Probability and Statistics for SIC
Exercises

Chapter 1

Solution 1 If the set of distinct characters is C, then the set of passwords is the Cartesian product
CxCxCxCxCxCxCxC,and this has size |C8| = |C|® = 665.

Solution 2 With sets A = {A,...,Z} and D = {0,...,9}, using the multiplication rule and Cartesian
products, the set of possibilities is A% x D3, which has size |AJ? x |D|® = 262 x 103.

Solution 3 There are 23! distinct ways to order the maths books, and 9! distinct ways to order the
physics books, and 2! distinct orders for the types of books, so the answer is 23! x 9! x 2.

Solution 4 Using the logic of the previous exercise, the answer is 4! x 3! x 5! x 3!.

Solution 5 We must take into account the permutations of A and B: 2! = 2, and that the k people
between A and B and n — k — 2 people around A and B are not to be taken independently. Thus, there
are (n — 2) permutations to place everyone except A and B, and 1 +(n —k —2) = n — k — 1 ways of
placing the block “A ... B” of length k + 2 in the queue. Therefore, there are 2(n — 2)!(n — k — 1) ways
of having k£ people between A and B.

Solution 6 A committee is an unordered 4-set of persons, and there are C; distinct 4-sets that can be
made from 23 persons.

Solution 7 The logic of the previous solution gives C2,.

Solution 8 a) There are C3, x C§ = 6720 ways of choosing a committee of 3 men and 3 women from
a group of 10 women and 8 men: the choices of men and women are independent, so the numbers of
possibilities can be multiplied, and within each group an unordered selection is made without replacement.

b) The number of committees of 3 men containing both men who refuse to be together is C} = 6
(there are six ways to choose the other man). So, the number of committees of 3 men without these 2
men is C3 — 6 = 50. Therefore the answer sought is

C3, x (C3 —6) =120 x 50 = 6000.
c¢) The reasoning here is similar to that in b), giving
(C3) — C3) x C3 = (120 — 8) x 56 = 6272.

d) The number of committees with the man and the woman who refuse to work together is C3C2 = 756.

So the answer is
C3y x C3 — C3 x CF = 6720 — 756 = 5964.

Solution 9 There are 4 x 3 x 2 = 24 ways of placing the three pairs of twins in the 4 rooms. Furthermore,
for each allocation of twins to rooms there are 23 = 8 ways of distributing the three pairs of twins in the
beds. There are therefore 24 x 23 = 192 ways of setting up the experiment.

Solution 10 A direct calculation gives
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Chapter 2

Solution 11 a) The sample space for this experiment is @ = Q1 U Qq, where
0 = {(Dl,DQ,...) :D; € {1,2,3,4,5},i = 1,2,}

represents the event ‘no 6 is cast’ and

Qy={6}U | J {(D1,Ds,...,Dy,6): D; € {1,2,3,4,5},i = 1,2,.. .}

n=1

represents the event ‘the experiment stops’.

It may seem puzzling why 27 is needed. Two reasons are: (i) no probabilities have been given for
the outcomes, and perhaps the probability of getting a ‘6’ is zero because the die is biased, in which case
only Q; could occur; (ii) any event space must contain infinite unions and complements, so if the possible
events include E,, = ‘the first six occurs on throw n’ (n =1,2,...), then the event | J,- | E,, = ‘the first
six occurs for some n € N’ is in the event space, and so is its complement, 2.

b) The points of the sample space which are contained in E,, are of the form (Ds,...,D,_1,6). The
set (U E,, )¢ corresponds to the event “no 6 is cast”, that is ;.

Solution 12 a) The sample space 2 comprises all possible ordered arrangements of n people, so |Q| = nl.
If we assume that the event space contains all subsets of Q, then the number of events is 2/l = 27,

b) Let the event Ej, be “there are k people between A and B”. Let us determine #Fj, =“number of
favourable cases of E;”:

Consider first the block “A <*7 B” of length k + 2. There are 1 + (n —k —2) = (n — k — 1) ways to
place it in the line.

Then take into account the permutations

- of A and B: 2! = 2 permutations,
- of the (n — 2) people different to A and B: (n — 2)! different permutations.

Thus
#E,=2x(n—k—1)x (n—2)!
and E 2 k—1 2)! 2 k—1
#Q n! nin—1)
NB: One can check that S>7-22(n — k —1)/{n(n — 1)} = 1.
c) It is easy to establish the list of the 3! = 6 possible cases. We then obtain
4 2 2 1
Prik=0)==-=—-, Prk=1)=-=-
k=0=5=3 Prik=1l=F=3

which corresponds to the expression found under b).

NB: We have Pr(k=0)+Pr(k=1) =1.

Solution 13 a) Two signals S; and S; reach the receptor in the interval (0,¢). Let X; be the arrival
time of S7 and let X5 be the arrival time of So. The sample space of possible results is therefore

Q= {(w1,22) € R?: 0 <y, w0 < 1}

One element of this set (a pair (x1,z2)) represents a possible outcome of this experiment (that is an
elementary event of the sample space): “the signal S; arrives at time z1 and the signal Sy arrives at time

€2
b) The event A which we are interested in (i.e. ,“the receptor blocks”) is a subset of € defined as

A={(x1,22) € Q:|z1 — 22| < O};

for the next step it is helpful to sketch A, and note that its area is the area of the square €2 minus the
area of two triangles, each of which has area (t — #)?/2, The fact that both signals “arrive independently
of each other and at random”’ tells us we are dealing with an equiprobable model. We can then obtain
arcaof A 2 —2x (t—0)%/2 20t —6?
area of Q 12 2

c) If 6 < t, we can neglect (6/t)? relative to 20/t, giving Pr(A) ~ 20/t.

Pr(A) =




Solution 14 a) The sample space of this experiment is Q = {(y1, y2,y3) : ¥1,92,y3 € {1,...,6}}.

b) Let X; be the die which shows the smallest number, X3 the die which shows the greatest number
and X the die which shows a number between X; and X3 (that is X; < X < X3). We want to calculate
the probability of the event “X; + X5 4+ X3 > 15”. We will call this event E. The table below shows the
values X1, X5 and X3 which make their sum greater than or equal to 15.

X7 | Xo | X3 | sum | weight | probability
3 6 6 15 3 1/216
4 5 6 15 3! 1/216
4 6 6 16 3 1/216
5 5 5 15 1 1/216
) 5 6 16 3 1/216
5 6 6 17 3 1/216
6 6 6 18 1 1/216

The fifth column represents the number of ways there are to obtain the given values of X7, Xs and X3.
The sixth column represents the probability of each configuration (that is 1/6% = 1/216). Thus, the
probability sought is

Pr(E) = BHOE3H18343+D) 20 9 0926,

216 216 —

Solution 15 a) and b) The answers are the same:

_ 15 x14%x13x10x%x9
T 25 x 24 x 23 x 22 x 21

= (0.03854.

c) We obtain
15 x14 x10x9 x 8

= - 2 .
25 x 24 x 23 x 22 x 21 0.0237

Solution 16 First note that if Xavier and both his parents have brown eyes and his sister has blue eyes,
that must mean that both parents each have one gene for blue eyes, and the other for brown.
a) Xavier can have the genes (Br, Br), (Br, B) and (B, Br), so the probability that he has one gene
for blue eyes is 2/3.
b) Let Gx, Gw and G¢ respectively denote the eye genes belonging to Xavier, his wife, and his child.
So,
Pr(Ge = (B,B)) = Pr(Gx € {(Br,B),(B,Br)}) x 3 = % x

Solution 17 Here 2 = {(a,b) : a,b € {1,...,6}} is the collection of ordered pairs (because the dice can
be distinguished) of numbers between 1 and 6.

a) ENF ={(1,2),(1,4),(1,6),(2,1),(4,1),(6,1)}.

b) E U F is the event “the sum of the dice is odd or one of the dice shows a 1”.

c) FNG ={(1,4),(4,1)}.

d) ENF° is equal to the event “the sum of the dice is odd and each die shows a number greater than
or equal to 2”.

e) ENFNG=FnNAG.

Solution 18 a) 000... represents the event “no-one wins”. The other sequences correspond to the events
in which A, B or C' wins.

b) (i) Those with the 1 in position 3n + 1 for n € {0,1,...} correspond to the event ‘A wins’.

(ii) Those with the 1 in position 3n + 2 for n € {0,1,...} correspond to the event ‘B wins’.

(iii) Those with the 1 in position 3n for n € {0,1,...} correspond to the event ‘C wins’.

Finally, (AU B)® is event in which either C' wins or no-one wins.

Note: in i), for example, 3n + 1 represents the sequence (3n) + the position the winner is in (+1).

Solution 19 No, because the configurations are not equiprobable. If we take into account the order
in which they appear, we must then take into account the possible permutations of each configuration.
Thus (3,3,3) “counts only once” whereas (5,2,2) “counts three times” and (5,3,1) “counts six times”. We
obtain Pr(S =9) = 23 and Pr(S = 10) = 2.

Solution 20 The probability of obtaining at least one 6 equals unity minus the probability of casting
no 6s: Pr(at least one 6) = 1 — Pr(no 6s). The probability of obtaining no 6s is (5/6)* ~ 0.4822, so the
probability of casting at least one 6 is 1 — (5/6)* ~ 0.5177.



Solution 21 The probability that the 6 appears at least once is 1 — (5/6)?". In order for this probability
to reach 1/2, we must have 1 — (5/6)%" > 1/2, or equivalently

1-1/2 > (5/6)°" < log(1/2) > 2nlog(5/6) < —log2 > 2nx {—log(6/5)} < n > 3 log2/log(6/5) ~ 1.9.
Thus we must have n > 2.

Solution 22 The probability that the birthdays of n people are in different months is

12x11x---x(12—n+1)
12n

So the probability that at least two of the n people have their birthdays the same month is

12x11x---x (12—n+1)
12n

You need at least 5 people for this probability to exceed 1/2.

Solution 23 The probability that neither of the two coins shows tails is the probability of the outcome
(H,H), i.e., 1/4, so the answer is 1 — 1/4 = 3/4.

