

Please note : the **reasoning/justifications** for the steps in your solution are also important (not only the final result).

In class

Exercise 1 (a) $\frac{X-b}{a-b} = 1$ with probability p or 0 with probability $1-p$, thus X is a Bernoulli(p) random variable.

$$\begin{aligned}
 \text{(b) The variance of a Bernoulli}(p) \text{ RV} &= p(1-p) = \text{Var} \left(\frac{X-b}{a-b} \right) && [\text{substitution}] \\
 &= \frac{1}{(a-b)^2} \text{Var}(X-b) && [\text{Var}(cY) = c^2 \text{Var}(Y)] \\
 &= \frac{1}{(a-b)^2} \text{Var}(X) && [\text{Var}(Y+c) = \text{Var}(Y)] \\
 \implies \text{thus } \text{Var}(X) &= (a-b)^2 p(1-p).
 \end{aligned}$$

Exercise 2 1. Let \underline{X} the number of typographical errors on the page

2. $\underline{X} \sim \text{Pois}(\lambda = 0.2)$ [expected value of number of errors = 0.2 according to the problem]

$$3, 4. P(\underline{X} = 0) = \boxed{e^{-0.2}} \quad (\approx 0.82) \quad [\text{Poisson pmf, substitution}]$$

Exercise 3 Let \underline{E} the even that the remedy has an effect ; $P(\underline{E}) = 0.75$, $P(\underline{E}^c) = 0.25$.

1. Let \underline{X} the number of colds

2. $\underline{X} \sim \text{Pois}(\lambda)$, where λ depends on the efficacy of the remedy : if it is effective, $\lambda = 3$; otherwise, $\lambda = 5$

3. Probability that the remedy has an effect : $P(\underline{E} \mid X = 2)$

$$4. \text{ It follows from Bayes' rule that } P(\underline{E} \mid X = 2) = \frac{P(X = 2 \mid \underline{E})P(\underline{E})}{P(X = 2 \mid \underline{E})P(\underline{E}) + P(X = 2 \mid \underline{E}^c)P(\underline{E}^c)}$$

$$P(X = 2 \mid \underline{E}) = P(X = 2 \mid \lambda = 3) = e^{-3} 3^2 / 2! \approx 0.2240 \quad [\text{Poisson pmf}]$$

$$P(X = 2 \mid \underline{E}^c) = P(X = 2 \mid \lambda = 5) = e^{-5} 5^2 / 2! \approx 0.0842 \quad [\text{Poisson pmf}]$$

$$\Rightarrow P(\underline{E} \mid X = 2) = \frac{0.2240 \times 0.75}{0.2240 \times 0.75 + 0.0842 \times 0.25} \approx \underline{0.89} \quad [\text{Bayes' rule, subst.}]$$

At home

Exercise 1 $E[X] = np = 6$; $\text{Var}(X) = np(1-p) = 2.4$.

Then $6(1-p) = 2.4 \implies (1-p) = 0.4$, thus $p = 0.6$; $np = 6 \implies 0.6n = 6 \implies n = 10$.

$$\text{Then, } \boxed{P(X = 5) = \binom{10}{5} (0.6)^5 (0.4)^5}.$$

Exercise 2 Steps 1 and 2 are the same as in Exercise 2 above ;

$$3, 4. P(\underline{X} \geq 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) = 1 - e^{-0.2} - 0.2e^{-0.2}$$

$$= \boxed{1 - 1.2e^{-0.2}} \quad (\approx 0.018) \quad [\text{Poisson pmf, substitution}]$$