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Exercice 1. Revêtements du huit.
On appelle un graphe 2−orienté si c’est un graphe orienté tel que chacun de ses sommets est adjacent
à quatre extremités d’arêtes, deux entrantes et deux sortantes, et dont les arêtes sont labellées a
ou b, de telle sorte que chaque sommet est adjacent à exactement une extrémité entrante et une
extrêmité sortante d’une arête labellée a (et par conséquent de même pour b).

1. Montrer que tout graphe 2−orienté forme un revêtement de S1 ∨ S1.

2. Montrer que tout graphe fini (i.e. ayant un nombre fini de sommets) tel que chacun de ses
sommets est adjacent à quatre extremités d’arêtes peut être orienté et labellé de façon a
former un graphe 2−orienté.

Solution 1.

1. On donne d’abord une orientation et un label aux deux copies de S1 dans S1∨S1 de manière à
former un graphe 2−orienté. Etant donné un graphe 2−orienté Γ on construit une application
p : Γ → S1∨S1 qui est un homéomorphisme préservant l’orientation sur l’intérieur des arêtes,
envoyant une arête labellée a (resp. b) sur l’arête labellée a (resp. b). Le fait qu’une telle
application existe suit de la définition d’un graphe 2−orienté et il n’est pas difficile de vérifier
la condition de revêtement.

2. Tout graphe connexe et fini avec un nombre pair d’arêtes à chaque sommets possède un circuit
eulerien, c’est à dire un lacet traversant chacune arête exactement une fois. Prenons Γ comme
dans l’énoncé. On peut labeller les arêtes d’un circuit eulérien alternativement par a et b, et
comme il y a quatre extrémités d’arêtes adjacentes à un sommet, on est obligé d’avoir deux
a et deux b au niveau de chaque sommet. On peut ensuite choisir une orientation appropriée.

Exercice 2. Noeuds toriques*.
Soit p

q
une fraction irréductible et K(p, q) le noeud torique de type (p, q) défini par l’image de la

droite y = p
q
x dans le quotient R2/Z2 = T 2 (l’action de Z2 est par translation). On identifiera cet

espace quotient via un homéomorphisme à un tore T dans R3 obtenu comme surface de révolution
autour de l’axe Oz d’un cercle unité du plan Oxz, centré en (2; 0; 0). Ce tore T est le bord d’un
tore plein P obtenu de manière analogue par révolution d’un disque.

1. Montrer que K(p, q) définit bien un noeud, c’est-à-dire un lacet dans R3 sans intersection (un
plongement de S1 dans R3).

2. Les projections (x, p
q
x) 7→ (x, 0) et (x, p

q
x) 7→ (0, p

q
x) sur les axes définissent dans le quotient

T 2 des applications K(p, q) → S1 (pour les deux cercles équateur et méridien). Calculer les
homomorphismes π1K(p, q) → π1S

1 induits.

3. Soient A = R3 \P et B un ouvert contenant P \K(p, q) comme rétracte de déformation fort.
Identifier les groupes fondamentaux de ces espaces.

4. Montrer que A ∩ B a le type d’homotopie d’un cercle. On pourra se ramener à l’étude de
T \ K(p, q) et identifier dans R2 un domaine homéomorphe à un carré dont le quotient est
cet espace.

5. Calculer π1(R3 \K(p, q).



Solution 2.

1. On peut dessiner le réseau de Z2 dans le plan, de telle sorte que toute l’information du noeud
K(p, q) se trouve dans le segment d’extrémités (0, 0) et (q, p), qui représentent le même point
du tore. Ainsi la droite associée à K(p, q) est ramenée au segment (0, 0)-(q, p), qui lui-même
est ramené à un lacet sur le tore. Pour voir que ce lacet n’a pas de point d’intersection
avec lui-même, on remarque que les seuls points identifiés sur le segment (0, 0)-(q, p) sont les
extrémités : commme p et q sont premiers eux ce segment ne passe par aucun autre point de
Z2 et le même raisonnement reste valide par translation.