Solution 24 We use the fact that the event “have at least one success” complements the event “have
no success”. The probability of obtaining at least one 6 with 4 dice is therefore

1—(1-3)"~0.518,
and the probability of obtaining at least one double 6 in 24 casts of two dice is
1—(1—35)* ~0.491.

Solution 25 Pr{“At least one ball > 17"} =1 — Pr{“All balls < 17"} =1 — 18x13x14

Solution 26 The sample space of this experiment is the set of four ordered pairs Q = {(F1, E3)} where
FE; is the sex of the first child and F5 is the sex of the second. The event “both children are girls” is
A={(G,@)}, and “the eldest is a girl” is B = {(G, G), (G, B)}. The required probability is

_ Pr(AnB) Pr(4) 1/4
PrAIB) = =55y ~ o) " 12 %

Solution 27 The sample space of this experiment is Q = {(D1,D2) : 1 < D; <6,i =1,2}. Let us call A
the event “at least one die shows a 67, and B the event “both results are different”. We want to calculate

_ Pr(AnB)
But
Pr(B) = % = %, Pr(AN B) =Pr(B) — Pr(A°NB) = % % = % — 8,

so the required probability is
Pr(A|B)=1-%=1/3.

Solution 28 Let A denote the event “the first card is a spade” and B the event “the other two are
spades”. Since

S
=loo
m\»—-
=11

Pr(AnB)=82L " py(B)=Pr(ANB)+Pr(4A°NB) =121

U“OJ
[\v) Ne}
|

the required probability is

Pr(AN B) 13 x 12 x 11
Pr(A| B) = - =1
A B) = B T B ExI 9 Bx13 ™




Solution 29 Let S,, denote the event “the n'* day is sunny” and N,, the event “the nth day is cloudy”.
Then

$n = Pr(Sp) = Pr(Sn | Su_1)Pr(Su_1) + Pr(Sy | Ny_1)Pr(Np_1)
= PSn-1 + q(l - Sn*1>
= (p—q@)sn-1+4q

We show that s, = %(1 +(p—¢q)™), n > 0, by induction on n. If n = 0 this is clearly true. Let us
now suppose that this formula is valid for m. Then, since p+ ¢ =1,

Smi1 = (P—q)sm +4q
= -9 G+s0-9™) +q
p+aq m
= — +zbp-9m"
= {1+(p-om™"},

so the result is true for m + 1. Thus s, = 1(1+ (p — ¢)") for all n > 0.

Solution 30 a) Let .S, be the outcome (either H or T, for ‘heads’ or ‘tails’) for toss n and let E,, be the
event “two successive tails don’t appear”. Write P, = Pr(FE,,) and note that

Pr(E,) =Pr(E,N{S, =T}) +Pr(E,N{S, = H}).
Now
Pr(E,N{S,=H})=Pr(E,_1N{S, =H}) = %Pr(En,l)
as if the last throw is an H, then the sequence ends with HH or T'H and thus the last toss is independent
of E,_1. By a similar argument,
Pr(E,N{S,=T}) =Pr(E,2N{Sp_1=H}N{S,=T}) = %Pr(En,g),

because Pr(E, N{S,—1 =T} N{S, =T}) =0. Hence

P, = %Pn—l + iPn—Q- (1)

b) Since P, is a decreasing function of n, i.e., 0 < P, 11 < P, the limit lim,,_,~, P, exists. Let us call
it Py > 0. In taking the limit n — oo in (1) we deduce that

Poo:%Pooa

which is possible only if Py, = 0.
C) Let Gn,i denote the event “{Sgi = T, Sgi+1 = H, SgiJrQ = :Zj7 Sgi+3 = T, Sgi+4 = T, Sgi+5 =
H,Sgiy6 =T, Ss(i+1)—1 = T}, and let R, ; = G, ; (that is the event “the series S;,8i < j < 8(i+1) -1,

n,i

is different from T, H,T,T,T,H, H,T”). Let R,, = ﬁ?:/?SRn’i. Through the independence of the events
R, fori=1,...,,n/8, we have

n/8

n/8
Pi(r,) = [[Pr(in) = (1- 5 2)

where in the last equality we have used the fact that Pr(R, ;) = 1 — 1/2%. From (2), we deduce that
lim,, oo Pr(R,) = 0. But clearly Pr(Q,,) < Pr(R,) (because @, C R,,). Thus, lim, . Pr(Q,) =0.

Solution 31 Let RR, NN and RN respectively represent the events “the chosen card is entirely red”,
“entirely black” and “bicoloured”. Let R denote the event “the visible side of the chosen card is red”.
Then

Pr(R | RN)Pr(RN)

Pr(RN |R) =
BN | R) Pr(R | RR)Pr(RR) + Pr(R | RN)Pr(RN) + Pr(R | NN)Pr(NN)
Ixi+iltoxs °



Solution 32 Let C denote the event “the selected person is colour-blind”, M the event “that person is
a man” and F the event “that person is a woman”. Bayes’ formula gives

Pr(C | M)Pr(M)

PrM | C) = 5@ T M)Pr(M) + Pr(C | FYPr(F)

If we say that there are as many men as women, then Pr(M) = Pr(F) = 1/2 and

5 o1

_ 100 ~ 2 _ 5 _ 20

Pr(M|C)*ixl+o.25X;*5.25*21‘
100 * 27T 100 © 2

If on the other hand there were twice as many woman as men, we would have

Pr(M | C) = — 1{)0
100 © 3 100 © 3
Solution 33 Let M denote the event “the patient is infected”, B the event “the patient is healthy”, and
+ the event “the result of the test is positive”. Bayes’ formula gives

Pr(+ | M)Pr(M)
Pr(+ | M)Pr(M) + Pr(+ | B)Pr(B)
100 1000

90 1 4 2 099
100 1000 100 1000

99
= —— ~0.0472.
2097 0.047

This isn’t very helpful. For a better result, the test would have to be repeated on the same individual.

Pr(M|+) =

Solution 34 Let A denote the event that a piece is accepted, and B denote the event that it is good.
Then Pr(A | B) = 0.9 and Pr(A¢ | B¢) =0.8.

a) All 4 pieces are accepted, therefore 3 good pieces are checked correctly and there is an error in the
checking of the defective piece. The probability of this event is:

Pr(A | B)® x Pr(A| B¢) = (0.9)® x 0.2 ~ 0.146.
b) Let the event E = denote “there is an error during the checking of a piece”. Then
Pr(E) = Pr(A°| B) x Pr(B) + Pr(A4 | B°) x Pr(B°),

so, since Pr(B¢) = 0.2, Pr(F) = 0.1 x 0.8 + 0.2 x 0.2 = 0.12.
¢) Bayes’ theorem gives
Pr(A | B®) x Pr(B°) Pr(A | B®) x Pr(B°)

Pr(B*| 4) = Pr(A) = Pr(A | B) x Pr(B) + Pr(4 | BY) x Pr(B) ~ 07

Chapter 3

Solution 35 X, can only take the values 0 and 1. There cannot be more than one broken-down machine
at the start of a day’s work. Let B,, be the random variable equal to the number of machines that fail
on the n** day. Then

Pr(X,4+1=0]X,=0)=Pr(B,=0UB, =1)

=Pr(B,=0]| X, =0)+Pr(B, =1|X,, =0)

=p*+p(1=p)+p(l—p)=p2-p)

(neither machine fails,

one machine fails and is repaired,

the other machine fails and is repaired)
Pr(X,y1=0|X,=1)=Pr(B,=0|X,,=1)

= Pr(the only machine that is not broken doesn’t fail) = p,
Pr(X,11=1|X,=0)=Pr(B, =2|X, =0)=(1-p)?,
Pr(X,+1 =11 X,, = 1) = Pr(the machine that is not yet broken fails) = 1 — p.



Solution 36 The space of the possible values taken by X; is S = {1,2,3,4,5,6}. The enumeration of
different possible cases gives us:

Pr(X; =1) = 1/36, Pr(X; =2) =1/12,
Pr(X; = 3) = 5/36, Pr(X; = 4) = 7/36,
Pr(X; =5) = 9/36, Pr(X; = 6) = 11/36.
Similarly, for X,
Pr(X, = 1) = 11/36, Pr(X, = 2) = 9/36,
Pr(X, = 3) = 7/36, Pr(X, = 4) = 5/36,
Pr(X, = 5) = 3/36, Pr(X, = 6) = 1/36.
We get the following graphs:
Fonction de masse de X1 Fonction de masse de X2

0.3 0.4
0.3 0.4

P
0.2
P

0.2

0.1
0.1

0.0
0.0

Solution 37 We suppose that birthdays are evenly spread over the year and, to simplify, that a year
comprises 365 days.

a) The probability that a random person was born on a January 1st is therefore 1/365. The probability
that both partners were born on a January 1st is, supposing independence, 1/3652. Among the 42800
couples married in 2010, the number of those in which both partners were born on a January 1st, X,
follows binomial distribution of parameters n = 42800 and p = 1/3652. Thus

42798
Pr(X =2) = Cf%&ooﬁ (1 . )

b) The probability that both partners were born on the same day is 365 times higher than the
probability that they were both born on a January 1st. The number Y of couples married having their
birthdays the same day therefore follows a binomial distribution of parameters n = 42800 and p = 1/365.
We then have

Pr(X = 2) = Cygoogar (1 — ) 27" ~ 0.

3652 365

Solution 38 a) Here we are dealing with a draw with replacement, since the same animal can be seen
twice. The probability that any given sighting is of a lion is L/(L + T'). The number of lions noted in
the report follows a binomial distribution of parameters n and p = L/(L + T'). The probability that k
lions have been noted is therefore

k n—k
" L T , k=0,...,n.
k L+T L+T

b) Here we have a draw without replacement. The number of lions captured follows a hypergeometric
distribution of parameters L, T and n. The probability that k lions have been captured is

() ()
(L+T) ’

n

k =max(0,n —T),...,min(L,n).

Solution 39 a) Arnaud bets the amount 100 x 2"~ CHF at turn n.
b) Since each turn is a Bernoulli experiment of parameter p, the number of turns N until the first
win follows a geometric distribution of parameter p. Its mass function is therefore

Pr(N=n)=p(1—-p)" ', n=12....



