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Section 0

Introduction
This course is about probability theory: the mathematical framework for formalising our

questions about random phenomena, and their mathematical study.
When we want to describe a random phenomena in the real world, we build a mathematical

model. This is itself an interesting process and a good model involves lots of well-chosen
simplifications and righteous choices - e.g. to model a coin toss, we usually discard the
possibility of it landing on the edge, or without further knowledge we consider the heads
and tails equiprobable, although that may not be the case for example already because of
different weight distributions. But this all is not the topic of this course.

In this course we will study the general mathematical framework and formulation of such
models and then discuss the mathematical tools necessary and useful to study such models.
Hopefully we also have some time to discuss some interesting models.
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Section 1

Basic framework
In this chapter we discuss some basic but important notions of probability theory:

• Probability space
• Random variables
• Independence

1.1 Probability space
Our first aim is to motivate the notion of a probability space or a probabilistic model. To

do this let us consider two examples:
(1) A random number with values in {1, 2, . . . , 12} e.g. something that comes from a

lottery.
(2) Describing the weather in Lausanne the day after.

In describing these two random phenomena we will still use everyday vocabulary / intuitions.
Thereafter we will give the mathematical definitions that will fix the vocabulary for the rest
of the course.

(1) Random number. To describe a random number mathematically, we basically need
three inputs:

• The set of all possible outcomes: in this case Ω = {1, 2, 3, . . . , 12}
• The collection of yes / no questions that we can answer about the actual outcome,
i.e. this random number. For example:
– Is this number equal to 3?
– Is this number even?
– Is this number smaller than 4?

To each of these questions we put in correspondence the subset of outcomes that
corresponds to the answer yes: {3}, {2, 4, 6, 8, 10, 12} or {1, 2, 3} respectively. We
call each such subset an event.
• Finally, to each event E ⊆ Ω we want to assign a numerical value P(E) ∈ [0, 1] that
we call the probability. This should correspond to the fraction of times an event
happens if the random number is given to us many times, e.g. if the lottery is played
many times. 2

Here the set of possible outcomes was easy and directly given by the problem. Also it is
natural to assume that each subset E ⊆ Ω is an event - or in other words that for each E we
can ask the question: is the number in E? This means that the we can take the collection
of events to correspond to all subsets of Ω.

Determining the probability really depends on what we want to model - e.g. if we are
trying to model the lottery, we may assume that all numbers are equally likely and then we

2In fact, one uses probabilistic models also to model phenomena that only happens once. In that case
probability measures somehow our degree of belief.
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rediscover the model from high-school: we set P(E) = |E|/|Ω|. However, if we wanted to
describe the sum of two dice, we would need to choose the numbers P(E) very differently! 3

Now, if we want our model to correspond to the intuitive notion of probability and to
predict the fraction of repeated experiments, then these choices are not quite free - we
need to add some constraints. E.g. we cannot put in an arbitrary function P: indeed, if
we have two events E1 ⊆ E2 then we should have P(E1) ≤ P(E2) as every time E1 hap-
pens, also E2 happens. We should also have P(Ω) = 1 as something always happens and
P(E ∪F ) = P(E) +P(F ) if E and F are disjoint (why?). Of course not all these constraints
are distinct - some might imply others and when giving the definition of a probability space
below we will purify and choose only some conditions that will then mathematically imply
all the others.

(2) Weather in Lausanne the day after. We would again want to make the three deci-
sions, but here the task is already harder at the very first step. What should be the state
space? A natural state space could probably be all possible microscopic states of the at-
mosphere up to 20km of height over Lausanne...but here we of course have many arbitrary
choices - why 20 km, how wide should we look over Leman etc? And in any case, any natural
state would be impossibly complicated!

Luckily, we do not actually need to worry about it - we only have to assign probabilities
to all the events in the collection of events. And we have some freedom in choosing this
collection events - it could be determined by our possibility to measure the states, e.g. we
are able to measure the temperature up to some precision, or the density of CO2 or water
molecules to some precision and this determines some subsets of the state space.

However, as with the probability function, also for the collection of events there are some
natural consistency conditions: we would assume that if one can observe if event E happened,
we should be also able to measure if its complement Ec happened. Or if we are able to say
if E happened or if F happened, we should be able to say if one of the two happened - i.e.
E ∪ F should also be an event. And in fact it comes out that this is all we need!

Naturally, setting up probabilities for this model is also horribly complicated - there are
no natural symmetry assumptions like the one we used for the uniform distribution. Also,
even the best physicist in the world will not be able to describe the natural probability
distribution of all microscopic states of the atmosphere, especially as it will heavily depend
on what is happening just before! Thus, our only choice basically is to try to somehow use the
combination of our knowledge about atmospheric processes together with our observations
from history to set up some estimates for the model; and then naturally we will try to
improve it with every next day. Luckily, this difficult task is not up to us but rather the
office of meteo and the statisticians!

Remark 1.1. Finally, before giving the mathematical definitions, let us stress again that all
three components of the model - the sample space, the set of events and their probabilities -
are inputs that we choose to build our model. When trying to model a real world phenomena
we usually make simplifications for each of these choices. For example, for the coin toss we
use only two outcomes: heads and tails, although theoretically edge is also possible. Also, we
usually set probabilities to be a half, although that is not exactly true either.

3See Exercise sheet 1.
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1.2 Mathematical definition of a probability space
We are now ready to use our mathematical filter and give a mathematical definition of a

probability space. In fact, we first use the mathematical purifier to come up with a definition
in the restricted setting where Ω is a finite set, and then generalize it further.

Indeed, the discussions above lead us directly to:

Definition 1.2 (Elementary probability space, Kolmogorov 1933 ). An elementary proba-
bility space is a triple (Ω,F ,P), where

• Ω is a finite set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2,∈ F , then also A1 ∪ A2 ∈ F .

F is called the collection of events and any A ∈ F is called an event.
• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2 ∈ F are pairwise disjoint, then

P(A1 ∪ A2) = P(A1) + P(A2).

This function P is called the probability

Notice that some properties discussed above, like the fact that for events E1 ⊆ E2, we
have P(E1) ≤ P(E2), follow directly from the definition.4

Now, most phenomena in the real world can be described by finite sets just because we
are able to measure things only to a finite level of precision. However, like the notion of
a continuous or differentiable function helps to simplify our mathematical descriptions of
reality and thus improve our understanding, continuous probability spaces also make the
mathematical descriptions neater, simpler and thereby also make it easier to understand and
study the underlying random phenomena.

Some natural examples where infinite sample spaces come in: an uniform point on a line
segment e.g. stemming from breaking a stick into several pieces; the position on the street
where the first raindrop of the day falls; or the space of all infinite sequences of coin tosses.
In all these cases the mathematically natural state space is even uncountable. Countably
infinite state spaces can also come up: for example if we want to model the first moment
that a repeated coin toss comes up heads, the value might be 1, 2, 3 or with very very small
probability also 1010, so a natural state space would contain all natural numbers.

So let us state the general definition:

Definition 1.3 (Probability space, Kolmogorov 1933 ). A probability space is a triple
(Ω,F ,P), where

• Ω is a set, called the state or sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called the collection of events or a σ-algebra and any A ∈ F is called an event.
4See Exercise sheet 1.
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• And finally, we have a function P : F → [0, 1] satisfying P(Ω) = 1 and additivity for
disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

P(
⋃
n≥1

An) =
∑
n≥1

P(An).

This function P is called the probability

Notice the only differences are 1) we do not assume Ω to be finite 2) we assume that
the set of events is stable under countable unions 3) we assume also the additivity of the
probability under countable unions.

Exercise 1.1. Show that each elementary probability space is a probability space.

In fact probability spaces are an example of a general notion of measure spaces - probability
spaces are just measure spaces with total mass equal to 1.

Definition 1.4 (Measure space, Borel 1898, Lebesgue 1901-1903). A measure space is a
triple (Ω,F , µ), where

• Ω is a set, called the sample space or the universe.
• F is a set of subsets of Ω, satisfying:

– ∅ ∈ F ;
– if A ∈ F , then also Ac ∈ F ;
– If A1, A2, · · · ∈ F , then also

⋃
n≥1An ∈ F .

