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Exercice 1. Revétements du huit.

On appelle un graphe 2—orienté si ¢’est un graphe orienté tel que chacun de ses sommets est adjacent
a quatre extremités d’arétes, deux entrantes et deux sortantes, et dont les arétes sont labellées a
ou b, de telle sorte que chaque sommet est adjacent a exactement une extrémité entrante et une
extrémité sortante d’une aréte labellée a (et par conséquent de méme pour b).

1. Montrer que tout graphe 2—orienté forme un revétement de S* v S?.

2. Montrer que tout graphe fini (i.e. ayant un nombre fini de sommets) tel que chacun de ses
sommets est adjacent a quatre extremités d’arétes peut étre orienté et labellé de fagon a
former un graphe 2—orienté.

Solution 1.

1. On donne d’abord une orientation et un label aux deux copies de S* dans S*'V S! de maniere &
former un graphe 2—orienté. Etant donné un graphe 2—orienté I' on construit une application
p: I' — 81V S qui est un homéomorphisme préservant I'orientation sur 'intérieur des arétes,
envoyant une aréte labellée a (resp. b) sur l'aréte labellée a (resp. b). Le fait qu'une telle
application existe suit de la définition d’un graphe 2—orienté et il n’est pas difficile de vérifier
la condition de revétement.

2. Tout graphe connexe et fini avec un nombre pair d’arétes a chaque sommets possede un circuit
eulerien, c’est a dire un lacet traversant chacune aréte exactement une fois. Prenons I' comme
dans I’énoncé. On peut labeller les arétes d'un circuit eulérien alternativement par a et b, et
comme il y a quatre extrémités d’arétes adjacentes a un sommet, on est obligé d’avoir deux
a et deux b au niveau de chaque sommet. On peut ensuite choisir une orientation appropriée.

Exercice 2. Noeuds toriques*.

Soit 1—” une fraction irréductible et K(p,q) le noeud torique de type (p,q) défini par I'image de la
dr01te Yy = —x dans le quotient R?/Z* = T? (Paction de Z?* est par translation). On identifiera cet
espace quotlent via un homéomorphisme & un tore 7" dans R? obtenu comme surface de révolution
autour de l'axe Oz d’un cercle unité du plan Ozz, centré en (2;0;0). Ce tore T est le bord d'un
tore plein P obtenu de maniere analogue par révolution d’un disque.

1. Montrer que K (p, q) définit bien un noeud, c’est-a-dire un lacet dans R? sans intersection (un
plongement de S! dans R3).

2. Les projections (z, £x) = (2,0) et (z, 2x) — (0, Ex) sur les axes définissent dans le quotient
T? des apphcatlons K(p,q) — S' (pour les deux cercles équateur et méridien). Calculer les
q)

homomorphismes 7 K (]9, — m St induits.

3. Soient A =TR3?\ P et B un ouvert contenant P\ K (p, q) comme rétracte de déformation fort.
Identifier les groupes fondamentaux de ces espaces.

4. Montrer que AN B a le type d’homotopie d’un cercle. On pourra se ramener a ’étude de
T\ K(p,q) et identifier dans R? un domaine homéomorphe & un carré dont le quotient est
cet espace.

5. Calculer m (R*\ K(p,q).



Solution 2.

1. On peut dessiner le réseau de Z? dans le plan, de telle sorte que toute 'information du noeud
K(p, q) se trouve dans le segment d’extrémités (0,0) et (g, p), qui représentent le méme point
du tore. Ainsi la droite associée a K (p, q) est ramenée au segment (0,0)-(q, p), qui lui-méme
est ramené a un lacet sur le tore. Pour voir que ce lacet n’a pas de point d’intersection
avec lui-méme, on remarque que les seuls points identifiés sur le segment (0, 0)-(q, p) sont les
extrémités : commme p et ¢ sont premiers eux ce segment ne passe par aucun autre point de
72 et le méme raisonnement reste valide par translation.

