
GC – Probabilités et Statistique

http://moodle.epfl.ch/course/view.php?id=18431

Cours 10

Données multivariées

Régression multiple

Logiciel R / interprétion des sorties R

Géometrie de régression

Introduction : 1-way ANOVA (anova à une voie)
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Données multivariées

Individus X1 X2 . . . Xj . . . Xp

i1 x11 x12 . . . x1j . . . x1p
i2 x21 x22 . . . x2j . . . x2p
. . .
ii xi1 xi2 . . . xij . . . xip
. . .
in xn1 xn2 . . . xnj . . . xnp

vecteur des moyennes : (x1, . . . , xp)
matrice des variances-covariances (ou matrice de dispersion) :

⎛
⎜
⎜
⎜
⎝

s21 s1,2 ⋯ s1,p
s2,1 s22 ⋯ s2,p
⋯ s2i si ,j ⋯

sp,1 sp,2 ⋯ s2p

⎞
⎟
⎟
⎟
⎠
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Exemple

Un échantillon de cerisiers a été coupé et les mesures prises
pour

∎ Diameter (inches)
∎ Height (feet)
∎ Volume (cubic feet)

Le but de la collecte de ces données était de fournir un moyen
de prédire le volume de bois dans les arbres, sachant la
hauteur et le diamètre

Utilise un modèle de régression
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Analyse exploratoire des données multivariées
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Régression multiple

On peut avoir plusieurs variables explicatives x :

y = β0 + β1 x1 + β2 x2 +⋯ + βp xp + ϵ

Même suppositions dans le cas régression simple :
ϵ ∼ iid N(0, σ2)

Résumé suppositions :

∎ Linear model (in the parameters)
[modèle Linéaire (dans les paramètres)]

∎ Independent errors / observations
[Indépendance des erreurs / observations]

∎ Normal errors / observations
[erreurs / observations Normales]

∎ Equal error variances
[Egalité des variances des erreurs]
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Algèbre matricielle pout la régression (simple)

Le modèle :

⎛
⎜
⎜
⎜
⎝

y1
y2
⋮

yn

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

1 x1
1 x2
⋮ ⋮

1 xn

⎞
⎟
⎟
⎟
⎠

(
β0
β1
) +

⎛
⎜
⎜
⎜
⎝

ϵ1
ϵ2
⋮

ϵn

⎞
⎟
⎟
⎟
⎠
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Moindres carrés (ordinaires) pour la régression multiple
y = Xβ + ϵ

Trouver une solution β̂ qui minimise la somme des carrés des
résidus (solution de moindres carrés ordinaires (MCO)) :

min
n

∑
i=1

e2i Ô⇒
∂ (∑n

i=1 e
2
i )

∂β̂j
= 0, j = 0, ...,p

Ô⇒
n

∑
i=1

xij(yi − β̂0 − β̂1xi1 −⋯ − β̂pxip) = 0, j = 0, ...,p

X ′(y −X β̂) = 0 Ô⇒ X ′X β̂ = X ′y

Ô⇒ β̂ = (X ′X)−1X ′y ,

où X est la matrice d’expérience (design matrix) et X ′ est la
transposée de X
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Logiciel : R

Pourquoi R ?

Puissant, flexible, extensible langue et environnement pour le
calcul statistique

Large gamme de fonctions statistiques intégrées et ‘packages’
disponibles

De haute qualité, des capacités graphiques excellentes

Disponible pour les systèmes Unix / Linux, Windows, Mac

Tout cela et ... R est gratuit !

http://cran.r-project.org/
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L’estimation de régression

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 
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L’estimation de régression

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

y                x1 x2
Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877 8.6382  -6.713 2.75e-07 ***

Diameter 4.7082 0.2643  17.816  < 2e-16 ***

Height 0.3393 0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

équation

β̂2

Volume = -57.99 + 4.71 x Diameter + 0.34 x Height

β̂1

β̂0
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*** Interprétation des coefficients ***
Les coefficients de régression correspondent aux changements
anticipés dans la réponse lorsqu’un changement d’une unité
survient dans une variable explicative/prédictrice

Pour la régression simple :

∎ la pente est le changement espéré de la variable réponse
si la variable explicative (x) est augmentée de 1 unité

∎ l’ordonnée à l’origine est la valeur prédite de la réponse
(y) lorsque x = 0

Une distinction très importante – lorsque l’équation comporte
plusieurs variables prédictrices :

∎ chaque coefficient β1, . . . , βp correspond à la
contribution d’une variable lorsque toutes les autres
variables présentes dans l’équation sont contrôlées
ou tenues constantes

∎ le coefficient β0 est la valeur prédite de la réponse (y)
lorsque toutes les variables x1, . . . , xp = 0
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Propriétés de l’estimateur MCO
Dans le cas