F is called a σ-algebra and any A ∈ F is called a measurable set.
• And finally, we have a function µ : F → [0,∞] satisfying µ(∅) = 0 and countable
additivity for disjoint sets: if A1, A2, · · · ∈ F are pairwise disjoint,

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

This function µ is called a measure. If µ(Ω) <∞, we call µ a finite measure.

Geometrically we interpret:
• Ω as our space of points
• F as the collection of subsets for which our notion of volume can be defined
• µ our notion of volume: it gives each measurable set its volume.

It is important to make this link to measure theory as many properties of probability spaces
directly come from there. Yet it is also good to keep in mind that probability theory is not
just measure theory - as M. Kac has put it well, ’Probability is measure theory with a soul’
and we adhere to this philosophical remark.

Remark 1.5. You should compare the definition of a probability space / measure space with
the definition of a topological space: there also we use a collection of subsets with certain
properties to attach structure to the set. A question you should ask is: why do we use exactly
countable unions and intersections for the events, and not finite or arbitrary?

1.3 Some basic properties of probability spaces
We start by a few small remarks about the definition of a probability space:
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Remark 1.6. It is worth considering why ask for countable stability of the σ-algebra or
countable additivity of the probability measure. Whereas this is more a meta-mathematical
question, it is good to keep it in mind throughout the course. Let us here just offer two simple
observations.

First, countable sums naturally come up when we take limits of finite sums. In fact, count-
able additivity can be seen to be equivalent to certain form of continuity for the probability
measure (see below).

Second, allowing for arbitrary unions leads easily to power-sets, and sums of uncountably
many positive terms cannot be finite (see the exercise sheet).

Exercise 1.2. Show that the countable additivity in the axioms of a probability space can
be replaced with finite additivity plus the following statement: for any decreasing sequence of
events E1 ⊇ E2 ⊇ E3 . . . we have that P(∩ni=1Ei)→ 0 as n→∞.
? Does this hold in a general measure space?

Also we would like to remark another setting that explains well the usefulness of σ-algebras:

Remark 1.7. Often in real life we only obtain information about the world step by step,
and thus if we want to keep on working on the same probability space (which is helpful as
then P will only need to be extended not redefined), we can consider a sequence of σ-algebras
F1 ⊆ F2 ⊆ F3 . . . called a filtration - each day we can ask some more yes/no questions
because we already for example know what happened on the previous day and maybe also
have learned something new. All possible information is contained in the power set P(Ω).

Probability spaces are usually classified in two types:

Definition 1.8 (Discrete and continuous probability spaces). Probability spaces (Ω,F ,P)
with a countable sample space Ω are called discrete probability spaces and those with an
uncountable sample space are called continuous probability spaces.

In this course we will mainly work with discrete probability spaces, as they are technically
easier to deal with. However, continuous probability spaces come up naturally and we won’t
be able to fully avoid them either.

Their technical difference can be summoned in the following proposition, whose non-
examinable proof will be left for enthusiasts.

Proposition 1.9. Let Ω be countable and F a σ−algebra on Ω. Then one can find disjoint
events E1, E2, · · · ∈ F such that for every E ∈ F we can express E = ∪i∈IEEi.

Essentially, this says that for every discrete probability space it suffices to determine P(Ei)
for a countable collection of disjoint sets Ei, and thereafter for every other set E we can use
countable additivity to extend P. Notice that this means it is first easy to check whether
a given P satisfies all the axioms and even more importantly it is easy to check when two
probability measures are equal.

For continuous probability spaces this does not necessarily hold - the useful σ-algebras
are usually more complicated. To examplify why one doesn’t want to necessarily use the
power-set consider the following proposition, whose proof is in the appendix and relies on
the axiom of choice:

Proposition 1.10. There is no probability measure P on ([0, 1],P([0, 1])) that is invariant
under shifts, i.e. such that for any A ∈ P([0, 1]), α ∈ [0, 1), we have that P(A+α mod 1) =
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P(A), where here we denote A + α mod 1 := {a + α mod 1 : a ∈ A}, the set obtained by
shifting A by α, modulo 1.

In fact, it comes out that the only way to remedy this situation is to make the relevant
σ−algebra smaller. We would still want to be able to answer yes or no to questions like: is
my random number equal to {x} or is it in an interval (a, b)? Thanks to the fact that we
have only countable additivity, this does not imply that our σ-algebra would need to be the
power-set. And thanks to the properties of the σ−algebras, we can always construct at least
some σ−algebra containing all our favourite sets - see the exercise sheet.

Let us now state some immediate consequences of the definitions about the σ−algebras
and the probability measures:

Lemma 1.11 (Stability of the σ − algebra). Consider a set Ω with a σ-algebra F .
(1) If A1, A2, . . . ,∈ F , then also

⋂
n≥1An ∈ F .

(2) Then also Ω ∈ F and if A,B ∈ F , then also A \B ∈ F .
(3) For any n ≥ 1, if A1, . . . , An ∈ F , then also A1∪· · ·∪An ∈ F and A1∩· · ·∩An ∈ F .

Proof of Lemma 1.11. By de Morgan’s laws for any sets (Ai)i∈I , we have that⋂
i∈I

Ai = (
⋃
i∈I

Ac
i)

c.

Property (1) follows from this, as if A1, A2, · · · ∈ F , then by the definition of a σ-algebra
also Ac

1, A
c
2, · · · ∈ F and hence

(
⋃
i≥1

Ac
i)

c ∈ F .

For (3), again by de Morgan laws, it suffices to show that A1∪· · ·∪An ∈ F . But this follows
from the definition of a σ-algebra, as A1 ∪ · · · ∪ An =

⋃
i≥1Ai with Ak = ∅ for k ≥ n+ 1.

Point (2) is left as an exercise. �

In a similar vein, the basic conditions on the measure give rise to several natural properties:

Proposition 1.12 (Basic properties of a probability measure). Consider a probability space
(Ω,F ,P). Let A1, A2, · · · ∈ F . Then

(1) For any A ∈ F , we have that P(Ac) = 1− P(A).
(2) For any n ≥ 1, and A1, . . . , An disjoint, we have finite additivity

P(A1) + · · ·+ P(An) = P(A1 ∪ · · · ∪ An).

In particular if A1 ⊆ A2 then P(A1) ≤ P(A2).
(3) If for all n ≥ 1, we have An ⊆ An+1, then as n → ∞, it holds that P(An) →

P(
⋃

k≥1Ak).
(4) We have countable subadditivity (also called the union bound): P(

⋃
n≥1An) ≤

∑
n≥1 P(An).

(5) If for all n ≥ 1, we have An ⊇ An+1, then as n → ∞, it holds that P(An) →
P(
⋂

k≥1Ak).

Proof. Properties 1, 4 and second part of 2 were included in the Exercise sheet 1. The first
part of property 2 follows like in the lemma above by taking An+1 = An+2 = · · · = ∅ and
using countable additivity.
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So let us prove property 3: Write B1 = A1 and for n ≥ 2, Bn = An/An−1. Then Bn are
disjoint,

⋃N
n=1 Bn = AN and

⋃
n≥1Bn =

⋃
n≥1An.

Thus by countable additivity

P(
⋃
i≥1

Ai) = P(
⋃
i≥1

Bi) =
∑
i≥1

P(Bi)

But P is non-negative, so ∑
i≥1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi)

By countable additivity again
n∑

i=1

P(Bi) = P(
n⋃

i=1

Bn) = P(An)

and (2) follows.
�

1.4 Random variables
In fact when studying a random phenomena we certainly don’t want to restrict ourselves

to yes and no questions. For example, in our model of a random number among {1, 2, . . . , 12}
the natural question is not ’Is this number equal to 5?’ but rather ’What number is it?’.
Similarly in our example of discussing the weather, it is more natural to ask ’What is the
temperature?’, ’How much rain will there be in the afternoon?’?

