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Introduction

Ce cours de topologie est la suite logique du cours de topologie générale et es-
paces métriques. Il est constitué de quatre chapitres. Dans le premier on étudie la
topologie quotient qui permet de construire de nouveaux espaces topologiques en
identifiant certains points entre eux, en écrasant des sous-espaces, ou en attachant
un espace a un autre espace. La souplesse de la topologie fait que ces quotients sont
moins homogenes que les quotients de nature algébrique que 1'on connait déja et
font apparaitre des différences qui apportent a ce sujet son intérét, mais aussi une
certaine complexité. Ces idées sont abordées dans la Section 1.

Dans le deuxieme chapitre nous complétons nos connaissances de théorie des
groupes pour avoir en mains les outils nécessaires a la description des groupes fon-
damentaux des espaces topologiques. Nous travaillerons avec des groupes libres et
introduisons la notion de présentation d’un groupe aritraire, par générateurs et rela-
tions. L’idée est de donner une liste (minimale si possible) de générateurs et surtout
des relations qu’ils vérifient. Par exemple le groupe Z @ Z est engendré par les élé-
ments © = (1;0) et y = (0;1). Avec la notation multiplicative ils vérifient une
relation, celle de commuter entre eux puisque le groupe est commutatif : zy = yx
et on définit alors le relateur zyx~ly~! pour dire que la relation xyx~ly~! = 1 est
satisfaite. Cette relation engendre en fait toutes les autres relations et on obtient une
présentation du groupe abélien libre & deux générateurs : (z,y | xyz—'y~1).

Dans le troisieme chapitre nous revenons sur la notion d’homotopie entre che-
mins et la généralisons a des applications continues arbitraires. Le résultat central
de cette partie est le Théoreme de Seifert et van Kampen qui donne des conditions
assez générales et tres utiles dans la pratique permettant d’identifier le groupe fonda-
mental d’'un pushout d’espaces avec le pushout de leurs groupes fondamentaux! Ces
pushouts d’espaces X < A — Y sont précisément obtenus en recollant les espaces
X et Y le long de leur “partie commune” donnée par I'image de A et le pushout
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6 INTRODUCTION

des groupes fondamentaux m X < m A — mY sera décrit de maniere efficace grace
a la théorie des groupes combinatoires développée dans le chapitre précédent. Ce
résultat admet une ribambelle de conséquences, certaines tres générales concernent
I’attachement d’une cellule et son effet sur le 7, d’autres tres concretes, ce sera
le cas du calcul du groupe fondamental de toute surface, qui permet d’obtenir une
classification completes des surfaces.

Dans le quatrieme et dernier chapitre nous étudions les revetements. Sans que le
vocabulaire ait été utilisé, 'application exponentielle R — S! est ce qu’on appelle
un revétement universel et ceci permet d’identifier le groupe fondamental du cercle,
avec le groupe des automorphismes de R compatibles avec ’exponentielle, i.e., les
translations +n pour n € Z. Nous étudierons les revétements, établirons un résul-
tat d’existence pour des espaces dotés d'une topologie“raisonnable” et terminerons
avec un théoreme de correspondance galoisienne qui donne une bijection entre sous-
groupes du groupe fondamental et revétements. Dans le cas du cercle, qui est connu,
cela se traduit précisément par le fait qu’il existe un revétement a n feuillets du

cercle — 'application z — 2™ — pour tout entier naturel n > 1.

1. 3BluelBrown

J’aimerais commencer ce cours de topologie en vous montrant une magnifique
vidéo de 3BluelBrown que vous connaissez peut-étre. Son titre est “Who cares about
topology ?” et il illustre comment de nombreuses idées que je vais essayer d’expliquer
dans ce cours peuvent etre appliquées de maniere surprenante pour résoudre un
probleme apparemment sans lien avec la topologie. L'une des constructions qui est
décrite est celle d'un quotient, ce sera le sujet du premier chapitre de ce cours et un
outil fondamental pour obtenir de nouveaux espaces topologiques a partir d’espaces

connus.

CONJECTURE 1.1. La conjecture de Toeplitz ou conjecture du carré inscrit prédit
I’existence sur toute courbe de Jordan dans le plan de quatre points qui forment un

carré.

Otto Toeplitz est un mathématicien allemand (1881 - 1940) ayant travaillé a

Gottingen au début du siecle lorsque Hilbert, Klein, Minkowski, Courant y étaient.
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Nommé a Kiel, puis a Bonn, il fut forcé d’émigrer a Jérusalem en 1939 ou il mourut
de la tuberculose I'année suivante.

Cette conjecture est encore ouverte de nos jours, du moins sous sa forme la plus
générale, mais il semblerait que le cas lisse ait été résolu pendant le confinement du
printemps 2020 par Greene et Lobb, dans un petit article de quatre pages (Cyclic
quadrilaterals and smooth Jordan curves) que I'on trouve sur MathArXiv. Voir aussi
I’article de vulgarisation tres bien écrit :

https ://www.quantamagazine.org/new-geometric-perspective-cracks-old-problem-
about-rectangles-20200625/

Nous verrons dans le film une solution d’une version plus faible, le probleme du
rectangle inscrit, démontré par Herbert Vaughan en 1977. Son idée est d’utiliser la
caractérisation d’un rectangle par le fait que les diagonales de méme longueur se
coupent en leur milieu. Il s’agit donc de trouver deux paires de points sur la courbe
qui déterminent des segments de méme longueur se coupant en leur milieu.

Pour cela on définit une fonction qui associe a toute paire de points de la courbe
C son point milieu dans le plan et on ajoute une troisieme coordonnée qui est donné
par la longueur d de ce segment. Autrement dit nous avons construit une fonction

f: C x C — R3 donnée en dollars par la formule suivante :

V(@1 = 22)% + (51 — 12)?)

L’image de cette fonction décrit une surface S au-dessus du plan.

T1+ T2 Y1+ Yo
2 ’ 2

(@1, Y15 T2, Y2) — (

LEMME 1.2. La fonction f est continue et f(x,z) = (x,0).

De fait nous devons étre un peu plus précis car nous ne sommes pas intéressés par
des éléments de C' x C', mais des paires non ordonnées puisque le segment déterminé
par deux points A et B de la courbe est le méme si nous choisissons B et A. Le
choix d’une paramétrisation [0, 1] — R? de la courbe fermée C' permet de penser &
un point de la courbe comme étant un nombre réel compris entre 0 et 1. Chaque
nombre correspond exactement a un point de C' et vice-versa, sauf aux extrémités
puisque la courbe est fermée : 0 et 1 correspondent au méme point.

De méme une paire de points de C correspond alors a une paire de points du

carré [0, 1] x [0, 1], mais il ne faut pas oublier de faire les identifications (0,t) = (1,)
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et (s,0) = (s,1) pour tous nombres réels 0 < s,t < 1. Ceci définit le tore, un espace

muni de la topologie quotient héritée du carré.

N—i7

Comme les paires qui nous intéressent sont non-ordonnées, nous voulons identifier

=¥

encore le point (s,t) avec (¢, s). Autrement dit nous voulons plier le carré en deux le

long de la diagonale pour ne garder qu'un triangle.

PROPOSITION 1.3. La surface qui paramétrise le choix de paires de points non

ordonnés d’une courbe fermée est le ruban de Moebius.

DEMONSTRATION. Nous devons identifier les catheétes du triangle rectangle iso-
cele puisque (s,0) = (s,1) et que ce point du haut du carré a été identifié lors du
pliage avec (1, s). Pour mieux visualiser la surface ainsi obtenue il est plus agréable
de couper le triangle par sa hauteur, comme ci-dessous, pour d’abord identifier les

cathetes et obtenir un petit carré, avant de recoller la hauteur.

AY_JA A A A

Torus Fold Disect

e, %,
%, %,
‘. %,
3 b
‘% . = .
.u‘ ": ",
", ) ., s,
% % “, ,
1 T e %,
. N ", ’,,
T %)

Split Flip Join

Il s’agit effectivement d’'un carré dont on identifie deux cotés opposés, I'un étant

parcouru de gauche a droite et 'autre de droite a gauche : 0
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Nous oublions maintenant la paramétrisation concrete de ce ruban de Moebius.
Soit M le ruban de Moebius et f : M — R? la fonction induite par f (par passage

au quotient).
PROPOSITION 1.4. La fonction f est continue et envoie OM sur la courbe C.

DEMONSTRATION. Le bord de M correspond a la diagonale du carré [0, 1] x [0, 1]

et on conclut par le Lemme 1.2. O

THEOREME 1.5. Il existe sur toute courbe de Jordan dans le plan quatre points

qui forment un rectangle.

DEMONSTRATION. Nous cherchons deux paires de points dont les diagonales se
coupent en leur milieu et qui ont meme longueur. Autrement dit nous cherchons
deux points m,n de M tels que f(m) = f(n).

Considérons la surface dans R® obtenue a partir de I'image de f en ajoutant
lintérieur de la courbe C'. Cette surface fermée et sans bord est obtenue topologi-
quement en attachant a un ruban de Moebius un disque, 'identification étant faite

“bord & bord”. Cette surface est appelée plan projectif et connue comme RP2.

Or, le plan projectif n’admet pas de plongement dans R* comme “on le voit” sur

les différentes immersions proposées ci-dessus... O]

2. Espaces topologiques

Ce semestre nous travaillons avec des espaces topologiques et des applications
continues entre deux objets de ce type. Nous rappelons la définition d’espace topo-
logique et fixons les notations que nous utiliserons dorénavant. Les notions de ce
document sont considérées comme étant acquises avant le début du cours et consti-

tuent donc des prérequis.
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DEFINITION 2.1. Un espace (topologique) est un ensemble X muni d'une topologie

T C P(X) dont les éléments sont appelés ouverts de la topologie, telle que

(1) L’ensemble vide et X sont ouverts.
(2) Une intersection finie d’ouverts est ouverte.

(3) Une réunion arbitraire d’ouverts est ouverte.

On écrit parfois (X, 7T) pour souligner I'importance de la topologie, mais lorsque
le contexte indique clairement quelle topologie est utilisée, on écrira simplement X

et on dira que X est un espace. Le complémentaire d'un ouvert est appelé fermé.

EXEMPLE 2.2. La topologie discrete est définie par T = P(X) et si X est un
espace métrique, alors la topologie métrique a pour ouverts les réunions de boules

ouvertes.

Parmi les propriétés de séparation que vous avez étudiées nous rencontrerons

surtout celle de Hausdorff.

DEFINITION 2.3. Un espace X est de Hausdorff, ou simplement séparé, si deux
points distincts x et y peuvent toujours étre séparés par des voisinages ouverts U et
ViiexzeU,yeVetUNV =0.

On appelle U un voisinage ouvert de x et en général un voisinage A d’un point

x est un sous-espace de X qui contient un voisinage ouvert de x.

DEFINITION 2.4. Soient X,Y deux espaces. Une application f: X — Y est

continue si f~1(U) est un ouvert de X pour tout ouvert U de Y.