2. Le noeud torique parcourt le tore d’une maniére particulière, qui peut être étudiée en obser-
vant son comportement sur chacun des deux cercles définissant le tore. Cela se fait par les
projections. On remarque que p représente le nombre de tours qu’effectue le noeud sur un
cercle, et q représente le nombre de tours qu’il effectue sur l’autre cercle. Le générateur [ω] du
groupe π1(K(p, q)) est la classe du lacet qui parcourt une fois l’espace K(p, q). Il est envoyé
par la premiére projection sur le lacet qui fait q fois le tour du méridien correspondant, dont
on note le générateur [a]. Cette projection induit une multiplication par q entre les groupes
fondamentaux, puisque l’homomorphisme de groupes π1(K(p, q)) → π1(S

1) : [ω] 7→ [a]q se
traduit dans les entiers relatifs par Z → Z : n 7→ qn = n+ ...+ n (notez le passage aux nota-
tions additives). Il en va de même pour l’autre projection, qui induit donc une multiplication
par p.

3. L’espace A a le même type d’homotopie que R3 \ S1 de la dernière série. On a montré que
son groupe fondamental était isomorphe à Z. Ainsi, π1(A) ∼= Z. Pour la suite des calculs
on rappelle qu’un générateur de ce groupe est donné par exemple par un lacet constitué
d’un cercle de centre (2; 0; 0) et de rayon 11/10, basé en (9/10; 0; 0). Beaucoup d’autres choix
conviennent à condition de choisir un lacet qui fait une fois le tour du tore plein, dans la
direction des méridiens.

Ensuite, on construit B qui doit nécessairement contenir P \K(p, q) pour recouvrir l’espace
considéré. Comme B doit être ouvert on “épaissit” le tore plein pour former le tore plein
ouvert B′ obtenu par révolution d’un disque ouvert de rayon 12/10 (par exemple). On retire
de ce tore plein le noeud torique et tout le “sillon” correspondant jusqu’à la surface de ce
tore ouvert. Plus concrètement, pour tout point x du noeud, on considère le point y du
cercle Γ centré en l’origine et de rayon 2 le plus proche (i.e. le centre du disque de révolution
correspondant à la tranche sur laquelle se trouve x) et la droite d passant par x et y. On
définit B en enlevant à B′ le segment semi-ouvert de longueur 2/10, contenu dans d, fermé
en x et ouvert en son autre extrêmité qui repose sur la surface de B′.

Montrons que B a le même type d’homotopie que l’âme Γ du tore et il s’ensuit que π1(B) ∼= Z
également. Comme B a pour rétract de déformation fort (c-a-d rétract induisant un isomor-
phisme de groupe fondamental) P \ K(p, q), ils ont le même groupe fondamental. De plus,
P \ K(p, q) se rétracte fortement sur l’âme du tore (comme d’habitude, on se représente le
tore par le carré I × I avec identifications, pour expliciter l’homotopie comme l’application
qui rétracte le tout sur le segment (0, 1/2) − (1, 1/2) dans le carré identifié). A nouveau on
choisit un générateur explicite de ce groupe fondamental. On pourrait choisir l’âme du tore,
mais pour avoir des points de base compatibles, on choisira plutôt par exemple lacet basé
en (9/10; 0; 0), par exemple en commençant par un chemin γ de rectiligne de (9/10; 0; 0) à
(2; 0; 0), puis en parcourant l’âme du tore, et enfin en revenant par γ̄.

4. On commence par calculer le saturé q−1(q(Γ)) où q : R2 → R2/Z2 = T 2 est l’application
quotient et Γ est le graphe de la droite de pente p/q. On peut calculer quels points du lattice



se trouvent sur cette droite : les points de croisement avec les droites horizontales doivent
être de la forme (a;n) pour n ∈ Z, i.e. n = pa/q ou encore a = qn/p. La plus petite partie
entière d’un tel nombre rationnel vaut 1/p par Bézout si bien que le saturé de Γ est composé
d’une infinité de droites parallèles à Γ, horizontalement espacées de 1/p (et verticalement de
1/q).

On considère la bande ouverte du plan comprise entre la droite y = p/qx et y = p/qx− 1/q.
Tout point du tore a une préimage dans la clôture de cette bande puisque le plan tout entier
s’obtient par translations entières de cette bande. De plus, le segment horizontal compris entre
(0; 0) et (1/p; 0) est identifié par q au segment compris entre (p; q) et (p+1/p; q). Un domaine
fondamental de T \K(p, q) est donc donné par la partie de la bande ouverte contenue entre
ces deux segments (y compris). L’application quotient identifie uniquement ces segments si
bien que T \K(p, q) est homéomorphe à un cylindre ouvert S1×]0; 1[.