Such numerical observations about our random phenomena will be formalised under the
name of random variables. In essence they give a number for each state and thus as such are
just functions X : Ω→ R from the state-space to real numbers. However, we may not want
to include all such functions for consistency reasons. Indeed, we want to be able to ask yes
/ no questions about our random numbers, e.g. Is the random number equal to 3? Is the
temperature more than 18? But again the answer yes / no corresponds to certain subsets
of states in the universe and as such should be events in our model. Thus there is a link
between the collection of events, and and the collection of functions that can act as random
variables. Let us without further give the general definition:

Definition 1.13 (Random variable). Let (Ω,F ,P) be a probability space. We call a function
X : Ω → R a random variable if for every interval (a, b) the set X−1((a, b)) := {ω ∈ Ω :
X(ω) ∈ (a, b)} is an event on the original probabiliuty space, i.e. belongs to F .

There is a simplification in the case of discrete probability spaces:

Lemma 1.14 (Random variables on discrete probability spaces). Let (Ω,F ,P) be a discrete
probability space. Then X : Ω → R is a random variable if and only if for every y ∈ R we
have that X−1({y}) ∈ F .
Proof. This can be verified carefully from the definitions and will be on the exercise sheet. �

For the structurally minded the definition of a random variable might look somewhat
arbitrary. And indeed, I have been hiding one piece of information - the natural collection
of events on R that we alluded to a little bit already in the previous subsection. We will
directly state it on Rn.
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Definition 1.15 (Borel σ-algebra). The smallest σ-algebra on Rn that contains all open
boxes of the form (a1, b1)× · · · × (an, bn) is called the Borel σ-algebra. We denote it by FB

Remark 1.16. In fact this definition is even more general: given any topological space
(X, τ), the smallest σ-algebra containing all open sets is called the Borel σ-algebra. You will
see on the exercise sheet that this more general definition reduces to the previous one in the
case of Rn with its Euclidean topology.

Based on this an equivalent, possibly more structural definition of a random variable is as
follows: a function X : Ω→ R is a random variable if the preimage of every set in the Borel
σ−algebra under X is an event. 5

An important notion that comes with random variables is its law:
Lemma 1.17 (The law of a random variable). Let (Ω,F ,P) be a probability space and
X : Ω→ R a random variable.

Then there is a probability measure PX induced on (R,FB) by defining PX(F ) := P(X−1(F )
for every F ∈ FB. This probability measure PX is called the law (or distribution) of a random
variable X.

This is a lemma and not a definition as it needs to be proved that indeed PX is a probability
measure on (R,FB).

Proof of Lemma. We need to verify the axioms on a probability measure for a probability
space:

• We have PX(R) = P(Ω) = 1
• Similarly PX(F ) = P(X−1(F )) ∈ [0, 1] for all F ∈ FB

• Finally it remains to check countable additivity: let F1, F2, . . . be disjoint sets in FB.
Then
PX(

⋃
i≥1

Fi) = P(X−1(
⋃
i≥1

Fi)) = P(
⋃
i≥1

X−1(Fi)) =
∑
i≥1

P(X−1(Fi)) =
∑
i≥1

PX(Fi).

Here we used the definition in the first and last equality, the properties of preimages
in the second equality and the fact that X−1(Fi) are disjoint together with countable
additivity in the third equality.

�

In words we showed that each random variable X induces a probability measure on the real
numbers by just forgetting about the whole context and just concentrating on the number
we see. For example in the case of weather in Lausanne, the temperature will give us a
random variable and by just looking at its value and nothing else we have just a random
real-valued number. Or more simply, if if we throw two fair coins and count the nunmber of
heads, their sum will be a random variable that takes values in the set {0, 1, 2}. Thus the
notion of the law of random variable gives us a way to compare random quantities arising in
very different contexts.
Definition 1.18 (Equality in law). Let X, Y be two random variables defined possibly on
different probability spaces. We say that X and Y are equal in law or equal in distribution,
denoted X ∼ Y if for every E ∈ FB we have that PX(E) = PY (E).

5In measure theory such functions would be called measurable functions from (Ω,F) to (R,FB); notice
the similarity with the definition of continuous functions in your topology course.
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We stress that when looking at the law of random variable the context gets forgotten -
we only concentrate on the numerical value and the initial probability space (Ω,F ,P) only
helps to determine PX but plays no role thereafter. This means that we can nicely connect
different random phenomena between each other. For example the indicator functions of
all events that have probability p, independently on which probability space they have been
defined, have the same law. Or more concretely, for example the following random variables
have the same law:

• Number of heads in two independent tosses
• Number of prime factors when we choose uniformly a number among {1, 2, 3, 4}.

In some sense a large part of this course will be about studying and describing probability
laws of random variables.
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Section 2

Conditional probability and independence
In general, if we learn something new about our random phenomena, this knowledge

influences and often changes our predictions for the rest of the model.
• For example in the case of a uniform random number between 1 and 12, if someone
tells you that this number is even, then the probability of seeing 1 will suddenly be
0, but the probability of seeing 2 will rise from 1/12 to 1/6.
• In the case of weather in Lausanne, if someone tells us that it rains the whole day,
then it is less likely to also be above 35 degrees.

The aim of this section is to set up the vocabulary to talk about how the knowledge about
some event or random variable influences the probabilities we should assign to other events.
This leads us to talk about conditional probabilities and to discuss the case where events
do not influence each other, giving rise to an important notion of probability theory called
independence.

2.1 Conditional probability
We have already considered (in the course and on the example sheets) many unpredictable

situations where several events naturally occur either at the same time or consecutively: a
sequence of coin tosses or successive steps in a random walk, or different links or edges
in a random graph. In all these cases, the fact that one event has happened could easily
influence the others. For example, if you want to model the financial markets tomorrow, it
seems rather advisable to take into account what happened today. To talk about the change
of probabilities when we have observed something, we introduce the notion of conditional
probability:

Definition 2.1 (Conditional probability). Let (Ω,F ,P) be a probability space and E ∈ F
with P(E) > 0. Then for any F ∈ F , we define the conditional probability of the event F
given E (i.e. given that the event E happens), by

P(F |E) :=
P(E ∩ F )

P(E)
.

Recall that E ∩ F is the event that both E and F happen. Hence, as the denominator is
always given by P(E), the conditional probability given E is proportional to P(E ∩ F ) for
any event F . Here is the justification for dividing by P(E):

Lemma 2.2. Let (Ω,F ,P) be a probability space and E ∈ F with P(E) > 0. Then P (·|E)
defines a probability measure on (Ω,F), called the conditional probability measure given E.

Proof. First, notice that P is indeed defined for every F ∈ F . Next, P(∅|E) = P(∅)/P(E) = 0
and P(Ω|E) = P(E)/P(E) = 1. So it remains to check countable additivity.

So let F1, F2, . . .F be disjoint. Then also E ∩ F1, E ∩ F2, . . . are also disjoint. Hence

P(
⋃
i≥1

Fi|E) =
P((
⋃

i≥1 Fi) ∩ E)

P(E)
=

P(
⋃

i≥1(Fi ∩ E))

P(E)
=
∑
i≥1

P(Fi ∩ E)

P(E)
=
∑
i≥1

P(F1|E),
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and countable additivity follows.
�

It should be remarked that conditional probability of an event might sometimes be similar
to the initial probability (we will see more about this very soon), but it might also be
drastically different. A somewhat silly but instructive example is the following:

• Conditional probability of the event Ec, conditioned on E is always zero, no matter
what the original probability was;
• similarly the conditional probability of E, conditioned on E is always 1.

Or for a more senseful exercise consider the following:

Exercise 2.1 (Random walk and conditional probabilities). Consider the simple random
walk of length n.

• What is the probability that the walk ends up at the point n at time n? Now, suppose
that the first step was −1. What is the probability that the walk ends up at the point
n at time n now?
• Suppose that n is even. What is the probability that the walk ends up at the point 0
at time n? Now, suppose that the first step was −1. What is the probability that the
walk ends up at the point 0 at time n now?

One also has to be very careful about the exact conditioning, as two similarly sounding
conditionings can induce very different conditional probabilities. In general, we need to know
something extra about the relation of two events to know how the probability of one changes
when conditioned on the other.

