Fonctions de densité et de répartition : propriétés Quelques lois continues

= Propriétés de la fonction de densité : = Loi uniforme : X ~ U(a, b), pour a < b, de densité
= fx(x) > 0 pour tout x € R; b .
) — ia<x<
" 'f*oo fX(X)dX = I fX(X) { 1/( 2) S! asxsb,
0 sinon.
= Sil'on pose a= b, on a
Pr(X = a) = /a Fe(x)dx = 0. = Loi exponentielle : X ~ exp(\), pour A > 0, de densité
a —Ax R >
= La fonction de répartition, Fx, vérifie fx(x) = { Ae s! x20,
3 0 sinon.
Fx(a)=Pr(X <a)=Pr(X<a)= / fx(x)dx, aeR.
J—oo = Loi normale : X ~ N (u,02), pour p € R, 0 > 0, de densité
= On a, pour tout a, b € R tels que a < b, 1
— —(x=p)*/(20%)
Pr(a < X < b) = Fx(b) — Fx(3) = Pr(a < X < b). ) = J5=e , x&R
= Ona d Si X ~ N(p,0?), alors Z = (X — pu)/o ~ N(0,1) (“standardisation”).
fx(x) = d—FX(x) = Fy(x), x€eR. Notations : fz(z) = ¢(z) et Fz(z) = ®(z).
X
103 104
Quelques lois continues Exemple
Exemple Le M1 passe toutes les 5.5 minutes. Si j'arrive 3 un moment
choisi au hasard, quelle est la probabilité que je doive attendre (a) plus de
3 minutes ? (b) moins de 2 minutes? (c) entre 1 et 4 minutes?
105 106
Exemple Exemples
Exemple La probabilité qu'il pleuve pendant la journée est de 0.2. S'il Exemple La quantité annuelle de pluie dans une certaine région est une
pleut, la quantité de pluie journaliére suit une loi exponentielle de variable aléatoire normale de moyenne ;. = 140 cm et de variance 0% =
parametre A = 0.05 mm~L. Trouver (a) la probabilité qu'il tombe au plus 16 cm?. Quelle est la probabilité qu’il tombe entre 135 et 150 cm ?

5mm demain, (b) la probabilité qu'il tombe au moins 2mm demain.
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2.2.3 Variables aléatoires

conjointes

Cas discret : propriétés

= Propriétés de la fonction de masse conjointe :
= 0<fxy(x,y)<1lij=12,...
= fx y(x,y) =0, pour toutes les autres valeurs de x et y.
" Zi.j .y (xi,y;) = 1.

= La fonction de répartition conjointe vérifie

Fx.y(x,y) = >

{(i): xi<x,y;<y}

fX,Y(Xi7yj)7 XﬂyeR'

Lois marginales

Définition: Soient X, Y deux variables aléatoires ayant pour densité (ou fonction
de masse) conjointe fx,y. Les densités marginales du couple (X, Y) sont
respectivement les densités de X et Y, i.e., fx et fy. De méme, les fonctions de
répartition marginales du couple (X, Y) sont respectivement les fonctions de
répartition de X et Y, i.e., Fx et Fy.

Dans le cas des densités, on a

fr(y;) = 22 v (%3, )
fr(y) = fjox, fxy(x,y)dx.

= cas discret : fx(x;) = Zj fx,v (xi, ¥j)s

- o0
= cas continu : fx(x) = [*__ fx y(x,y)dy,
Concernant les fonctions de répartition, on a

= cas discret : Fx(x) = Z{i:x,-gx} fx(x), Fy(y)= Z{j:ngy} fy(y;);
= cas continu : Fx(x) = [*_ f(u)du, Fy(y)=["_ fr(v)dv.
Exemple X, Y prennent les valeurs (1,2),(1,4),(2,3),(3,2),(3,4) avec

probabilités égales. Trouver les lois marginales de X et de Y. 13

Variables aléatoires conjointes / simultanées

Soient X et Y deux variables aléatoires définies sur le méme ensemble Q. La
fonction de répartition conjointe (ou simultanée) de X et Y est définie par

x,y € R.