2. Le noeud torique parcourt le tore d’une maniére particuliere, qui peut étre étudiée en obser-
vant son comportement sur chacun des deux cercles définissant le tore. Cela se fait par les
projections. On remarque que p représente le nombre de tours qu’effectue le noeud sur un
cercle, et ¢ représente le nombre de tours qu’il effectue sur 'autre cercle. Le générateur [w] du
groupe 71 (K (p,q)) est la classe du lacet qui parcourt une fois 'espace K (p, q). Il est envoyé
par la premiére projection sur le lacet qui fait ¢ fois le tour du méridien correspondant, dont
on note le générateur [a]. Cette projection induit une multiplication par ¢ entre les groupes
fondamentaux, puisque ’homomorphisme de groupes (K (p,q)) — m(S?) : [w] — [a]? se
traduit dans les entiers relatifs par Z — Z : n+— gn = n+ ... +n (notez le passage aux nota-
tions additives). Il en va de méme pour 'autre projection, qui induit donc une multiplication
par p.

3. L’espace A a le méme type d’homotopie que R? \ S! de la derni¢re série. On a montré que
son groupe fondamental était isomorphe a Z. Ainsi, m(A) = Z. Pour la suite des calculs
on rappelle qu'un générateur de ce groupe est donné par exemple par un lacet constitué
d’un cercle de centre (2;0;0) et de rayon 11/10, basé en (9/10;0;0). Beaucoup d’autres choix
conviennent a condition de choisir un lacet qui fait une fois le tour du tore plein, dans la
direction des méridiens.

Ensuite, on construit B qui doit nécessairement contenir P\ K (p,q) pour recouvrir I’espace
considéré. Comme B doit étre ouvert on “épaissit” le tore plein pour former le tore plein
ouvert B’ obtenu par révolution d’un disque ouvert de rayon 12/10 (par exemple). On retire
de ce tore plein le noeud torique et tout le “sillon” correspondant jusqu’a la surface de ce
tore ouvert. Plus concretement, pour tout point x du noeud, on considere le point y du
cercle I" centré en l'origine et de rayon 2 le plus proche (i.e. le centre du disque de révolution
correspondant a la tranche sur laquelle se trouve ) et la droite d passant par z et y. On
définit B en enlevant & B’ le segment semi-ouvert de longueur 2/10, contenu dans d, fermé
en z et ouvert en son autre extrémité qui repose sur la surface de B’.

Montrons que B a le méme type d’homotopie que I’ame I' du tore et il s’ensuit que m(B) = 7Z
également. Comme B a pour rétract de déformation fort (c-a-d rétract induisant un isomor-
phisme de groupe fondamental) P\ K(p, q), ils ont le méme groupe fondamental. De plus,
P\ K(p,q) se rétracte fortement sur 'ame du tore (comme d’habitude, on se représente le
tore par le carré I x I avec identifications, pour expliciter I’homotopie comme "application
qui rétracte le tout sur le segment (0,1/2) — (1,1/2) dans le carré identifié). A nouveau on
choisit un générateur explicite de ce groupe fondamental. On pourrait choisir I’ame du tore,
mais pour avoir des points de base compatibles, on choisira plutot par exemple lacet basé
en (9/10;0;0), par exemple en commencant par un chemin v de rectiligne de (9/10;0;0) a
(2;0;0), puis en parcourant I’ame du tore, et enfin en revenant par 7.

4. On commence par calculer le saturé ¢~'(¢(T')) ou ¢: R? — R?*/Z? = T? est I'application
quotient et I' est le graphe de la droite de pente p/q. On peut calculer quels points du lattice



se trouvent sur cette droite : les points de croisement avec les droites horizontales doivent
étre de la forme (a;n) pour n € Z, i.e. n = pa/q ou encore a = gn/p. La plus petite partie
entiere d’un tel nombre rationnel vaut 1/p par Bézout si bien que le saturé de I' est composé
d’une infinité de droites paralleles a T', horizontalement espacées de 1/p (et verticalement de
1/q).

On considéere la bande ouverte du plan comprise entre la droite y = p/qx et y = p/qx — 1/q.
Tout point du tore a une préimage dans la cloture de cette bande puisque le plan tout entier
s’obtient par translations entieres de cette bande. De plus, le segment horizontal compris entre
(0;0) et (1/p;0) est identifié par ¢ au segment compris entre (p; q) et (p+1/p; q). Un domaine
fondamental de T \ K (p, q) est donc donné par la partie de la bande ouverte contenue entre
ces deux segments (y compris). L’application quotient identifie uniquement ces segments si
bien que T'\ K (p, q) est homéomorphe & un cylindre ouvert S*'x]0; 1[.

