
Fonctions de densité et de répartition : propriétés

• Propriétés de la fonction de densité :
• fX (x) ≥ 0 pour tout x ∈ R ;
•
∫∞

−∞ fX (x)dx = 1.
• Si l’on pose a = b, on a

Pr(X = a) =
∫ a

a
fX (x)dx = 0.

• La fonction de répartition, FX , vérifie

FX (a) = Pr(X ≤ a) = Pr(X < a) =
∫ a

−∞
fX (x)dx , a ∈ R.

• On a, pour tout a, b ∈ R tels que a < b,

Pr(a < X ≤ b) = FX (b) − FX (a) = Pr(a < X < b).

• On a
fX (x) = d

dx FX (x) = F ′
X (x), x ∈ R.
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Quelques lois continues

• Loi uniforme : X ∼ U(a, b), pour a < b, de densité

fX (x) =
{

1/(b − a) si a ≤ x ≤ b,

0 sinon.

• Loi exponentielle : X ∼ exp(λ), pour λ > 0, de densité

fX (x) =
{

λe−λx si x ≥ 0,

0 sinon.

• Loi normale : X ∼ N (µ, σ2), pour µ ∈ R, σ > 0, de densité

fX (x) = 1√
2πσ2

e−(x−µ)2/(2σ2), x ∈ R.

Si X ∼ N (µ, σ2), alors Z = (X − µ)/σ ∼ N (0, 1) (“standardisation”).
Notations : fZ (z) = ϕ(z) et FZ (z) = Φ(z).
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Quelques lois continues
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Exemple

Exemple Le M1 passe toutes les 5.5 minutes. Si j’arrive à un moment
choisi au hasard, quelle est la probabilité que je doive attendre (a) plus de
3 minutes ? (b) moins de 2 minutes ? (c) entre 1 et 4 minutes ?
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Exemple

Exemple La probabilité qu’il pleuve pendant la journée est de 0.2. S’il
pleut, la quantité de pluie journalière suit une loi exponentielle de
parametre λ = 0.05 mm−1. Trouver (a) la probabilité qu’il tombe au plus
5mm demain, (b) la probabilité qu’il tombe au moins 2mm demain.
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Exemples

Exemple La quantité annuelle de pluie dans une certaine région est une
variable aléatoire normale de moyenne µ = 140 cm et de variance σ2 =
16 cm2. Quelle est la probabilité qu’il tombe entre 135 et 150 cm ?
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2.2.3 Variables aléatoires
conjointes

109

Variables aléatoires conjointes / simultanées

Soient X et Y deux variables aléatoires définies sur le même ensemble Ω. La
fonction de répartition conjointe (ou simultanée) de X et Y est définie par

FX ,Y (x , y) = Pr(X ≤ x , Y ≤ y), x , y ∈ R.

• Cas discret (i.e., X et Y sont discrètes) : la loi de probabilité conjointe de
X et Y est parfaitement déterminée si l’on connaît leur fonction de masse
conjointe, i.e.,

fX ,Y (xi , yj) = Pr(X = xi , Y = yj)
pour tous les couples (xi , yj) possibles.

• Cas continu (i.e., X et Y sont continues) : la loi de probabilité conjointe de
X et Y est parfaitement déterminée si l’on connaît leur fonction de
densité conjointe, définie (si elle existe) par

fX ,Y (x , y) = ∂2FX ,Y (x , y)
∂x∂y , x , y ∈ R.
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Cas discret : propriétés

• Propriétés de la fonction de masse conjointe :
• 0 ≤ fX ,Y (xi , yj) ≤ 1, i , j = 1, 2, . . .

• fX ,Y (x , y) = 0, pour toutes les autres valeurs de x et y .
•
∑

i,j fX ,Y (xi , yj) = 1.

• La fonction de répartition conjointe vérifie

FX ,Y (x , y) =
∑

{(i ,j): xi ≤x ,yj ≤y}
fX ,Y (xi , yj), x , y ∈ R.
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Cas continu : propriétés

• Propriétés de la densité conjointe :
• fX ,Y (x , y) ≥ 0, x , y ∈ R.