The event {N = n} happens if the (n — 1) first turns have been lost and the nth has been won.

c) Let Y denote the amount invested during the last turn, that is to say when Arnaud wins for the
first time. We have Y = 100 x 2V~! where N is the random variable of the number of turns until the
first win. We have

E(Y) = E(100x 2¥7) = (100 x 2" )Pr(N =n) = > (100 x 2" ")p(1 — p)" !
n=1 n=1
st 100p 1/2
= 1 21 —p)yn—t = ¢ T20-p P24
00p > (201 - pprt = { O PR

n=1

If p < 1/2, it is best to be infinitely rich to be able to follow this strategy! If p > 1/2, a finite fortune
should be sufficient, at least on average—but if a casino sees that you are playing this strategy, they will
throw you out!

Solution 40 a) Let X; denote the sum of two dice at the ith throw: X; € {2,...,12}. We have
Pr(X; = 5) = 1/9 and Pr(X; = 7) = 1/6. The time of end of play is called 7, 7 = 1,2,..., and
F; = {7 = j} is the event in which the game ends at the jth throw. Note that we can write the event Fj

as
{X; =5 0r X; =740 [NZ}H{X; £ 5 and X; £ 7}

By using this and the independence of the variables X; we get that for every j

1/9 2

Pr(X; = 5IF) = P (X, = S, =5} U{X; = 7)) = T = 5.

b) Since the game is almost sure to end (that is Zjil Pr(Fj) = 1), by the formula of total probability
we reach

- 2 — 2
Pr(the game ends with a 5) = ZPr(Xj = 5| F;)Pr(F};) = <5> ZPr(Fj) =
j=1 j=1
c) By definition of 7 and F; we have
o0
E(r) =) jPr(F)).
j=1

Since Pr(X; =5or X; =7) =5/18,

(-5 (2)

We are therefore trying to calculate the expectation of geometric distribution of parameter 5/18, i.e.,
===
Solution 41 a) Number the white balls i = 1,..., N. Let X; = 1 if the white ball numbered ¢ has been

chosen, and otherwise let X; = 0. Then

Pr(X; = 0) M—i—N—1><M+N—2>< " M+ N-—n M+ N —n n

r(A; = = = s
M+ N M+ N -1 M+N-n+1 M+ N

E(r) 3.6.

Since X = Zfil X;, we deduce that
N
BE(X) =) E(X;) =NPr(X;=1)=
i=1
b) Number the black balls j =1,..., M and let Y; = 1 if the black ball numbered j is chosen before

the first white ball and Y; = 0 otherwise. Then consider any possible sequence (of length N + M) in
which all the balls might be drawn, such as

Nn
M+ N’

B---BW,B---BB;B---BWyW,B---B,



where B denotes any black ball except B; and Wi,...,Wx denote the N white balls. Suppose we
condition on the configuration, meaning the length of the sequence and the positioning of all the Bs
except B;. Then the only thing that can vary is the positioning of the balls B;, Wi, ..., Wy. Clearly the
probability that B; appears first in these N + 1 positions is 1/(N + 1), by symmetry, and since this does
not depend on the configuration, then it must be true that Pr(Y; =1) = 1/(N +1). (If you are nervous
about this, note that

Pr(Y; =1) = > Pr(Y; = 1| C)Pr(C) = >

Ceall possible configurations Ceall possible configurations
as required.) Then, since X =1+ Z]M=1 Y;, we have
M M M
E(X)=1+» BY;) =1+ Pr(Y;=1)=1+——.
j=1 j=1

For an alternative solution, suppose for greater generality that we remove the balls one by one until
w whites have appeared, and let X be the total number of balls then drawn. Then

P (X ) (wjil) (r—l—l\{w—l)) % N—’UJ+ 1 —|—M
rAa=r)= T=W,...,W
i) B R T G N
where to avoid trivial cases we assume that w € {1,..., N}. The argument for this expression is that just

before we take the wth white ball out on the rth trial, we have drawn w — 1 white balls from among N
and (r—1) — (w — 1) black balls from M in r — 1 trials (corresponding to the hypergeometric probability
given), and then we must choose a white ball with probability (N —w +1)/(N + M —r +1). It is then
possible to check algebraically that

LN D) w (M)
N+ M (N+M—1) r (N+M) )

r—1 r

Pr(X =1) r=w,...,w+ M,

or to argue by symmetry. For example, to obtain the first expression, note that the probability of first
getting a white and then any configuration of w — 1 whites among the remaining N — 1 and r — w blacks
among the remaining M is as given, but by symmetry this probability must be the same as that of getting
the sequence in the opposite order, which is the sequence we want. Note also that the sum of any of
the three expressions for the probabilities must equal unity. This is called the negative hypergeometric
distribution, by analogy with the negative binomial distribution.

Now
e LI e NS N1 ()0
w w rTr—w w w rT—w
E(X) = Z rPr(X +7) = Z e (VM = N1l Z M+N+1 (V)
r=w r=w T T=w T

By setting r = w + s we can write the sum on the right as

- N1 (D)) :i CLE) N Y WM
M AN+ 1 (VA T M N (VM) T L A N (VM ’

W r’—1

w!/4+s—1

where we put N/ =N+ 1, w' =w+1 and ' = w’ + s, and note that the sum contains the probabilities
Pr(X = r) for the same problem, stopping after having selected w’ white balls from a bag with N’ white
balls and M black ones. Hence

~wM+N+1) wM
i I s

which gives the result above when w = 1.

Yet another solution is as follows. Suppose all N + M balls are taken successively at random, and
let Zy be the number of black balls before the first white, Z; the number of black balls between the first
and second whites, and so on, with Zy the number of black balls after the last white one. Obviously
Zo+ -+ Zny = M, and, almost as obviously, E(Zy) = --- = E(Zy) by symmetry. Hence E(Z;) =
M/(N +1), and therefore the expected number of balls drawn (including whites) up to and including the
wth white one is w + wE(Z;) = w + wM /(N + 1), as above.



Solution 42 a) X has the binomial distribution with parameters n and p, so Pr{X =k} = (})p*(1 —
p)"k, for k € {0,...,n}.

b) See the lecture notes: E(X) = np and var(X) = np(1 — p).
Note: To show that X has as expectation np and variance np(1 — p), we can write X = > | ¥; where
Y; are independent Bernouilli random variables with parameter p. Then

EY:)=0xPr(V;=0)4+1xPr(Y;=1)=0x (1—-p)+1xp=p,
and
var(Y;) = B(Y?) = B(Y;)? = {0° x Pr(Y; = 0) + 12 x Pr(Y; = 1)} = p* = p — p* = p(1 - p),

so by the independence of the Y;, we have

B (zy) :anEm) ;ip:np,

var(X) = var (Z Yé) = var(V;) = {p(1—p)} = np(1 - p).
=1 =1 =1

NB: Here var(}.; , Y;) = > i, var(Y;) because the Y; are independent, but this is not true in general.
It is however always true that E(3_"_ | Y;) = > | E(Y;).

B(X)

Solution 43 T is a geometric random variable, and

Pr(T =n)=p(1—p)" ' n>1

We have
E(T) = in Pr(T =n) = inp(l—p)"‘l = pin(l—p)"‘l =1 i(l—p)" =D jpy =P%pm =
n=1 n=1 n=1 n=1
Furthermore,
E(T?) = inQ Pr(T =n) = inz p(l—p)"t = pi n*(1—p)" ' = —pi {i n(1 —p)"}
n=1 n=1 n=1 n=1
= —pi {(1 -p) in(l p)"l} =i {(1 *p),%z} =-p (f% + ]%) =%-1
n=1
T’s variance is therefore:
var(T) = BE(T?) -E(T)*= 1%—%_1%21%2—%7 p € (0,1]

Solution 44 a) Since
oo ) o )\Z N
ZPr{X:z}:lzczﬁzce ,
i=0 i=0
we must have ¢ = e~*. This is a Poisson distribution of parameter \.
b) Pr{X =0} = c’(\)—j =e M
¢)Pr{X >2}=1—(Pr(X =0)+Pr(X = 1) +Pr(X =2)) =1 —e M1+ A+ ) =e A3, A
d) See lecture notes. E(X) = var(X) = A.

Solution 45 Consider the first page. A given error will appear on this page with a probability of 1/350,
since the errors are uniformly distributed (i.e., distributed at random) and there are 350 pages in total.
The number of printing errors X on the first page therefore has a Binomial distribution B(n = 450,p =
1/350), so

2 ] 1 A 349 450—1
=0

Since n is large and p is small, we can also approximate the binomial variable X by a Poisson variable Y
of parameter A = np ~ 1.29 and we then obtain

Pr(Y >3)=1-Pr(Y <2)=1-e* (1+A+1?/2) ~0.14.

10



Solution 46 a) We check that the sum of the lines is 1.
b) Addition gives Fx,(0) = 0.5, Fx,(1) = 0.7, Fx,(2) = 0.9, Fx,(3) = 1, and Fx,(0) = 0.7,
Fx,(1) =0.9, Fx,(2) = 1.

Fonction de repartition de X1 Fonction de repartition de X2

0.2 0.4 0.6 0.8 1.0
| | |

0.0
|

-—

-—

0.2 0.4 0.6 0.8 1.0
I I I

0.0
I

-—

-—

c¢) We find that Pr(Y = 0) = Pr(X; = 0)Pr(X; =0) = 0.35, Pr(Y = 1) = Pr(X; = 0)Pr(Xy = 1) +
Pr(X; = 1)Pr(X; = 0) = 0.24, and by similar calculations, Pr(Y = 2) = 0.23, Pr(Y = 3) = 0.13, Pr(Y =
4) = 0.04, and Pr(Y = 5) = 0.01. As a check, the total mass is 0.3540.2440.23 4+ 0.1340.04 4 0.01 = 1.

d) In c) we found that Fy(0) = 0.35, Fy (1) = 0.59, Fy(2) = 0.82, Fy(3) = 0.95, Fy(4) = 0.99,
Fy (5) =1, so the sketch is

Fonction de repartition de Y

1.0

PR S

-—

-—

F(y)
06 08

0.4

0.2
I

0.0
I

Chapter 4
Solution 47 First calculate c. For f to be a density we must have fj;o f(x)dz =1, that is to say
1
= —=x .
Jo xexp(—z/2)dx

Integration by parts gives:

/ zexp(—x/2)dx = —2x exp(—x/2)’;>o + 2/ exp(—z/2)dx = 4,
0 0
so c=1/4. Consequently the probability that the system functions for at least 5 months is

— lx exp(—z/2)

s 5
— e B/2 4 Zp75/2 L 09
3 5 e + 26 ~ (0.287.