On remarque que AN B se rétracte fortement sur T+ \ K (p,q)*, ou T est le tore obtenu par
révolution d’un cercle de rayon 11/10 et K est le noeud torique correspondant (ce rétracte
correspond au milieu de la partie ouverte que nous avons ajouté a 7'\ K (p, ¢) pour construire
B. Ainsi, AN B a le méme type d’homotopie que T\ K(p,q), qui est celui d’'un cercle. On
choisira comme générateur de son groupe fondamental, isomorphe a Z, I'image par ¢ de la
droite d’équation y = p/qz — 1/2q, le lacet w situé au milieu de la bande ouverte décrite
ci-dessus et qui parcourt sur la surface du tore un noeud torique isométrique a K(p, q). Plus
précisément on doit prendre la version w™ de ce lacet pour qu’il se trouve bien dans ANB, & un
dixieme de distance au-dessus de la surface du tore. Quitte a mieux choisir I’lhoméomorphisme
entre T2 et le tore T' on peut s’arranger pour que ce lacet passe par (9/10;0;0) qu’on choisira
comme point de base de AN B.

5. On applique le théoreme de Seifert Van Kampen aux ouverts A et B, en remarquant que les
conditions du théoréme sont bien vérifiées (on a deux ouverts recouvrant I'espace R*\ K (p, q),
ayant une intersection connexe par arcs). On remarque que les homomorphismes de groupes
induits par les inclusions AN B — A et AN B — B sont identiques aux homomorphismes de
groupes induits par les projections du point 2. Illustrativement, on a une équivalence entre
les diagrames d’homomorphismes de groupes suivants (avec Z ’amalgame correspondant)

(AN B) A 1 (4) mK(p,q) — m(Sh)
(LB)*l l prQl l
7T1(B) e 7TlZ 7T1(Sl> 4 7TlZ

Ainsi, w1 (R* \ K(p, q)) = m1(S") *r,(k(p.q)) M (S') = Z %z Z ou le produit est amalgamé par
rapport aux homomorphismes induits par les projections du point 2. On conclut par la partie
2 que le groupe fondamental de R?\ K (p, q) admet une présentation donnée par (a, b|a?b™?).

Exercice 3.
Construire un espace topologique dont le groupe fondamental est cyclique d’ordre n.

Solution 3. Il suffait de considérer un polygone a n cotés avec I'identification a x a - - - * a n fois.

Exercice 4. Revétement de la bouteille de Klein



Soit q: I x I — K le quotient usuel définissant la bouteille de Klein (i.e. (s,0) ~ (s,1) et (0,%) ~
(1,1 —t) pour tous 0 < s, < 1). On définit une fonction P: I x I — I x I par P(s,t) = (2s,t)
pour 0 < s<1/2et P(s,t)=(2s—1,1 —1t) pour 1/2 < s < 1.

1. Montrer que go P est continue, qu’elle passe au quotient et définit une application p: T? — K
du tore vers la bouteille de Klein.

2. Montrer que p est un revétement a deux feuillets de K.
3. Identifier p,: m7T? — m K.

4. Conclure que le groupe de Klein contient un sous-groupe isomorphe a Z?2.

Solution 4.

1. On note ~ la relation d’équivalence sur I x I engendrée par les relations (s,0) ~x (s,1) et
(0,t) ~k (1,1 —1), et ~7 la relation d’équivalence engendrée par les relations (s,0) ~p (s, 1)
et (0,t) ~¢ (1,t). On alors des homéomorphimes K ~ [ X I/ ~ et T? ~ I x I/ ~7. On note
qr, qr les composées [ X [ — I X [/ ~p=T? et I x I — 1 x 1) ~g~K.

Montrons que la composée qx o P : I x I — K est continue. Il est clair que P est continue
sur I x I privé de {%} x I. Quand s 1 %, on a P(s,t) — (1,t) alors que quand s | % on
trouve P(s,t) — (0,1 —t). Comme (1,¢) ~x (0,1 — ¢) pour tout ¢, on conclut que gx o P
est continue.