•
∫∞

−∞
∫∞

−∞ fX ,Y (u, v)dvdu = 1.

• La fonction de répartition conjointe vérifie

FX ,Y (x , y) = Pr(X ≤ x , Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX ,Y (u, v)dvdu, x , y ∈ R.

• On a, pour tout a1, a2, b1, b2 ∈ R tels que a1 < b1 et a2 < b2,

Pr(a1 < X ≤ b1, a2 < Y ≤ b2) =
∫ b1

a1

∫ b2

a2
fX ,Y (u, v)dvdu.
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Lois marginales

Définition: Soient X , Y deux variables aléatoires ayant pour densité (ou fonction
de masse) conjointe fX ,Y . Les densités marginales du couple (X , Y ) sont
respectivement les densités de X et Y , i.e., fX et fY . De même, les fonctions de
répartition marginales du couple (X , Y ) sont respectivement les fonctions de
répartition de X et Y , i.e., FX et FY .

Dans le cas des densités, on a

• cas discret : fX (xi) =
∑

j fX ,Y (xi , yj), fY (yj) =
∑

i fX ,Y (xi , yj);
• cas continu : fX (x) =

∫∞
−∞ fX ,Y (x , y)dy , fY (y) =

∫∞
−∞ fX ,Y (x , y)dx .

Concernant les fonctions de répartition, on a

• cas discret : FX (x) =
∑

{i :xi ≤x} fX (xi), FY (y) =
∑

{j:yj ≤y} fY (yj);
• cas continu : FX (x) =

∫ x
−∞ fX (u) du, FY (y) =

∫ y
−∞ fY (v) dv .

Exemple X , Y prennent les valeurs (1, 2), (1, 4), (2, 3), (3, 2), (3, 4) avec
probabilités égales. Trouver les lois marginales de X et de Y . 113

Solution 113 et 115

Exemple X , Y prennent les valeurs (1, 2), (1, 4), (2, 3), (3, 2), (3, 4) avec
probabilités égales. Trouver les lois marginales de X et de Y .
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Indépendance
Définition: Deux variables aléatoires X et Y sont indépendantes si

Pr(X ≤ x , Y ≤ y) = Pr(X ≤ x) × Pr(Y ≤ y), ∀x , y ∈ R.

Dans ce cas on écrit X ⊥⊥ Y .

• Donc X ⊥⊥ Y ⇐⇒ ∀x , y ∈ R : FX ,Y (x , y) = FX (x)FY (y)
• si X ⊥⊥ Y et fX , fY sont connues, on peut obtenir fX ,Y . Ceci est faux pour des

variables dépendantes
• si X ⊥⊥ Y , alors g(X) ⊥⊥ h(Y ) pour toutes fonctions g , h ‘raisonnables’
• Pour des variables aléatoires discrètes

∀x , y ∈ R : fX ,Y (x , y) = fX (x)×fY (y) ⇐⇒ ∀x , y ∈ R : FX ,Y (x , y) = FX (x)×FY (y)

• Pour des variables aléatoires continues =⇒ est vrai et pour montrer une
dépendance il suffit de trouver x , y auxquels fX ,Y , fX et fY sont continues et
fX ,Y (x , y) ̸= fX (x) × fY (y)

Exemple Les variables aléatoires X , Y de l’exemple précédant sont-elles indépendantes ?
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Cas continu

La fonction de répartition conjointe est

Pr(X ≤ x , Y ≤ y) = FX ,Y (x , y) =
∫ y

−∞

∫ x

−∞
fX ,Y (u, v) du dv .

Propriétés :

• fX ,Y (x , y) ≥ 0 pour tout (x , y) ∈ R2

•
∫∞

−∞
∫∞

−∞ fX ,Y (u, v) du dv = 1

• fX ,Y (x , y) = ∂2FX,Y (x ,y)
∂x ∂y

• Pr(a1 < X ≤ b1, a2 < Y ≤ b2) =
∫ b2

a2

∫ b1
a1

fX ,Y (u, v) du dv
• Plus généralement, pour A ⊆ R2 ’raisonnable’

Pr((X , Y ) ∈ A) =
∫

A
fX ,Y (u, v)dudv

Exemple Soient X ∼ U[0, 1] et Y ∼ U[0, 2] indépendantes. Trouver Pr(X > Y ).