Fxy(x,y)=Pr(X <x, Y <y)

= Cas discret (i.e., X et Y sont discrétes) : la loi de probabilité conjointe de
X et Y est parfaitement déterminée si I'on connait leur fonction de masse
conjointe, i.e.,
fy (%, ) = Pr(X = X, Y = y))
pour tous les couples (x;, y;) possibles.
= Cas continu (i.e., X et Y sont continues) : la loi de probabilité conjointe de
X et Y est parfaitement déterminée si I'on connait leur fonction de
densité conjointe, définie (si elle existe) par
a2FX,Y(X>}/)

, , R.
oxdy Y€

fX,Y(X7Y) =

Cas continu : propriétés

= Propriétés de la densité conjointe :
= fy(xy) 20, x,y€eR
= 27ty (u,v)dvdu = 1.

—oo0 J—

= La fonction de répartition conjointe vérifie
X ry
Fxy(x,y) =Pr(X <x,Y <y)= / / fx,y(u,v)dvdu, x,y €R

= On a, pour tout ay, ap, by, by € R tels que a1 < by et a < by,

by by

Pr(ag < X < b1, a <Y < by) :/ fx,y(u, v)dvdu.

ai a2

Solution

Exemple X, Y prennent les valeurs (1,2),(1,4),(2,3),(3,2),(3,4) avec
probabilités égales. Trouver les lois marginales de X et de Y.
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Indépendance

Définition: Deux variables aléatoires X et Y sont indépendantes si
Pr(X <x, Y<y)=Pr(X <x)xPr(Y <y), Vx,yeR.

Dans ce cas on écrit X 1L Y.

= Donc X IL Y <= Vx,y € R: Fx y(x,y) = Fx(x)Fy(y)
= si X 1L Y et fx, fy sont connues, on peut obtenir fx y. Ceci est faux pour des
variables dépendantes

= si X 1LY, alors g(X) 1L h(Y) pour toutes fonctions g, h ‘raisonnables’
= Pour des variables aléatoires discrétes

Vx,y €ER: fxy(x,y) = ix(x)xfy(y) <= Vx,y € R: Fx,v(x,y) = Fx(x)xFy(y)

= Pour des variables aléatoires continues = est vrai et pour montrer une
dépendance il suffit de trouver x, y auxquels fx y, fx et fy sont continues et
fx.v (x,y) # fx(x) x fr(y)
Exemple Les variables aléatoires X, Y de |'exemple précédant sont-elles indépendantes ?
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Solution

117

Solution Exemple

119

Cas continu

La fonction de répartition conjointe est

W
Pr(X <x, Y <y)=Fxy(x,y)= / / fx.y(u,v)dudv.

Propriétés :
= fxy(x,y) > 0 pour tout (x,y) € R?
= [T oy(uv)dudv =1
 Fxy(xy)
= fxy(x,y) = S50
s Pr(ay < X< by, a2 <Y < b)) = [ [ fxy(u,v)dudy
= Plus généralement, pour A C R? 'raisonnable’

Pr(X,Y) e A) = / fx,y(u, v)dudv

Exemple Soient X ~ U[0,1] et Y ~ U[0, 2] indépendantes. Trouver Pr(X > Y).
Noter : Y’ = 2X ~ U[0,2] mais Pr(X > Y’) =0; X et Y’ sont dépendantes!116

Densité conditionelle

Définition: La densité conditionnelle de X sachant Y = y (tel que

fy(y) > 0) est définie par

fx,y(x,)
fr(y)

Si X et Y sont indépendantes, on a

fX‘y(X|y): x € R.

fxy(x | y) = fx(x), fyix(y | x) = fy(y), pourtout xetycR.
(mathématiquement, c’est pour 'presque’ tout x, y)