/:O zexp(—x/Q)dx = —exp(—z/2)

oo
5

Solution 48 a) Integration by parts yields
Ia) = / e Yy ldr = —e Yy | Ha— DI (a—1) = (a—D)'(a—1), (a>1).
0

Since I'(1) = 1, we deduce that, for n a positive integer, I'(n) = (n — 1).
b) We have

I'la+1l) _ «

(o) A

E(X) = %/0 2% Mdy = F/}Z)/o i’\—(:e*y%dy =

11



Solution 49 Since

— ~ 7|1:\ T = mix m—l n 23] =00
XD = [ casam@=2f srpats g b+l - o

E(X) is undefined.

Solution 50 a) We have f(t) = ¢(10000¢% — 200¢> + t*) in the set 0 < ¢t < 100. By integrating we get
1019 x ¢x g5 =1orc=3x107".
b) The expected lifetime in years is

100
E(T) = /0 tf(t)dt = ¢[10000t* /4 — 40t° +15/6]3°0 = 3 x 1079 x 10'2 x (1/4 — 2/5 +1/6) = 50.

¢) We have
80

Pr(50 < T < 80) = f(t)dt = c[10000¢® /3 — 50t* + 17 /5]50 ~ 0.4421.
50

Solution 51 a) f being a density, we must have f_oooo f(x) dz =1. But

so k =3.

b) To find the distribution function, we have to integrate the density function f(x). We find

r —1/z3, =z
F(:U):/_ f(x)dx:{l Va?, ez,

0, x < 1.

c¢) The required probability is Pr(X > 3) =1 — F(3) = 0.0370.
d) The average lifetime is equal to the expectation of X, that is

E(X):/_Ooxf(x)dac:/l i—fdxz/l ;dx:[_;] =3/2,

1

or a year and a half.
e) First calculate E(X?):

o0 2 00 00
E(XQ):/ 3%619::/ 3 = [3] =3,
1 x 1 X T 1

therefore var(X) = E(X?) — E(X)? = 0.75; the standard deviation is y/var(X) = 0.87 years.
Solution 52 (a) The distribution function of U is F(u) = u/2, for 0 < u < 2, so we seek

Pr(U<u,U<1) u/2
PriU<u|U<1)= <Pr(U<1) :1//2=

u, O0<u<l.

Thus the required distribution is U(0, 1).
(b) Write A ={u: |u—1>1/2} = {u:u < 1/2} U{u:u > 3/2} and note that the density of U is
f(u) = 3I(0 < u < 2). Hence the density function of U conditional on U € A is

f(u|U€A)PI'(fU(u€)_A)’ UEA,

and zero elsewhere. Clearly Pr(U € A) =1/2, so

1, uwe An(0,2),
0, elsewhere.

f<u|UeA>={

This density is uniform on AN (0,2) = (0,1/2) U (3/2,2).

12



Solution 53 Note that since X takes positive real values, Y takes values in R. Since the logarithm
function is strictly increasing, we can write

exp(y)
Fy(y) =Pr(Y <y)=Pr(logX <y) =Pr{X <exp(y)} = / exp(—z)dz, yeR.
0

Differentiation of this expression with respect to y yields

fry) = df:;/y(y) =e¥ xexp(—eY), yeR.

Solution 54 Let Y = g(X) with g(z) = 1/2. Since g is monotonic with inverse g~!(y) = 1/y on (0, 1],
then
—_ dg~? _
@) = fxlg @)} < |52 = ) x k=1, 0<y<t

Alternatively,
Fx(x) :/ t=2dt = [fﬂf =1-z'Y z>1.
1

So, for 0 < y < 1 we have
— _ 1 _ 1 _ 1
Fy(y)—Pr(YSy)—Pr(YSy)—Pr<§§X>_I—Pr(X<§)
=1-Fx(l/y)=1-(1-y)

which implies that Y ~ U(0,1); Y has the standard uniform distribution.

Y,

Solution 55 If Y = g(X) and g is a monotone function, then

Fr(y) = |d~"dy(y)\ Fx{o~ W),

defined for those values of y for which g~!(y) lies in the support of X.
In this case the function y = g(x) = e® is monotone and g~!(y) = logy; therefore dg~1(y)/dy = 1/y,
defined only for y > 0. Therefore since fx(z) = (21)~ /2 exp(—x?/2), for € R, we have

1 e=(8v)*/2 5

1
fry) = " Von
and fy(y) =0ify <O0.

Solution 56 Let X ~ N(175,62) denote height of a 25-year-old man. Then
Pr(X > 185) =1 — ®{(185 — 175)/6} ~ 4.78 %

and two similar calculations give

Pr(X > 192| X > 180) = pri2iss ~ 1.14%.

Solution 57 The quantity a must satisfy ffooo f(z)dz =1, so

1
‘= Jo° 2 exp(—ba?)dx’

If we make the change of variables y/ V/2b = x, we obtain

/0 22 exp(—ba?)de = (;27))3 /0 P exp(—y?/2)dy = (;27))3 @ X :O j%exp(_f/g)dy.

The last integral is equal to 1 (the second moment of a standard normal variable) and therefore

4 .
— 71)3/2.
a NG
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Chapter 5

Solution 58 For all real z we have

Fz(Z) = Fx(Z)Fy(Z),
Fz(2) = 1-{1-Fx(z){1 - Fy(2)} = Fx(2) + Fy () — Fx(2)Fy (2),

differentiation of which yields

fz(z) = fx(2)Fy(2) + Fx(2)fy(2),
f2(2) = fx(){1-Fy(2)} + fr(e){1 - Fx(2)}.

Solution 59 Write W = min(X3,..., X,,) and note that
Pr(W >t) = Pr(X; > t,..., X, > t) = Pr(X; > )"
But Pr(X; >t) = e, so Pr(W >t) = e~} and therefore the distribution function of W is

1—e ™™\ t>0,

0, otherwise.

Pr(W <t) = {

Thus W ~ exp(nl).

Solution 60 We first compute the mass function of X. For non-negative integer k,

Pr{X =k} = > P{X=k|Z=n}Pr{Z=n}
n>k
_ nZZk (k)pk(l o p)nfkef)\/\ﬁrl‘

_ A)F n n—k A" F kl(n—k)!
= € A(pk!) <k><1_p) k)\nl (’I('L—k?)!)
n>k

— ANt Z (1—p)"—FAnT*
= k! (n—m)!
n>k

o= (p]i\!)k o(1=P)A

—px (PA)*
e P

)

so X is Poisson with parameter p\ .
Then, for non-negative integer [,

Pr{Y =1}

> Pr{Y =1|Z =n}Pr{Z =n}

n>l
= Zpr{X:n_l\Zzn}Pr{Z:n}
n>1
n _ _ n
— Z(l)pn l(l_p)le /\%
n>l

e*lwﬂw

so Y is also a Poisson variable, of parameter (1 — p)A . Finally, for all k,1 € {0,1,2,...}, since n — [ =k,
Pr{X =kY =1} = > Pr{X=kY =1|Z=n}Pr{Z=n}

n>0

= P{X=kKkY=I1|Z=k+1}Pr{Z=k+1}
k+1 NN Y
( L )pk(l_p)le )\(2+l)!

= e_p)‘ (pk):\l)k X e_(l_p))‘ ((1_IZIJ)A)Z ,

which is Pr{X = k}Pr{Y =1}, so X and Y are indeed independent.

14



Solution 61 a) Since

2 1
/ / fxy(x,y)dedy =1,
0 0

we have ¢ x 7/6 = 1, thus ¢ = 6/7.
b) The marginal density of X is

2 1
6 6 6
fx(z) :/ fxy(z,y)dy = ;/ (2 + 2y/2) dy = - [$2y+$yz/4]§ = ;(2962 +x), 0<z<l1.
0 0

The marginal density of Y is

1 1
fr) = [ fxvemde=3 [ @ vy de = [+ )y = 0/3 44, o<y <2

The variables X and Y are dependent, because the joint density is not the product of the marginal
densities.
c) We have

6 (L[ [" 6 [ 6 5 1 30
Pr(X>Y):?/0 (/0 392+xy/2dy)dx7/0(:E3+x3/4)dx7><4><4112~0.2679.

Solution 62 a) Let fx denote the density of X and fy that of Y. Note that

oo

frl)= [ i) —ee U ety ! 0
Y) = x,y)axr = + - B} y> i
v 0 l+y | I+ |y (+w)?
SO
y/(1+y), y>0,

F =

v () {07 otherwise.
Also,

fX(w):/O flx,y)dy=e"* x>0

so X ~ exp(l). X and Y are not independent because f(z,y) # fx(z)fy (y) for all z,y.
b) Let fx denote the density of X and fy the density of Y. Note that

1—x 1—x
fx(x) = / fz,y)dy = 60m/ y?dy = 20z(1 —2)3, O0<xz<l,
0 0

and that Y 1y
fr(y) = / flz,y)de = 60y2/ zdr = 30y%(1 —y)?, O0<y<l.
0 0

X and Y are not independent because f(x,y) # fx(z)fy(y) for all z,y. In this case the lack of inde-
pendence is obvious without any need for calculation because the support of the joint density is not a
Cartesian product.