1 E(ϵi) = 0, i = 1, . . . ,n ;

2 Var(ϵi) = σ
2 (constante) ;

3 Cov(ϵi , ϵj) = Cor(ϵi , ϵj) = 0, i ≠ j

on a :

Espérance : E(β̂) = β

Variance : Var(β̂) = σ2 (X ′X)−1

((X ′X) symétrique)

0ptimalité :

∎ Le théorème Gauss-Markov nous dit que parmi toute
estimation linéaire non biaisée, l’estimateur MCO
possède la variance minimale

∎ On peut le résumé en disant : l’estimateur MCO est
le ≪ BLUE ≫ (Best Linear Unbiaised Estimator)
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Test/intervalle de confiance pour les coefficients

En supposant en plus ϵ1, . . . , ϵn ∼ iid N(0, σ2), on a

β̂ ∼MVN (β, σ2
(X ′X)−1)

Donc, Var(β̂i) = σ
2 [(X ′X)−1]

i+1, i+1
L’IC avec indice de confiance 1 − α pour βi prend la forme

β̂i ± σ̂
√
[(X ′X)−1]i+1, i+1 tn−p−1,1−α/2

Pour tester H : βi = 0 contre A : βi ≠ 0

tobs =
β̂i

σ̂
√
[(X ′X)−1]i+1, i+1

On REJETTE H si : ∣tobs ∣ > tn−p−1,1−α/2
(également si l’IC ne contient pas la valeur 0)
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L’estimation de régression

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816 < 2e-16 ***

Height        0.3393     0.1302   2.607 0.0145 * 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

t p-valeur

niveau de 

signification α
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Théorème de Pythagore
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Géometrie de moindres carrés
On considère y comme un vecteur dans l’espace n-dim

Les vecteurs des colonnes de X forment un sous-espace (de
l’estimation ou du modèle) p-dim

∎ Variation des valeurs estimées des coefficients de
régression localise des points différents du sous-espace

Les valeurs prédites ŷ = X β̂ représentent le point du
sous-espace le plus proche des observations : MCO est la
projection orthogonale de y sur le sous-espace de X
Le résidu e = y − ŷ est orthogonal aux vecteurs du sous-espace

SCE = ∑ e2i = e ′e est le carré de la distance du vecteur des
obs. au point le plus proche dans le sous-espace

Partition de y en deux composantes orthogonales :

∎ ŷ (sous-space du modèle, p dims)
∎ ŷ − y (sous-espace de l’erreur, n − p dims)

(degrés de liberté correspondent aux dims des sous-espaces)
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Géométrie de MC
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Tableau de l’analyse de variance (ANOVA)

Il s’agit d’une partition de la somme des carrés totaux (SCT)

Théorème de Pythagore :

n

∑
i=1

y2i =
n

∑
i=1

ŷ2i +
n

∑
i=1
(yi − ŷi)

2

également :

n

∑
i=1
(yi − y)

2
=

n

∑
i=1
(ŷi − y)

2
+

n

∑
i=1
(yi − ŷi)

2

Cette égalité présentée dans un tableau :

Tableau d’ANOVA
source df SC (SS) CM (MS) (=SC/df) F p-valeur

régression p SCM = ∑
n
i=1(ŷi − y)2 SCM/p CMM/CME P(Fobs > Fp,n−p−1)

erreur n − p − 1 SCE = ∑
n
i=1(yi − ŷi )

2 SCE/(n − p − 1)(= σ̂2
)

total (corr.) n − 1 SCT = ∑
n
i=1(yi − y)2

18 / 40



PAUSE
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F -test - régression

La statistique Fobs = CM(source)/CME teste l’hypothèse
H0 ∶ β1 = . . . = βp = 0 vs. A ∶ au moins 1 βi ≠ 0

La distribution de Fobs si H est vraie est la distribution
Fp,n−p−1 de Fisher

Au numérateur de la statistique Fobs se trouve la variance
expliquée par le modèle de régression

Au dénominateur se trouve la variance résiduelle

On REJETTE l’hypothèse nulle H pour grandes valeurs de F

Lorsqu’on teste une seule pente (H ∶ βi = 0), F1,n = t
2
n
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L’estimation de régression

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16

p-valeurFp,n-p-1
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Coefficient de détermination

La valeur yi d’une observation peut être décomposée en deux
parties : une partie expliquée par le modèle et une partie
résiduelle

La dispersion de l’ensemble des observations se décompose
donc en :

1 variance expliquée par la régression, et
2 variance résiduelle, inexpliquée

Le coefficient de détermination (ou corrélation multiple) R2 se
définit alors comme la part de variance expliquée par rapport à
la variance totale

