximum de vraisemblance
Une méthode d’estimation intuitive est l’estimation par
maximum de vraisemblance

Par exemple, l’estimateur le plus ‘évident’ p est p̂ = X /n se
révèle être l’estimateur du maximum de vraisemblance
(EMV / MLE)

En général, l’EMV est la valeur qui rend la probabilité aussi
grande que possible – c’est la valeur qui rend les données
observées le plus probable

La manière habituelle de trouver l’EMV : le calcul – trouver la
dérivée de la fonction de (log) vraisemblance, annuler et
résoudre :

d logL(θ̂)
dθ

= 0, d2 logL(θ̂)
dθ2

< 0

(Cette méthode ne fonctionne pas dans tous les cas)

Nous supposons que la première équation a une solution
unique (ce n’est pas toujours vrai dans la réalité)
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EMV, cont

L’EMV θ̂ remplit la condition

L(θ̂) ≥ L(θ) pour toute θ,

ce qui équivaut à logL(θ̂) ≥ logL(θ), car les valeurs maximales
de L(θ) et logL(θ) sont obtenues à la même valeur θ

L’EMV peut :

∎ exister et être unique,
∎ ne pas être unique, ou
∎ ne pas exister

Dans la pratique, il est normalement nécessaire d’utiliser des
algorithmes numériques pour obtenir θ̂ et d2 logL(θ̂)/dθ2
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Avantages/désavantages de la méthode

Pour un échantillon ‘suffisamment grand’, l’EMV est :

∎ non-biaisé
∎ consistent
∎ efficace (EQM minimal ; donc au moins puissant que

l’estimateur EMM)
∎ normalement distribué
∎ donc, pratique pour l’inférence statistique

En revanche, l’EMV :

∎ pourrait être très biaisé si la taille de l’échantillon est
petite

∎ pourrait être très compliqué d’évaluer (il faut le faire
numériquement)
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PAUSE
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Exemple�� ��Exemple 7.3 Soit X ∼ Bin(n,p). Trouver l’EMV de p ...
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Exemple�� ��Exemple 7.4 Soient X1, . . . ,Xn ∼ iid Pois(λ), λ > 0. Calculer :

1 L(λ)

2 logL(λ)

3 λ̂EMV (+ vérifier que l’extremum est un maximum)
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Solution

1 L(λ) =
n

∏
i=1

e−λ
λyi

yi !
∝ e−nλλ∑ yi (= e−nλλnȳ)

2 ℓ(λ) = nȳ logλ − nλ

3 λ̂EMV ∶
dℓ(λ)
dλ

= nȳ

λ
− n = 0 Ô⇒ ȳ

λ
= 1 => λ̂EMV = ȳ

Vérifier max :

d2ℓ(λ)
dλ2

= dℓ(λ)
dλ

[nȳ
λ
− n] = −nȳ

λ2
< 0,

car nȳ > 0, λ > 0, donc nȳ

λ2
> 0 Ô⇒ −nȳ

λ2
< 0,

alors l’extremum (λ̂EMV ) est un maximum
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Exemple

PAS important pour nous ! !
�� ��Example 7.5 Soient Y1, . . . ,Yn ∼ N(µ,σ2). Trouver les EMV

de µ et σ2.

Solution : La densité normale est donnée par

1√
2πσ2

exp{− 1

2σ2
(y − µ)2} ,

donc le log vraisemblence pour un échantillon aléatoire (iid)
y1, . . . , yn est

ℓ(µ,σ) = logL(µ,σ) = −n
2
logσ2 − 1

2σ2

n

∑
i=1
(yi − µ)2.
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Solution, cont

En dérivant, on a
∂ℓ(µ,σ2)

∂µ
= 1

σ2∑(yi − µ) = 0 (∗)

et
∂ℓ(µ,σ2)

∂σ2
= − n

2σ2
+ 1

2σ4∑(yi − µ)
2 = 0 (∗∗)

En résolvant (*), on a (pour toute valeur σ2) :

∑(yi − µ) = 0 => ∑ yi = nµ => µ̂ = ∑ yi/n = y

En résolvant (**) (en utilisant µ̂ au lieu de µ), on a :

−nσ2+∑(yi−µ̂)2 = 0 => ∑(yi−µ̂)2 = nσ2 => σ̂2 = 1

n
∑(yi−µ̂)2

À NOTER : cet estimateur est diffŕent de l’estimateur non biaisé

s2 = 1

n − 1∑(yi − µ̂)
2
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Solution, cont
Il faut vérifier que le log vraisemblance est un maximum (non min)
pour la paire des valeurs (µ̂, σ̂2) : test de derivée seconde :

∂2 logL(µ̂, σ̂2)
∂µ2

⋅ ∂
2 logL(µ̂, σ̂2)
∂(σ2)2 − (∂

2 logL(µ̂, σ̂2)
∂µ∂(σ2) )