Solution 63 The first part is obvious, since if X; > X5 then the right-hand side equals X; + X5 and
similarly if Xy > X;.
For the second part, note that min(X;, Xs) > =z if and only if X;,Xs > z, and since they are
independent this has probability e=*1% x e=*2% if £ > 0. Therefore
Pr{min(Xy,z2) <z} =1—exp{—(A\1 + A2)z}, x>0,
and thus the minimum has the exp(\; + A2) distribution. By the first part,
E(Xl + Xg) = E{max(Xl, Xz) + HliIl()(l7 XQ)},

and the linearity of expectation implies that E{max(X;, X3)} = E(X;) +E(X2) —E{min(X;, X3)}, which
gives the result.
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Solution 64 a) The conditional density of X given Y is defined as fx |y (z | y) = fx,v(z,y)/fy(y), and

fx|y(x|y>=mexp{ﬂ/@xmy)}, fr() = (my) V2, y>0z€eR,

SO
Le—y(+e®) 45 0,2 € R,
fxy(z,y) = fY(y)fX|Y(~T ly) = {0’ y<0zcR
b) We have
= dy — —
fx(z) /0 fxy (2, y)dy ity <R

which is the standard Cauchy density.
¢) Now fnx(%y) = fxy(%,y)/fx(x), so

(1+ xQ)e’y(H‘”z), y >0,

fY|X(1'7y) = {0 y < 0.

So, conditional on X = x, Y follows an exponential distribution of parameter 1 + z2 > 0.

Solution 65 a) We have

V1—z2
1 2

/12 T ™

and by symmetry we must have

2
g(y)=;\/1—y2, -1<y <L

Clearly X and Y are not independent because h(z,y) # f(xz)g(y) for all z,y; it is quicker to note that
since the support of the joint density is the unit disk, and this is not a Cartesian product, they cannot
be independent.

b) Now cov(X,Y) = E(XY) — E(X)E(Y), and evidently E(X) = E(Y) = 0. Now E(XY") consists of
integrals in the four quadrants, corresponding to z,y > 0, z < 0 < y, z,y < 0, y < 0 < z (the integrals
on the axes themselves equal zero). Let D denote the unit disk, and let Q1, ..., Q4 denote the quadrants,
starting with the upper right and proceeding anticlockwise. Then we need to compute

E(XY) x /

zy dxdy + /
DN@Q1

xy dxdy + /
DNQ2

xy dxdy + / xy dady,
DNQs

DNQ4

and this clearly equals zero, since

/ zydrdy = / (—x)ydzdy = —/ zy dxdy, / zy drdy = / (—x)ydedy = —/ zy dxdy.
DNQs DNQ; DNQ; DNQ4 DNQs DNQs

Solution 66 var(X; — X) = (+1)%var(X1) + (—1)2var(Xs) — 2cov(X1,z2) = 2n7(1 — 7), because the
covariance is zero (by independence) and the variances both equal nm(1— ). Since independence implies
that cov(X;, Xi) =0 if i # k,

n n
var(S) = Zvar(Xi) + Zcov(Xi,Xk) = Zvar(X,») =n?r(1—m).
i=1 i£k i=1
Solution 67 The variance may be decomposed as follows:

var(3X —2Y + 1) = 9var(X) — 12cov(X,Y) + 4var(Y).

We have cov(X,Y) = corr(X,Y)/var(X)var(Y) = 2. Hence var(3X —2Y + 1) = 48. By bilinearity of
the covariance,
cov(X +2Y, X —Y) =var(X) + cov(X,Y) — 2var(Y) = —12.

By linearity of expectation, E(3X —2Y + Z) =0 < E(Z) =2E(Y) — 3E(X), giving E(Z) = 1.
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Solution 68 a) By linearity of expectation, E(5X — 3Y 4+ 9) = 5E(X) — 3E(Y) +9 = 7. By the
independence of X and Y and properties of the covariance,

var(3Y — 2X) = 3%var(Y) + (—=2)*var(X) 4+ 2 x 3 x (=2)cov(X,Y) = 57.
b) We have
var(X +Y) =cov(X + Y, X +Y)) = var(X) + var(Y) + 2cov(X,Y),
and likewise
var(X —=Y) =cov(X =Y, X - Y) = var(X) 4 var(Y) — 2cov(X,Y).
From these we get the system of equations:
cov(X,Y) = 48 — var(X)
cov(X,Y) = =32 4 var(X),

from which we can deduce var(X) = var(Y’) = 40 and cov(X,Y) = 8. The correlation is \/ﬁ =0.2.

Solution 69 a) X; and X, are binomial variables of parameters (n,1/6). A binomial variable may be
written as a sum of independent Bernoulli variables, each with the same success probability.

b) We have var(X;) = var(Xy) =nx ¢ X (1 — %) =n x 5.

c¢) The variable U represents the total number of 1s and 2s obtained during n throws. Its distribution is
Bin(n,1/3), so its variance is n x 2. Since var(X1 +x2) = var(X1) + 2cov (X1, X2) + var(X3), it follows
that cov(X1, Xs) = —1 [var(X;) + var(Xz) — var(X; + X3)] = —n/36, so corr(Xy, Xs) = —4% /30 =
~1/5.

d) We have var(V) = var(X;)+var(Xs)—2cov(X1, Xo) = L2 and corr(U, V) = cov(U, V) //var(U)var(V),

where cov(U, V) = var(X;) — var(Xz) = 0. Thus, corr(U,V) = 0.

Solution 70 By enumerating the possible events, we observe that Pr(Z = 1) = Pr(Z = 7) = 1/12 and
that Pr(Z =2) =--- =Pr(Z = 6) = 1/6. Moreover

EZ|X=2)=EX+Y|X=x2)=2+EY)=x+35

Likewise var(Z | X = z) =var(X+Y | X = 2) =var(z+Y | X = z) = var(Y) = 35/12, since conditional
on X = z, the only random variable in x + Y is Y.
It is easy to check that Theorem 168 is satisfied.

Solution 71 If z = 1, then Pr(Z = 2) = Pr(X =0)Pr(Y =1) = (1 — p)p. For z > 2,
Pr(Z=2) = Pr(X=0Pr(Y =2)+Pr(X=1)Pr(Y =2-1)
= (1-p)xpl—p) " +pxpd-p)?
= p(1-p){p+(1-p)?*}
Wehave E(Z | X =2)=EX+Y | X =2)=E(Y)+zand also E(Z |Y =y) = E(X) +y.

Solution 72 The moment generating function is Mx (t) = E(e!X). Thus

B(Y) = E(¥) = Mx(1) = exp(1/2),
B(Y?) = B() = My(2) = exp(2),
var(Y) = E(Y?) —E(Y)? = exp(2) — exp(1).

Solution 73 a) For any positive ¢ and by independence of X and Y we have

P{Z<t) — / Py (@, y)drdy = / Fx (@) fy (y)dedy

{z+y<z} {z+y<z}

t t—u
)\1)\2/ e M {/ e_’\zvdv} du
0 0

t
= )\1/ e*)‘lu(l—e*AQ(““))du
0

t
(1 —e Mt — )\16_>‘2t/ eP2=A)ugy,
0

[ —eM) p (e e, A # N,
N 1— (14 Mt)e ™, Al =Xy = A\
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b) Recall that independence implies that for all real ¢,
Mz (t) = E[e!?] = E[e'Xe!Y] = E[e!X]E[e!Y].

In the case of an exponential variable,

—+oo
Mx(t) = / e Muettdy = /\I\l_t, t < A1,
0

SO

Mz(t) = 25 52%, t<min(Ag, Ag).

c) We deduce from b) that if A\; = Ag, then Z is a gamma variable of parameters a = 2 and .
Solution 74 The mass function of X is
Pr(X =n)=p(1—-p)" ' n=12..,0<p<]l,
and its MGF is

> t
tn pe t
E = E = 1-— < 1.
€ p o] 1—et(1—p) |6( p)‘

n=1

The moments are well defined for values of p for which e?(1 — p)‘ < 1 or equivalently such that p > 0.
The first moment is M’ (0), i.e.,

t 11—
E(X) = pe + pet c'(1-p)

= 2 (i-p) _ 1
lfet(l—p) 1*6t(17p)‘t:0_MX(t)+MX(t) ‘ —

t=0 P P’

where we used the fact that Mx(0) = 1.
The second moment is given by the second derivative of Mx (t) evaluated at ¢ = 0 and is

E(XQ) _ d[Mx ()] _ dMx(t) dMx (t)?
t=0 P

dt - dt dt

1;:,+1 PN ()dMX(t)
t=0 t=0

—_ 2
p dt P2
t=0

D=

Solution 75 a) By direct calculation: for k € {0,1,...}:

Pr{Z =k} = Y, Pr{X=0LY=k-1}
= Y Pr{X=0Pr{Yy =k-1}

_ AL+ Al A (B0
= 6(1+2)210ﬁ (iz)

SF okl x el
=0 k I (k=D)!
—()\1+>\2) (A1+A2)’c

k!

*(A1+A2)

by the binomial theorem, so Z is Poissonian, of parameter A\; + Ay .
b) Remember that for all real ¢, independence of X and Y gives

My (t) = E[e*?] = E[e'*e'Y] = E[e™X]|E[e™Y]
and that -
= ey = MM —exp{A(ef - 1)

Therefore
M (t) = exp(a (e’ — 1)) exp(hale’ — 1)) = exp{(As + Az)(e! — 1)}

and we recognise this as the MGF of a Poisson variable of parameter A\ + As.
Solution 76 a) The variables X and Y are centred at 0, and € and X are independent, so
cov(X,Y) = E(XY) - E(X)E(Y) = E(XY) = E(eX?) = E(e)E(X?) = 0.

b) The vector (X,Y’) cannot be jointly Gaussian because X + Y isn’t Gaussian: X + Y takes the value
0 with probability 1/2. For a more formal argument, we can compute the joint MGF of (X,Y"), which is

E{exp(sX +tY)} = E([E{exp(sX + tY) | e}] = 1E{exp(sX + tX)}] + s E{exp(sX — tX)}],
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where € = +1 in the first summand and equals —1 in the second summand. Therefore
E{exp(sX +tY)} = S exp{(s+ t)%/2} + Lexp{(s — t)%/2},

and this is clearly not of the form exp{(s,t)u + (s,t)Q(s,¢)"/2} for some p and Q, which would be
necessary for the joint density to be Gaussian.
c¢) No, because Y is a function of X!