Également, R2 = 1 − SCE/SCT

Dans le cadre d’une régression linéaire simple, c’est le carré du
coefficient de corrélation
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Coefficient de détermination ajusté

Le coefficient de détermination ajusté R2
aj tient compte du

nombre de variables

En effet, le défaut principal du R2 est de crôıtre avec le
nombre de variables explicatives

Un excès de variables produit des modèles peu robustes

Donc on s’intéresse davantage à cet indicateur (R2
aj) qu’au R2

Ce n’est pas vraiment un ‘carré’ – il peut même être négatif

R2
aj = 1 −

SCE/(n − p − 1)

SCT /(n − 1)
= 1 − (1 − R2

)
n − 1

n − p − 1
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L’estimation de régression

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

R2 R2-ajusté
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R2 ou R2-ajusté ?
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Tester un sous-modèle
Modèle complet (Ω) : y = β0 + β1 + . . . + βp

Sous-modèle (ω) : y = β0 + β1 + . . . + βq, q < p

H ∶ βq+1 = ⋯ = βp = 0 vs. A ∶ au moins 1 βi ≠ 0, q + 1 ≤ i ≤ p

Tableau d’ANOVA
source df SC (SS) CM (MS) (=SC/df)

ω q SCM(ω) SCM/q
termes suppl. p − q SCE(ω) − SCE(Ω) (SCE(ω) − SCE(Ω))/(p − q)

erreur n − p − 1 SCE(Ω) SCE(Ω)/(n − p − 1)

total (corr.) n − 1 SCT

La statistique F pour tester la signification des termes
supplémentaires dans Ω est :

Fobs =
(SCE(ω) − SCE(Ω))/(p − q)

SCE(Ω)/(n − p − 1)
∼ Fp−q,n−p−1 sous H

Donc on REJETTE H lorsque Fobs > Fp−q,n−p−1(1 − α)
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Exemple 10.1

Pour un échantillon aléatoire de communes, on a les données
suivants :

Y = pourcentage des adultes qui votent

X1 = pourcentage des adultes proprietaires

X2 = pourcentage des adultes personnes de couleur

X3 = revenu médiane de la famille (milliers CHF)

X4 = âge médiane

X5 = pourcentage des adultes résident au moins 10 années
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Exemple 10.1, cont.

(a) Remplir les sorties :
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Exemple 10.1, cont.

(b) Écrire l’équation de prédiction et interpréter le coefficient pour
≪ % résidents adultes propriétaires de maisons ≫.

(c) Semble-t-il nécessaire d’inclure toute ces variables
explicatrices dans le modèle ? Expliquer.

(d) La valeur F est utilisée pour quel test ? Interpreter le résultat
de ce test.

(e) La valeur t de la variable X1 est utilisée pour quel test ?
Interpreter le résultat de ce test.

(f) Donner un IC à 95% pour le changement de la moyenne d’Y
quand le pourcentage de proprietaires augmente par 1, en
contrôlant pour les effets des autres variables ; l’interpreter.

(g) Donner un IC à 95% pour le changement de la moyenne d’Y
quand le pourcentage de proprietaires augmente par 50, en
contrôlant pour les effets des autres variables ; l’interpreter.
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ANOVA
Abréviation de ANalysis Of VAriance (analyse de variance)
Mais c’est un test de différences des moyennes
L’idée :
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Principe du test

L’analyse de variance à un facteur teste l’effet d’un facteur A
ayant k modalités sur les moyennes d’une variable quantitative
X

Les hypothèses testées sont les suivantes :

H ∶ µ1 = µ2 = ⋯ = µk = µ contre A ∶ ∃µi ≠ µj

Tester si le rapport de ces 2 estimateurs de variance est
proche de 1

Les estimations des variances associées [carré moyen] sont :

∎ Variance totale : SCEtotale/(n − 1)
∎ Variance due au facteur A (CMtrts) : SCEtrts/(k − 1)
Ô⇒ estimateur de σ2 si H est vraie

∎ Variance résiduelle (CMerreur ) : SCEerreur /(n − k)
Ô⇒ estimateur de σ2 quelque soit le modèle
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Les modèles

ϵij ∼ iid N(0, σ2)

Sous H, le modèle est :

xij = µ + ϵij

Sous A, le modèle est :

xij = µ + αi + ϵij ,

où αi est l’effet de la modalité i du facteur A sur la variable X

Pour chaque modèle, on peut produire un estimateur de la
variance résiduelle
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Paires de tests : pourquoi pas ?

Pourquoi ne pas commencer en faisant des tests (z ou t) pour
chaque paire d’échantillons ?