There are some cases where these relations and thus conditional probabilities are easy:
• When E ⊆ F , then the conditional probability of F given E is just 1.
• When F ⊆ Ec, then the conditional probability of F given E is just 0.
• The third case is when F and E are so called independent: in that case P(F |E) =
P(E) basically by definition (we will come back to that).

In general, there are not many tools to calculate conditional probabilities, but there is one
very useful tool called the Bayes’ formula or the Bayes’ rule:

2.1.1 Bayes’ rule
Proposition 2.3 (Bayes’ rule). Let (Ω,F ,P) be a probability space and E,F two events of
positive probability. Then

P(E|F ) =
P(F |E)P(E)

P(F )

It’s not only that the statement looks innocent, but also the proof is a one-liner - by
definition of conditional probability, we can write

P(E|F )P(F ) = P(E ∩ F ) = P(F |E)P(E).

Still, it is a very nice observation that allows us not only to calculate, but also is behind the
framework of Bayesian statistics / Bayesian thinking about probability.

Let us here analyse a simple example.
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Example 2.4. Consider the situation with three different coins: one has heads on both sides,
one has tails on both sides, and one is a fair coin. Now someone picked using some procedure
one of the three types of coins, told you that she tossed a coin and heads came up. Which
coin did she toss?

The relevant probability space that contains the three coins and three tosses is as follows.
First, the state space is pairs the product space {Ch, Ct, Cf} × {H,T} - the first coordinate
describes the type of the coin, the second the result of the toss. As a σ−algebra we take the
whole σ−algebra as we can ask both about what came up on top, and then which coin it was.

We know that to define P on a finite set with the power-set it suffices to define P for
every element of the state-space. From the assumptions P({Ch, T}) = P({Ct, H}) = 0 and
P({Cf , T}) = P({Cf , H}). If we further set pf = P({coin = Cf}), ph = P({coin = Ch}),
pt = P({coin = Ct}) it also has to hold that pf + pt + ph = 1, leaving two free parameters
altogether.

Let us now calculate the probabilities that we were interested in. Clearly,

P({coin = Ct}|{toss = H}) = 0

as the coin with two tails sides could not have produced heads. For the other combinations it
is easiest to use Bayes’ formula to calculate

P({coin = ch}|{toss = H}) =
P({toss = H}|{coin = Ch})P({coin = Ch})

P({toss = H})
=

P({coin = Ch})
P({toss = H})

and

P({coin = cf}|{toss = H}) =
P({toss = H}|{coin = Cf})P({coin = Cf})

P({toss = H})
=

P({coin = Cf})
2P({toss = H})

.

Thus we see that
P({coin = ch}|{toss = H})
P({coin = cf}|{toss = H})

=
2P({coin = ch})
P({coin = cf})

= 2ph/pf

and given that

P({coin = ch}|{toss = H}) + P({coin = cf}|{toss = H}) = 1

we conclude our estimates

P({coin = cf}|{toss = H}) =
pf

pf + 2ph

and
P({coin = ch}|{toss = H}) =

2ph
pf + 2ph

.

What can we conclude? The first thing is maybe that without having any knowledge of how
likely each coin was to begin with, we cannot say much about the final answer, as it contains
that information! What we assume about the initial probability of each coin matters a lot:
if we estimate that the coin with two heads was very unlikely compared to the fair coin, say
ph = 0.000001pf , then after seeing heads our estimate gives P({coin = cf}|{toss = H}) =
0.999999. If however we have no reason to believe that any one coin was more likely to be
taken than any other, for example because the person tossing the coin just picked it randomly
among the three possibilities, then we have pf = ph = pt = 1/3 and our formula gives
P({coin = cf}|{toss = H}) = 1/3 and P({coin = ch}|{toss = H}) = 2/3.

14



However, an important point is that independently of the initial probabilities, we can say
how the probabilities or rather the rations of probabilities changed - our guess that it was
the coin was heads/heads went up two times w.r.t. to the fair coin. An in fact, as you will
see on the exercise sheet if we could follow more tosses we would become more and more
knowledgeable which coin it was, independently of our possibly bad initial estimate. This
is also the idea behind Bayesian approach to probability models - we may not know all the
parameters to begin with, but we can then just fill them with guesses and as we observe more
and more about the world, we can a posteriori improve on these guesses and make our models
better.

2.1.2 Law of total probability
Although conditional probabilities are often tricky, they are necessary to deal with and

even useful. For example, they help to decompose the probability space. Indeed, the following
result is a generalization of the following intuitive result: if you know that exactly one of
three events E1, E2, E3 happens, then to understand the probability of any other event F , it
suffices to understand the conditional probabilities of this event, conditioned on each of Ei,
i.e. the probabilities P(F |Ei).
Proposition 2.5 (Law of total probability). Let (Ω,F ,P) be a probability space. Further,
let I be countable and (Ei)i∈I be disjoint events with positive probability Ω =

⋃
i∈I Ei. Then

for any F ∈ F , we can write

P(F ) =
∑
i∈I

P(F |Ei)P(Ei).

Proof. As Ω =
⋃

i∈I Ei we have P(F ) = P
(
F ∩ (

⋃
i∈I Ei)

)
.

Now rewrite F ∩ (
⋃

i∈I Ei) =
⋃

i∈I(F ∩Ei). Because (Ei)i∈I are disjoint, so are (F ∩Ei)i∈I .
Hence again by countable additivity for disjoint sets

P(F ) = P

(⋃
i∈I

(F ∩ Ei)

)
=
∑
i∈I

P(F ∩ Ei).

Now, by definition P(F ∩ Ei) = P(F |Ei)P(Ei) and the proposition follows.
�

Remark 2.6. In fact pretty much the same proof works if Ei don’t cover the full space, but
we only know that P(Ω \ (

⋃
iEi)) = 0. This generalisation is left as an exercise.

2.2 Independence of events
Conditional probabilities are of course not at all difficult when the probability of an event

does not change under conditioning - i.e. when P(E|F ) = P(E). Such pairs of events are
called independent. In fact the rigorous definition is slightly different:
Definition 2.7 (Independence for two events). Let (Ω,F ,P) be a probability space. We say
that two events E,F are independent if P(E ∩ F ) = P(E)P(F ).

Observe that when P(F ) > 0, then we get back to the intuitive statement of independence,
i.e.that P(E|F ) = P(E). Indeed, if E and F are independent we can write

P(E|F ) =
P(E ∩ F )

P(F )
=

P(E)P(F )

P(F )
= P(E).
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We have chosen the other definition, as then we automatically also include the case where
possibly P(F ) = 0.

Example 2.8. Consider our model of a uniform random number among {1, 2, 3, . . . , 12} and
the events E1 := {the number is equal to 1}, E2 := {the number is divisible by 2}, E3 :=
{the number is divisible by 3}. Which of these are independent?

From a direct calculation, we have P(E1) = 1/12, P(E2) = 1/2 and P(E3) = 1/3.
But also we can directly calculate that P(E1 ∩ E2) = P(E1 ∩ E3) = 0 and P(E2 ∩ E3) =
P({the number is divisible by 6} = 1/6. We conclude that E2, E3 are independent, but E1

and E2 are not, neither are E1, E3.

Already in this examples we actually had three events and one could also ask if there is
some sort of notion of joint independence that generalises to more events. And indeed there
are two different ways to generalize independence to several events:

• mutual or joint independence
• and pairwise independence

The stronger and more important notion is that of mutual independence.

Definition 2.9 (Mutual independence). Let (Ω,F ,P) be a probability space and let I be an
index set. Then the events (Ei)i∈I are called mutually independent if for any finite subsets
I1 ⊆ I we have that

P

(⋂
i∈I1

Ei

)
= Πi∈I1P(Ei).

Sometimes one does not have the full mutual independence or at least does not know it
holds, and just pairwise independence can be asserted. There are similar notions of k−wise
independence too.

Definition 2.10 (Pairwise independence). Let (Ω,F ,P) be a probability space and let I be
an index set. Then the events (Ei)i∈I are called pairwise independent if for any i 6= j ∈ I
the events Ei and Ej are independent.