Solution 77 We use the convolution formula
o0
f22) = [ fx(@fr(z - )i,

here with fx(z) = fy(y) =1if 0 <z <1, and otherwise zero. We therefore have
fx@fy(z—x)=1, 0<z<1l,z—-1<z<z, fx(@)fy(z —x) = 0 otherwise.
There are several cases to consider:
e Ifz>20rz2<0,then {0<z<1}N{z—1<z<z}isempty and fz(z) =0.
e If0<z<lthen{0<z<1}n{zr—1<z<z}={0<z<z}and fz(z) =z
e If1<z<2then{0<z<I1}n{z—1<z<z}={z—1<z<1}and fz(z)=1-(2—1)=2—=2.

We find the required density.

Chapter 6

Solution 78 a) a = 2/6%.
b) By definition Fyy, (x) = Pr(maxi<;<, X; < x). So,

Fur, (z) = (/; aydy>n =a" <x22)n = (%)2".

Furthermore fy, () = dFy, (x)/dzx. So,

fua (@) = g™ ™, 0 <z <9,
and
6 2n+1
2n 2n 6 2n
=EBE(M,) = Ty = = 9
H = E(Mn) /O Tt T ey 1 2t
6 2n+2
2n 2n 6 n
=E(M?) = 220 pan—lg, - 20 _ 2
Hz = E(M,) /Oxe%x T2 ntl

c) We must show that for each € > 0, lim,,_,o, Pr(] M,, —0 |> €) = 0. But, by Chebyschov’s inequality,

Pr(| M, —0|>¢)

IN

LE{(M, —0)%)

1 2 2
= B —2M,0+6%)

02 n 4n
e \n+1 2n+1

1
e 2n+1)(n+1)

which gives the result.
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Solution 79 a) Since X is a positive random variable, by Markov’s inequality:

Pr{X >85} <E (&) =2 ~0,88

85

b) Knowing the second moment of X allows us to use Chebyshov’s inequality,

Pr{X > 85} = Pr{X2 > 852} < [LE(X?) = CHEX" _ 25475 - ) 78

We also have:

2

Pr{65 < X <85} = Pr{| X —E(X) [< 10} =1 - Pr{| X —E(X) [> 10} > 1 - & = 3/4.

c) Since the marks of each of the n students are independent variables,
X, =23 "X,
k=1
is also of expectation 75, and its variance is (n25)/n? = 25/n. Hence
Pr{| X, -EX,)|<5}=1-Pr{| X, —EX,)|>5} >1- B —n1.

25 n

with 10 students our probability is at least 0.9 .
d) Let’s see if it is pertinent to use the CLT. If it can be applied, we have:

X. —E(X ~ _ — -5 5
Pr{] X, —E(X,)|<5} ~Pr(-5< Z, <5)="Pr( o <Z< \/25?)7
where Z,, is normal and centred of variance 25/n and Z is standard normal. The minimum number of
students obtained this time is n = 3, quite a different result! With n = 10, we are not in an asymptotic
case and the CLT therefore doesn’t apply.

T

Solution 80 The number Y of sixes obtained in 120 throws follows a binomial distribution with n = 120
and p = 1/6, with mean p = np = 120 x 1/6 = 20 and variance 02 = np(1 —p) = 120 x 1/6 x 5/6 ~ 16.7.

By the CLT, we can approximate the binomial Y by X ~ AN(20,16.7). The required probability is
thus approximately (using the continuity correction)

. 15.5—u\ __ 15.5—20 ) _ ~
Pr(X < 15.5) = Pr (Z < 123=) — pr (Z < 1222 ) =Pr(Z < —1.1) ~ 0.135,

where Z ~ N(0,1).
Solution 81 The number of heads obtained, X, is a sum of 500 independent random Bernoulli variables

of parameter 1/2, so it is binomial with parameters n = 500 and p = 1/2. Its expectation and variance
are therefore y = np = 500 x % = 250 and o% = np(1 — p) = 500 x % X % = 125. The CLT gives

Pr(250 — 10 < X < 250 + 10) = Pr(240 < X < 260) ~ Pr (222 < 7 < 200-n)

ie.,
Pr(—0.894 < 7 <0.894) =2 x Pr(0 < Z < 0.894) = 2 x 0.314 = 0.628,
where Z ~ N(0,1).

Solution 82 Let X1,..., X509 denote the numbers, A1, ..., A5y their rounded versions and Uy, ..., Us
the corresponding errors. Thus Xy = A + Ug. The sum obtained by rounding is 22021 Ay and the exact

. x50 .
sum is Y.~ Xj, so the error is

50 50 50

k=1 k=1 k=1

The variable 220:1 Uy has zero expectation and variance 50 x 1/12 (by independence). We therefore
have, by application of the CLT:

.

Here Z is standard normal.

50

DU

k=1

3 3
> 3) ~ Pr <|Z| > M) =2xPr (Z > M) ~ 2{1 — ®(1.47)} ~ 0.142.
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Solution 83 Let T'= X7 + - -- + X199 denote the random variable for the lifespan of the system. Then
since T is a sum of many independent identically distributed random variables, the central limit theorem
implies that T has an approximate normal distribution of expectation 100 x 5 = 500 and variance
02 =100 x 25 = 2500 = 502. Hence

T — 500 - 525 — 500
50 50

Pr(T > 525) = Pr < ) ~Pr(Z>05)=1-®(0.5) ~0.31,

where Z ~ N(0,1).

Solution 84 In this problem, a first light-bulb of lifetime X; is put in place, then, when this one is at
the end of its life, it is replaced by another light-bulb of lifetime X5, etc.

Let X4 denote the total lifetime of the light-bulbs of type A. Since 40 > 25 and the bulbs should
be independent, we can apply the central limit theorem, which tells us that the sum X4 ~ N(ua,o0?%),
where pa = 40/\4 = 4000 [hours] and o2 = 40/\% = 400000 [hours?).

Similarly, with Xp the total lifetime of the B-type light-bulbs, X5 ~ N(up = 3000, 0% = 150000).

Using properties of the normal distribution, the total lifetime of all the light-bulbs, X = X4 + Xp is
approximately a normal variable of mean y1 = p4 +pp = 7000 hours and variance 0% = 0% +0% = 550000
hours?. Having obtained the distribution of X we can now calculate our probability to be

6500 — 7000

Pr(X >6500) = 1—-Pr(X <6500)=1-¢
&=z ) X< ) <\/550000

) =1 —®(—0.67) = 0.75.
Solution 85 a) Since Y =In X,

1

EY) = / Inrdr =rlnz —z|j = -1,

0
and

1

var(Y) =E (Y?) —E(Y)? = [/ (lnz)de} —1=z(lnz)* - 2rlnz +2z|) —1=1.
0
b) We observe that the function In is strictly increasing and therefore

Pr(Z <107 =Pr(InZ < —401n10),

and that, if we set Y; = In X;, we obtain
100

InZ = ZY
=1

that is to say In Z is the sum of 100 independent variables with the same distribution, and whose ex-

pectation and variance were obtained in a). We use the CLT and replace In Z by W ~ N (—100,100),

giving

W — E(W) < —401n10 + 100
var(W) 10

Pr(Z <107%°) ~Pr(W < —401n10) = Pr < ) ~ ®(0.790) ~ 0.78.

Solution 86 Let A, B, C denote the random variables for the calculation times of each of the three
sections.

a) In an obvious notation, cov(A, C') = corr(A, C)oaoc = 0.2 X 2.5 x 1.3 = 0.65.

b) We have
E(T)=E(A+ B+ C)=E(A)+E(B)+E(C)=5.5+34+4.5 =134,

and

var(T) = var(A+B+C)
= var(A+ C) + var(B) (since B is independent of A and C)
= var(A) + var(C) + 2cov(A, C) + var(B)
= 257+ 1.3° +2x0.65 + 2.6
= 16.
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c¢) The calculation time of section B is the sum of 100 independent and identically distributed calculation
times, so the central limit theorem implies that the distribution of B is approximately normal, and
B ~ N (3.4,6.76).

d) Since T is a sum of normal variables, it is approximately normal, with T ~ N (13.4,16). Thus

T-134 _10-134
V16— V16

Pr(T < 10) = Pr ( ) = ®(—0.85) ~ 0.20,

and
T—-134 S 20 —13.4

Ve T V16

Solution 87 We note that X ~ A(y, u/n) using the central limit theorem, and apply the delta method
with g(u) = 2v/u, giving ¢'(u) = u~'/2. Therefore

Pr(T > 20) = Pr ( ) =1— ®(1.65) ~ 0.05.

Y =g(X) ~ N{g(n),g'(n)?* x p/n} = N(2y/m,1/n), n— oc.

Thus the variance of Y does not depend on u, at least to this order of approximation, and therefore the
square root transformation is variance-stabilizing for the Poisson distribution.

Solution 88 Using the results on linear combinations of normal variables, X ~ N(u,02/n), and if we
apply the delta method with g(u) = 1/u, we have ¢'(u) = —1/u?, provided u # 0. Therefore

Y =g(X) ~ N{g(n),g' (1) x o?/n} = N{1/p, 0%/ (nu*)}, n — oo,

provided that p # 0. Note that if X has units of length (say), then its mean and its variance have units
of length and length?, so 1/X has units of 1/length and its variance has units of 1/length?, agreeing with
the distribution here.

If 4 = 0, then for all n, we have Pr(X < 0) = Pr(X > 0) = 1/2, so the distribution of ¥ will
concentrate at oo with equal probabilities as n — oo.

Chapter 7

Solution 89 The median is a location measure in the same way as the average, as it finds a typical or
central value that best describes the data. The median is called robust because it is very little influenced
by a single outlier (or even a few outliers), unlike the average.

Solution 90 Only b): All the observations are equal, because s> = (n — 1)71 Y (z; — 7)? = 0.

The only way we can observe s? = 0 is if (x; —T) = 0 for all j, and this means that 2; = --- =z, = 7.
There is no implication here that n is small or that £ = 0, and if the data were normally distributed,
then it would be impossible to observe two identical values, because the normal density is continuous.