Une application qui envoie les ouverts, resp. les fermés, de X sur des ouverts,
resp. fermés, de Y est dite ouverte, resp. fermée. On vérifie par exemple le critere

suivant en montrant que les hypotheses impliquent que I'application est fermée.

PROPOSITION 2.5. Une application bijective d’un espace compact vers un espace

sépare est un homéomorphisme.
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3. Notations

Deés maintenant toutes les applications sont continues, sauf mention du contraire.

On note

(a) Le singleton est 'espace * n’ayant qu’un seul point, i.e. {x}, muni de la topo-

logie ... discrete.

(b) L’espace D™ est la boule unité fermée (disque) dans R™ pour la métrique
euclidienne usuelle. On notera parfois e” pour un espace homéomorphe a D™.

L’intérieur D™ ou é" est donc une boule ouverte.
(c) Le bord D™ de D™ est la sphere unité S 1.

(d) On utilise le symbole = pour les isomorphismes, & pour les homéomorphismes
et ~ pour les équivalences d’homotopie entre espaces ou les homotopies entre

applications.

On aime utiliser des symboles différents pour bien distinguer les catégories dans
lesquelles on travaille. Il est vrai que chacun des trois symboles de (d) désigne en fait
un isomorphisme (dans une catégorie algébrique, celle des groupes ou des anneaux,
dans la catégorie des espaces topologiques, ou la catégorie homotopique, nous y

reviendrons).






Chapitre 1

Les espaces quotients

Si X est un espace et ¢: X — Y est une application ensembliste surjective, on
peut toujours munir Y d’une topologie quotient. Dans ce chapitre nous proposons
plusieurs points de vue sur ce type de construction et étudions quelles propriétés (de

séparation, de compacité) de X se transmettent au quotient.

1. La topologie quotient

On considere dans cette section un espace (topologique) X et une surjection

ensembliste g: X — Y.

DEFINITION 1.1. Un sous-ensemble U C Y est un ouvert de la topologie quotient

sur YV si et seulement si ¢~ (U) est un ouvert de X.

Quand Y est muni de la topologie quotient via ¢ on dira que 'application ¢ est
une application quotient, ou simplement un quotient, et que Y est un espace quotient

de X, ou simplement un quotient.

REMARQUE 1.2. On peut également définir la topologie quotient sur Y en carac-
térisant les fermés F de Y comme étant exactement ceux dont la préimage ¢ 1(F)

est fermée dans X.
LEMME 1.3. La définition des ouverts de Y munit Y d’une topologie.
DEMONSTRATION. En exercice. O

EXEMPLE 1.4. Soit I = [0;1] I'intervalle fermé muni de la topologie métrique
(induite de celle de R) et Y = ]0;1[ [] {*} P'espace dont les points sont ceux de
I'intervalle ouvert, 0 < y < 1, et un point supplémentaire noté x. On définit ¢: I — Y
par la formule

r st O<zx<l1
q(x) =
*  sinon

13
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La topologie quotient sur Y en fait un espace homéomorphe au cercle. Explicitement

on peut définir un homéomorphisme f: S' — Y par e*™ s ¢ pour t # 0 et f(1) = *.

Dans le début de cette section nous sommes partis d'une surjection ensembliste
et nous avons défini une topologie sur le quotient. Parfois on a deux espaces munis
d’une topologie connue et on dispose d’une application (continue) g: X — Y. On se
demande quand cette application est un quotient, c¢’est-a-dire quand la topologie de

Y coincide avec la topologie quotient.

ProPOSITION 1.5. Sig: X — Y est une application surjective, continue et ou-

verte (ou fermée), alors q est un quotient.

DEMONSTRATION. Soit U C Y. Si U est ouvert, alors ¢~'(U) est ouvert dans
X par continuité. Réciproquement supposons que ¢~ *(U) est ouvert dans X. Alors
I'image par ¢ est ouverte parce que g est ouverte. Comme g est surjective, ¢(¢~*(U)) =
U, si bien que U est ouvert.

Lorsque ¢ est une application fermée, on conclut en montrant de la méme fagon

que Y\ U =q(X \ ¢ (U)) est fermé. O

EXEMPLE 1.6. On définit ¢: [0,3] — [0, 2] en contractant U'intervalle [1, 2] sur un
point. Explicitement
t si 0<t<1
q(t) = {1 si1<t<2
t—1 si 2<t<3

Alors ¢ est une application quotient qui n’est pas ouverte puisque ¢(]1,2[) = {1}.

La preuve du résultat suivant est claire. Cela sera utile pour construire des quo-

tients en plusieurs temps.

PROPOSITION 1.7. Sip: X = Y et q: Y — Z sont deux quotients, alors q o p

ausst est un quotient. |

Nous avons introduit la topologie quotient par une définition certes raisonnable,
mais qui était parachutée sans motivation préalable. Le théoreme ci-dessous carac-
térise cette topologie et rend la définition naturelle. Il ajoute ensuite une propriété

tres pratique qui donne la motivation manquante.
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THEOREME 1.8. Soit X un espace topologique et q: X — Y une application
ensembliste surjective. La topologie quotient sur Y est la topologie la plus fine qui
rend q continue. De plus, st Y est muni de la topologie quotient, alors une application

g: Y — Z est continue si et seulement si la composée g o q est continue.

DEMONSTRATION. L’affirmation sur la finesse de la topologie est claire puisque
si q est continue, alors qil(U ) est ouvert pour tout ouvert de Y.

Pour montrer la deuxieme propriété, il suffit de prouver que si g o ¢ est continue,
alors g aussi est continue (car la composition de deux applications continues est
toujours continue). Soit V' C Z un ouvert. Alors (goq) (V) = ¢ (g *(V)) est un
ouvert de X. Par définition de la topologie quotient on conclut que g=*(V) est un

ouvert de Y. Ainsi g est continue. O

EXEMPLE 1.9. Soit C' le cercle unité dans le plan donné en coordonnées par
C={(a,y) €R? | a? +y2 = 1)

On définit une fonction ¢: R — C en posant ¢(t) = e*™ pour tout t € R. Alors ¢

est continue, surjective et ouverte, c¢’est donc un quotient.
Je ferai parfois référence au résultat suivant sous le nom de critére de compacité.

ProprosITION 1.10. Soit g: X — Y une application quotient. Si X est compact,

Y aussi est compact.

DEMONSTRATION. L’image d’un compact par une application continue est tou-

jours compacte. 0

2. Quotient par une relation

Il est souvent utile de décrire un espace quotient en donnant les points qui sont
identifiés par le biais d’une relation d’équivalence. Lorsque ¢: X — Y est une surjec-
tion, on peut toujours lui associer une relation définie par x ~ 2’ si et seulement si
q(z) = q(2’). Cette nouvelle maniere de présenter les quotients est donc équivalente

a la maniere originale introduite dans la section précédente.
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DEFINITION 2.1. Soit ~ une relation d’équivalence sur un espace X et q: X —
X/~ la projection canonique. On appelle X/~ 1'espace quotient de X par ~ lorsque

ce dernier est muni de la topologie quotient.

EXEMPLE 2.2. Le cercle décrit dans I’Exemple 1.9 par une paramétrisation ex-
plicite dans le plan peut simplement étre décrite comme quotient de l'intervalle [0, 1]

par la relation ~ définie par s ~ t si et seulement si s =t ou s,t € {0,1}.

Les quotients d’un intervalle sont ainsi décrits comme un bout de ficelle ou cer-
tains points sont identifiés (en les collant). Il n’est plus nécessaire de décrire ’espace
quotient par une paramétrisation dans le plan ou 'espace. On a la propriété univer-

selle suivante dans ce contexte.

PROPOSITION 2.3. Soit ~ une relation d’équivalence sur un espace X et ’ap-
plication quotient q: X — X/ ~. Alors pour toute application f: X — Y telle que
x ~ ' implique f(x) = f(2')), il existe une unique application f: X/~ —Y avec
foq=1f.

DEMONSTRATION. Puisqu’on souhaite avoir f o ¢ = f il faut poser f([z]) =
f(z), ce qui montre 'unicité. L’hypothese “x ~ ' implique f(z) = f(z’)” permet
de déduire que f est bien définie de maniere ensembliste. Elle est continue par le

Théoreme 1.8 puisque la composition f o g = f est continue. 0

Un cas particulier important est la construction suivante, obtenue en écrasant un

sous-espace.

DEFINITION 2.4. Soit A C X un sous-espace. Le collapse X /A est 'espace quo-
tient obtenu de X par la relation d’équivalence x ~ y si et seulement si x = y ou

x,y € A.
EXEMPLE 2.5. Le cercle décrit dans 'Exemple 1.9 est le collapse [0, 1]/{0,1}.

Lorsqu’on se donne une famille d’espaces, il est possible qu’en tant qu’espaces
ils ne soient pas disjoints. Pour cela on introduit pour tout espace X, un espaces
X, x {a} qui est homéomorphe, car c’est le produit avec un singleton. De cette fagon
le nouvel espace remplace X, mais porte avec lui son indice qui distingue ses points

de ceux de tous les autres espaces.
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EXEMPLE 2.6. Si on choisit X; = X5 = I, et qu’on souhaite malgré tout décrire
une réunion disjointe de deux intervalles, on pourra remplacer X; par I x {1} et X,

par I x {2}, de sorte que la réunion de ces nouveaux intervalles soit disjointe :

9 o—o

1 o—

DEFINITION 2.7. Soit A un ensemble et pour tout @ € A un espace X,. La
réunion disjointe ] X, est l'espace topologique | J X, x {a}. Les ouverts de cet

espace sont les réunions d’ouverts des X, x {a}.

Lorsqu’on identifie les points de base de chacun des espaces d'une famille d’es-

paces {X, | @ € I'} on obtient un “bouquet” d’espaces.

DEFINITION 2.8. Soit A un ensemble et pour tout @ € A un espace pointé
(Xa, o). Le wedge \/ X, est le quotient [[ X, /{za | a € T}.

On peut montrer que le type d’homotopie ne dépend pas des points de base
choisis pour autant qu’ils se trouvent dans la méme composante connexe par arcs
lorsque les espaces sont “gentils”. Ceci justifie I’abus de notation consistant a ne pas

mentionner les points de base.

EXEMPLE 2.9. Le wedge de deux cercles S'V St est un 8.
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D’autres examples de quotients sont importants pour ce cours dans lequel ils vont

apparaitre de maniere récurrente.

EXEMPLE 2.10. Le collapse D"/S™~! est homéomorphe & la sphere S™. Visuelle-
ment on peut bien se convaincre de l'exactitude de cette affirmation pour n = 2, le
disque dont on collapse le bord en un point donne bien une sphere. Une jolie vidéo
se trouve aussi ici :  https ://www.youtube.com/watch 7v=IVKPGGC_2R8

Exhibons 'homéomorphisme pour le cas général. Soit f: D™ — S™ 'application

définie par

(2x, /1 — [|2x[[?) st lx[| <1/2

X =
([4 —4flx[]x, —\/1 — [4—4llx]” [xI12) sifx]| > 1/2

Cette application est définie de sorte a envoyer le cercle de rayon 1/2 sur I’équateur
de S™, le disque intérieur sur I’hémisphere nord et ’anneau extérieur sur ’hémisphere
sud. On calcule également que tout point x du bord de D", donc de norme 1, est
envoyé sur (0, —1). Cette application passe donc au quotient et induit une application
f:D"/S"! — S™. Cest une bijection continue dont la source est un espace compact

par la Proposition 1.10 vers un espace séparé. C’est un homéomorphisme.