It is important to notice that, whereas mutual independence clearly implies pairwise in-
dependence, the opposite is not true in general:

Exercise 2.2 (Pairwise independent but not mutually independent). Consider the probabil-
ity space for two independent coin tosses. Let E1 denote the event that the first coin comes
up heads, E2 the event that the second coin comes up heads and E3 the event that both coin
come up on the same side. Show that E1, E2, E3 are pairwise independent but not mutually
independent.

Finally, one can also talk about independence of collections of events. This will be impor-
tant when we try to generalize the notion of independence from events to random variables

Definition 2.11 (Mutual independence of collections of events). Consider two collections
events (Ei)i∈I and (Fj)j∈J all defined on the same probability space. We say that they are
independent if for all i ∈ I, j ∈ J :

P(Ei ∩ Fj) = P(Ei)P(Fj).
16



In case of several different collections of events (Ej,i)i∈Ij for j = 1 . . . , we say that these
collections are mutually independent if for any finite subset J1 ⊆ J and any events Ej,ij with
j ∈ J1, it holds that

P

(⋂
j∈J1

Ej,ij

)
= Πj∈J1P(Ej,ij).

Equivalently, we ask any subset of events Ej,ij from different collection to be mutually inde-
pendent.

Before going to the independence of random variables, here are some basic properties of
independence for events:

Lemma 2.12 (Basic properties). Let (Ω,F ,P) be a probability space.
• If E is an event with P(E) = 1 then it is independent of all other events.
• If E,F are independent, then also Ec and F are independent. In particular every
event with P(E) = 0 is independent of all other events.
• Finally, if an event is independent of itself, then P(E) ∈ {0, 1}.

Proof. This is on the example sheet.
�

2.3 Independence of random variables
We now formalise the notion of independence for random quantities, i.e. random variables.

Recall that (the law of) a random variable X is characterized by all events {X ∈ (a, b)} for
intervals (a, b). The mutual independence of random variables is then defined as mutual
independence of these sets of events. More precisely,

Definition 2.13 (Mutually independent random variables). Let I be an index set and (Xi)i∈I
a family of random variables defined on the same probability space (Ω,F ,P). We say that
these random variables are mutually independent if for every finite set J ⊆ I and all set of
intervals ((aj, bj))j∈J we have that

P(
⋂
j∈J

{Xj ∈ (aj, bj)}) = Πj∈JP(Xj ∈ (aj, bj).

Remark 2.14. The more structurally sound definition would use instead as the collection all
Borel sets Ej ∈ FB. However, that is impractical, and in fact turns out (via some non-trivial
measure theory) to be equivalent to the condition above.

There are naturally more equivalent conditions. For example, a useful one as we see later
is the following:

Exercise 2.3. Consider random variables X1, X2, . . . defined on the same probability space
(Ω,F ,P). Then X1, X2, . . . are mutually independent if and only if for every m ≥ 2 and all
pairs aj ∈ R we have that

P(
⋂

1≤j≤m

{Xj ≤ aj}) = Π1≤j≤mP(Xj ≤ aj).

Further, we again have a very nice and simple condition for random variables defined on
discrete probability spaces.
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Lemma 2.15 (Independence on the discrete probability space). Let X1, . . . , Xn be defined
on a discrete probability space. Then X1, . . . , Xn are mutually independent if and only if for
every s1 . . . , sn ∈ R, we have that

P(
n⋂

i=1

{Xi = si}) = Πn
i=1P(Xi = si).

The same holds more generally if X1, . . . , Xn are defined on any probability space but each
take only a discrete number of values with full probability, i.e. for each of them there is some
countable set Si such that P(Xi ∈ Si) = 1. 6

Proof. This is left as an exercise. �

As a sanity check it is now simple to see that the indicator events E,F of two events are
independent if and only if E,F are independent as events: indeed P({1E = x}{1F = y}) is
equal to

1x=11y=1P(E)P(F ) + 1x=11y=0P(E)P(F c) + 1x=01y=1P(Ec)P(F ) + 1x=01y=0P(Ec)P(F c)

which in turn can be rewritten as

(1x=1P(E) + 1x=0P(Ec))(1x=1P(F ) + 1x=0P(F c)) = P({1E = x})P({1F = x}.

Exercise 2.4 (Simple symmetric random walk). Prove that for a simple random walk of
length n all the increments of the walk, i.e. ∆i = Si − Si−1 for i = 1 . . . n, are mutually
independent random variables.

The notion of independent random variables is very important and widely used - often
also just because otherwise it is very difficult to do any calculations!

Remark 2.16 (i.i.d. random variables). Often one talks about collection of i.i.d. random
variables (Xj)j∈J - this means that (Xj)j∈J are mutually independent (first ’i’) and all have
the same probability law, i.e. are identically distributed (the ’i.d.’). Intuitively, this corre-
sponds to repeating the very same random situation or experiment over and over again.

Now, we started the course by constructing probability spaces and then defining random
variables on it. However, there are natural cases where one would like to go in the opposite
direction - we know from observation or experience that we would like to study a bunch
of independent random variables and our question is how to construct a probability space
where they live? This might sound somewhat silly, but in fact mathematically it is not an
easy question! We will partly deal with this question in the next subsection.

2.4 Independence and product probability spaces
Whereas independence is a probabilistic concept, it comes out that it is related also to a

structure in measure spaces.
Let us consider an example to see this.

Example 2.17 (The space for n fair coin tosses). We have seen that the probability space
for n fair coin tosses can be modelled by taking the state space Ω to be the set of all n-tuples

6Such random variables are called discrete random variables, as we will see soon.
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{x1, . . . , xn} of length n with each xi ∈ {H,T}, then taking F to be the power set and finally
setting the probability of each singleton, i.e. each n-tuple, to be 2−n.

Now, let us look at this as follows:
• Each n-tuples is just an element of the product space {H,T}× · · · {H,T}, so we can
use as Ω the product space. Let’s denote also by Ω0 = {H,T} the state spaces for the
coordinates.
• The power-set is the smallest σ−algebra containing all sets of the form E1×· · ·×En

with each Ei in the power-set of a single coordinate {H,T}
• The uniform probability measure on Ω satisfies by definition

P(E1 × · · ·En) = P0(E1) · · ·P0(En),

where P0 is the uniform probability measure on the space of a single toss.
• Finally the fact that the tosses are independent comes down to the following: all
events F1, . . . , Fn of the form Fi = Ω0 × Ω0 × . . . Ei × · · · × Ω0 with Ei ∈ Fi are
mutually independent: indeed for i 6= j we have for example

P(Ω0×Ω0×. . . Ei×· · ·×Ω0∩Ω0×Ω0×. . . Ej×· · ·×Ω0) = P(Ω0×Ω0×Ei×Ω0 · · ·×Ej×Ω0 · · ·×Ω0)

which by above equals P0(Ei) × P0(Ej) which again by above is equal to the product
of P(Ω0 × Ω0 × . . . Ei × · · · × Ω0) and P(Ω0 × Ω0 × . . . Ej × · · · × Ω0.

So we see that in some sense the product structure goes in hand with independence. And
indeed, this is the general rule - mutual independence of random variables is naturally linked
to products of probability spaces.

Let us follows this through mathematically, by first discussing product spaces in general
and then looking at the construction of probability spaces for independent random variables.

2.4.1 Construction of product spaces
So let us have a brief look at the construction of product spaces. Consider probability

spaces (Ωi,Fi,Pi) for i = 1, 2 . . . . Then to construct the product probability space we need
a product σ−algebra and a product measure.

(1) The product σ−algebra FΠ is simple and natural: it is the smallest σ−algebra con-
taining all Ei1 × · · · × Ein with Eij ∈ Fij for all j = 1 . . . n and {ij}j=1...n a finite
subset of N.

(2) The product probability measure PΠ of P1,P2, . . . on (Πi≥1Ωi,FΠ) also sounds simple:
it is the only probability measure such that

P(Ei1 × · · · × Ein) = Πn
j=1Pi(Eij)

for all Ei1 × · × Ein with Eij ∈ Fij for j = 1 . . . n. However, its construction and
uniqueness even in the case of finite products is technical for general probability
spaces and out of the scope of this course.