Exemple Soient X et Y de densité conjointe

fx.v(x,y) _{

Trouver les densités marginales de X et Y, et la densité conditionnelle

x+y si 0<x<l1l,0<y<l,
0 sinon.

fx|v. Les deux variables sont-elles indépendantes 7
118

2.3 Valeurs caractéristiques
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Mesure de tendance centrale

Définition: L'espérance d’'une variable aléatoire X est

a0 = | Tt

]_OZO xfx(x) dx,

X discrete,
X continue,

si la somme/intégrale converge
Propriétés :
= Interprétation 1 : espérance = centre de gravité d'un ensemble de masses

= Interprétation 2 : espérance = moyenne pondérée par des masses

= si Xi,..., X, sont des variables aléatoires et a, by, ..., b, des constantes, alors

E <a + i biXi) =a+ i biE(X;)
i=1 i=1

> 8 (i) fx(xi), X discréte
= pour g fonction 'raisonnable’, E{g(X)} =
I g(x)f(x)dx, X continue
= si X, Y sont indépendantes et g, h des fonctions 'raisonnables’, alors
E{g(X)h(Y)} = E{g(X)}E{h(Y)} -

Exemples

Exemple Soit X ~ N (p, 02), trouver E(X).

123
Exemples : variance
Exemple Si X ~ Poiss()\), montrer que var(X) = .
Exemple Si X ~ B(m, p), montrer que var(X) = mp(1 — p).
Exemple Si X ~ N(, %), montrer que var(X) = o2.
125

Exemples

Exemple Pour X ~ B(m, p), trouver E(X).

Exemple Pour X ~ Poiss(\), trouver E(X) et E{X(X —1)}.
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Mesure de dispersion

Définition: La variance d'une variable aléatoire X est définie comme

var(X) = E[{X - E(X)}] = --- = E(X*) - E(X)?
Propriétés :

= Interprétation physique : variance = moment d'inertie relatif au centre de masse
= var(X) > 0, et var(X) = 0 implique que X est constante

= |a déviation standard de X est définie comme sd(X) = \/\W >0

= si a, b sont des constantes, alors var(a + bX) = b?var(X)

= si Xi,..., X, sont indépendantes et a, by, ..., b, des constantes, alors

ar (a + Zn: b,-X,-) = Zn: b?var(X;)
i=1 i=1

Exemple Si X ~ Poiss(\), montrer que var(X) = \.
Exemple Si X ~ B(m, p), montrer que var(X) = mp(1 — p).
Exemple Si X ~ N (p1,0%), montrer que var(X) = o°.
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Covariance

Définition: La covariance des variables aléatoires X, Y est

cov(X,Y) =E[{X — E(X)HY —E(Y)}] = --- = E(XY) — E(X)E(Y).

Interprétation : C'est une mesure de dépendance linéaire entre X et Y
Propriétés :

= |a covariance dépend des unités dont on mesure X, Y

= cov(X,Y)=cov(Y,X)

= cov(X, X) = var(X)

= cov(X+Y,Z4+W) = cov(X, Z)+cov(Y, Z)+cov(X, W)+cov(Y, W)

= si a, b, ¢, d sont des constantes, alors
cov(aX + b, c Y +d) =accov(X,Y)

= var(X £ Y) = var(X) + var(Y) £ 2cov(X, Y)

= si X et Y sont indépendantes, alors cov(X, Y) = 0. Mais attention,
I'inverse n’est pas vraie en général ! 126