Un autre exemple dans le méme style est l'identification du sommet ou du bas

d’un cylindre. Nous généraliserons cette construction immédiatement.

EXEMPLE 2.11. Soit S! x I un cylindre de hauteur 1 et de base circulaire. Alors

le quotient S x I/S* x 0 est homéomorphe & un disque D? :

LD«

XxT vertex

La méme stratégie que ci-dessus s’applique & la fonction f(z,t) = tx pour x € S*

ettel.

DEFINITION 2.12. Soit X un espace et X x I le cylindre sur X. Le cone sur X
est l'espace quotient CX = X x I/X x 0.
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3. Quotient et axiomes de séparation

En général le quotient d'un espace séparé n’est pas séparé. Nous avons déja
rencontré un exemple dans une série d’exercices. Un autre exemple classique est la

droite a deux origines.

EXEMPLE 3.1. A partir de deux copies de R on identifie chaque point x de la
premiere copie avec le point x correspondant dans la deuxieme copie, sauf les “zéros”,

qu’on ne peut séparer par des ouverts.

Plus formellement, considérons X = R x {0;1} et la relation ~ est définie par
(s,k) ~ (t,0) si et seulement si s =t et s # 0 quand k # £. Si on consideére le graphe
de la relation d’équivalence I' C (R[] R) x (R]]R) on voit qu’il n’est pas fermé (les
copies (0,0) et (1,1) de R x R contiennent une droite diagonale, mais les deux autres

contiennent une droite privée d’un point) :

2,,

On rappelle que le graphe de la relation ~ est 'ensemble des paires (z,2') € X x X
telles que x ~ 2’. La cloture du graphe de la relation d’équivalence est en fait une
condition nécessaire pour que le quotient soit séparé. On (re)montre d’abord un
critere de séparabilité tres utile, déja vu lors d el’étude de la séparabilité dans le

cours sur les espaces métriques.

LEMME 3.2. Un espace X est séparé si et seulement si la diagonale A est fermée
dans X x X.
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DEMONSTRATION. Soit (z,y) € X x X un point ne se trouvant pas sur la dia-
gonale (i.e. z # y). Considérons = € U et y € V deux voisinages ouverts. Alors
UNV =0 si et seulement si U x VNA = (). Ainsi U et V séparent les points x et y
si et seulement si U x V' est un voisinage ouverte de (z,y) pour la topologie produit

qui ne rencontre pas la diagonale. O

Une maniere un peu alambiquée de voir le résultat ci-dessus est le suivant. La
relation triviale x ~ x a pour graphe la diagonale A de X x X. Si le quotient

X/ ~= X est séparé alors A doit étre fermé.

PROPOSITION 3.3. Soit ~ une relation d’équivalence sur un espace X. Si X/~

est séparé, alors le graphe I' de la relation est fermé dans X x X.

DEMONSTRATION. Si le quotient est séparé, la diagonale A C (X/~) x (X/~)
est fermée. Or la préimage de A par gxq: X x X — (X/~) x (X/~) est précisément
le graphe I', constitué des paires (z,y) telles que T = g, i.e.  ~ y. On conclut par

continuité de ¢ x ¢ que I' est fermé. |

Voici aussi un critére qui garantit que le quotient est séparé (mais qui ne donne

pas une condition nécessaire).

DEFINITION 3.4. Soit ¢: X — Y une application quotient. On dit que A C X est
saturé ou g-saturé si A = ¢ '(q(A)). Pour B C X on appelle ¢~ !(g(A)) la saturation
de A par I'application q.

PROPOSITION 3.5. Soit ~ une relation d’équivalence sur un espace X séparé. Si
q (q(z)) est compact dans X pour tout v € X et que ¢~ (q(F)) est fermé dans X
pour tout fermé F C X, alors X/~ est séparé.

DEMONSTRATION. Soit T et § deux points distincts de X/ ~. Par hypothese les
préimages ¢ 1(z) = ¢ ' (q(z)) et ¢ (y) sont compactes et disjointes. Il existe donc
des voisinages U et V', ouverts et disjoints dans X, qui séparent ces compacts car X
est séparé.

On doit maintenant rendre ¢(U) et ¢(V') disjoints. Soient £ = X \ U et F' =
X\ V les complémentaires fermés. Par hypothese les saturations E' = ¢~ (q(F)) et
F' = ¢! (q(F)) sont fermés, si bien que les complémentaires U' = X \ ¢ '(¢(E))
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et V' = X\ ¢ 1(q(F)) sont ouverts. Comme 'espace X se décompose en réunion
disjointe de classes d’équivalence, U’ et V’/ sont saturés, contiennent ¢~ (Z) et ¢~ *(7)
respectivement, dont ils forment des voisinages. Comme U’ C U et V' C V ils sont
disjoints.

Puisque U’ = ¢~ *(q(U")) (par saturation), la définition de la topologie quotient
garantit que ¢(U’) est ouvert dans le quotient. Le méme raisonnement s’applique a
q(V').

Pour terminer on controle que ces ouverts sont disjoints. Supposons qu’il existe
w €U et v € V' tels que q(u') = q(v'). Alors v’ € ¢~ (q(v)) C ¢ H(q(V")) =V, ce
qui est absurde puisque U' NV’ = (. O

EXEMPLE 3.6. L’application exponentielle e : R — S* présente le cercle, un
espace séparé, comme quotient de la droite réelle. Comme les saturations de points
ne sont pas conpactes (par exemple ¢~!(¢(0)) = Z), le critére ne s’applique pas. Par
contre on peut restreindre ¢ a un “domaine fondamental” pour s’y ramener puisque
¢’ = e |jpa): [0;1] = S' présente le cercle comme quotient d’une application qui vérifie
les conditions de la Proposition 3.5. On remarque que e *(U) N [0;1] = ¢'~1(U) et

tout voisinage de 1 € S! contient I'image d’un intervalle | — ¢; .

COROLLAIRE 3.7. Soit A C X un sous-espace compact d’un espace X séparé.
Alors X/A est séparé.

DEMONSTRATION. La préimage d'un point par lapplication quotient g: X —
X/A est soit un singleton, soit A. La premiere condition de la Proposition 3.5 est
donc vérifiée. De plus, si F' C X est fermé, alors ¢~ (q(F)) = F lorsque FN A =0,
qui est fermé et sinon ¢ !(q¢(F)) = F U A, qui est également fermé, car le compact

A est fermé dans l'expace séparé X. OJ

EXEMPLE 3.8. On définit une relation d’équivalence sur R? comme suit : x ~y
sil existe A € Z? tel que x = y + a. Le quotient est homéomorphe & un tore, un joli
espace compact et séparé, mais qui ne vérifie ni le critere de compacité, ni celui de
séparabilité... On retrouvera cet exemple dans les exercices et on pourra conclure en

identifiant un domaine fondamental.
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L’importance de la notion de saturation, qui semble peut-étre artificielle au pre-
mier coup d’oeil, vient du fait qu’elle apparait naturellement lors de la comparaison
des quotients. Nous avons vu en effet qu’'une application quotient ¢: X — Y n’est
pas nécessairement ouverte, mais par contre elle envoie des ouverts saturés sur des
ouverts par définition de la topologie quotient. De fait cette propriété caractérise la

topologie quotient.

PROPOSITION 3.9. Soit q: X — Y une application continue et surjective. Alors
q est un quotient si et seulement si q(U) est un ouvert de Y pour tout U ouvert

satureé de X.

DEMONSTRATION. Il reste & montrer une implication. On suppose que q(U) est
un ouvert de Y pour tout U ouvert saturé de X. Soit V' C Y un sous-ensemble et on
suppose que U = ¢~ (V) est ouvert. On observe que U est saturé puisqu’il contient
par construction des classes déquivalence entieres (si g(x) = g(2’), alors x et a’ sont
tous deux soit dans U, soit en dehors de U). Comme V = ¢(U), c’est I'image d'un

ouvert saturé, il est donc ouvert. O

Nous terminons cette section avec des exemples d’espaces quotient qui jouent un
role important dans I’histoire de la topologie algébrique. Nous avons travaillé avec
le plan projectif réel dans une série d’exercices et vu comment le définir comme un
espace de droites dans I’espace. Il est possible et historiquement adéquat de générali-
ser cette approche, mais nous préférons introduire les espaces projectifs directement

comme quotients de spheres par la relation “antipodale”.

DEFINITION 3.10. L’espace projectif réel RP™ est le quotient S™/~ ol x ~ y si

et seulement si x = +y.

EXEMPLE 3.11. Ainsi RP? est un point puisque c’est le quotient de la sphere S°
dans lequel on identifie +1 et —1. L’espace RP! est également facile & identifier, il

est homéomorphe & S*, et RP? est I'espace décrit dans la vidéo de 3BluelBrown.

PrROPOSITION 3.12. L’espace projectif réel RP™ est compact et séparé.
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DEMONSTRATION. La compacité suit de la Proposition 1.10 car S™ est compact.
Comme S™ est séparé et que ¢ '(q(F)) = —F U F est compact pour tout fermé
F C 8™ on conclut par le critere de séparabilité (Proposition 3.5). O

La spheére S™ est la sphére unité dans R™*! et les inversibles de norme 1 de R
sont £1. Nous travaillons avec les nombres complexes C maintenant et le groupe
S! des nombres complexes de norme 1 remplace 1. La sphére unité S?"*! est vue

comme sous-espace de C"*1,

DEFINITION 3.13. L’espace projectif complexre CP™ est le quotient S*"*1/~ on

X ~ 7y si et seulement sil existe un nombre complexe a € S! tel que x = ay.

Explicitement a agit sur y = (y1,...,Yns1) Par a-y = (ayi, . .., aYp11). On peut
montrer par exemple que CP! est homéomorphe a la sphere S2, ce qui fait sens en
tout cas du point de vue des dimensions puisqu’on identifie des cercles de S® & des
points de S?. Pour plus de détails on renvoie aux exercices.

Si on connait I’algebre des quaternions H, on peut construire de maniere analogue

les espaces projectifs quaternioniques...

4. Quotients par des actions de groupes

Comme c’était le cas dans 'exemple des espaces projectifs, de nombreuses rela-
tions d’équivalence proviennent de I'action d’un groupe sur un espace topologique.
Meéme si la plupart des espaces que nous construirons ainsi viendront de I’action d’un
groupe fini, les actions de groupes topologiques sont aussi intéressantes. C’est le cas

de S' que nous venons de rencontrer ci-dessus.