Thus we will state the following theorem without proof, which you will see in the measure
theory or the third year probability course:

Theorem 2.18 (Product measure // admitted). For i ∈ N, let (Ωi,Fi,Pi) be probability
spaces. Then there exists a unique probability measure PΠ on (Πi∈NΩi,FΠ) such that for any
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finite subset J ⊂ N and any event E of the form E = Πi∈NFi with Fi = Ωi for i /∈ J and
Fi = Ei ∈ Fi for i ∈ J , we have that

(2.1) PΠ(E) = Πi∈JPi(Ei).

We call such a measure the product measure of the collection ((Ωi,Fi,Pi))i≥1.

It is rather easy to see the existence and uniqueness in the case of a finite number of
discrete probability spaces, so let us do that. Below, we state it in the case where the
σ−algebras are equal to the power set, but as discussed before (see Proposition 1.9, this
essentially encompasses the case of general σ−algebras on discrete spaces.

Lemma 2.19 (Discrete product spaces). Let (Ωi,P(Ωi),Pi) for i = 1 . . . n be discrete proba-
bility spaces. Then the product probability PΠ measure on (Πn

i=1Ωi,FΠ) exists and is unique.

Proof. On the example sheet
�

2.4.2 Probability spaces for independent random variables
We will now follow through the philosophy alluded to above:
• if we are given some laws of random variables and we want to construct a common
probability space on which all of these random variables are defined and are moreover
mutually independent, then we should use product spaces.

We will again state this proposition in a larger generality than we prove it.

Theorem 2.20 (Existence of probability spaces with independent random variables // partly
admitted). Consider random variables (Xi)i≥1. Then we can find a common probability space
(Ω,F ,P) and random variables (X̃i)i=1≥1 defined on (Ω,F ,P) such that

• For all i ≥ 1, X̃i and has the law of Xi

• Moreover, the random variables (X̃i)i≥1 are mutually independent.

Example 2.21. Suppose you have a coin that is not fair, but comes up heads with probability
p ∈ (0, 1). How would you model the sequence of independent n such tosses?

The assumption of all sequences being equally likely does not make sense any longer (e.g.
think of the case when p is near 1, then certainly the sequence of all zeros and all ones
cannot have the same probabilities). However, the assumption of mutual independence and
its relation to product measures are useful.

Indeed, we can define the probability space as follows:
• we take the product space of n copies of ({0, 1},P({0, 1}),Pp) , where Pp such that it
gives 1 with probability p and 0 with probability 1− p.

Notice that in this probability space, the probability of a fixed sequence of n tosses with m
heads and tails n−m is exactly pm(1− p)n−m. If we further want to calculate the probability
that we have exactly m heads we have to sum over all sequences with m heads and we get(
n
m

)
pm(1− p)n−m. Check that

∑n
m=0

(
n
m

)
pm(1− p)n−m = 1!

Let us now give the proof of the theorem in the case when all the random variables are
defined on discrete probability spaces. For a slightly more natural statement, see the exercise
sheet
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Proof of Theorem 2.20, case of finite products of random variables on discrete spaces. Suppose
we have discrete probability spaces (Ωi,P(Ωi),Pi) and random variables Xi : Ωi → R.

By the Lemma 2.19 above, we can construct the product probability space corresponding
to these probability spaces, denoted (ΩΠ = Πn

i=1Ωi,FΠ,PΠ).
Now, define X̃i(ω1, . . . , ωn) := Xi(ωi). One can check that X̃i thus defined are all random

variables and they are defined to have the same law as Xi. Indeed, by the definition of X̃i

and the product measure

PX̃i
(E) = PΠ(Ω1 × Ω2 · · · ×X−1

i (E)× . . . · · · × Ωn) = PXi
(E).

Finally, we need to check that the random variables (X̃i)i=1...n are mutually independent
on the space (Πn

i=1Ωi,FΠ,PΠ). From the identity

{w : ΩΠ : X̃j(ω) ∈ Ej} = {Ω1 × · · · ×X−1
i (E)× · · · × Ωn}

we have that:
PΠ(

⋂
i=1...n

{X̃i ∈ Ei}) = PΠ(Πn
i=1X

−1
i (Ei)).

By the definition of product measure this equals Πn
1=1PXi

(Ei), which in turn equals Πn
i=1PX̃j

(Ej)

by equality in law. The last expression is equal to Πn
i=1PΠ(X̃i ∈ Ei) by definition and we

conclude. �

Let us finish this section by playing with an important example.

2.4.3 Erdös-Renyi random graph
Our aim in this section is to describe and study random graphs. Graphs are simple math-

ematical structures that help to describe networks like social networks, or logistic networks
or why not the network of neurons in the brain.

Definition 2.22 (Simple graph). Let n ∈ N. A simple graph is a pair G = (V,E) where V
is a set of points V = {v1, . . . , vn}, called vertices, and E is a subset of {{vi, vj} : (vi, vj) ∈
V × V, vi 6= vj}, i.e. a set of unordered pairs of distinct vertices, called edges.

You can imagine the graph as drawing all the n points v1, . . . , vn on the plane and then
drawing a line between vi and vj to say they are connected if and only if {vi, vj} ∈ E.

If the networks are very big, like the brain or the social network in Facebook, it is both
impractical and unfeasible to describe them in all detail. Moreover, it comes out that usually
they start resembling certain random networks. Thus in order to understand properties of
these real world networks, one often studies the simplified models of random networks.

The easiest model of a random network, or in our mathematical language of a random
graph, is the Erdös-Renyi random graph where we include each edge with probability p > 0.

Example 2.23 (Erdös-Renyi random graph). For n ∈ N consider a set of vertices V of size
n and let E be the set of all undirected edges between these vertices.

The Erdös-Renyi random graph Gn,p of size n and edge parameter p ∈ [0, 1] is then defined
by including each possible edge independently with probability p.

To define the relevant probability space we let
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• The state space should include all possible graphs with the vertex set V . We observe
that this can be done by determining the edge set. So we let Ω = {0, 1}E be the set of
all possible edge configurations on n vertices - we interpret 1 to mean that an edge is
present.
• We assume that we can check for any edge if it is present or not, and thus set F =
P(Ω)
• Finally, we set each edge to be present with probability p independently of others. In
other words for each ω ∈ Ω we set

Pp({ω}) := p|ω|(1− p)n−|ω|,

where ω ∈ Ω is an edge configuration and |ω| is the number of edges in this configu-
ration.

Finally, we can identify each element ω also with the resulting graph Gn,p(ω) = (V,E(ω)).

What are some questions that we would like to look at? Roughly we would like to answer
how the graph look likes when n is very large, i.e. tending to infinity. Of course sometimes
one could be also interested in n small, but then one could actually explicitly describe the
probability of each possible graph and picture it.

Now to describe how the graph looks like we could consider the following questions:
(1) How many edges are present?
(2) Is the graph connected, i.e. can one find for each v, w ∈ V a set of edges e1, . . . , en

such that each ei, ei−1 share a vertex and e1 is connected to v and en connected to
w?

(3) If yes, what is the maximal distance between two vertices?
(4) If no, how many different connected components are there?
(5) What is the biggest connected component?
(6) ...
Each of these questions is about a single graph, i.e. a single configuration ω. Thus in

the random graph model they correspond either to an event or random variable, whose
probability or law we can study.

For example, NE : Ω → N given by NE(ω) := |ω| attaches to each ω its number of
edges and thus corresponds to the first question. Similarly the event F := {ω is connected}
corresponds to the second question. Of course there are also more complex questions, which
arise when one consideres several questions at the same time.

One is interested in both how the probability of these events behaves for p ∈ [0, 1] fixed
and n→∞, but also how this behaviour changes when we change p. Notice that a priori p
does not need to be constant, we can also easily consider a sequence of graphs Gn,p(n) where
p(n) is a function of n.

Studying the properties of Erdös-Renyi random graphs was and still is a very active
research topic, with hundreds if not thousands of papers written about them. We will try to
just get a very small taste of this research.