Exemple Corrélation
N -, . " . Définition: élati
Exemple (voir diapositive 118) Soient X et Y de densité conjointe éfinition: La corrélation de X et ¥ est
cov(X,Y)
, pxy = p(X, Y) = corr(X, ¥) = — el )
ey (x,y) x+y si 0<x<1l,0<y<l, var(X)var(Y)
X, y\X,y) = . p . . p
0 sinon. (zéro si une des variances est zéro).
Trouver Var(X), Var(Y), et Cov(X, Y). Propriéteés :
= px.y mesure la dépendance linéaire (et seulement linéaire!) entre X et Y
= p(a+ bX,c+dY) = sign(bd)p(X, Y)
= corr(X,Y) = corr(Y, X)
= corr(X, X) =1 (si X n'est pas constante)
= corr(X,—X) = —1 (si X n'est pas constante)
= —1 <corr(X,Y) <1 (inegalité de Cauchy-Schwarz)
= si X et Y sont indépendantes, alors corr(X, Y) = 0, mais la réciproque est
faux !
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=_corrélation Z causalité!
Corrélation empirique Exemple : ozone atmosphérique
Prof. Isabelle Bey (SIE) : observations de la concentration d'ozone au
Version empirique (si Pr((X =x;, Y =y;)=1/npouri=1,...,n) Jungfraujoch de janvier 1987 a décembre 2005 (quelques valeurs manquantes), et
L résultats d'une modélisation.
_1<n - .
n Y =X - )
1/2 9 Observed (black), model (red)
=il n . )2 -1 n . v)2
(S0 = 7 x 0 S0y — 7)) N
8 . ‘
s N
g | ‘
58 * “ MY ‘ \ ‘
g ‘ Ly
58 | ‘ \
o ¥
8¢
‘I-‘O_’ -
T T T
1990 2000 2005
Time
élisati Tt- ?
75 La modélisation vous parait-elle bonne 7 0
Exemple : ozone atmosphérique Limitations de la corrélation
= p mesure la dépendance linéaire (panneaux supérieurs)
o = On peut avoir p & 0, mais dépendance forte mais non-linéaire (en bas au milieu)
o] wn _|
“’% o °080 © m o o0 = Une corrélation pourrait étre forte mais specieuse, comme en bas a droite, ou
3 @0 o o o o | ) o B8 P .
= © 08 B’ 8 =2 0®° o8 Rl g deux sous-groupes, chacun sans corrélation, sont combinés
% o o%%ébo‘%g é’z Eg - 3 % R 35 &0 = Une corrélation entre deux variables n'implique pas une causalité entre elles
© 8 B. % 000 cgfo © o ® o °R 0. 0%
g 6o ° e §2BG S8 o&° g =
° o ©° o % o o 950 o o "
§8 0000 o 00(5’Iu §$7o oo% N b
= o7 %300 = ® :
o o | o
o <
w0 _| 90 4 )
¥ = ;JOO o 8 1 ‘ o
T T T T T T T T T T T T T T Q‘iw‘ % X X 3
35 40 45 50 55 60 65 35 40 45 50 55 60 65 x
Observed ozone (ppbv) Observed ozone (ppbv) o o0
La corrélation empirique est p = 0.707. of
- o
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Corrélation # causalité

Deux variables peuvent étre trés corrélées sans lien de causalité. Le graphique a gauche
ici montre une corrélation forte entre le nombre de naissances et les mats de
communication dans les villes anglaises . ..

rho=0.92

0 K| 0 o

o
3 o
g g .
£ c
2 2
= <
2 <
8 =
'9 1]

o

=] 0

3

&’ T T T T T T T T T T T T T T

20 50 200 1000 5000 20 50 200 1000 5000

Number of transmitter masts Number of transmitter masts

Espérance d’une variable aléatoire mixte

Théoréme de I'espérance totale Pour une partition Az, Az, ...
E(X) = > E(X|A)Pr(A))
i
Exemple : pluie (diapositive 107) La probabilité qu'il pleuve pendant la
journée est 0.2. S'il pleut, la quantité de pluie qui tombe suit une loi

exponentielle de parametre A\ = 0.05mm ™. Trouver |'espérance de la
quantité de pluie journaliére.