DEFINITION 4.1. Un groupe topologique est un groupe G muni d’une topologie
pour laquelle la multiplication m: G x G — G et l'inverse t: G — G sont des

applications continues.

Tout groupe peut étre vu comme groupe topologique si on le munit de la topologie
discrete. Nous appellerons alors ce groupe topologique discret simplement un groupe.

Ce sera en particulier le cas pour tous les groupes finis que nous rencontrerons.
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EXEMPLE 4.2. Le cercle unité S* C C est un groupe topologique pour la structure
de groupe donné par la multiplication complexe et pour la structure topologique
donnée par la topologie de sous-espace de C. Clairement la multiplication et I'inverse
sont continues, la formule de Uinverse en coordonnées, t(a + bi) = az;l;z?’ montre
la continuité de ¢ par exemple. o

De méme le cercle unité S* C H est un groupe topologique, qui n’est toutefois
pas commutatif. De fait les seules spheres que 'on peut munir d’'une multiplication
sont S%, St 83 et ... S, mais cette derniére multiplication octonionique n’est pas

associative.

EXEMPLE 4.3. L’addition munit ’espace métrique R™ d’une structure de groupe

topologique. Le méme raisonnement s’applique a C™ ou Q.

EXEMPLE 4.4. Le groupe multiplicatif des matrices inversibles GL,(R) est un
groupe topologique pour la topologie de sous-espace de M, (R) ~ R™. Les formules
de la multiplication et de I'inverse en coordonnées, bien connues de ’algebre linéaire,
montrent qu’elles sont continues.

On peut encore se restreindre a des sous-groupes plus petits : les matrices ortho-

gonales O(n), spéciales orthogonales SO(n) ou unitaires U(n) et spéciales unitaires
SU(n), etc.

PROPOSITION 4.5. Si G est un groupe topologique, alors tout sous-groupe H < G

hérite d’une structure de groupe topologique.

DEMONSTRATION. La multiplication est celle de G et la continuité de m et de ¢

suit de la définition de la topologie de sous-espace. O

Nous introduisons maintenant les actions de groupe, et essayerons de systémati-
quement les utiliser a droite. Tout fonctionne également pour les actions a gauche,

mutatis mutandis.

DEFINITION 4.6. Une action (a droite) d'un groupe topologique G sur un espace
X est une application continue p : X xG — X, notée aussi simplement u(z, g) = x-g,

telle que

(1) -1 =z pour tout x € X ;
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(2) z-(99) =(x-g)-¢ pour tous z € X et g,¢' € G.

On peut aussi se représenter ces propriétés sous forme de diagrammes commuta-
tifs. Par exemple, si i désigne I'inclusion de I’élément neutre dans G, alors le triangle
suivant commute :

= id x X1
X — X xeg 25 X x @G

La deuxieme propriété signifie que la carré suivant commute :

XXGXGLM%XXG

idX Xml lﬂ

XXGT>X

DEFINITION 4.7. Soit X un espace sur lequel agit un groupe topologique G.
L’espace des orbites X /G est le quotient de X par la relation = ~ y si et seulement

si il existe g € G avec x =y - g.

EXEMPLE 4.8. Le groupe (5, cyclique d’ordre 2, agit sur la sphere unité S™ C
R™* par I'action antipodale. Le générateur agit donc sur un point x en l’envoyant
sur —x. Le plus pratique pour cela est de choisir comme modele pour Cs le groupe
des nombres réels de norme 1, c’est-a-dire {£1} = O(1) qui agit par multiplication
(a droite). L’espace quotient S™/Cy est RP"™.

De méme S agit sur les spheres unité de C™! et les quotients S***1 /St sont les
espaces projectifs complexes CP".

Le groupe additif Z? agit par translations dans le plan R2. L’espace quotient
R?/7Z? est le tore.

Le cercle St agit sur la sphere S? par rotations horizontales le long des paralleles
et S?/S! est alors homéomorphe & un intervalle I. Les extrémités sont les classes

d’équivalence des poles, les autres points celles d’un parallele.

REMARQUE 4.9. Tout sous-groupe H < G agit par multiplication sur le groupe
topologique G. Cette action G x H — G donne lieu a un quotient G/H dont les
¢éléments sont précisément les orbites gH, classes d’équivalence de tous les éléments

g ~ g, i.e. tous les ¢’ de la forme gh pour un h € H. Ainsi g ~ ¢’ si et seulement
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g '¢’ € H. En particulier chaque classe dans le quotient a la méme cardinalité, a
savoir |H|, alors que dans un quotient topologique arbitraire tout peut arriver.
Lorsque H <G est un sous-groupe normal, le quotient hérite d’une structure de

groupe (topologique).

EXEMPLE 4.10. Le sous-groupe S' agit sur la sphere quaternionique S C H.
L’espace des orbites S3/S! est homéomorphe & la spheére S?. On remarquera que
S < S3 n'est pas un sous-groupe normal puisque par exemple la conjugaison de

1

i€ S par £+ \/ng donne 37 — %gk

ProPOSITION 4.11. Soit G un groupe topologique qui agit sur un espace X.
Alors :

(1) L’application quotient q: X — X /G est ouverte.
(2) Si X est compact, X/G aussi est compact.

(3) Si X et G sont compacts et séparés, alors X/G aussi est compact et séparé.

DEMONSTRATION. Comme la multiplication par g est un homéomorphisme sur
X (dont I'inverse est la multiplication par g!'), 'image U - g d'un ouvert U de X
est encore un ouvert. Or pour tout ouvert U C X, on a ¢~ (¢(U)) = U,eq U - g qui
est ouvert, ce qui montre que ¢(U) est ouvert dans le quotient.

Le deuxieme point découle du critere de compacité et c’est la séparabilité du
dernier point qui va nous occuper pour la fin de la preuve. Pour cela nous vérifions
la définition. Comme X est séparé, la diagonale A C X x X est fermée et comme X
est compact, A est compact aussi. On considere 'application G x X x X — X x X
donnée par (g,z,y) — (z,yg). L’'image de G x A est le graphe [' C X x X de la
relation d’équivalence définie par l'action de G. Or G étant compact, G x A est
compact et son image I' est compacte, donc en particulier fermée (car X x X est
séparé).

Considérons maintenant G et yG deux orbites distinctes. Alors y # zg pour tout
g € G, autrement dit (x,y) ¢ I'. Par définition de la topologie produit il existe alors
des voisinages ouverts € U et y € V tels que U x V et I' sont disjoints. Les images
q(U) et q(V') sont des voisinages ouverts des orbites ¢(z) et ¢(y) respectivement et

on prétend qu’ils sont disjoints.
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En effet, si zG € ¢q(U) N q(V), alors il existe g,¢' € G tels que zg € U et
zg' € V. Mais (zg,29") = (29,29 - g7'¢’) est alors un point de U x V et de T, une

contradiction. 0J
EXEMPLE 4.12. Les espaces projectifs RP™ et CP™ sont compacts et séparés.
5. Quelques quotients liés aux groupes SO(n)

Dans cette petite section nous étudions d’un peu plus pres quelques espaces
obtenus par des actions de groupes de matrices orthogonales, et retrouvons un espace
projectif (compact) introduit ci-dessus. On commence avec un résultat général sur

les espaces homogénes, i.e., des espaces sur lesquels un groupe agit transitivement.

PROPOSITION 5.1. Soit G un groupe topologique compact qui agit transitivement

sur un espace X séparé. Alors G/G, ~ X pour tout point v € X.

DEMONSTRATION. Fixons z € X et considérons I'application ¢, : G — X définie
par ©,(g) = xg. On voit aussi que rg = xg’ si et seulement si zg'g™! =z, i.e. g'g~!
appartient au stabilisateur G,.

Par conséquent ¢, passe au quotient ¢,: G/G, — X et cette application est
injective par le calcul ci-dessus, et surjective par transitivité de ’action. Comme la
source G/G, est compacte et que le but X est séparé, on conclut que @, est un

homéomorphisme. O

EXEMPLE 5.2. Soit n > 2. Le groupe SO(n) agit transitivement sur la sphere
S™=1 (par rotations, c’est-a-dire par multiplication matricielle sur un vecteur ligne
pour définir ’action a droite, ou peut-étre de maniere plus habituelle sur un vecteur
colonne, a gauche). Cette action est transitive.

Le stabilisateur d’un point, disons le vecteur e,, est l’ensemble des rotations
dont I’axe est supporté par e, c’est le sous-groupe SO(n — 1) vu comme matrices
diagonales par blocs, un bloc étant de taille (n — 1) x (n — 1) et l'autre un 1 en
position (n,n). On applique la Proposition 5.1 pour conclure que le quotient de
groupes SO(n)/SO(n — 1) est homéomorphe & une sphere S™~1.

Pour n =1 on a O(1) &~ SY et SO(1) est le groupe trivial. Pour n = 2 on obtient
Iidentification SO(2) ~ S (qu’on peut en fait promouvoir en un isomorphisme de

groupes topologiques).
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Pour n = 3, on a SO(3)/S0(2) ~ S2.

On termine cette section en identifiant SO(3) avec RP3. On sait que RP! est
un cercle : L’application S' — S' donnée par I’élévation au carré dans C passe au

quotient et définit une application RP! — S' qui est un homéomorphisme.
PROPOSITION 5.3. On a un homéomorphisme SO(3) ~ RP3.

DEMONSTRATION. Par définition RP? est le quotient de S® par la relation an-
tipodale. Comme tout point de ce quotient admet une préimage dans I’hémisphere
nord H, on peut également voir RP? comme le quotient de H par la relation antipo-
dale restreinte au bord. Finalement, comme H est homéomorphe au disque D?, on
voit que RP? &~ D3/~ oul & ~ y si et seulement si, soit z = y, soit y = —z lorsque
x,y € S? = 0D3.

Construisons une application f: D? — SO(3). On choisit d’envoyer le centre de
la boule, 0, sur l'identité et tout x # 0 sur la rotation R(Ox,r||x||) d’axe Ox et
d’angle 7||x||. Cette application est continue en tout point, sauf éventuellement au
voisinage de l'origine. La topologie de SO(3) étant celle de sous-espace de Mj3(R),
on voit que la rotation R(Ox, €) est proche de l'identité (car cos e est proche de € et
sin € est proche de zéro). Ceci implique qu’une rotation d’axe arbitraire et d’angle ¢,
qui est obtenue en conjuguant la rotation précédente par une matrice de rotation .S,
est proche de S - I3 - S7! = I5. Ceci montre que f est également continue en 0.

