

Solution 1

(a) [seen, 3 points, 1 for each of Ω , \mathcal{F} , P]

To give a *probability space* we must specify Ω , \mathcal{F} and P !

Here $\omega \in \Omega = \{(r, b) : r, b \in \{1, \dots, 6\}\}$, i.e., there are $|\Omega| = 36$ elementary outcomes of the experiment.

We can suppose that all 2^{36} subsets \mathcal{B} of Ω belong to the event space \mathcal{F} , with (by symmetry) $\Pr(\mathcal{B}) = |\mathcal{B}|/36$.

(b) [unseen, 3 points, 1 for the events and 1 each for the conclusions]

Here $\mathcal{A} = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$, $\mathcal{B} = \{(2, 1), (2, 2), \dots, (6, 6)\}$ and $\mathcal{C} = \{(1, 2), (2, 2), \dots, (6, 6)\}$ (each has 18 elements; they don't need to be written out).

As $\Pr(\mathcal{A}) = 6/36$ and $\Pr(\mathcal{B}) = \Pr(\mathcal{C}) = 1/2$ but they cannot be independent, as

$$\Pr(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C}) = 0 \neq \Pr(\mathcal{A})\Pr(\mathcal{B})\Pr(\mathcal{C}).$$

They are pairwise independent, because

$$\Pr(\mathcal{A} \cap \mathcal{B}) = \Pr(\mathcal{A} \cap \mathcal{C}) = 3/36 = \Pr(\mathcal{A})\Pr(\mathcal{B}) = \Pr(\mathcal{A})\Pr(\mathcal{C}), \quad \Pr(\mathcal{B} \cap \mathcal{C}) = 1/4 = \Pr(\mathcal{B})\Pr(\mathcal{C}).$$

(c) [seen, 2 points]

X takes values in $S_X = \{1, 2, 3, 4, 5, 6\}$ with corresponding probabilities

$$f_X(1) = 1/36, \quad f_X(2) = 3/36, \quad f_X(3) = 5/36, \quad f_X(4) = 7/36, \quad f_X(5) = 9/36, \quad f_X(6) = 11/36.$$

(d) [unseen, 2 points]

Obviously both expectations are finite (because S_X is finite), and

$$\mathbb{E}(X) = 1 \times \frac{1}{36} + 2 \times \frac{3}{36} + \dots + 6 \times \frac{11}{36} = 161/36 = 4\frac{17}{36},$$

whereas inspection of \mathcal{A} gives

$$\Pr(X = 4 \mid \mathcal{A}) = \Pr(X = 5 \mid \mathcal{A}) = \Pr(X = 6 \mid \mathcal{A}) = \frac{2}{6} = \frac{1}{3},$$

so

$$\mathbb{E}(X \mid \mathcal{A}) = 6 \times \Pr(X = 6 \mid \mathcal{A}) + 5 \times \Pr(X = 5 \mid \mathcal{A}) + 4 \times \Pr(X = 4 \mid \mathcal{A}) = 6 \times \frac{1}{3} + 5 \times \frac{1}{3} + 4 \times \frac{1}{3} = 5.$$

Solution 2

(a) **[seen, 2 points]** X_r is a negative binomial variable, so

$$\Pr(X_r = x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, \quad x \in \{r, r+1, \dots\}, 0 < p < 1.$$

Alternatively a ‘bare hands’ argument seen in the lectures is that the sequence must be of length x , finishing with a success, and thus with the previous $x-1$ trials having any possible arrangement with $r-1$ successes and $x-1-(r-1) = x-r$ failures. The probability is therefore given by the expression above.

(b) **[seen, 2 points]** $X_1 > x$ iff the first x trials are failures, and this has probability $(1-p)^x$. Hence if $x, u > 0$,

$$\Pr(X_1 > x+u \mid X_1 > u) = \frac{\Pr(X_1 > x+u \cap X_1 > u)}{\Pr(X_1 > u)} = \frac{\Pr(X_1 > x+u)}{\Pr(X_1 > u)} = \frac{(1-p)^{x+u}}{(1-p)^u} = (1-p)^x,$$

which is the lack of memory property of the geometric distribution.

(c) **[seen/unseen, 3 points]** For X_1 and using the sum of a geometric series with $0 < 1-p < 1$, we have

$$\mathbb{E}(X_1) = \sum_{x=1}^{\infty} x p (1-p)^{x-1} = p \frac{d}{dp} \sum_{x=1}^{\infty} -(1-p)^x = -p \frac{d}{dp} \frac{1-p}{1-(1-p)} = -p \frac{d}{dp} \left(\frac{1}{p} - 1 \right) = \frac{1}{p},$$

or perhaps using the result that since $X_1 > 0$, the expectation can also be written as

$$\mathbb{E}(X_1) = \sum_{x=1}^{\infty} \Pr(X_1 \geq x) = \sum_{x=1}^{\infty} (1-p)^{x-1} = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

To compute $\mathbb{E}(X_r)$ we note that X_r has the same distribution as the sum of r independent copies of X_1 (because we wait for the first success, then for the second, then for the third, etc., up to the r th, and the past doesn’t matter because of the independence of the individual trials), so $\mathbb{E}(X_r) = r \mathbb{E}(X_1) = r/p$, where we have used the linearity of expectation.