Solution 91 The empirical covariance measures the association of the variables X and Y but is un-
bounded. We can give as counter-example to ¢) the observations (z1,y1) = (1,—1) and (z2,y2) = (1,1),
for which the covariance is nil. Unlike the correlation, the covariance depends on the units of X and Y.

Solution 92 The empirical correlation is dimensionless, measures the (linear) association between the
variables X and Y, and lies between —1 and 1, so b) and c) are true. A counter-example to d) is the
observations (z1,y1) = (1, —1) and (z2,y2) = (1,1), for which the correlation is zero.

Solution 93 The empirical correlation is defined as

_ 1 Yo (@ —T)(yi — )
n=1/3 (@ —T)2 3 (v — 9)?
where T and ¥y are the averages of x1,...,x, and y1,...,y,. If rxy = —=, the points line on a straight

line of positive/negative slope. If rxy = 0 the cloud of points shows no linear relation: there may be no
relation, or there may be a nonlinear relation.

Xy

Solution 94 (i) If the empirical correlation is 1, then the points (x;,y;) are perfectly aligned and the
corresponding line has a strictly positive slope. Possible data configurations are

22



15

10
I

(ii) If the empirical correlation is —0.5, then the points (x;,y;) form a cloud that has a rough negative

trend. Possible data configurations are

15

10
I

(iii) If the empirical correlation is 0, then the points (z;,y;) form a cloud that doesn’t exhibit a linear

trend. Possible data configurations are
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Chapter 8

15
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Solution 95 The mean and variance are respectively a/X and « /A2, so the estimators are the solutions
to the equations

2
1

) o

n
« — _ o
*:X:TL1§ va 1
Jj=1 J

n
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ie.,

Solution 96 (a) Since X ~ AN(u,0?), we have
E(Y") = E(e"X) = Mx(r) = exp(rp + r26%/2), r€R,

which gives the stated equations after a little work with Mx (1) and Mx(2).
(b) The moment estimators solve the equations

Y=¢¥, n! Z(YJ ~Y)? = ezw(e"2 -1
j=1

simultaneously, so they are (after a little algebra)

n

¥ =1log(Y), &%=1log |1+1log{n! Z(YJ Y)Y

j=1
Solution 97 The likelihood is
- 27002 e O XL v T 2, 0>,
L) = [[fow) = { 0 b < iz v

and this equals
L(6) = Cexp {GZ% +3n10g9} . 6>0,
i=1
where C does not depend on the parameter 6, The function 6 — £() = 3nlogf — 0 ;" | y; is concave

and the equation d¢(0)/df = 0 has exactly one root, so £(6) reaches its maximum at

3n
ZZ‘L:1 Yi ’

é\:
which is the maximum likelihood estimator of 6.

Solution 98 The likelihood is

Zi z1++zn
L(O) = He*ea— — e GOTTTT

] z;! z1!lzp!
=1

S0
L(0) xexp{(z1+ -+ 2zn)log20 —2nb}, 6 >0,

where the constant of proportionality does not depend on the parameter 8. The function L(-) reaches its
maximum at "
0 — i %

=7z/2
o = 2%

which is the maximum likelihood estimator of 6.
Solution 99 The density of the ¢/(0,b) distribution is
f)y=b"1, 0<ax<bh.

Since the observations are independent, the likelihood based on a random sample that has taken values
T1,...,Tpn 1S

L(b):f(xl)xxf(xn):b_", 0<my,...,2n <0,
which reaches its maximum when b takes the smallest possible value for which L(b) > 0, i.e., when

b = maxz;. The maximum likelihood estimate of b is therefore b = max} ; x;, and the corresponding
estimator is maxj_; X;.
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Solution 100 (a) With U, denoting the event ‘X; ~ U(0,a)’, and likewise for Uy, we have

0, x <0,
Fx,(z) = (Pr(X; <z|U,)Pr(U,)+Pr(Xy <z |Up)Pr(U;), 0<x<b,

1, x >0,

0, z <0,

p%—i_(l_p)%) OS'ISGH
p+(17p)%7 CLS.TSZ),
1, x>0,

and the corresponding density function is

0, z <0,
B+(1;P)7 0<z<a,
x)=4( % P
fx,(z) (1;p), a<xz<b,
0, x >b.

(b) The variables being supposed independent, each of the X; will belong to the interval [0, a] with
probability Fx,(a). Thus N, ~ B{n,p = p+ (1 — p)a/b}, with expectation E(N,) = np and variance
var(N,) = np(1 — p).

(¢) The likelihood for p is

p 1_ N, 1_p n—N,
L —_— —_— 0<p<1
o= (20 20) " (1) ogpen

and differentiation with respect to p yields

0log L(p) b—a n— N,
op  pb+(l-pla  1-p’
thus giving
. Nygb—na
b= n(b—a)’

Solution 101 Let Z; = X; — 0, so that E(Z;) = 0, var(Z;) = (b — a)?/12, and the Z; are independent
and identically dlstrlbuted Note that E(X) = 6, and that

o= {20 - (15a) < hSae ke

i=1 i#£]

Since E(Z;) = 0, we have that E(Z7) = var(Z;) and E(Z;Z;) = 0 if i # j, by independence, so the mean
square error of X as an estimator of  is

E{(X 9) } =3 Zvar fvar(Zl) (b1_2;z>2.

Solution 102 (a) We have E(T) = 6/2 and var(T) = 62/(12n), so E(8;) = 6 and var(8;) = 62/(3n) — 0
as n — o0o.

(b) Now Pr(M,, <m)=Pr(Ty <m,...,T, <m), so

0, <0,
Pr(M, <) =4 (2/0)", € 0,0],
1, x>0,

from which the density nz"~!/0" for 0 < z < 0 is easily obtained. Integration then gives E(M,) =
nf/(n+ 1) and E(M2) = nb?/(n + 2), so var(M,,) = n6?/{(n + 2)(n + 1)?}.
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(c) We take 65 = (n + 1)M,,/n, which gives

~

E(fy) =0, var(6y) = (n+ 1)>var(M,)/n? = 60%/{n(n+2)} -0, n— oo.

(d) Since var(f,) < var(6;) for n > 10 and both estimators are unbiased, we should use f whenever

n > 10 and othe/gwise use 6.
(e) M,, and 05 converge towards 6 in probability because, for any € > 0 and as n — oo,

Pr(|M,, — 6] >¢) =Pr(0 — M, >¢) = (956) — 0,

and

-~ n n n n
Pr(|65— =P M, — ——0 _— = Pr< M, — (0 — Pri{ M _—
v(1B2—b] > ©) (\ e ‘>n+1e) { A e>}+ { n>n+1<9+e>}%o,

as can easily be verified using the distribution function of M,,.

Solution 103 The proportion of the population who gave a false answer is estimated as 12/120 = 0.1.
Let X be the random variable representing the number of wrong answers, that is X ~ Bin(120,0.1)
(assuming that the answers were independent). We can apply the central limit theorem to deduce a
confidence interval with 1 — a = 0.95, and 0? = np(1 — p). We want the quantile 21_q/2 satisfying

Pr(Z < 2) = 1 — /2 = 0975, i.e., 20975 = 1.96. Thus the limits are 0.1 + 1.96 x 4/ 22XE=00 —
[0.046,0.154].

Solution 104 (a) With n measurements with average T, the confidence interval at level (1 —«a) = 0.9
for pu has limits T + 021_4/2//n, s0 its length is 202 _, /2/y/n. To halve its length, we must quadruple
n to equal 100, that is, take 75 further measurements.

(b) Let @ = 0.1 and o/ = 0.05. To obtain a 95% confidence interval of the same length as the initial
one, we need n’ measurements such that v/n/ ~ \/n x Z1—arj2/%1—aj2 = 5.958, ie., n’ = 35.5, which
amounts to 11 extra measurements.

Solution 105 a) For a normal sample of size n with unknown mean and variance, a confidence interval
for the mean is based on the Student ¢ distribution with v = n—1 degrees of freedom. Thus v = 5 for the
xs and v = 11 for the ys, and a standard computation gives [47.44,50.96] as the 95% confidence interval
for p1, and [47.29,49.51] as that for pus.

b) This time, o is known, and we use the normal distribution. Again this is a standard computa-
tion, this time using the fact that \f(X 1) ~ N(0,1) to arrive at the interval [47.94,50.47]. Similar
computations for the second sample lead to [47.42,49.38].

¢) X — Y is a linear combination of normal variables, so it is normal, of expectation j; — po and
variance o7 /6 + 03/12 = 2/3. The 90% conﬁdence interval for p; — uo equals [(49.2 — 48.4) — 1.6445 x
2/3,(49.2 — 484)+16445><\/7 [—0.54,2.14].

Solution 106 Let X denote the number of coffees drunk annually by any given employee. From the
wording, X ~ N(u,0?), with both parameters unknown. The data give T = 500 and s? = 100%. A 95%
confidence interval for u is

[T —th1(1—a/2)s/\/n, T+t 1(1 —a/2)s/\/n],

where n = 300 and ¢, _1(1 — «/2) is the (1 — a/2)-quantile of the #,,_; distribution, here equal to z;_4 /2
since n = 300 is big, and o = 0.05. This gives [488.68,511.32] coffees as the required confidence interval
for p.

A 95% confidence interval for the variance o2 of X is given by

(n—1)s2 (n—1)s>
Xn-1(1=/2)7 x5 1 (/2)

where x2_,(a/2) is the a/2-quantile of the x2_; distribution at (n — 1) degrees of freedom. This gives
[8572.49, 11818.65] coffees?.
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Solution 107 a) The average is T = 150.3 grams and the sample standard deviation is s = 33.2 grams.
Supposing that the weight of the apples is normally distributed, the bounds of a 90% confidence
interval can be calculated as follows: 150.3 4 t9(0.95) x 33.2/4/10, where t¢(0.95) = 1.833, giving
[131.0,169.5] grams.

b) A 90% confidence interval covers the true average weight of an apple 9 times out of 10, when computed
for many independent samples of apples.