Noter : Y ′ = 2X ∼ U[0, 2] mais Pr(X > Y ′) = 0 ; X et Y ′ sont dépendantes !116

Solution 116

117

Densité conditionelle

Définition: La densité conditionnelle de X sachant Y = y (tel que
fY (y) > 0) est définie par

fX |Y (x | y) = fX ,Y (x , y)
fY (y) , x ∈ R.

Si X et Y sont indépendantes, on a

fX |Y (x | y) = fX (x), fY |X (y | x) = fY (y), pour tout x et y ∈ R.

(mathématiquement, c’est pour ’presque’ tout x , y)

Exemple Soient X et Y de densité conjointe

fX ,Y (x , y) =
{

x + y si 0 < x < 1, 0 < y < 1,

0 sinon.
Trouver les densités marginales de X et Y , et la densité conditionnelle
fX |Y . Les deux variables sont-elles indépendantes ?
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Solution Exemple 118

119

2.3 Valeurs caractéristiques

120



Mesure de tendance centrale
Définition: L’espérance d’une variable aléatoire X est

E(X) =
{ ∑

i xi fX (xi ), X discrète,∫∞
−∞ xfX (x) dx , X continue,

si la somme/intégrale converge

Propriétés :

• Interprétation 1 : espérance ≡ centre de gravité d’un ensemble de masses
• Interprétation 2 : espérance ≡ moyenne pondérée par des masses
• si X1, . . . , Xn sont des variables aléatoires et a, b1, . . . , bn des constantes, alors

E

(
a +

n∑

i=1

bi Xi

)
= a +

n∑

i=1

biE(Xi )

• pour g fonction ’raisonnable’, E{g(X)} =





∑
i g(xi )fX (xi ), X discrète

∫∞
−∞ g(x)fX (x)dx , X continue

• si X , Y sont indépendantes et g , h des fonctions ’raisonnables’, alors

E{g(X)h(Y )} = E{g(X)}E{h(Y )} 121

Exemples

Exemple Pour X ∼ B(m, p), trouver E(X ).

Exemple Pour X ∼ Poiss(λ), trouver E(X ) et E{X (X − 1)}.
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Exemples

Exemple Soit X ∼ N (µ, σ2), trouver E(X ).
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Mesure de dispersion

Définition: La variance d’une variable aléatoire X est définie comme

var(X) = E[{X − E(X)}2] = · · · = E(X 2) − E(X)2

Propriétés :

• Interprétation physique : variance ≡ moment d’inertie relatif au centre de masse
• var(X) ≥ 0, et var(X) = 0 implique que X est constante
• la déviation standard de X est définie comme sd(X) =

√
var(X) ≥ 0

• si a, b sont des constantes, alors var(a + bX) = b2var(X)
• si X1, . . . , Xn sont indépendantes et a, b1, . . . , bn des constantes, alors

var

(
a +

n∑

i=1

bi Xi

)
=

n∑

i=1

b2
i var(Xi )

Exemple Si X ∼ Poiss(λ), montrer que var(X) = λ.

Exemple Si X ∼ B(m, p), montrer que var(X) = m p(1 − p).

Exemple Si X ∼ N (µ, σ2), montrer que var(X) = σ2.
124

Exemples : variance

Exemple Si X ∼ Poiss(λ), montrer que var(X ) = λ.

Exemple Si X ∼ B(m, p), montrer que var(X ) = m p(1 − p).

Exemple Si X ∼ N (µ, σ2), montrer que var(X ) = σ2.
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Covariance

Définition: La covariance des variables aléatoires X , Y est

cov(X , Y ) = E [{X − E(X )}{Y − E(Y )}] = · · · = E(XY ) − E(X )E(Y ).