On observe aussi que si ||x|| = 1, alors f(x) est une rotation d’angle 7 et d’axe
supporté par x, donc f(x) = f(—x). Par conséquent f passe au quotient et induit
une application f: RP? — SO(3). Il reste & montrer que f est un homéomorphisme.
L’injectivité vient du fait que deux rotations sont égales si et seulement leurs axes
sont les mémes et leurs angles différent de 27. Pour montrer la surjectivité considé-
rons une rotation arbitraire, d’angle o compris entre 0 et 27 et d’axe engendré par

un vecteur unitaire y. Alors

f(2y) = R(Oy,a) sia<nw

F(*22) - (-y)) =R(Oy,a) si a=n
Pour obtenir la rotation d’axe Oy et d’angle o > m, on utilise ce que j’avais pensé faire

correctement dans la version 2022 de ces notes de cours, c’est-a-dire que R(Oy, ) =
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R(O(—y),2m — ). Ainsi cette rotation est aussi dans l'image de f, c’est celle du
-«
(=y)-
On conclut par le fait que la source RP? est compacte et le but SO(3) est

vecteur

séparé. O

6. Recoller des espaces

Soient f: A — X et g: A — Y deux applications. Nous construisons un nouvel

espace a l'aide de X et de Y en identifiant leur “partie commune” A.

DEFINITION 6.1. On note X U4 Y le recollement obtenu de X []Y en identifiant
f(a) avec g(a) pour tout a € A.

Plus précisément XU, Y est le quotient de X [[ Y par la relation d’équivalence ~
engendrée par les identifications z ~ y si © = y ou s'il existe a € A tel que z = f(a)
et y = g(a). Nous précisons ici que c’est la relation d’équivalence engendrée par cette
regle puisque typiquement on identifiera aussi f(a) et f(b) si g(a) = g(b). En effet

on a alors
fla) ~ gla) = g(b) ~ f(b)
En général on identifie deux points s’il existe un “zigzag” de situations élémentaires

comme celle-ci.

EXEMPLE 6.2. Si A est un sous-espace de deux espaces X et Y, ie. f: A— X
et g: A — Y sont deux applications injectives, alors X Uy Y est obtenu de X [[Y
en identifiant uniquement f(a) ~ g(a). Par exemple, lorsque A = x est un singleton,
f et g correspondent alors au choix de deux points de base xo € X et yp € Y et le

recollement est le wedge X VY.

REMARQUE 6.3. Nous avons deux applicationsi: X — XU, Y et j: Y — XU,Y
définies respectivement par i(x) = [z] et j(y) = [y ou z € X,y € Y et [z] désigne la

classe de z dans le recollement. On a donc un carré commutatif

A—2 Y

b

X—Z>XUAY
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puisque j(g(a)) = [g(a)] = [f(a)] = i(f(a)). On identifie le recollement X U, Y avec
le pushout du diagramme X < A — Y grace a la propriété universelle dont cet

espace jouit.

PROPOSITION 6.4. Soient f: A— X et g: A — Y deux applications. Pour toute
paire d’applications a: X — Z et :Y — Z telles que avo f = o g il existe une
unique application 0: X Uy Y — Z telle que o1 =, 0o j = .

DEMONSTRATION. On se représente cela sous forme de diagramme commutatif :

A—2 Y

| I

si bien que H passe au quotient et induit une application @ sur le quotient avec les
propriétés voulues. L'unicité vient du fait que la valeur de 6([z]) est imposée par les
hypotheses pour tout « € X puisque 0([z]) = 0(i(x)) doit étre égal a a(x) et de
méme 0([y]) = B(y) pour tout y € Y. O

Pour éviter les problemes d’identification on va dés maintenant supposer que g est
I'inclusion d’un sous-espace fermé A de Y. En effet dans ce cas la classe de y dans le
quotient X U4 Y contient uniquement y si y ¢ Img, et sinon y = g(a) pour un unique
point a € A par injectivité de g et on a g(a) ~ f(a). Ainsi on identifie z € Imf avec
g(a) pour tout a dans la préimage f~!(z). Onnote q: X [[Y — XUAY I'application

quotient.

LEMME 6.5. Soient X,Y deux espaces, g l'inclusion d’un sous-espace A C'Y

fermé et f: A — X. Pour tout sous-espace C' CY, on a

¢ (q(C) = fCnAJ[Cu(f(CnA).
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DEMONSTRATION. Soit y € C. Siy & A, alors la classe [y] est un singleton {y}.
Sinon la relation d’équivalence identifie dans le quotient y avec f(y) € X, et par

saturation avec tous les points de f~!(f(y)). Ainsi

¢ (q(C) = fFCn AT\ AU F(f(CnA)

Comme C' N A est contenu dans sa saturation par f, on obtient bien ¢~*(¢(C)) =

f(CnAJJCUfHf(CNA). O

LEMME 6.6. Soient X,Y deux espaces, g l'inclusion d’un sous-espace A C'Y
fermé et f: A — X. Pour tout sous-espace C C X, on a ¢ *(q(C)) = CI] f~1(CO).

DEMONSTRATION. Si z € C, alors x s’identifie dans le quotient avec f~'(x), ce

qui montre immédiatement le lemme. 0

PROPOSITION 6.7. Soient X,Y des espaces séparés, g linclusion d’un sous-
espace compact A C Y et f: A — X wune application. Alors le pushout X Uy Y

est séparé.

DEMONSTRATION. On prépare la démonstration en montrant d’abord que I'ap-
plication quotient ¢: X [TY — X U Y est fermée. Comme un fermé de la réunion
disjointe est une réunion disjointe de fermés, on traite le cas d’un fermé de X, puis
celui d'un fermé de Y. Le premier cas suit du Lemme 6.6 sans hypothese sur A. Pour
le second on utilise le Lemme 6.5 en observant que, Y étant séparé, C' N A est fermé
dans un compact, donc compact, si bien que f(C' N A) est compact dans un espace
séparé, donc fermé. Finalement, par définition des fermés de la topologie quotient,
on conclut que ¢(C') est fermé pour tout fermé de X []Y.

Nous vérifions maintenant le critere de la Proposition 3.5. La saturation d’un
point est soit un point soit, par les calculs précédents, une union f(a) ][] f~'(f(a))
si a € A. Les préimages de points étant des fermés dans le compact A, elles sont
compactes. Les préparatifs de cette preuve montrent que la saturation d’un fermé

est fermée. O

7. Attachement de cellules

Un cas particulier et important de la construction précédente est celui ou g est

I'inclusion A < CA de la base du cone. Le cas classique A = S" tet g: S" ! C
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D™ (on rappelle que le cone sur une sphere est homéomorphe a une boule) nous
permettra de construire une classe d’espaces fondamentale en théorie de ’homotopie,

par attachement de cellules.

DEFINITION 7.1. Soit f: A — X une application. On dit que le pushout XU,C A,
aussi noté X Uy C'A, est obtenu de X en attachant une A-cellule le long de f.

L’application f est appelée application d’attachement.
Grace a la Proposition 6.7 on a un critere de séparation.

PROPOSITION 7.2. Soient X, A des espaces séparés et f: A — X une application.
Alors le pushout X Uy C'A est séparé si A est compact, et compact si de plus X est

aussi compact.

DEMONSTRATION. Le cone sur un espace séparé est séparé (on peut aussi utiliser
le critere lorsque A est compact, voir exercices). Si A est compact on conclut par la
Proposition 6.7 que X Uy C'A est séparé. Cet espace est compact quand X [[C A est

compact par le critere de compacité. O

Avant I'exemple suivant on introduit la suspension (non réduite) d’un espace.

DEFINITION 7.3. Soit A un espace. La suspension YA est 'espace quotient du
cylindre A x I par la relation d’équivalence (a,t) ~ (b, s) si et seulement si (a = b et

s=t)ou(s=t=0)ou(s=t=1).

Autrement dit on collapse séparément les deux bases du cylindre pour obtenir la

suspension.

EXEMPLE 7.4. Soit f: A — X une application constante sur un point xy € X.
Alors I'espace X Uy C'A est homéomorphe a X V X A.

La situation la plus courante en théorie de I’homotopie est celle ot A = S™! et
I'une des deux applications est 'inclusion de la sphere comme bord de la boule D".

On écrit e™ pour un espace homéomorphe a D™.

DEFINITION 7.5. Soit i: S® ! < D™ ’inclusion du bord de la boule. Pour toute

application f: S"™1 — X le recollement X Ugn—1 D™ s’écrit aussi (et de préférence)
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X Uy e" et on dit que cet espace est obtenu a partir de X en attachant une cellule

de dimension n.

EXEMPLE 7.6. Le cercle S* peut étre vu comme U D! pour la seule application
d’attachement S° — %, ou comme S° U, D' U;y D' ot les deux cellules de dimension
1 représentent les deux hémicycles de S*. Il existe de la méme maniére une structure
cellulaire sur S™ avec une seule O-cellule et une seule n-cellule et une autre structure
avec deux cellules de chaque dimension comprise entre 0 et n, obtenue inductivement
de cette structure sur S™! en attachant les deux hémisphéres manquants.

Observons encore que pour ce modele avec deux cellules en chaque dimension,
ces cellules sont permutées par ’action antipodale si bien que le quotient RP™ hérite
d’une structure cellulaire avec exactement une cellule en chaque dimension. Nous en

verrons les détails en exercices, mais regardons plus attentivement le cas de RP? ici.

EXEMPLE 7.7. L’espace projectif RPY est le quotient de S° par I'antipodale,
autrement dit RPY est un point. On continue avec RP!, le quotient de S* par I’an-
tipodale. Puisque le demi-cercle Nord N contient un représentant de chaque classe,
la projection N — RP! est un quotient qui nous permet d’identifier RP! comme
le pushout [—1;1] <= {£1} — RPY. La propriété universelle du pushout établit un
homéomorphisme entre S et RP!.

Le plan projectif RP? est le quotient d’un disque dont on identifie deux par deux
les points du bord, x ~ —x. On peut montrer & la main que I'inclusion D? < S? in-
duit un homéomorphisme sur les espaces quotients définis par la relation antipodale,
ou utiliser le criteére vu en exercice sur les fermés saturés (qui sont facile a décrire
ici). De ce point de vue le plan projectif est un cercle, a savoir RP!, auquel on at-
tache une 2-cellule, représentée par l'intérieur du disque. Explicitement 1’application

d’attachement est donnée par
S'~0D? - S'/Cy = RP!' = S*

Autrement dit cette application d’attachement est I’application de degré 2, qui effec-
tue deux tours du cercle, un pour chaque demi-cercle. On construit alors le pushout
du diagramme D? « S 2 S, qui est par définition S'Uye?. La propriété universelle

du pushout permet de construire une application vers RP? en choisissant I'inclusion
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de RP! sur le cercle et I'application quotient sur le disque. Cette bijection d’un
compact vers un espace de Hausdorff est un homéomorphisme.
Comme le disque est homéomorphe a un carré, on peut aussi en donner la repré-

sentation suivante (tirée de Wikipedia) :

A 4

A A

B B

A v

<
-

Ainsi RP? admet une autre présentation cellulaire : ¢’est un cercle formé de deux
1-cellules, indiquées par a et b sur l'illustration ci-dessus. L’application d’attachement

est décrite cette fois par abab (on effectue a nouveau deux fois le tour du cercle).



