
Définition
Exemple : lancer de deux dés. On s’intéresse à la somme obtenue plutôt qu’au fait de
savoir si c’est le couple {1, 6}, {2, 5}, {3, 4}, {5, 2} ou plutôt {6, 1} qui est apparu.

Après avoir effectué une expérience aléatoire, on s’intéresse davantage à une fonction
du résultat qu’au résultat lui-même—c’est une variable aléatoire.

Définition: Soit Ω un ensemble fondamental. Une variable aléatoire définie sur Ω est
une fonction de Ω dans R (ou dans un sous-ensemble H ⊆ R) :

X : Ω −→ R

ω −→ X(ω),

où ω est un événement élémentaire.

L’ensemble H des valeurs prises par la variable aléatoire X peut être discret ou continu.
Par exemple :

• Nombre de piles obtenus en n lancers d’une pièce : H = {0, 1, . . . , n}.
• Nombre d’appels téléphoniques pendant une journée : H = {0, 1, . . .}.
• Temps d’attente au M1 : H = [0, Tmax].
• Quantité de pluie demain : H = R+.
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Variables aléatoires discrètes

Définition: Une variable aléatoire X est dite discrète si elle prend un nombre fini
ou dénombrable de valeurs. Dénotons xi , i = 1, 2, . . . , les valeurs possibles de X .
Alors la fonction

fX (xi) = Pr(X = xi)

est appelée fonction de masse (ou fonction des fréquences). Le comportement
d’une variable aléatoire discrète X est complètement décrit par

• les valeurs x1, . . . , xk (k pas nécessairement fini) que X peut prendre ;

• les probabilités correspondantes

fX (x1) = Pr(X = x1), . . . , fX (xk) = Pr(X = xk).
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Fonction de masse

La fonction de masse fX satisfait :

• 0 ≤ fX (xi) ≤ 1, pour i = 1, 2, . . .

• fX (x) = 0, pour toutes les autres valeurs de x .

•
∑k

i=1 fX (xi) = 1.

Exemple On lance deux dés équilibrés. Trouver :
(a) la fonction de masse de la somme ; (b) la fonction de masse du maximum.
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Solution 87 (a)
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Solution 87 (b)
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Fonction de répartition (cas discret ou continu)
Définition: La fonction de répartition FX de la variable aléatoire (générale) X est

FX (x) = Pr(X ≤ x), x ∈ R.

Elle a les propriétés suivantes :

• FX prend des valeurs dans [0, 1]
• FX est continue à droite et monotone non décroissante, avec

lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

• Pr(a < X ≤ b) = FX (b) − FX (a)
• Pr(X > x) = 1 − FX (x)
• si X est discrète, alors

FX (x) =
∑

{i : xi ≤x}

Pr(X = xi ), x ∈ R.

et (sauf certains cas pathologiques) FX est une fonction en escalier avec des sauts
de taille fX (xi ) en xi

Exemple Donner la fonction de répartition pour le maximum des résultats de deux dés.
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Solution 90
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Quelques notations (cas discret ou continu)

Par la suite, nous utilisons les notations suivantes :

• Les variables aléatoires sont notées en majuscules (X , Y , Z , W , T , . . .).

• Les valeurs possibles des variables aléatoires sont notées en minuscules
(x , y , z , w , t, . . . ∈ R).

• La fonction de répartition d’une variable aléatoire X est notée FX .

• La fonction de masse (ou de densité dans le cas continu, cf plus loin) d’une
variable aléatoire X est notée fX .

• Ces dernières sont notées F ou f s’il n’y pas de risque de confusion.

• X ∼ F signifie “la variable aléatoire X suit la loi F , i.e., admet F pour
fonction de répartition”.

• X app∼ F signifie “la variable aléatoire X suit approximativement la loi F”.
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Loi de Bernoulli

Définition: Une variable aléatoire de Bernoulli satisfait

X =
{

x1 = 0 si échec probabilité 1 − p,

x2 = 1 si succès probabilité p;

on écrit X ∼ B(p). Sa loi de probabilité est donc

xi 0 1 Total
fX (xi) = Pr(X = xi) 1 − p p 1

où p est la probabilité de succès.
Exemple du lancer d’une pièce de monnaie avec probabilité p fixée d’obtenir
“Pile”.
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Loi binomiale

Définition: On effectue m fois indépendamment une expérience qui mène soit à
un succès (avec probabilité p) soit à un échec (avec probabilité 1 − p). Soit X le
nombre de succès obtenus. Alors on écrit X ∼ B(m, p), et

fX (x) =
(

m
x

)
px (1 − p)m−x , x = 0, . . . , m.

Ceci est la loi binomiale avec nombre d’essais m et probabilité p. Dans le cas
m = 1, X est une variable de Bernoulli. m s’appelle dénominateur et p
probabilité de succès.

Exemple : m lancers indépendants d’une pièce de monnaie avec Pr(“Pile”) = p
fixée.

Exemple Trouver la loi du nombre X de personnes présentes à ce cours ayant
leur anniversaire ce mois-ci.
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Fonctions de masse binomiale
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Solution Exemple 94
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Variable aléatoire de Poisson

Définition: Une variable aléatoire X pouvant prendre pour valeurs 0, 1, 2, . . . est
dite de Poisson avec paramètre λ > 0 si

fX (x) = λx

x ! e−λ, x ∈ {0, 1, 2, . . .}, λ > 0.

On écrit X ∼ Poiss(λ). λ représnte la “moyenne" (l’espérance, cf. plus tard)

Applications :

• nombre d’appels téléphoniques par minute dans une centrale téléphonique

• nombre de fautes de frappe dans les notes de cours

• nombre d’avalanches mortelles en Suisse cet hiver

Exemple : E. coli Le niveau residuel des bactéries E. coli dans l’eau traitée est
de 2/100 ml, en moyenne. (a) Trouver la probabilité qu’il y ait k = 0, 1, 2, 3
présent dans un échantillon de 200 ml d’eau.

(b) Si on en trouve 10 dans un tel échantillon, l’eau est-elle bonne ?
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Fonctions de masse Poisson
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Solution Exemple 97
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Approximation poissonienne de la loi binomiale

Soit X ∼ B(m, p) avec m grand et p petit. Alors

X app∼ Poiss(λ = mp).

Ceci s’appelle parfois la loi des petits nombres.

Exemple D’après IS-Academia, vous êtes m étudiant(e)s.

Soit X le nombre de personnes parmi vous dont l’anniversaire a lieu aujourd’hui.

Calculer les probabilités que X = 0, X = 1, et X > 1, sous la loi binomiale et son
approximation poissonienne.
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m = 106, p = 1/365 m = 203, p = 1/365
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Variables aléatoires continues

Définition: On dit qu’une variable aléatoire X est continue s’il existe une
fonction fX : R → [0, ∞) appelée fonction de densité telle que

Pr(X ∈ A) =
∫

A
fX (u)du,

où A ⊆ R est un ensemble ’raisonnable’. Par exemple, pour A = (a, b],

Pr(X ∈ A) = Pr(a < X ≤ b) =
∫ b

a
fX (x)dx .

fX n’est pas une probabilité, mais une limite

fX (x) = lim
h→0

1
2hPr(x − h ≤ X ≤ x + h)

Une variable continue peut prendre une infinité des valeurs, souvent dans un
intervalle (borné, demi-droite, ou tout R).
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