Interprétation : C’est une mesure de dépendance linéaire entre X et Y

Propriétés :

• la covariance dépend des unités dont on mesure X , Y
• cov(X , Y ) = cov(Y , X )
• cov(X , X ) = var(X )
• cov(X +Y , Z +W ) = cov(X , Z )+cov(Y , Z )+cov(X , W )+cov(Y , W )
• si a, b, c, d sont des constantes, alors

cov(a X + b, c Y + d) = ac cov(X , Y )
• var(X ± Y ) = var(X ) + var(Y ) ± 2cov(X , Y )
• si X et Y sont indépendantes, alors cov(X , Y ) = 0. Mais attention,

l’inverse n’est pas vraie en général ! 126



Exemple

Exemple (voir diapositive 118) Soient X et Y de densité conjointe

fX ,Y (x , y) =
{

x + y si 0 < x < 1, 0 < y < 1,

0 sinon.

Trouver Var(X ), Var(Y ), et Cov(X , Y ).
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Corrélation

Définition: La corrélation de X et Y est

ρX ,Y = ρ(X , Y ) = corr(X , Y ) = cov(X , Y )√
var(X )var(Y )

(zéro si une des variances est zéro).

Propriétés :

• ρX ,Y mesure la dépendance linéaire (et seulement linéaire !) entre X et Y
• ρ(a + bX , c + dY ) = sign(bd)ρ(X , Y )
• corr(X , Y ) = corr(Y , X )
• corr(X , X ) = 1 (si X n’est pas constante)
• corr(X , −X ) = −1 (si X n’est pas constante)
• −1 ≤ corr(X , Y ) ≤ 1 (inegalité de Cauchy–Schwarz)
• si X et Y sont indépendantes, alors corr(X , Y ) = 0, mais la réciproque est

faux !
• corrélation ̸= causalité !
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Corrélation empirique

Version empirique (si Pr((X = xi , Y = yi) = 1/n pour i = 1, . . . , n)

n−1∑n
j=1(xj − x̄)(yj − ȳ)

{
n−1∑n

j=1(xj − x̄)2 × n−1∑n
j=1(yj − ȳ)2

}1/2 ,

129

Exemple : ozone atmosphérique
Prof. Isabelle Bey (SIE) : observations de la concentration d’ozone au
Jungfraujoch de janvier 1987 à décembre 2005 (quelques valeurs manquantes), et
résultats d’une modélisation.

Observed (black), model (red)
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La modélisation vous paraît-elle bonne ? 130

Exemple : ozone atmosphérique
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La corrélation empirique est ρ = 0.707.
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Limitations de la corrélation
• ρ mesure la dépendance linéaire (panneaux supérieurs)
• On peut avoir ρ ≈ 0, mais dépendance forte mais non-linéaire (en bas au milieu)
• Une corrélation pourrait être forte mais specieuse, comme en bas à droite, ou

deux sous-groupes, chacun sans corrélation, sont combinés
• Une corrélation entre deux variables n’implique pas une causalité entre elles
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Corrélation ̸= causalité

Deux variables peuvent être très corrélées sans lien de causalité. Le graphique à gauche
ici montre une corrélation forte entre le nombre de naissances et les mâts de
communication dans les villes anglaises . . .
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Danger !

• Les espérances/variances/covariances/corrélations ne sont pas
définies si les intégrales/sommes ne convergent pas

• Ceci est notamment le cas lorsque la distribution de X a des queues
lourdes : la densité de X décroît trop lentement vers zéro, et X a une
probabilité élevée de prendre des valeurs énormes.

Exemple

• Considérons la fonction de densité f (x) = αx−1−α sur [1, ∞) et
f (x) = 0 pour x < 1 (loi Pareto). Pour r ∈ R on a

E(X r ) = α

∫ ∞

1
x r−1−αdx =





α
α−r r < α

∞ r ≥ α

• En particulier, E(X ) < ∞ si et seulement si α > 1, et var(X ) < ∞ si
et seulement si α > 2

• Pour α petit la densité tend lentement vers zéro 134

Espérance d’une variable aléatoire mixte

Théorème de l’espérance totale Pour une partition A1, A2, . . .