Solution 108 a) We have:

T o= L (9% 2001+ 21 x 2003 + -+ + 3 x 2021) ~ 2010.73,
s° = 555{9 x (2001 — 2010.73)* 4 21 x (2003 — 2010.73)* + - - - + 3 x (2023 — 2010.73)*} ~ 12.81.

Clearly we can take i = T and & = V/s2.

b) Let Z ~ N(0,1), so that Pr{Z > 1.96} ~ 0.025, Pr{Z > 2.58} ~ 0.005. Since the number of pots
is very large and because the standard normal distribution is the limiting case of the Student for large
degrees of freedom, we use a normal confidence interval, rather than a Student ¢ interval. Thus a 95%

confidence interval for p is [fi — 1;’1%? 0+ 1;’1%?] ~ [2010.51,2010.95] grams.

For the 99% confidence interval we replace 1.96 by 2.58 and obtain [2010.44,2011.02] grams.

Solution 109 a) Since n = 1000 is quite large, we can suppose that the average salary follows a normal
distribution. A 90% confidence interval is therefore (with oo = 0.1)

[f - Zlfa/QS/\/ﬁ, z + Zlfoé/QS/\/ﬁ] = [47375, 48624] CHF.

b) This comes down to testing the hypothesis H: “the average salary is 50000 CHF”. From the
previous question, we can reject H at level 90% (because 50000 is not in the 90% confidence interval), so
the statement is not reasonable. The true average seems to be lower than 50000.

Solution 110 a) We have T = 9 minutes and s? = 6.25 minutes?.

b) If X is the random variable for the conversation time, we seek Pr(X > 10). If we suppose that
X ~ N (z,s%), which seems reasonable since T and s? are estimates of E(X;) and var(X;) and we have
assumed that the data are normal, and write X = (X —%)/s, the required probability is Pr(X >
0.4) = 1 — ©(0.4) = 0.345.

c¢) The null hypothesis Hy specifies the mean but not the variance, and under it T = (X —8)/1/52/9 ~ ts.
Under the alternative hypothesis E(X) < 8, so negative values of T would be evidence against Hy;
thus we seek to compute pons = Pro(T" < tobs), small values of which will suggest that Hy is false. The
observed value of T'is t = (9 — 8)/4/6.25/9 = 1.2, and p = Pr(T < 1.2) = 0.868. Since this exceeds

0.05, we accept Hy. If anything, the data suggest that the average length of a call exceeds 8 minutes.

Solution 111 An optimal rejection region of level « is calculated using the Neyman—Pearson lemma.
Write 7 = 37, y;, and let fo(y) = [[j_; e ¥ and fi(y) = [Tj_; Ae™** denote the densities of the
sample under the null and alternative hypotheses. Then

f1<y) _ yn,—7r(1=X)
foly) e ’

which is increasing in r. Therefore we set

ya: y17"‘7yn€R+:Zyj§ro¢ )
J=1
and we want to find r, such that o = Pro(Y € Vo) = Pro(R < 7). Thus r, is the a quantile of the

distribution of R = ", Y, computed under the null hypothesis that Yi,...,Y, id exp(1). The sum
of n standard independent exponential variables follows a I'(n,1) distribution (to be checked via the
moment generating function, if you are unsure of this), giving r, = gr ., the a'® quantile of a I'(n, 1)
distribution. We reject Hy in favour of H; at level « if we observe the event R > r,.
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Chapter 9

Solution 112 a) The cumulative distribution function of R is

0, r <0,
Pr(R<r)={ 5 = (£)2, 0<r<r,
1, r>T,

so the density function equals zero outside the interval [0, 7] and f(r) = (2r)/7? inside this interval.

b) Since the variables Ry, ..., R, are independent, the likelihood based on data r1,...,r, is
" 0, 0<7<m,
1) = 11000 ={ B ryyrn, =5

i=1

where m = max(ry,...,7,), and L reaches its maximum at 7 = m. Let M = max(Ry,...,R,). Since
Pr(7<r)=Pr(M <r)=Pr(R <7)" = (r/7)?" (0 <7 < 1), T has density

2n
f(r) = TTRHH, 0<r<r,
and the bias of T is
EF) —r=2% [ rxrldr—1= 22117—7':—7'/(2”4'1);

0

we see that 7 is biased downwards. An unbiased estimator of 7 is 7 = (2n + 1)M/(2n).

Solution 113 (a) Let x1,...,x400 > 0 be the sample. The likelihood is

400 400 o 400
L(k) = ka(xl) = k800 <H ch) e FXi=1% o exp <800 log k — k‘Z%) , k>0,
i=1 i=1

i=1

400

where the constant of proportionality does not depend on k, and the function k — 800loghk — k>, x;

reaches its maximum at k = 800/2?22 x; =2/ =1

(b) The log-likelihood is
400

o(k) :80010gk7k2xi, k>0,
=1

plus a constant, and

400

O(k) = 800/k—> w; ("(k)=—800/k
=1

so the observed information at k equals .J (%) =800 /EQ = 800. An approximate confidence interval for k
at level (1 —a) = 95% is [k — J(k) /%21 o2, k + J(k) /221 _4 0] = [0.93,1.07] (1000 maravedis) .

(c) Since the estimated density is xze™*, for > 0, the proportion of families saving less than 1000
maravedis per month can be estimated by

1
/ xze Tdr =1-—2/e ~0.26.
0

Chapter 10

Solution 114 (a) From the wording, the prior distribution of p is
Pr(p = 0.05) = Pr(p = 0.1) = 0.5.

For fixed p, X follows a binomial distribution of parameters n = 20 and p:

n _
Pr(X =k |p) = (k)pk(l—p)” ko k=0,...,n
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(b) From the total probability formula,
Pr(X=3) = Pr(X=3|p=0.05)Pr(p=0.05)+Pr(X=3|p=0.1)Pr(p=0.1)
= 0.0596 x 0.5 4 0.1901 x 0.5 = 0.1249.

(c) Among the 20 components, 3 components have been detected as defective. The posterior proba-
bilities of p = 0.05 and p = 0.1 are, from Bayes’ theorem,

Pr(X =3 |p=0.05)Pr(p=0.05)  0.0596 x 0.5

Pr(p=005|X =3) = P X =3 = g0 = 0-2386,
Pr(X =3|p=0.1)Pr(p=0.1) 0.1901 x 0.5
Pr(p=01|X=3) = = =0.7614.
Hp=011X=3) Pr(X = 3) 0.1249 076

A posteriori it is three times more likely that 10% of the components are defective, rather than 5%.
(d) The posterior expectation of p is

E(p| X =3)=0.05x Pr(p=0.05| X =3)+0.1 x Pr(p = 0.1 | X = 3) = 0.0881.

The posterior variance of p is

var(p | X = 3) E(p® | X =3)-E(p| X =3)?
0.052 x Pr(p=10.05| X =3)+0.1>xPr(p=0.1| X =3) — {E(p | X =3)}?

0.0004.

(e) The posterior mean of p agrees exactly with neither the employee (who states that p = 0.05),
nor with the inspector (who estimates that p = 0.1), but the value given by the inspector is nearer the
posterior mean.

Solution 115 Let the total number of bugs be N, let the number of bugs found thus far be X, and
let M = N — X. Since it is possible that there might be no bugs, we represent N using the geometric
distribution

Pr(N=n|0)=01-0)", n=0,1,..., 0<6<1,

and we take X | {N =n,0} ~ B(n,0), and 7(8) =1 for 0 < § < 1. We want to find
Pe(M=m|X=z)=Pr(N=m+z|X=2), m=0,1,...,
which can be written as
Pr(N=m+z,X =2z) folPr(X:x |N=m+z,0)Pr(N=m+2a | 0)n(0)df

PriX=2) ¥ [y Pr(X =a|N=m+z,0)Pr(N =m+a|0)r(6)do

The numerator integral here is

1 1
/ (m“”) 07 (1—0)™ "2 % 9(1—-0)™+ " x1df = (m”)/ 0=t (1-0)*"F d = (m+x>B(x+2,2m+x+l)7
0 0

x T x
where B(-,-) denotes the beta function, so the integral equals

(m+2)! (z + D!(2m + z)!
zlm!  (2m + 2z 4 2)!

(m+ x)!(2m + x)!
m!(2m + 2z + 2)!’

=(z+1)

z,m=0,1,...

Thus
_ _ (mA2)(2m 4 2)!/{m!(2m 4 22 4-2)!} B
PrM=m|X =2) = s 0 o+ ot 2o v 2y T 0 b
If x = 0, this simplifies to
Pr(M = m | X = 0) = 1/{(2m +1)(2m + 2)} 01,

Yoo @+ 1)2r+2))

note that the lower sum is finite, because

> 1
0 — <
< ;J @D t+2) - &

<



so Pr(M =m | X = 0) gives a well-defined distribution (the probabilities are all positive and their sum
equals unity). Now

2 m—om/{(2m +1)(2m + 2)}
Sto A@r+1)(2r +2)}

We have just seen that the lower sum here is finite, but

= m 1| & 2m + 1 = 1
2. Cm+1)(2m + 2) :2{2 Cm+1)(2m+2) Z:: (2m+1)(2m+2)}’

m=0 m=0 m=0

E(M | X =0) =

and first sum here equals % S o(m+1)"! = 400, while the second is finite. So, as we might expect,
E(M | X =0) = 4o0: even if we have found none so far, we can expect there to be an infinite number
of bugs in the operating system.

Solution 116 (a) The posterior density is
f(t16)g(6)
f@®)

which we recognise as being proportional to the gamma density with shape parameter 2 and scale pa-
rameter A +t, i.e.,

Ot = o f(t]0)g(0) = Me IO+ o ge=0O+D g > 0,

fO1t)=A+1)%0e 0 9> 0.
(b) The posterior density function of 6 conditional on t1,...,t, is

n

f(e ‘ t17"'7tn) X f<t17"'7tn ‘ 9)9(9) = g(e)Hf(t’L | 9) = )‘Hne_e(A-i_Z?:l ti)7 0> Oa

i=1

d n
de{nlog@—@ (A—}—;ti)} =0,

n
A+X0

which is maximised when

so the MAP estimate is R
Orap =
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