Chapitre 2

Homotopies et groupe fondamental

Dans ce deuxieme chapitre nous introduisons la notion générale d’homotopie
pour des applications X — Y. Elle nous permet de définit une relation d’équivalence
plus faible que celle d’homéomorphisme entre espaces, a savoir celle d’homotopie.
Lorsque la source X est un cercle, on retrouve dans le cadre pointé les homotopies de
lacets et par suite le groupe fondamental qui sera le grand protagoniste des chapitres
principaux de ce cours. A la fin du chapitre on retrouve les quotients, ayant eu un
peu de temps pour digérer ce concept difficile. On présente en particulier quelques
surfaces bien connues du point de vue de 'attachement des cellules : le tore, le plan
projectif, la bouteille de Klein. Pour former de nouvelles surfaces nous découvrons

I'opération de somme connexe.

1. Homotopie

Nous généralisons dans cette section la notion de lacets homotopes a des appli-
cations entre deux espaces arbitraires. Ces quelques définitions devraient éclairer la

démonstration de la contractilité du cone, voir le Lemme 1.7.

DEFINITION 1.1. Soient f,g: X — Y deux applications. On dit que f et g sont
homotopes et on note f ~ ¢ s’il existe une application H: X x I — Y telle que
H(z,0) = f et H(xz,1) = g pour tout € X. On dit que H est une homotopie de f

vers ¢.

On visualise H comme étant une déformation qui transforme continument f en

g au cours du temps t € [0, 1] (on parcourt le cylindre X x I de bas en haut).

PROPOSITION 1.2. La relation ~ est une relation d’équivalence sur l’ensemble

des applications de X versY .
35
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DEMONSTRATION. L’homotopie constante H(x,t) = f(x) exhibe une homotopie
f =~ f. La réflexivité suit du fait que si H est donnée on peut construire une homo-
topie “dans l'autre sens” en posant G(x,t) = H(x,1 —t), ¢’est-a-dire qu’on parcourt
le cylindre X x I de haut en bas.

Enfin si G et H sont des homotopies respectivement de f vers g et de g vers h,
on construit une homotopie de f vers h en parcourant chaque cylindre de bas en

haut deux fois plus vite. Explicitement on définit F': X x I — Y par

G(z,2t) si 0<t<1/2
(z,t) =
H(z,2t —1) si 1/2<t<1
La continuité de F' démontre la transitivité. O

La nécessité de reparamétriser le cylindre pour obtenir une homotopie qui dure
aussi 1 (seconde) crée un petit probleme technique, que nous retrouverons sous une
autre forme lors de I’étude de I’associativité de la concaténation des chemins dans le

groupe fondamental.

NoTATION 1.3. Le quotient de I'’ensemble de toutes les applications X — Y
par la relation d’équivalence ~ est noté [X,Y]. La classe d'une application f est

notée [f].

EXEMPLE 1.4. Soit f: X — Y et ¢, 'application constante en un point y € Y.
Alors f est homotope a une application constante si et seulement si ’application
f s’étend au cone C'X qui contient X via l'inclusion de la base 1: X x 0 — CX.
Explicitement f ~ ¢, si et seulement si il existe une application F': CX — Y telle
que Foi= fet F([z,1]) =y ou [z, 1] est la classe de (x,1) dans le cone.

En particulier si X = S, on a qu’une application f: S* — Y est homotope a

une application constante si et seulement si f s’étend a une application sur D?.

DEFINITION 1.5. Deux espaces X et Y ont le méme type d’homotopie s'il existe
des applications f: X — Y et g: Y — X telles que go f ~ idx et fog ~1idy. On

note alors X ~ Y et on appelle f et g des équivalences d’homotopie.
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Ceci est vérifié en particulier lorsque les applications f et g sont inverses I'une
de l'autre (les deux compositions ne sont pas seulement homotopes a 'identité, elles

sont égales a 'identité). Ainsi deux espaces homéomorphes sont homotopes.

EXEMPLE 1.6. Le cone C'X a le méme type d’homotopie qu'un point x. On dit
que CX est contractile. L’application f: C'X — x est la seule qui existe et on définit
g: x = CX par g(x) = [z,0]. Alors fog = id, et go f est homotope & 'identité

1dcx, ce que nous montrons en construisant une “contraction”.
LEMME 1.7. Le cone CX est contractile pour tout espace X.

DEMONSTRATION. On définit une application H: X x I x I — X x I en posant
H(z,t,s) = (z,ts). Puisque H(z,0,s) = (z,0), cette application passe au quotient
et définit une contraction (ou homotopie contractante) H: CX x I — C'X en posant

H([z,t],s) = [z, st]). Lorsqu’on restreint H a s = 0 on obtient I’application constante

au sommet du cone et quand s = 1 c’est I'identité. 0

ExXEMPLE 1.8. Le cercle, le ruban de Moebius, le tore plein, le plan privé d’un

point ont tous le méme type d’homotopie. A voir en exercice.

REMARQUE 1.9. Les définitions ci-dessus ont un analogue pointé. On considere
dans ce cadre des espaces pointés (X, x), autrement dit des espaces X munis d’'un
point de base x.

On parle alors d’homotopie pointée entre applications pointées pour des homoto-
pies qui fixent le point de base tout au long de I'homotopie : H(zq,t) = yo pour tout
t. On notera alors [(X, z9), (Y, )]« pour 'ensemble des classes d’homotopie pointées

ou [X, Y], tout simplement lorsque le contexte est clair.

EXEMPLE 1.10. L’inclusion iy: S* < S Vv S! est homotope & I'application qui
parcourt le premier cercle sur le premier tiers de la source S!, puis le deuxieme
cercle du wedge pendant le deuxieme tiers et enfin le premier cercle dans 'autre sens
pendant le troisieme tiers. On peut en effet définir une homotopie (non pointée) H
de sorte qu’au temps t elle parcoure un lacet dans le wedge en partant du point

2pit

correspondant a e“P" sur le premier cercle, complete le tour qui reste a faire, passe
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par le deuxieme cercle, avant de revenir en arriere pour s’arréter au point de départ.
Quand t = 1, il ne reste que i».

Ces deux applications ne sont pas homotopes dans le sens pointé.

2. Attachement de cellules et homotopie

Le type d’homotopie du pushout ne dépend que de I'application d’attachement

a homotopie pres.

ProposiTION 2.1. Si f, f': A — X sont homotopes, alors Y = X Uy CA et
Y' = X Uy CA ont le méme type d’homotopie.

DEMONSTRATION. Soit H: Ax I — X une homotopie de f vers f’. On construit
h:Y — Y’ par la propriété universelle en posant h(x) = x pour x € X puisque Y
et Y’ sont tous deux obtenus en ajoutant un cone au méme espace X. Sur le cone

on pose

pag = ) @202 s Lz t<]
H(a,2t) si 0<t<1/2

La continuité est garantie par le fait que la base A x 0 du cone est identifiée dans
le quotient : H(a,1) = f'(a) ~' [a,0] et on observe que pour ¢ = 0 on a bien la
compatibilité nécéssaire puisque hla, 0] = H(a,0) = f(a).

Cette application envoie donc la moitié supérieure du cone (de Y) sur le cone
de Y’ en le parcourant deux fois plus vite et utilise la moitié inférieure du cone
pour “faire le lien” avec ’homotopie H. On peut imaginer qu’on “couche” la moitié
inférieure du cone dans X pour passer de f(A) a f'(A), la continuité de h nous
obligeant a garder la base fixe dans X.

On définit de maniere analogue une application A': Y’ — Y en utilisant ’homo-
topie inverse H(—,1 — t). Il reste alors a montrer que h o b’ ~ idy: et h’' o h ~ idy.

On s’occupe seulement de cette derniere, 'autre est analogue.
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Pour pouvoir construire I'homotopie, il faut bien comprendre la composition h'oh.

Sur X, c’est 'identité et sur le cone on a

la,2t — 1] — [a, 4t — 3] si 3/4<t<1
[a,t] = S [a,2t — 1] — H(a,1 —2(2t — 1)) = H(a,3 —4t) si 1/2<t<3/4
H(a,2t) — H(a,?2t) si 0<t<1/2

On parcourt donc le cone quatre fois plus vite sur le quart du haut, on utilise ’ho-
motopie pour faire le lien une fois dans un sens, puis dans 'autre. On définit alors
une homotopie K : Y x I — Y par l'identité sur X, i.e. K(z,t) = x pour tout x € X
et sur CA x I on prend de plus en plus de temps pour parcourir le cone et on utilise
de moins en moins ’homotopie H. Au temps s = 1/2 par exemple on ne parcourt

H que sur la moitié de son chemin avant de rebrousser chemin. Explicitement :

la, Pt — 2] si 3/4-5<t<1

([a,t],5) =  H(a,3s —4t)  si 1/2-s<t<3/4-s
H(a,2t) si 0<t<1/2-s

Quand s = 1 on obtient exactement la composition h’ o h calculée ci-dessus et quand

s = 0 c’est 'identité sur C A. OJ

COROLLAIRE 2.2. Si f, f': : S" ' — X sont deux applications homotopes, alors
les espaces X Uy D™ et X Up D™ sont homotopes. O

EXEMPLE 2.3. Soit f: S ! — X une application homotope a une constante.
Alors X Uy D" ~ X V .S™.

Il existe des espaces qu’on ne peut pas construire par attachement de cellules
(mais & homotopie faible pres c’est le cas...). Et méme quand c’est possible, il n'y a
aucun résultat d’unicité sur cette structure cellulaire. L’approximation d’un espace
par un modele obtenu a partir d’attachements de cellules €™ amene a étudier les
CW-complexes. Les surfaces que nous allons rencontrer bientot en font partie et bien
souvent c¢’est un bon cadre de travail, en particulier pour construire des méthodes

efficaces de calcul de ces invariants appelés groupes d’homologie.



40 2. HOMOTOPIES ET GROUPE FONDAMENTAL

3. Homotopie et 7

On travaille dans cette section avec des espaces pointés, c’est-a-dire des paires
(X, zg) ou X est un espace et zy € X est un point. On désigne par myX 'ensemble des
composantes connexes par arcs de X. Autrement dit il s’agit du quotient de X par
la relation d’équivalence de connexité par arcs. Chaque élément de 7wy X correspond
a un sous-espace de X, par exemple la classe [xg] est constituée de tous les points

x € X pour lesquels il existe un chemin v : I — X avec v(0) = zg et y(1) = =.

DEFINITION 3.1. Soient (A, ag) et (X, zy) deux espaces pointés. On note [A, X7,

I’ensemble des classes d’homotopie pointées d’applications pointées f: A — X (telles

que f(ag) = o).
On choisit maintenant 1 comme point de base de S°, la sphére unité dans R.
PROPOSITION 3.2. On a un isomorphisme myX = [S°, X],.

DEMONSTRATION. On définit une application [S°, X], — X en associant a une
application f : S% — X le point f(—1). Si on considere deux applications homotopes
f ~ g, il existe une homotopie pointée H: S° x I — X de f vers g. Cette homotopie
est constante sur 1 x [ par définition et application H(—1,t) définit un chemin de
f(=1) vers g(—1). Autrement dit ’application passe au quotient.

Elle est surjective car pour toute composante connexe Y par arcs de X, on peut
choisir un point y € Y et définir f,: S® — X en posant f(1) = zg et f(—1) = .