On remarque que A∩B se rétracte fortement sur T+ \K(p, q)+, où T+ est le tore obtenu par
révolution d’un cercle de rayon 11/10 et K+ est le noeud torique correspondant (ce rétracte
correspond au milieu de la partie ouverte que nous avons ajouté à T \K(p, q) pour construire
B. Ainsi, A ∩ B a le même type d’homotopie que T \ K(p, q), qui est celui d’un cercle. On
choisira comme générateur de son groupe fondamental, isomorphe à Z, l’image par q de la
droite d’équation y = p/qx − 1/2q, le lacet ω situé au milieu de la bande ouverte décrite
ci-dessus et qui parcourt sur la surface du tore un noeud torique isométrique à K(p, q). Plus
précisément on doit prendre la version ω+ de ce lacet pour qu’il se trouve bien dans A∩B, à un
dixième de distance au-dessus de la surface du tore. Quitte à mieux choisir l’homéomorphisme
entre T 2 et le tore T on peut s’arranger pour que ce lacet passe par (9/10; 0; 0) qu’on choisira
comme point de base de A ∩B.

5. On applique le théorème de Seifert Van Kampen aux ouverts A et B, en remarquant que les
conditions du théorème sont bien vérifiées (on a deux ouverts recouvrant l’espace R3\K(p, q),
ayant une intersection connexe par arcs). On remarque que les homomorphismes de groupes
induits par les inclusions A∩B → A et A∩B → B sont identiques aux homomorphismes de
groupes induits par les projections du point 2. Illustrativement, on a une équivalence entre
les diagrames d’homomorphismes de groupes suivants (avec Z l’amalgame correspondant)

π1(A ∩B) π1(A) π1K(p, q) π1(S
1)

π1(B) π1Z π1(S
1) π1Z

(ιA)∗

(ιB)∗ pr2

pr1

Ainsi, π1(R3 \ K(p, q)) ∼= π1(S
1) ∗π1(K(p,q)) π1(S

1) ∼= Z ∗Z Z où le produit est amalgamé par
rapport aux homomorphismes induits par les projections du point 2. On conclut par la partie
2 que le groupe fondamental de R3 \K(p, q) admet une présentation donnée par ⟨a, b|aqb−p⟩.

Exercice 3.
Construire un espace topologique dont le groupe fondamental est cyclique d’ordre n.

Solution 3. Il suffait de considérer un polygone à n côtés avec l’identification a ∗ a · · · ∗ a n fois.

Exercice 4. Revêtement de la bouteille de Klein



Soit q : I × I → K le quotient usuel définissant la bouteille de Klein (i.e. (s, 0) ∼ (s, 1) et (0, t) ∼
(1, 1 − t) pour tous 0 ≤ s, t ≤ 1). On définit une fonction P : I × I → I × I par P (s, t) = (2s, t)
pour 0 ≤ s ≤ 1/2 et P (s, t) = (2s− 1, 1− t) pour 1/2 < s ≤ 1.

1. Montrer que q◦P est continue, qu’elle passe au quotient et définit une application p : T 2 → K
du tore vers la bouteille de Klein.

2. Montrer que p est un revêtement à deux feuillets de K.

3. Identifier p∗ : π1T
2 → π1K.

4. Conclure que le groupe de Klein contient un sous-groupe isomorphe à Z2.

Solution 4.

1. On note ∼K la relation d’équivalence sur I × I engendrée par les relations (s, 0) ∼K (s, 1) et
(0, t) ∼K (1, 1− t), et ∼T la relation d’équivalence engendrée par les relations (s, 0) ∼T (s, 1)
et (0, t) ∼T (1, t). On alors des homéomorphimes K ≈ I× I/ ∼K et T 2 ≈ I× I/ ∼T . On note
qT , qK les composées I × I → I × I/ ∼T ≈ T 2 et I × I → I × I/ ∼K ≈ K.
Montrons que la composée qK ◦ P : I × I → K est continue. Il est clair que P est continue
sur I × I privé de {1

2
} × I. Quand s ↑ 1

2
, on a P (s, t) −→ (1, t) alors que quand s ↓ 1

2
on

trouve P (s, t) −→ (0, 1 − t). Comme (1, t) ∼K (0, 1 − t) pour tout t, on conclut que qK ◦ P
est continue.
Vérifions maintenant que qK ◦ P passe au quotient par ∼T . Pour tout t, on trouve P (0, t) =
(0, t) et P (1, t) = (1, 1−t) de sorte que P (0, t) ∼T P (1, t). De même, on vérifie que P (s, 0) ∼T

P (s, 1) pour tout s. La propriété universelle du quotient assure donc l’existence d’une unique
application p : T 2 → K faisant commuter le diagramme

I × I I × I

T 2 K

P

qT qK

p

.