Let us concentrate on one notion, that of connectivity and look at some scenarios. Notice
that when p = 1 then the graph is connected with probability 1 and when p = 0 it is
disconnected with probability 1. We will try to get a grasp what happens with pn ∈ (0, 1)
possibly changing with n.
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Claim 2.24. Let p ∈ (0, 1) be fixed. Then as n → ∞ the probability of the graph being
connected converges to 1 almost surely.

This is maybe not so surprising as with fixed probability p we will have lots of edges:
indeed, if you think of edges as coin tosses, you would expect to have a proportion p of all
edges to be present, which makes pn(n− 1)/2 edges!

Proof. We will prove that Pp({Gn,p is not connected})→ 0 as n→∞. First notice that

{Gn,p is not connected} = ∪v 6=w∈V { v, w not connected by a path}.
Thus by the union bound

Pp({Gn,p is not connected}) ≤ 1/2
∑

v 6=w∈V

Pp({ v, w not connected by a path}),

where the 1/2 comes from the fact that we count each edge twice in the sum. But because
of symmetry of the model, each pair of edges is equivalent, so we can write the right hand
side as n(n− 1)/4Pp({ v, w not connected by a path}).

Thus we want to bound the probability that v and w are not connected by a path. First,
just looking at the edge {v, w} is not enough - this edge is absent with probability 1 − p,
which doesn’t go to zero. However, there are many other ways to connect these two vertices.

One way is to use an intermediate vertex z: then v and are not connected if and only if w
there is no vertex z such that both {z, w} and {z, v} belong to the edge set. Thus we can
write

Pp({ v, w not connected by a path}) ≤
∏

z∈V \{v,w}

Pp({{v, z} /∈ E} ∪ {{w, z} /∈ E}).

But now Pp({{v, z} /∈ E} ∪ {{w, z} /∈ E}) = 1 − Pp({{v, z} ∈ E} ∩ {{w, z} ∈ E} = 1 − p2

and hence
Pp({ v, w not connected by a path}) ≤ (1− p2)n−2.

This clearly goes to zero as n → ∞ and thus any two fixed vertices will be connected with
probability going to 1.

We now come back to our initial probability of all pairs being connected and bound:

Pp({Gn,p is not connected}) ≤ n(n− 1)(1− p2)n−2/4.

This is also nicely goes to zero!
�

In fact, if we look at the proof more carefully we see that the claim is true as long as
p = p(n) goes to zero with n sufficiently slowly. In other words the exact same proof gives
us

Claim 2.25. Let (pn)n≥1 be a sequence of numbers in [0, 1] satisfying pn ≥ n−1/4 . Then as
n→∞ the probability of the graph being connected converges to 1 almost surely.

Proof. We follow the proof above and notice that for 1 ≥ pn ≥ n−1/4 we still have that

n(n− 1)(1− p2)n−2/4→ 0

as n→∞. �

On the other hand, we have that
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Claim 2.26. Let (pn)n≥1 be a sequence of numbers in [0, 1] such that pn ≤ n−2 . Then as
n→∞ the probability of the graph being connected converges to 0 almost surely.

This will be on the exercise sheet. But notice the interesting phenomena: there seems to
be a sort of threshold effect. If pn decays very fast, the probability of connectedness goes to
0; if decays slowly enough it goes to 1. Why doesn’t it go to some other number between 0
and 1? Where is the exact threshold? It is a non-trivial theorem that says this threshold is
exactly at pn = logn

n
!
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Section 3

Random variables and random vectors
In this chapter, we will look more closely into random variables and n-tuples of random

variables, called random vectors.

3.1 The cumulative distribution function of a random variable
Recall that we call two random variables equal in law, when the probability measures

they induce on (R,FB) are equal - this allowed us to compare random variables defined on
different probability spaces, coming up in different contexts.

Our first aim is to see how to classify and compare random variables more easily. Indeed,
for now one has to actually determine We already saw that the law of each random variable
is described by the probability over all possible events, but this is a description that is very
difficult to deal with.

It comes out that all the information about the law of a random variable can be uniquely
encoded using what is called a cumulative distribution function.
Definition 3.1 (Cumulative distribution function). We call a function F : R → [0, 1] a
(cumulative) distribution function (abbreviated c.d.f.) if it satisfies the following conditions:

(1) F is non-decreasing;
(2) F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞;
(3) F is right-continuous, i.e. for any x ∈ R and any sequence (xn)n≥1 ∈ [x,∞) such

that xn → x, we have that F (xn)→ F (x).

Given a random variable X, we define its cumulative distribution function as follows:
Proposition 3.2 (Cum.dist. function of a random variable). For each random variable X
(defined on some probability space (Ω,F ,P)), the function FX(x) := PX((−∞, x]) defines a
cumulative distribution function (c.d.f).

Proof. Set FX(x) = P(X ∈ (−∞, x]). Then as (−∞, x] ⊆ (−∞, y] for x ≤ y, we have by (1)
of Proposition 1.12 that F is non-decreasing.

Let us next check right-continuity of F . So let (xn)n≥1 be any sequence in [x,∞) converging
to x. Then setting An := ∩1≤k≤n(−∞, xk] we get that

⋂
n≥1An = (−∞, x]. By continuity

of P, i.e. (5) of Proposition 1.12, it follows that PX(An) → PX((−∞, x]). But now notice
that as yn → y, we have that {−∞, yn} ⊆ Amn for some subsequence mn with mn →∞ as
n→∞. It follows that FX(y) ≤ FX(yn) ≤ PX(Amn) and we conclude that FX(yn)→ FX(y)
as n→∞.

The final two claims are on the example sheet.
�

In fact, it comes out the conversely each cumulative distribution function gives rise to a
unique law of a random variable.
Theorem 3.3 (Laws of random variable are uniquely determined by c.d.f. // admitted).
Each cumulative distribution function F gives rise to a unique law of a random variable X
such that FX(x) = PX((−∞, x]). In other words c.d.f.s are in one to one correspondence
with probability measures P on (R,FB).
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We admit this theorem in the general case, but will again prove the discrete case. Let us
look at a simple example:

Example 3.4. Let us calculate the c.d.f of the so called Bernoulli random variable X that
takes value 1 with probability p and 0 with probability 1−p. Notice that all indicator functions
of events correspond to such random variables with P(E) = p.

We have FX(x) = (1 − p)1x≥0 + p1x≥1. More generally for a random variable that
takes only finite number of values x1, . . . , xn with probabilities p1, . . . , pn, we have FX(x) =∑

i=1...n p11x≥xi
. (Why?)

Thus we see that FX encodes the behaviour of X rather naturally. Let us now look at
this relation between the cumulative distribution function FX and the random variable X
more closely. By F (x−) we denote the limit of F (xn) with (xn)n≥1 → x from below, i.e. by
numbers xn < x.

Lemma 3.5 (C.d.f vs r.v.). Let X be a random variable on some probability space (P,Ω,F)
and FX its cumulative distribution function. Then for any x < y ∈ R

(1) P(X < x) = F (x−)
(2) P(X > x) = 1− F (x)
(3) P(X ∈ (x, y)) = F (y−)− F (x).
(4) P(X = x) = F (x)− F (x−).

Proof. This is on exercise sheet. �

Example 3.6. Let us also exhibit the c.d.f. of the uniform random variable U taking values
uniformly in [0, 1]. It is given by FU := x1x∈[0,1] + 1x>1. By the proposition above we can see
that for any interval (a, b) ⊆ [0, 1], P(U ∈ (a, b)) = b− a.

From above we see that all jumps of FX correspond to points where PX(X = x) > 0. In
fact there can be only countably many of them.

Lemma 3.7. A cumulative distribution function FX of a random variable X has at most
countably many jumps.

Proof. Let Sn be the set of jumps that are larger than 1/n and Ŝn any finite subset of Sn.
Then Ŝn is measurable and 1 ≥ P(X ∈ Sn) ≥ |Ŝn|n−1. Thus it follows that |Ŝn| ≤ n. As
this holds for any finite subset of Sn, we deduce that |Sn| ≤ n and in particular Sn is finite.