Montrons enfin I'injectivité. Soient f,g: S — X avec f(—1) =z et g(—1) =y
dans la méme composante connexe par arcs de X. Il existe alors par définition un
chemin v: I — X tel que y(0) = x et y(1) = y. On définit alors une homotopie H
en posant H(1,t) = xo pour tout ¢t et H(—1,t) = ~(t). Ainsi f ~ g. O

4. Invariance homotopique

Pour préparer la suite sur le groupe fondamental nous établissons d’abord deux
propriétés d’invariance homotopique. Expliquons cela dans le cas libre (non pointé).
Deux applications homotopes induisent la méme application sur les classes d’homo-
topie. Toute application f: X — Y induit une application f.: [A, X] — [A,Y] par

postcomposition, i.e. fi[u| = [f ou]. Cette application est bien définie puisque u ~ v
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implique l'existence d’une homotopie H: A x I — X entre u et v. La composition

f o H est alors une homotopie entre fou et fow.

PROPOSITION 4.1. Soient f et g deux applications homotopes X — Y. Alors f

et g induisent la méme application [A, X]| — [A,Y].

DEMONSTRATION. Soit H: X x I — Y une homotopie de f vers g et u: A — X.

La composition

Ho(uxI):AxI—XxI—=Y

définit alors une homotopie de H o (u x I)(a,0) = H(u(a),0) = f(u(a)) vers H o
(uxI)(a,1) = H(u(a),1) = g(u(a)). Ainsi fou =~ gou. O

PROPOSITION 4.2. Si X ~ Y, alors on a une bijection [A, X] = [A,Y].

DEMONSTRATION. Soit f: X — Y et g: Y — X une équivalence d’homotopie
et un inverse. Ceci signifie que g o f ~ idyx et f o g ~ idy. Ces applications f
et g induisent des applications f, et g, au niveau des classes d’homotopie telles que
décrites ci-dessus. La conposition (go f), = g.o f. induit la méme application que idx
par la Proposition 4.1. Or (idx). est I'identitié. Le méme raisonnement s’applique

également a f, o g, ce qui démontre que f, et g, sont inverses l'une de 'autre. [

5. Le groupe fondamental

Un lacet de X est un chemin w: I — X tel que w(0) = w(1). Si zg est un point
de base fixé dans X et qu’on ne considere que les lacets basés en zy, on constate
alors qu'un lacet est une application qui passe au quotient par q: [ — I 0 ~ 1 ~ S
Autrement dit, on choisit comme point de base de S* le point 1 € C et on identifie
les lacets basés en z avec les applications pointées (S, 1) — (X, o).

Nous utiliserons les deux points de vue. La version des chemins est pratique
pour écrire des paramétrisations explicites, la version des lacets paramétrisés par le
cercle permet de faire le lien avec myX, classes d’homotopie pointées d’origine S° et
les groupes d’homotopie supérieurs 7, X = [S™, X].. Elle a aussi d’autres avantages

comme nous le verrons bientot.
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DEFINITION 5.1. Soit (X, z0) un espace pointé. Le groupe fondamental mX =
71 (X, o) est Pensemble [S*, X], muni de la loi de composition obtenue par conca-

ténation des chemins.

On note f*g la concaténation des chemins f,g: I — X. On choisit la paramétri-
sation consistant & parcourir le chemin f deux fois plus vite que f pour 0 <t < 1/2,
puis le chemin g pour 1/2 < ¢ < 1. La classe d’homotopie du chemin constant ¢, est
I’élément neutre pour cette opération, la concaténation est associative a homotopie
pres et U'inverse de f est le “chemin inverse”, parcouru dans I'autre sens f(1—t). Cet
inverse n’est pas un inverse strict, mais un inverse a homotopie pres. On revisite ce
résultat de maniere diagrammatique en nous appuyant sur la version paramétrisée
par le cercle.

On rappelle que la suspension XA est le cylindre A x I dans lequel on collapse

séparément la base A x 0 et le couvercle A x 1.

DEFINITION 5.2. Soit ¥ A la suspension d'un espace A. L’application pinch (ou
pincement) est le quotient p: ¥ A — Y A/A x 1/2.

On se retrouve donc avec deux copies “miniatures” de la suspension, attachées
ensemble en un sommet. Le type d’homotopie de cet espace est un wedge de deux

suspensions (photo tiré du livre de Rotman) :

Puisque le cercle S! peut étre vu comme la suspension de S il admet une
application pinch p: St — SV St Le modele que nous choisissons pour faire le lien
avec la concaténation des chemins est de voir ¢ comme la classe de (£1,1) et —i

comme celle de (41,0) dans la suspension ¥S° qui est un quotient de S° x I. Le
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pinch est I'application quotient qui collapse la copie de S centrale, i.e., qui identifie
1et —1.

DEFINITION 5.3. Soit (X, zo) un espace pointé. L’application de pliage (fold

map) V: X VX — X est 'application qui se restreint a I'identité sur chaque copie
de X.

La propriété universelle du wedge, comme quotient de X [ X, nous apprend
qu'une application X V X — Y est déterminée par une application X [[ X — Y,
c’est-a-dire deux applications X — Y qui envoient z sur le méme point de Y (pour

qu’elle passe au quotient). Dans le cas du pliage on choisit deux fois I'identité.
PROPOSITION 5.4. Le groupe fondamental d’un espace est un groupe.

DEMONSTRATION. On observe d’abord que la concaténation des lacets est in-

duite par 'application pinch. En effet, étant donnés deux lacets o et 5 on a

Frg: ST LS vst Y xvx Yox

L’illustration est tirée de Wikipedia. On parcourt en effet le lacet o pendant le
temps qui correspond a I’hémicycle supérieur, puis §. L’associativité de x vient alors

de la commutativité a homotopie pres du diagramme

gt P 4 g8lygl
lp lp\/id
Sy gt Py g1y g1y g1

Explicitement, cela revient a déformer continuement une concaténation de trois che-
mins qu’on parcourt soit en une demi, un quart et un quart de seconde, soit en un
quart, un quart et une demi-seconde. Les formules ont été vues en cours le premier

semestre et se trouvent dans tous les livres d’introduction a la théorie de I’homotopie.
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Les autres vérifications sont les mémes que celles vues le premier semestre. L’in-
verse d'un lacet est ce méme lacet parcouru dans I’autre sens, la concaténation avec le
lacet original n’est pas constante, mais homotope au lacet constant, 1’élément neutre

de 7T1X. O

Nous savons qu’une application X — Y induit une application f,: [A4, X]. —
[A,Y], par post-composition. Maintenant que nous travaillons avec A = S', nous
nous assurons que ces morphismes induits sont compatibles avec la structure de

groupe.

COROLLAIRE 5.5. Une application pointée f: X — Y induit un homomorphisme
de groupes f,: mX — mY. En particulier, st X ~ Y, alors mX = mY est un

1somorphisme de groupes.

DEMONSTRATION. L’approche diagrammatique montre que f, envoie la conca-
ténation de deux lacets sur la composition passant par le haut dans le diagramme

suivant :

Sl P L giyst M xvyx Y x

I s s

Slyst Y xyx Moyyvy Y,y

La composition du bas donne la concaténation des images (f o a) = (f o ). La
commutativité du diagramme (de chaque carré de ce diagramme) permet de conclure
que f, est un homomorphisme de groupes.

Cette observation avec la Proposition 4.2 qui fournit un isomorphisme d’en-
sembles entre m; X et mY lorsque X et Y ont le méme type d’homotopie, permet de

conclure qu’il s’agit d’un isomorphisme de groupes dans ce cas. O
On termine cette section avec le calcul du groupe fondamental d’un produit.

PROPOSITION 5.6. Soient (X, zg) et (Y,yo) deux espaces pointés. On a alors un

isomorphisme m (X X Y) 2 mX x mY.

DEMONSTRATION. Les projections px: X xY — X et py: X xY — Y sont
continues et induisent des homomorphismes m (X xY) — m X et m (X xY) — m Y.
L’homomorphisme produit g: (X X Y) — mX x mY est un isomorphisme car il

admet un inverse que nous définissons maintenant.
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En fait, avant de passer au quotient dans les groupes fondamentaux, on reste
au niveau des applications C,(S*, —). Pour une paire a: S* — X et 3: S* — Y on
définit

Fla,8): S* 2 8t x §* 2% X x v
ce qui donne une application ensembliste C,(S*, X) x C.(S1,Y) — C.(S', X x Y).
Clairement (px)«(F(«, 5)) = a et (py)«(F(a, B)) = . Réciproquement, considérons
un lacet v: ST — X x Y, alors y(t) = (71(t),72(¢)) et les deux projections ~; sont
continues par la définition de la topologie produit. Alors on pose G(v) = (71,72)-

Par construction G o F' est 'identité et on vérifie alors que 'autre composition

F(G(7)) = F((px)«(7), (py)=(7)) = F(11,72) =~

est aussi l'identité. Ainsi I’ et GG sont inverses I'un de I'autre.

Pour terminer on observe que la post-composition de F avec C,(S', X xY) —
m (X X Y) passe au quotient et définit f: mX x mY — m(X X Y) et G induit
I’homomorphisme produit g introduit ci-dessus. Le calcul des compositions montre

que f et g sont inverses 'une de 'autre, ce qui prouve la proposition. ([l

EXEMPLE 5.7. Le tore est le produit 72 = S! x S. Ainsi on obtient de m S* & Z,
l'isomorphisme mT? = Z x 7 = 7 @ Z. Sous forme de présentation de groupe que
nous étudierons dans le chapitre suivant, on dira que ce groupe est engendré par
deux générateurs = et y et soumis a la relation de commutation xy = yx, ce qu'on
écrit en introduisant le relateur zyxz~ly~! qui est identifié & I’élément neutre. On

écrit alors mT? = (x,y | zyx~ty~1).
6. Quelques surfaces

Nous revenons a la fin de ce chapitre sur les quotients avec la construction et
la description cellulaire de quelques surfaces importantes. Apres une petite pause
homotopique c’est peut-étre le bon moment de retrouver cette notion d’attachement

de cellule dans un cadre trés concret.

DEFINITION 6.1. Une surface est un espace séparé dans lequel tout point admet
un voisinage ouvert U homéomorphe a un disque ouvert 1032, dont le bord OU est

homéomorphe & S?.
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EXEMPLE 6.2. La sphere S? et le tore T? = S! x S! sont des surfaces. Nous
avons déja rencontré S? = x U €2, collapse de D? par son bord S!. Quant au tore,
on peut le voir comme quotient de I x I par la relation d’équivalence donnée par

(5,0) ~ (s,1) et (0,t) ~ (1,t) pour tous 0 < s, < 1.

-

A

L’application quotient ¢ envoie l'intérieur du carré homéomorphiquement sur
son image dans le tore et le bord du carré est envoyé sur deux cercles, équateur et
méridien, se coupant en un point, & savoir ¢(0,0). Appelons h: S' — T? I'inclusion
de I’équateur (pour garder en téte que ce cercle vient des cotés horizontaux du carré
I x I) et bien sur v: ST — T? I'inclusion du méridien, provenant des cotés verticaux.