Pour m comparaisons (indépendantes), la probabilité de
rejeter au moins un H peut s’écrire : αm = 1 − (1 − α)

m ; pour
α = 0.05 :

3 tests Ô⇒ l’erreur de type I = 0.14

5 tests Ô⇒ l’erreur de type I = 0.23

10 tests Ô⇒ l’erreur de type I = 0.4

21 tests Ô⇒ l’erreur de type I = 0.66
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Statistique de test
Sous H, SCEtrts/(k − 1) et SCEerreur /(n − k)
⇒ estimateurs du même paramètre σ2

Donc (sous H), le rapport
SCEtrts/(k − 1)

SCEerreur /(n − k)
≈ 1

Sous A, au moins 1 αi ≠ 0 et SCEerreur /(n − k) est un unique
estimateur de σ2 ; SCEtrts/(k − 1) >> SCEerreur /(n − k)

Donc (sous A), le rapport
SCEtrts/(k − 1)

SCEerreur /(n − k)
très supérieur à 1

⇒ Test unilatéral dans tous les cas

Fobs =
SCEtrts/(k − 1)

SCEerreur /(n − k)
= CMtrts/CMerreur

Statistique de test distribuée selon une loi de Fisher à k − 1
(numérateur) et n − k (dénominateur) degrés de liberté (df =
degrees of freedom)
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Tableau d’ANOVA

Tableau d’ANOVA
source df SC (SS) CM (MS) (=SC/df) F p-valeur

traitements k − 1 SCEtrts SCEtrts /(k − 1) CMtrts /CMerreur P(Fobs > Fk−1,n−k)

erreur n − k SCEerreur SCEerreur /(n − k)(= σ̂2
)

total (corr.) n − 1 SCEtotale

Sortie d’ordinateur – ANOVA

> redcell.aov<-aov(Folate~Group)

> summary(redcell.aov)

Df Sum Sq Mean Sq F value  Pr(>F)  

Group        2  15516    7758  3.7113 0.04359 *

Residuals   19  39716    2090                  

---

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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*** Suppositions ***

Indépendance : Les k échantillons comparés sont
indépendants ; l’ensemble des n individus est réparti au hasard
(randomisation) entre les k modalités du facteur contrôlé A,
ni individus recevant le traitement i .

Homoscédasticité : Les k populations comparées ont la même
variance ; le facteur A agit seulement sur la moyenne de la
variable X et ne change pas sa variance

Normalité : La variable quantitative étudiée suit une loi
normale dans les k populations comparées (ou TCL s’applique
pour les ni ‘suffisament grands’)

(voir diapos / vidéo pour l’évaluation du modèle, qui
NE SERA PAS EXAMINÉE)
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Exemple 10.2

Les mélanges de mortier sont généralement classés en fonction
de leur résistance à la compression, de leurs propriétés
d’adhérence et de leur flexibilité.

Dans le cadre d’un projet de construction, des ingénieurs ont
souhaité comparer spécifiquement les résistances moyennes de
quatre types de mortiers :

1 Mortier de ciment ordinaire (MCO)

2 Mortier imprégné de polymères (MIP)

3 Mortier de résine (MR)

4 Mortier de ciment polymère (MCP)

Des échantillons aléatoires de chaque type de mortier ont été
prélevés. Chaque échantillon a été soumis à un essai de
compression pour mesurer sa résistance (MPa).

37 / 40



Exemple 10.2, cont.

Une première question que les ingénieurs peuvent se poser est
la suivante : ≪ Les résistances moyennes des mortiers (dans les
‘populations’ des mortiers) sont-elles égales pour les quatre
types de mortiers ? Ou sont-elles différentes ? ≫

On prend un échantillon de taille n = 36, réparti comme la
suite : 8 échantillons du groupe MCO ; 10 échantillons du
groupe MIP ; 10 échantillons du groupe MR ; 8 échantillons du
groupe MCP.

Tableau d’ANOVA
source df SC CM F p-valeur

506.96 9.576e-07
erreur
total (corr.) 2483.74

Quelles sont vos conclusions ?
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Qu’est-ce que cela veut dire quand on rejette H ?

L’hypothèse nulle H est conjointe : que toutes les moyennes
des populations sont égales

Lorsqu’on rejette l’hypothèse nulle, cela ne signifie pas que les
moyennes sont toutes différentes ! !

Cela signifie qu’au moins une est différente

Pour en savoir qui est différente, on peut faire des tests
‘post-hoc’/a posteriori (paires de t-tests, par exemple)

39 / 40



ANOVA : après le test

Une fois que toutes les conditions d’une ANOVA ont été
vérifiée et que l’analyse a été effectuée, deux conclusions sont
possibles :

∎ on rejette H
∎ on n’a pas assez de preuves pour rejeter H

Si on ne rejette pas H, on conclut qu’il n’y a pas de
différences significatives entre les groupes

Si on rejette H, on veut identifier les modalités/niveaux du
facteur qui sont responsables du résultat significatif (la
semaine prochaine)
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