Vérifions maintenant que qx o P passe au quotient par ~7. Pour tout ¢, on trouve P(0,t) =
(0,t) et P(1,t) = (1,1—t) de sorte que P(0,t) ~¢ P(1,t). De méme, on vérifie que P(s,0) ~r
P(s,1) pour tout s. La propriété universelle du quotient assure donc l'existence d’une unique
application p : T? — K faisant commuter le diagramme

IxT 2o IxI

qu_ \\\\\\\y .lqK .

T 2 S K

Attention au fait que P n’est pas continue.
2. Soit o : T? — T? définie par

(s+3,1—t)r si0<s<1i

(s:t)r = { (s—3,1—t)p sinon.

On montre que o est bien définie et continue, et on vérifie que 0 oo = idr2 de sorte que o est
un homéoomrphisme. On obtient une action de Cy = Z/2Z sur T? qui est propre et libre. Le
quotient T2 — T?/Cy est donc un revétement a 2 feuillets.

Montrons que le quotient T? — T?/Cy s’identifie & p. Tout d’abord, on identifie le quotient
T?/Cs. Les orbites sous 'action de Cy sont les paires (s,t)7, (s + 1,1 —¢)p pour 0 < s < 1.
Le rectangle ¢r([0,3] x I) C T? est un domaine fondamental pour I'action de Cs : I'action
est triviale sur lintérieur du rectangle. Sur le bord du rectangle, on a les identifications
(0,8)p ~ (5,1 —t)r et (5,0)7 ~ (s,1)7. On obtient T%/Cy ~ [0,1] x I/ ~ . En composant
avec une dilatation (s, )7 — (2s,t)7 on obtient T?/Cy ~ I x I/ ~ =~ K. De plus, on vérifie
explicitement que la composée T? — T?/C, 5 K est Papplication p. Finalement, p est un
revétement a deux feuillets de K.



3. On choisit comme générateurs de 772 les lacets a : ¢ — (0,t)p et b: t — (£,0)r, et pour m K
les générateurs o : t — (0,t)x et B : ¢+ (t,0)x. On a donc les présentations mT = Z? et
mK = {a, B3| aBaB™t). Alors les lacets p o a et p o b sont respectivement égaux & a et 3 * 3
oll * est la concaténation des lacets. Le morphisme induit p, : m7? — m K est donné par
ar a, b B2

4. Comme p est un revétement, il induit une injection p, : mT? < m K sur les groupes fonda-
mentaux. On en déduit que 7 K contient un sous-groupe isomorphe a Z2.

On peut aussi vérifier que o et 32 commutent dans m K, et donc que le sous-groupe de m K
qu’ils engendrent est isomorphe & Z2.

Exercice 5. Composition de revétements. Soit H les anneaux hawaiens. On appelle ¢, le
sous-espace formé du cercle de rayon 1/n et de centre (0;1/n), le point d’accumulation est (0;0).

1. Construire pour tout entier £ > 1 un revétement a deux feuillets de H de sorte que la préimage
du cercle ¢; soit une réunion disjointe de deux cercles isométriques a ¢;, I'un de centre (0;1/n),
lautre de centre (0;3 — 1/n), lorsque ¢ > k, mais une ellipse dont le grand axe est le segment
vertical d’extrémités (0;0) et (0;3) pour i < k.

2. Construire un revétement a une infinité de feuillets de H. On fera en sorte que la préimage
du cercle ¢; soit une réunion disjointe d’une infinité de cercles isométriques pour tout i > 2.

3. Construire a l'aide de la partie 1 un revétement a deux feuillets de I'espace construit dans la
partie 2 de sorte que la composition des deux revétements ne soit pas un revétement.

Solution 5.

Bl @wuﬂté’ Ao arvrea. x



L’image suivante résume la situation :

OQ0OC

@ @ @ @ @

(source : https ://math.stackexchange.com/questions/989083 /is-composition-of-covering-maps-
covering-map)

La composition n’est pas un revetement car tout voisinage ouvert de (0; 0) contient une infinité
de ¢; et la preimage par la composition ne peut etre un homéomorphisme pour les feuillets
correspondants aux anneaux hawaiens situes sur la droite reelle loin de 0.