135

137

= Les espérances/variances/covariances/corrélations ne sont pas
définies si les intégrales/sommes ne convergent pas
= Ceci est notamment le cas lorsque la distribution de X a des queues
lourdes : la densité de X décroit trop lentement vers zéro, et X a une
probabilité élevée de prendre des valeurs énormes.
Exemple
= Considérons la fonction de densité f(x) = ax™ 1=
f(x) =0 pour x < 1 (loi Pareto). Pour r e R on a

sur [1,00) et

E(X") = a/ XTI = ¢ o7
J1 o0

r<ao
r> o

= En particulier, E(X) < oo si et seulement si a > 1, et var(X) < oo si
et seulement si o > 2
= Pour « petit la densité tend lentement vers zéro

Quantiles

Définition: Soit 0 < p < 1. On définit le pieme quantile d'une fonction

de répartition F par
xp = inf{x : F(x) > p}

= Pour des variables aléatoires continues, F(x,) = p, donc x,, est tel
que Pr(X <x,)=p

= Pour la plupart des variables aléatoires continues, ceci implique que
xp = F71(p), ot F~1 est la fonction inverse de F

= “La plupart" : celles ayant une fonction de densité strictement
positive (sur {x : 0 < F(x) < 1})

= Pour des variables aléatoires discrétes la situation est plus complexe

= Les quantiles empiriques (diapositive 32) sont des estimations (cf les
prochains cours) des quantiles a partir des données a disposition.

En particulier, on appelle le 0.5éme quantile la médiane de F 136

Exemple quantiles

Exemple Calculer les quantiles des lois (a) U(a, b), (b) Pareto
(diapositive 134)

138




2.4 Théorémes fondamentaux de

probabilité

Lois des grands nombres

des

Théoréme (loi (faible) des grands nombres) Soient Xi, X, . ..
variables aléatoires indépendantes et identiquement distribuées d’espérance
p=E(X1) et variance 02 = var(Xi) finies. Alors pour tout € > 0

Pr(|X, — u| >€) —0, n— 0o. (1)
*Théoréme (loi forte des grands nombres) Soient Xi, X5, ... des
variables aléatoires indépendantes et identiquement distribuées
d’espérance p = E(X1) finie. Alors
Pr <n||_)ngO Xn= [l,) =il (2)

*|| est donc certain que X, soit proche de ; pour n grand

= *La loi forte est plus forte parce que (2) implique (1) et la variance
peut étre infinie
= *La loi faible utilise seulement cov(Xji, Xj) = 0 pour i # j

Pour I'’examen il suffit de connaitre la loi faible

Vitesse de convergence : Théoréeme central limite

= X, — p quand n — oo, mais a quelle vitesse ?
= Comme E(X,) = p et var(X,) = 02/n € (0,0), pour tout n

Xo—p_ Ko

\/a?/n - g

a espérance 0 et variance 1, suggérant que la vitesse est \/n

s —

Théoréme central limite Soient Xi, Xo,... des variables aléatoires

indépendantes et identiquement distribuées d'espérance y et variance
02 € (0,00). Alors Z, := /n(X,, — 1) /o satisfait
Pr(Z, < x) = &(x), x€eR
La convergence étant uniforme en x, on déduit
Pr(X, < x) = Pr(Zy < V(x — u)/0) ~ O(/n(x — 1) o)

donc X, suit approximativement une loi N'(y,0?/n) 43

Approche expérimentale

= Considérons |'expérience de jeter une piece de monnaie 10’000 fois et
observons le nombre de “face” obtenues

= Soient Xi,..., X, les variables aléatoires indépendantes

si le iéme jet donne “face”,
N . O P ~ B(1,p)
si le ieme jet donne “pile

= Donc S, =Xy +---

et

+ X, représente le nombre de “face” sur n essais

Sp ~ B(n,p)
= La proportion de “Face” sur n jets est X, := S,/n et
E(X,) = nE(S,)=n"tnp=p,
var(X,) = n2var(S,) = n"2np(1 —p) = p(1 - p)/n—0

quand n — oo
Donc X, se concentre de plus en plus autour de p

lllustration de la loi des grands nombres : exp(1)