(d) **[unseen, 3 points]** We take the hint and condition on the partition :

$$\begin{aligned} \mathbb{E}(Y) &= \mathbb{E}(Y \mid \mathcal{B}_{11}) \Pr(\mathcal{B}_{11}) + \mathbb{E}(Y \mid \mathcal{B}_{10}) \Pr(\mathcal{B}_{10}) + \mathbb{E}(Y \mid \mathcal{B}_0) \Pr(\mathcal{B}_0) \\ &= 2 \times p^2 + \mathbb{E}(Y+2) \times p(1-p) + \mathbb{E}(Y+1) \times (1-p) \\ &= (1-p^2) \mathbb{E}(Y) + 2p^2 + 2p(1-p) + (1-p) \\ &= (1-p^2) \mathbb{E}(Y) + 1 + p, \end{aligned}$$

solution of which gives $\mathbb{E}(Y) = (1+p)/p^2$; this is plausible, as when $p = 1$ we must have $\mathbb{E}(Y) = 2$. In computing $\mathbb{E}(Y \mid \mathcal{B}_{10})$ we have used the lack of memory property, which implies that after a failure to obtain Y in the first two trials, we start again, but with a lag of 2, giving $\mathbb{E}(Y \mid \mathcal{B}_{10}) = \mathbb{E}(Y+2) = \mathbb{E}(Y) + 2$. Etcetera ... **[bonus point for explaining this well]**

Solution 3

(a) **[unseen, 2 points]** The word ‘equiprobable’ implies use of the uniform distribution, i.e., the length L is uniformly distributed on the interval $(0.9l, 1.1l)$, giving

$$\Pr(L \leq x) = \begin{cases} 0, & x \leq 0.9l, \\ \frac{x-0.9l}{0.2l}, & 0.9l < x \leq 1.1l, \\ 1, & x > 1.1l. \end{cases}$$

(b) **[unseen, 3 points]** The area $A = L^2$ cm², so

$$F_A(a) = \Pr(A \leq a) = \Pr(L^2 \leq a) = \Pr(L \leq a^{1/2}) = \begin{cases} 0, & a \leq 0.81l^2, \\ \frac{a^{1/2}-0.9l}{0.2l}, & 0.81l^2 < a \leq 1.21l^2, \\ 1, & a > 1.21l^2. \end{cases}$$

Hence

$$f_A(a) = F'_A(a) = \begin{cases} \frac{1}{0.4la^{1/2}}, & 0.81l^2 < a \leq 1.21l^2, \\ 0, & \text{otherwise.} \end{cases}$$

It's easiest to compute the expectation as

$$\mathbb{E}(A) = \mathbb{E}(L^2) = \int_{0.9l}^{1.1l} x^2 \times \frac{1}{0.2l} dx = l^2 \times \frac{1.1^3 - 0.9^3}{0.6} = 1.003333 l^2 \text{ cm}^2,$$

but (correctly) computing this using f_A also gets full marks :

$$\mathbb{E}(A) = \int_{0.81l^2}^{1.21l^2} a \times \frac{1}{0.4la^{1/2}} da = l^2 \times \frac{1.21^{3/2} - 0.81^{3/2}}{0.6} = 1.003333 l^2 \text{ cm}^2.$$

Solution 4 Let X_1, \dots, X_n denote the (independent) arrival times after 8.00.

(a) **[seen, 2 points]** $W > x$ iff all the students arrive after time x , so

$$\Pr(W > x) = \Pr(X_1 > x, \dots, X_n > x) = \prod_{j=1}^n \Pr(X_j > x) = e^{-n\lambda x},$$

giving $\Pr(W \leq x) = 1 - \exp(-n\lambda x)$ for $x > 0$; i.e., $W \sim \exp(n\lambda)$.

(b) **[unseen, 1 points]** Everyone is on time if all the X s are smaller than 15, and by independence of the individual arrival times this event has probability $(1 - e^{-15\lambda})^n$.

(c) **[unseen, 2 points]** The number N of students arriving late has a $B(n, p)$ distribution, with $p = e^{-15\lambda}$. Hence (no need for a more explicit expression)

$$\Pr(N \leq 3) = \sum_{r=0}^3 \binom{n}{r} p^r (1-p)^{n-r}.$$

(d) **[seen, 2 points]** The binomial variable N has $\mathbb{E}(N) = np = ne^{-15\lambda}$.

Solution 5 [unseen, generous 3 points] The success probability for strategy (i) is

$\Pr(\text{A right} \mid \text{A replies})\Pr(\text{A replies}) + \Pr(\text{B right} \mid \text{B replies})\Pr(\text{B replies}) = p \times \frac{1}{2} + p \times \frac{1}{2} = p$, while that for strategy (ii) is

$$\Pr(\text{both right}) + \Pr(\text{coin chooses correctly} \mid \text{disagree})\Pr(\text{disagree}) = p^2 + \frac{1}{2} \times 2p(1-p) = p,$$

so both strategies give the same probability of success.