Attention au fait que P n’est pas continue.

2. Soit σ : T 2 → T 2 définie par

(s, t)T 7→
{

(s+ 1
2
, 1− t)T si 0 ≤ s ≤ 1

2

(s− 1
2
, 1− t)T sinon.

On montre que σ est bien définie et continue, et on vérifie que σ ◦σ = idT 2 de sorte que σ est
un homéoomrphisme. On obtient une action de C2 = Z/2Z sur T 2 qui est propre et libre. Le
quotient T 2 → T 2/C2 est donc un revêtement à 2 feuillets.
Montrons que le quotient T 2 → T 2/C2 s’identifie à p. Tout d’abord, on identifie le quotient
T 2/C2. Les orbites sous l’action de C2 sont les paires (s, t)T , (s +

1
2
, 1− t)T pour 0 ≤ s ≤ 1

2
.

Le rectangle qT ([0,
1
2
] × I) ⊂ T 2 est un domaine fondamental pour l’action de C2 : l’action

est triviale sur l’intérieur du rectangle. Sur le bord du rectangle, on a les identifications
(0, t)T ∼ (1

2
, 1 − t)T et (s, 0)T ∼ (s, 1)T . On obtient T 2/C2 ≈ [0, 1

2
] × I/ ∼ . En composant

avec une dilatation (s, t)T 7→ (2s, t)T on obtient T 2/C2 ≈ I × I/ ∼ ≈ K. De plus, on vérifie

explicitement que la composée T 2 → T 2/C2
≈→ K est l’application p. Finalement, p est un

revêtement à deux feuillets de K.



3. On choisit comme générateurs de π1T
2 les lacets a : t 7→ (0, t)T et b : t 7→ (t, 0)T , et pour π1K

les générateurs α : t 7→ (0, t)K et β : t 7→ (t, 0)K . On a donc les présentations π1T ∼= Z2 et
π1K = ⟨α, β | αβαβ−1⟩. Alors les lacets p ◦ a et p ◦ b sont respectivement égaux à α et β ∗ β
où ∗ est la concaténation des lacets. Le morphisme induit p∗ : π1T

2 → π1K est donné par
a 7→ α, b 7→ β2.

4. Comme p est un revêtement, il induit une injection p∗ : π1T
2 ↪→ π1K sur les groupes fonda-

mentaux. On en déduit que π1K contient un sous-groupe isomorphe à Z2.
On peut aussi vérifier que α et β2 commutent dans π1K, et donc que le sous-groupe de π1K
qu’ils engendrent est isomorphe à Z2.

Exercice 5. Composition de revêtements. Soit H les anneaux hawäıens. On appelle cn le
sous-espace formé du cercle de rayon 1/n et de centre (0; 1/n), le point d’accumulation est (0; 0).

1. Construire pour tout entier k ≥ 1 un revêtement à deux feuillets deH de sorte que la préimage
du cercle ci soit une réunion disjointe de deux cercles isométriques à ci, l’un de centre (0; 1/n),
l’autre de centre (0; 3− 1/n), lorsque i > k, mais une ellipse dont le grand axe est le segment
vertical d’extrêmités (0; 0) et (0; 3) pour i ≤ k.

2. Construire un revêtement à une infinité de feuillets de H. On fera en sorte que la préimage
du cercle ci soit une réunion disjointe d’une infinité de cercles isométriques pour tout i ≥ 2.

3. Construire à l’aide de la partie 1 un revêtement à deux feuillets de l’espace construit dans la
partie 2 de sorte que la composition des deux revêtements ne soit pas un revêtement.

Solution 5⋆.

1.

2.



3.

L’image suivante résume la situation :

(source : https ://math.stackexchange.com/questions/989083/is-composition-of-covering-maps-
covering-map)

La composition n’est pas un revetement car tout voisinage ouvert de (0; 0) contient une infinité
de ci et la preimage par la composition ne peut etre un homéomorphisme pour les feuillets
correspondants aux anneaux hawaiens situes sur la droite reelle loin de 0.