5 replications de Xbar_n

25 3.0

2.0
1

15

Xpar_n

1.0
4

n=10
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lllustration avec des variables exp(1)

= On s'intéresse a la distribution de

Vn(Xn — E(X1))
var(Xi)
= Fixons n =5 ou 10 ou 20 ou 100 et R = 5000

- 1 1) iid —
= Générer zf ), .. .,z,(7 ) id exp(1), et calculer leur moyenne z(1)

- 2 2) iid i
= Générer zf ), .. ,,z,(7 ) iid exp(1), et calculer leur moyenne z(?

23 R R) iid —
= Générer zf ), . ,z,(, ) iid exp(1), et calculer leur moyenne z(R)

= Les R valeurs
<ﬁ(z“’ ~E(X1))  VaER - E(xl))>
var(X;) T var(X1)

sont un échantillon issu de la distribution d'intérét
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Utilisation du théoreme central limite

= Le théoréme central limite est utilisé pour approximer des probabilités impliquant
des sommes de variables aléatoires indépendantes

= Sous les conditions précédentes, on a

E (Z Xj> = np, var <Z X,) = no® € (0, 0)
j=1 j=1

= On standardise la somme
n - _
X (X —p) _ 0K —p) _

Zn
no? no? o

= Par le théoréme central limite Z, est approximativement (0, 1) et donc

. ijl X —np r—np r—np
B (ZIXJ £ r> - Pr{ no? < (no?)1/2 ME (no2)1/2 [~
j=

Exemple Un livre de 640 pages a un nombre aléatoire d’erreurs sur chaque page. Si le

nombre d’erreurs par page suit une loi de Poisson d'espérance A = 0.1, et est
indépendant des autres pages, quelle est la probabilité que le livre contienne moins de 50
erreurs?
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Extensions et remarques

= Le théoréme centrel limite est remarquable, car la distribution des X; n’a pas
d’importance : seulement I'espérance et la variance apparaissent. ZX,- a
approximativement la méme distribution si X; ~ Exp(1) ou X; ~Poiss(1)

= Méthode delta Si g est une fonction telle que g’(11) existe, alors
Xn) — g(p
VaflXe) ) ”)g W _ g'(4)z, + o2,

suit approximativement A(0, [g'(12)]?) et donc g(X,) & N {g(u),g/(ﬂ)zaz/n}
= Version générale de la méthode delta : si v/n(Y, — 6) X Y pour une constante
9 € R, alors /n(g(Ys) — g(6)) "~ g'(n)Y

= Notation : ‘X indique une distribution approximative

= Le théoréme centrel limite dépend d'un effect de moyennement, et échoue quand
tout dépend d’une fraction minuscule des variables. Il n’est donc pas valable pour

les maxima, les minima, I'étendue, ..., pour lequels on a d’autres théorémes limites
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Exemple

Exemple Soit X ~ B(m, p). Donner une approximation de Pr(X < r), pour
reR.

Solution Exemple 146 :

OnaX=Y" Y,o00VYe,...,Yn % B(p). De plus, E(Y1) = p et

Var(Y1) = p(1 — p). Le TCL nous donne donc que X X N(mp, mp(1 — p))
pour m grand. Ainsi, si Z désigne une variable aléatoire de loi (0, 1), on a, pour
m grand,

i ) — Pr X — mp r—mp
nxsn=r (x/mp(l—p)< \/mp(l—p))

zpl(zS 1 ):¢< r—mp )
mp(1 — p) mp(1 — p)
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Exemple : théoréme central limite

Exemple Un livre de 640 pages a un nombre d’erreurs aléatoires a chaque
page. Si le nombre d'erreurs par page suit une loi de Poisson d’espérance
A = 0.1, et est indépendant des autres pages, quelle est la probabilité que
le livre contienne moins de 50 erreurs?
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3. ldées fondamentales de la

statistique
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