E(X ) =
∑

i
E(X |Ai)Pr(Ai)

Exemple : pluie (diapositive 107) La probabilité qu’il pleuve pendant la
journée est 0.2. S’il pleut, la quantité de pluie qui tombe suit une loi
exponentielle de parametre λ = 0.05mm−1. Trouver l’espérance de la
quantité de pluie journalière.
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Quantiles

Définition: Soit 0 < p < 1. On définit le pième quantile d’une fonction
de répartition F par

xp = inf{x : F (x) ≥ p}

• Pour des variables aléatoires continues, F (xp) = p, donc xp est tel
que Pr(X ≤ xp) = p

• Pour la plupart des variables aléatoires continues, ceci implique que
xp = F −1(p), où F −1 est la fonction inverse de F

• “La plupart" : celles ayant une fonction de densité strictement
positive (sur {x : 0 < F (x) < 1})

• Pour des variables aléatoires discrètes la situation est plus complexe
• Les quantiles empiriques (diapositive 32) sont des estimations (cf les

prochains cours) des quantiles à partir des données à disposition.

En particulier, on appelle le 0.5ème quantile la médiane de F 136
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Exemple quantiles

Exemple Calculer les quantiles des lois (a) U(a, b), (b) Pareto
(diapositive 134)
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2.4 Théorèmes fondamentaux de
probabilité

139

Approche expérimentale

• Considérons l’expérience de jeter une pièce de monnaie 10’000 fois et
observons le nombre de “face” obtenues

• Soient X1, . . . , Xn les variables aléatoires indépendantes

Xi =
{

1, si le ième jet donne “face”,

0, si le ième jet donne “pile”
∼ B(1, p)

• Donc Sn = X1 + · · · + Xn représente le nombre de “face” sur n essais
et

Sn ∼ B(n, p)
• La proportion de “Face” sur n jets est Xn := Sn/n et

E(Xn) = n−1E(Sn) = n−1 np = p,

var(Xn) = n−2var(Sn) = n−2np(1 − p) = p(1 − p)/n → 0

quand n → ∞
• Donc Xn se concentre de plus en plus autour de p 140

Lois des grands nombres

Théorème (loi (faible) des grands nombres) Soient X1, X2, . . . des
variables aléatoires indépendantes et identiquement distribuées d’espérance
µ = E(X1) et variance σ2 = var(X1) finies. Alors pour tout ϵ > 0

Pr(|Xn − µ| ≥ ϵ) → 0, n → ∞. (1)

*Théorème (loi forte des grands nombres) Soient X1, X2, . . . des
variables aléatoires indépendantes et identiquement distribuées
d’espérance µ = E(X1) finie. Alors

Pr
(

lim
n→∞ Xn = µ

)
= 1 (2)

*Il est donc certain que Xn soit proche de µ pour n grand

• *La loi forte est plus forte parce que (2) implique (1) et la variance
peut être infinie

• *La loi faible utilise seulement cov(Xi , Xj) = 0 pour i ̸= j

Pour l’examen il suffit de connaître la loi faible 141

Illustration de la loi des grands nombres : exp(1)
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Vitesse de convergence : Théorème central limite

• Xn → µ quand n → ∞, mais à quelle vitesse ?
• Comme E(Xn) = µ et var(Xn) = σ2/n ∈ (0, ∞), pour tout n

Zn := Xn − µ√
σ2/n

=
√

nXn − µ

σ

a espérance 0 et variance 1, suggérant que la vitesse est √n

Théorème central limite Soient X1, X2, . . . des variables aléatoires
indépendantes et identiquement distribuées d’espérance µ et variance
σ2 ∈ (0, ∞). Alors Zn := √n(Xn − µ)/σ satisfait

Pr(Zn ≤ x) → Φ(x), x ∈ R

La convergence étant uniforme en x , on déduit

Pr(Xn ≤ x) = Pr(Zn ≤ √
n(x − µ)/σ) ≈ Φ(

√
n(x − µ)/σ)

donc Xn suit approximativement une loi N (µ, σ2/n) 143

Illustration avec des variables exp(1)

On calcule √n(Xn − E(X1))/
√

var(X1), R = 5000 fois
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Illustration avec des variables exp(1)

• On s’intéresse à la distribution de√n(Xn − E(X1))√
var(X1)

• Fixons n = 5 ou 10 ou 20 ou 100 et R = 5000
• Générer z(1)

1 , . . . , z(1)
n

iid∼ exp(1), et calculer leur moyenne z(1)

• Générer z(2)
1 , . . . , z(2)

n
iid∼ exp(1), et calculer leur moyenne z(2)

...