Now the set of all jumps can be written as a union
⋃

n≥1 Sn. Hence as each Sn is finite
and a countable union of finite sets is countable, we conclude. �

These jumps of a c.d.f. FX are sometimes called atoms of the law of X. More precisely,
we call s ∈ R an atom for the law of X if and only if P(X = s) > 0.

In the extreme case FX increases only via jumps, i.e. is piece-wise constant changing value
at most countable times. Precisely:

Definition 3.8 (Piece-wise constant with at most countable jumps). We say that f : R →
[0,∞) is piece-wise constant with countably many jumps iff there is some countable set S
and some real numbers cs > 0 for s ∈ S such that

∑
s∈S cs <∞ and

f(x) =
∑
s∈S

cs1x≥s.
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Notice that this set S could be dense, like the set of rational numbers, making it hard to
imagine as a staircase function!

In the other extreme FX could also be everywhere continuous. These observations help us
separate out two classes of random variables.

3.1.1 Classification of random variables
Definition 3.9 (Discrete vs continuous random variables). A random variable is called
discrete if its c.d.f. FX is piece-wise constant changing value at most countable many times.
It is called continuous if its c.d.f. FX is continuous.

These definitions look a bit abstract / non-telling from the probabilistic perspective and
a priori differs from the definition we gave on the example sheet! But no need to worry, it
does give the same object:

Exercise 3.1 (Discrete vs random variables ver 2). Consider a random variable X.
• X is discrete, i.e. its cumulative distribution function FX is piece-wise constant, if
and only if there is a countable set S ⊆ R with P(X ∈ S) = PX(S) = 1.
• X is continuous if and only if for every y ∈ R, P(X = y)PX({y}) = 0.

Notice that not every random variable is either discrete or continuous, there could be also
mixtures of the two, e.g. one could imagine a c.d.f. given by F (x) = 0.51x≥0 + 0.5x1x∈[0,1) +
1x≥1 (What does it correspond to?).

The following proposition says, the c.d.f. of any random variable can be written as a
convex combination of c.d.f-s of a discrete and continuous random variable.

Proposition 3.10. Any cumulative distribution function F can be written uniquely as convex
combination of a continuous c.d.f Fc and a piece-wise constant c.d.f. with countably many
jumps Fj i.e. for some a ∈ [0, 1] we have that F = aFj + (1− a)Fc.

Moreover, in a later the exercise sheet you will see how to interpret this as saying that
each random variable can be written as a random sum of a continuous and discrete random
variable.

Proof. If F is either continuous or piece-wise constant with countably many jumps, the
existence of such writing is clear. So suppose that F is neither. Write S for the countable
set of jumps of F . Define

F̂j(x) =
∑
s∈S

1x≥s(F (s)− F (s−)),

which is piece-wise continuous with countably many jumps.
We claim that F̂c := F − F̂j is continuous. Indeed, by definition both F and F̂j both

right-continuous, and thus is also their difference. Moreover, both are continuous at any
continuity point x of F , i.e. when x /∈ S as by definition then F (x) = F (x−) and one can
check the same for Fj. Finally, when s ∈ S, then again by definition of F̂j, we have that

F (s)− F (s−) = 1s≥s(F (s)− F (s−)) = F̂j(s)− F̂j(s−)

and thus F̂c is continuous at such s too.
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Now, as F is neither continuous nor piece-wise constant increasing with jumps, we have
that 0 < F̂j(∞) < 1 and 0 < F̂c(∞) < 1. Hence, we can define

Fj(x) :=
F̂j(x)

F̂j(∞)

and

Fc(x) :=
F̂c(x)

F̂c(∞)
.

By definition both of those are non-decreasing, right-continuous satisfying the correct limits
at ±∞ and hence are c.d.f-s for random variables. As Fj increases only via jumps and Fc is
continuous, we have the desired writing with a = F̂j(∞) and 1− a = F̂c(∞).

Uniqueness is left as an exercise. To see the uniqueness of the decomposition, suppose
that one can write

FX = aFY1 + (1− a)FY2 = bFZ1 + (1− b)FZ2 ,

where both Y1 and Z1 are discrete and Y2, Z2 continuous random variables. Then aFY1 −
bFZ1 has to be continuous, but also piecewise constant with countably many jumps. As
aFY1(−∞)− bFZ1(−∞) = 0, the only possibility is that it is constantly zero. As FY1(∞) =
1 = FZ1(∞), it follows that a = b and FY1 = FZ1 . Thus also FY2 = FZ2 and the proposition
follows.

�

3.2 Examples of discrete random variables
There are several families of laws of discrete random variables that come up again and

again. As we will see, sometimes these laws also have very nice mathematical characteriza-
tions.

Recall that to characterise the law of a random variable, we can either give the value of
PX(F ) for a sufficiently large set of F (e.g. all intervals) or give the c.d.f. For a discrete
random variable it suffices to just determine the support S and determine PX(X = s) for
each s ∈ S (why?).

Bernoulli random variable
As mentioned already, a random variable that takes only values {0, 1}, taking value 1 with
probability p is called a Bernoulli random variable of parameter p. It is named after the
Swiss mathematician Bernoulli, who also thought that all sciences need mathematics, but
mathematics doesn’t need any. Leaving you to judge, let us see that these examples come
up very often.

Namely, on every probability space (Ω,F ,P), every indicator function of an event, i.e. 1E

gives rise to a Bernoulli random variable and the parameter p is equal to the probability of
the event. Indeed for any event E in a probability space (Ω,F ,P) the indicator function
1E : (Ω,F) → (R,F) is measurable and hence a random variable. Moreover, it is {0, 1}
valued by definition and P({1E = 1}) = P(E) = p.

Sometimes one talks about Bernoulli random variables more generally whenever there are
two different outcomes, e.g. also when the values are {−1, 1}. We then call it the Bernoulli
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random variable with values {−1, 1}.

Uniform random variable
Any random variable that takes values in a finite set S = {x1, . . . , xn}, each with equal
probability 1/n is called the uniform random variable on S. We call the law of this random
variable the uniform law. Its c.d.f is given by simply FX(x) = n−1

∑n
i=1 1x≥xi

.
Examples are - a fair dye, the outcome of roulette, taking the card from the top of a

well-mixed pack of cards etc...Concretely, for a trivial example is that if we model a fair dye
on Ω = {1, 2, 3, 4, 5, 6}, F = P(Ω) and P(i) = 1/6, then the random variable X(ω) := ω ∈ R
gives rise to a uniform random variable.

We use this family of random variables every time we have no a priori reason to prefer one
outcome over the other. A fancy mathematical way of saying this would be to say that the
uniform law is the only probability law on a finite set that is invariant under permutations
of this set. We will also see on the example sheet that this is the so called maximum entropy
probability distribution with values in a finite set S.

Binomial random variable
A random variable that takes values in the set {0, 1, . . . , n}, and takes each value k with
probability

pk(1− p)n−k
(
n

k

)
is called a binomial random variable of parameters n ∈ N and 0 ≤ p ≤ 1 (why do the
probabilities sum to one?). We denote the law of such a binomial random variable by
Bin(n, p).

Notice that for n = 1, we have the Bernoulli random variable. Bernoulli random variable
comes up naturally in models of independent coin tosses, random graphs, or models of
random walks. The reason why it comes up so often is that it always describes the following
situation - we have a sequence of independent indistinguishable events and we count the
number of those who occur. Or in other words, the Binomial random variable Bin(n, p) can
be seen as a sum of n independent Ber(p) random variables.

Exercise 3.2 (Binomial r.v. is the number of occurring events). Suppose we have n mutually
independent events E1, . . . , Ek of probability p on some probability space (Ω,F ,P). Consider
the random number of events that occurs: X =

∑n
i=1 1Ei

. Prove that X is a random variable
and has the law Bin(n, p).

For a concrete lively example, let’s go back to the Erdos-Renyi random graph on n ver-
tices, where each edge is independently included with probability p. We can then fix some
vertex v and consider the random variable Mv giving the number of vertices adjacent to v,
i.e. linked to v by an edge. The exercise above shows that this random variable has law
Bin(n− 1, p).
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