2

> 0

ET
∂2 logL(µ̂, σ̂2)

∂µ2
< 0 ;

∂2 logL(µ̂, σ̂2)
∂(σ2)2 < 0

∂2 logL(µ̂, σ̂2)
∂µ∂(σ2) = −1

σ4

n

∑
i=1

(yi − µ̂) = 0 ;
∂2 logL(µ̂, σ̂2)

∂µ2
= −n
σ̂2
< 0

∂2 logL(µ̂, σ̂2)
∂(σ2)2 = n

2σ̂4
− 1

σ̂6

n

∑
i=1

(yi − µ̂)2 =
n3

2∑n
i=1(yi − µ̂)2

− n3

∑n
i=1(yi − µ̂)2

= −n
3

2
< 0
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Exemple uniforme – le calcul ne marche pas ! !�� ��Example 7.6 Soient y1, . . . , yn un échantillon aléatoire tirée de

la distribution uniforme (0, θ], dont la densité est f (y) = 1/θ,
0 < y ≤ θ (= 0 sinon). Trouver l’EMV θ̂ de θ ...
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Information (statistique)

L’information observée J(θ) et l’information espérée
(aussi appelée Fisher information) I (θ) sont :

∎ J(θ) = −d
2ℓ(θ)
dθ2

∎ I (θ) = E{J(θ)} = E {−d
2ℓ(θ)
dθ2

}

Elles sont des mesures de la courbature de −ℓ(θ) :

plus les valeurs de J(θ) et I (θ) sont grandes, plus ℓ(θ) et
L(θ) sont concentratés
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Exemple : distributions normales
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Y
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Propriétés de l’EMV

Convergent : limn→∞ P(∣ θ̂n − θ ∣< ϵ) = 1,∀ϵ > 0

Invariance : si θ̂ est l’EMV pour le paramètre θ, alors h(θ̂)
est l’EMV pour le paramètre h(θ)

Asymptotiquement sans biais : b(θ) → 0 lorsque n →∞
(pour les échantillons ‘petits’ l’EMV pourrait être biaisé)

Efficacité asymptotique optimale : aucun estimateur
asymptotiquement sans biais peut avoir une variance plus
petite que celle de l’EMV

Normalité asymptotique : la distribution de θ̂n lorsque
n →∞ est la distribution normale ; cela nous donne une base
pour la statistique inferentielle à partir de l’EMV (p. ex. IC)

IC approximatif (niveau 1−α) pour θ : θ̂ ± z1−α/2 /
√

J(θ̂)
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Conditions de régularité (NON-EXAMINÉES)

Les conditions techniques (pas très intéressantes ! !) dont la
démonstration de normalité asymptotique dépend :

La vraie valeur θ0 de θ est un point interieur de
l’espace du paramètre Θ, qui a dimension finie et qui est
compact (sans ‘trous’ / contient les points limites)

Pour deux valeurs de θ différentes, les densités sont distinctes
(identifiabilité condition)

Il existe une boule autour de θ0 dans laquelle les 3 dérivées de
ℓ existent presque sûrement (c.-à-d. la probabilité = 1), et
dont l’espérance de la 3ème dérivée est bornée uniformement
pour θ dans la boule

Il est valable de changer l’ordre de dérivation et integration
(on peut dériver sous l’intégrale)
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Exemple�� ��Exemple 7.7 Soient X1, . . . ,Xn ∼ iid Bernoulli(p). Calculer :
1 L(p)

2 ℓ(p)

3 p̂EMV

4 J(p)

5 I (p)
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Exemple 7.7, cont.

6 un IC approximatif de 95% pour p pour les données avec :

n = 10 (nombre de piles = 9)

n = 20 (nombre de piles = 16)

n = 100 (nombre de piles = 67)
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Exemple�� ��Exemple 7.8 Soient X1, . . . ,Xn ∼ iid Pois(λ), λ > 0. Calculer :

1 λ̂EMV en supposant ∑Xi > 0

2 λ̂EMV en supposant ∑Xi = 0

3 l’EMV de P(X = 0)

4 J(λ)

5 I (λ)

6 un IC approximatif de 95% pour λ ...
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Avertissement

L’estimation par la méthode de maximum de vraisemblance
est séduisante :

∎ conceptuellement simple
∎ interprétation intuitive

Cependant, quelques difficultés ;
conditions de régularité sur la fonction de vraisemblance qu’on
ne peut pas ignorer :

∎ difficiles à établir
∎ difficiles à interpréter
∎ difficiles à vérifier pour les cas réels

Donc, même si très souvent utile, l’EMV n’est pas une
panacée qui rendrait caduques les autres méthodes
d’estimation

35 / 35