• Générer z(R)
1 , . . . , z(R)

n
iid∼ exp(1), et calculer leur moyenne z(R)

• Les R valeurs(√n(z(1) − E(X1))√
var(X1)

, . . . ,

√n(z(R) − E(X1))√
var(X1)

)

sont un échantillon issu de la distribution d’intérêt
145

Exemple

Exemple Soit X ∼ B(m, p). Donner une approximation de Pr(X ≤ r), pour
r ∈ R.

Solution Exemple 146 :
On a X =

∑m
i=1 Yi , où Y1, . . . , Ym

iid∼ B(p). De plus, E(Y1) = p et
Var(Y1) = p(1 − p). Le TCL nous donne donc que X app∼ N (mp, mp(1 − p))
pour m grand. Ainsi, si Z désigne une variable aléatoire de loi N (0, 1), on a, pour
m grand,

Pr(X ≤ r) = Pr
(

X − mp√
mp(1 − p)

≤ r − mp√
mp(1 − p)

)

≈ Pr
(

Z ≤ r − mp√
mp(1 − p)

)
= Φ

(
r − mp√
mp(1 − p)

)
.
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Utilisation du théorème central limite
• Le théorème central limite est utilisé pour approximer des probabilités impliquant

des sommes de variables aléatoires indépendantes
• Sous les conditions précédentes, on a

E

(
n∑

j=1

Xj

)
= nµ, var

(
n∑

j=1

Xj

)
= nσ2 ∈ (0, ∞)

• On standardise la somme∑n
j=1 Xj − nµ

√
nσ2

= n(X̄n − µ)√
nσ2

= n1/2(X̄n − µ)
σ

= Zn

• Par le théorème central limite Zn est approximativement N (0, 1) et donc

Pr

(
n∑

j=1

Xj ≤ r

)
= Pr

{∑n
j=1 Xj − nµ

√
nσ2

≤ r − nµ

(nσ2)1/2

}
≈ Φ

{
r − nµ

(nσ2)1/2

}
.

Exemple Un livre de 640 pages a un nombre aléatoire d’erreurs sur chaque page. Si le
nombre d’erreurs par page suit une loi de Poisson d’espérance λ = 0.1, et est
indépendant des autres pages, quelle est la probabilité que le livre contienne moins de 50
erreurs ?
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Exemple : théorème central limite

Exemple Un livre de 640 pages a un nombre d’erreurs aléatoires à chaque
page. Si le nombre d’erreurs par page suit une loi de Poisson d’espérance
λ = 0.1, et est indépendant des autres pages, quelle est la probabilité que
le livre contienne moins de 50 erreurs ?
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Extensions et remarques

• Le théorème centrel limite est remarquable, car la distribution des Xi n’a pas
d’importance : seulement l’espérance et la variance apparaissent.

∑
Xi a

approximativement la même distribution si Xi ∼ Exp(1) ou Xi ∼Poiss(1)

• Méthode delta Si g est une fonction telle que g ′(µ) existe, alors

√
n g(X n) − g(µ)

σ
= g ′(µ)Zn + o(Zn)

suit approximativement N (0, [g ′(µ)]2) et donc g(X n) app∼ N
{

g(µ), g ′(µ)2σ2/n
}

• Version générale de la méthode delta : si √n(Yn − θ) app∼ Y pour une constante
θ ∈ R, alors √n(g(Yn) − g(θ)) app∼ g ′(µ)Y

• Notation : app∼ indique une distribution approximative

• Le théorème centrel limite dépend d’un effect de moyennement, et échoue quand
tout dépend d’une fraction minuscule des variables. Il n’est donc pas valable pour
les maxima, les minima, l’étendue, . . ., pour lequels on a d’autres théorèmes limites
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3. Idées fondamentales de la
statistique
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