Ainsi T? est un wedge de deux cercles S*V S* auquel on attache une 2-cellule e?.
Plus précisément le bord du carré 9(I x I) = O C I x I a pour quotient via la relation
restreinte & O un wedge de deux cercles S! Vv S; ou l'indice indique que le premier
cercle S! correspond aux segments horizontaux, parcouru de gauche a droite pendant
que le cercle est parcouru dans le sens trigonométrique, alors que le second correspond
aux segments verticaux parcourus de bas en haut, comme indiqué sur la figure. Le
tore est alors obtenu de ce wedge en attachant l'intérieur du carré, homéomorphe a
une cellule ouverte, puisque par définition de la relation d’équivalence, le quotient
q: I x I — T? se restreint & un homéomorphisme sur l'intérieur du carré.

Comment décrire Papplication d’attachement ? Il s’agit d’identifier 7% avec un
pushout de la forme S}V S} « S' — D? aprés avoir identifié O~ S* et [ x I =~ D?.
L’application d’attachement f se lit en parcourant le bord du carré, disons en partant
de (0,1) dans le sens trigonométrique inverse. En effet cette application correspond
précisément au quotient S* &~ 0O — S! Vv S} ce qui revient a concaténer les lacets

a % bxaxb. Linclusion S} vV S} < T? et le quotient I x I — T? sont compatibles



6. QUELQUES SURFACES 47

avec cette application dans le sens ou le carré suivant commute :

U ——— IxI

l |

Sty s —1— 172
On a dongc, apres avoir remplacé le carré et son bord par les espaces homéomorphes
disque et cercle, une application induite par la propriété universelle du pushout
(S} Vv S Uy e? — T2 Cette application est une bijection d'un espace compact vers
un espace séparé, ¢’est donc un homéomorphisme.

Pour conclure, on se souvient que le type d’homotopie du recollement ne dépend
que de I'application d’attachement a homotopie pres. La concaténation des lacets
induisant la structure de groupe du groupe fondamental, on comprend que la classe
d’homotopie [f] est le commutateur afa=tB7 € m (S V S}, olt a est la classe du

lacet [a] et B = [b].

Pour construire de nouvelles surfaces plus compliquées a partir de surfaces “élé-
mentaires”, I'opération de somme connexe sera bien utile. En fait nous allons voir
que cette opération permet de construire toutes les surfaces a partir de deux surfaces
“élémentaires”, le tore et le plan projectif, mais il faudra attendre le chapitre 4 pour

cela...

DEFINITION 6.3. Soient S et T deux surfaces, s € U C S, t € V C T, deux
voisinages ouverts homéomorphes a des disques ouverts et dont les bords sont ho-

méomorphes a des cercles. La somme connexe S#T est I’'espace quotient obtenu de
(S\U)JI(T\ V) en identifiant OU avec OV via un homéomorphisme.

Les bords de U et de V' sont homéomorphes a un cercle, on peut donc composer
I'un de ces homéomorphismes avec I'inverse de 'autre pour obtenir f: OU — OV et
on identifiera tout point de OU avec f(u) € 9V. Dans ce cours nous nous satisfaisons
de la construction décrite ci-dessus, mais dans un cours de géométrie on montrerait
que S#1 est encore une surface et que celle-ci ne dépend pas des choix qui ont
été faits : ni des points, ni des voisinages... On trouvera plus de détails sur cela

dans le livre de Lee, Introduction to Topological Manifolds. Pour généraliser cette
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construction en dimension > 2 il faut tenir compte de l'orientation du bord des
voisinages. La théorie repose sur le Théoreme du disque de Palais (1960).
On observe que la sphere S? est un élément neutre pour cette opération : S?#S ~

S pour toute surface S.

EXEMPLE 6.4. On suit le procédé pour S = T = T? et on obtient un tore a deux

trous.

Expliquons cela pas a pas. Le tore est un carré dont on identifie les paires de
cOtés paralleles. On choisit le point [(1/5;1/5)] et un voisinage dont le bord est un

lacet comme montré sur le dessin suivant (Victor Protsak, Cornell) et on enléve son

intérieur :
Cut out disks O then glue along the boundary
_’f,J" ".?’\'\
<4
X
A J v -

< P>

L’opération indiquée par une fleche est mieux comprise si on imagine d’abord
que l'on sépare le point de départ et d’arrivée du lacet pour obtenir un pentagone

(sans oublier qu’il faudra les identifier & nouveau par la suite). La méme opération



6. QUELQUES SURFACES 49

se fait également avec l'autre tore si bien que la somme connexe est un quotient de
deux pentagones. Autrement dit on utilise la technique du quotient en deux temps
pour décrire la somme connexe non pas comme le quotient de deux tores troués,
mais comme deux pentagones que 'on recolle et ensuite on fera les identifications
nécessaires sur les cotés des carrés. On identifie les cotés des carrés d’origine comme
pour le tore et également les nouveaux c6tés, entre eux (comme sur le dessin), par
définition de la somme connxex. Ceci explique pourquoi la somme connexe est un
quotient d'un octaedre. On se rassure en vérifiant que les deux extrémités des seg-
ments correspondants au bord du voisinage sont bien identifiés.

En conclusion T?#71? est un espace dont une structure cellulaire peut étre décrite
par (Stv Stv Sty ShHue?

Le wedge de quatre cercles correspond au quotient du bord de I'octaedre. Le méme
argument que pour le tore, basé sur la propriété universelle du pushout, la compacité
et Hausdorffitude, permet ensuite de montrer que T?#7? est homéomorphe & (S* Vv
Stv StV SY)Y Uy e? On peut finalement identifier 'application d’attachement f qui
est un lacet dans le wedge de cercles. Par construction c’est application S' —
Stv SEv Sty S) donnée & homéorphisme pres par 'application quotient g restreinte
au bord de 'octaedre. L’indice de chaque cercle correspond au coté portant la méme
lettre sur 'octaedre.

Choisissons un point de base sur 'octaedre, disons le sommet situé entre A et C
ci-dessus. Un générateur de m;S! est alors donné par le lacet qui parcourt le bord de

I'octaedre en partant de ce sommet dans le sens trigonométrique, i.e.
dxd x7 xd"xb xa «b"xa"

Pour distinguer les chemins on choisit d’appeler a’ et a” les chemins parcourus sur les

deux cotés identifiés portant la lettre A sur le dessin, le sens de ces chemins explique
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les barres pour indiquer lesquels sont parcourus en sens inverse. Si a est le chemin

goa = qoa” dans le quotient, on obtient alors
cxdxixdxbxaxbxa

Or, chacun de ces chemins est un lacet dans le wedge de cercles, la lettre correspon-
dant a I'indice utilisé. Comme la concaténation induit la structure de groupe dans le
groupe fondamental, on voit que 'application d’attachement est représentée par le
lacet dont la classe d’homotopie est le commutateur [, §][3, o] € m(SEVSEvSIvVSY).
La lettre grecque a = [a], 8 = [b], etc.

Un autre choix de point de base sur le bord de I'octogone donnerait un autre mot

en «a, 3,7, 0.

EXEMPLE 6.5. La bouteille de Klein K est obtenue par le quotient suivant :

>

A

B B

Ve A Y

Ainsi K admet une présentation cellulaire de la forme (S*V S1)Ue?. L’application
d’attachement est décrite ici par abab™!. Si on recolle d’abord les cotés B on obtient
un cylindre dont on doit identifier encore les bases, en les parcourant 'une dans un
sens, et 'autre dans l'autre sens. Pour avoir une meilleure intuition géométrique de
cette surface non orientable (qui ne se plonge pas dans R?), on peut la décomposer
en deux parties connues. Coupons le carré ci-dessus le long de deux segments ver-
ticaux se trouvant au quart et aux trois quarts de la distance horizontalement. On
recolle les cotés B pour se retrouver avec deux bandes dont il faut identifier les cotés
horizontaux comme indiqué par les fleches et les cotés verticaux que nous venons de

couper :
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A

{

P

A4

Wi || =
<4 —<

Il s’agit de deux bandes de Mobius que I'on recolle le long de leur bord. Le plan

¥

projectif est formé d’une bande de Mobius et d’'un disque, alors que la bouteille de

Klein est formée de deux bandes de Mobius.






Chapitre 3

Théorie des groupes combinatoires

Dans ce chapitre notre but est de donner quelques compléments de théorie des
groupes. Nous commengons avec des rappels sur les groupes libres, parelrons de
présentations de groupes, puis étudierons la notion de pushout de groupes. Une fois
cet outil puissant en mains nous serons a méme de calculer le groupe fondamental
de nombreux espaces : espaces projectifs, réels ou complexes, surfaces orientables ou

non, etc. Ce sera le programme pour le chapitre suivant

1. Groupes libres

Intuitivement un groupe libre est formé a partir d’un choix de générateurs, sou-
vent appelés x; et indexés par un ensemble d’indices I, fini ou non, qu’on utilise pour
former tous les éléments qui doivent se trouver dans ce groupe pour que les axiomes
soient satisfaits, mais sans ajouter aucune autre relation qui ne serait pas imposée

par ces axiomes.

EXEMPLE 1.1. Si on choisit I = (3, alors le groupe libre a zéro générateurs est
le groupe trivial 1. Si on choisit un générateur z, alors on doit forcément introduire
son inverse 7! et tous les produits finis possibles si bien qu’on obtient un ensemble
{z" | n € Z}. Le produit z" - 2™ = 2" munit cet ensemble d’une structure
de groupe si bien qu’il mérite le nom de groupe libre a un élément. Ce groupe est
isomorphe a (Z, +) via I'isomorphisme z" — n. Il jouit de la propriété caractéristique

suivante :
Hom(Z,G) = G

Explicitement un homomorphisme f vers un groupe arbitraire G est entierement
déterminé par l'image f(1) = g, et inversément tout élément de G définit un homo-
morphisme f: Z — G (on pose f(n) = g").

53
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Formellement on définit un groupe libre en général par le foncteur adjoint de
Ioubli O: Groupes — Ensembles, qui associe a un groupe GG I’ensemble sous-jacent

constitué de ses éléments.

DEFINITION 1.2. Soit F': Ensembles — Groupes le foncteur adjoint a gauche
de O. On appelle groupe libre tout groupe de la forme F(I) ou I est un ensemble,

dont les éléments s’appellent les générateurs de F(I).

Pour des questions de commodité d’écriture on aime associer a tout a € I un
élément x,, et explicitement F'(I) est alors I'ensemble formé des mots a7} ... a7k,
pour z,, € I et n; € Z. La loi de composition est la concaténation des mots et le
neutre est donné par le mot vide, qu’on écrit 1. Pour que ceci définisse bien une
structure de groupe, on doit imposer la relation z,2,! = 1, c’est-a-dire que F(I) est
le quotient de I’ensemble de tous les mots par la relation d’équivalence engendrée
par z,z,' ~ 1 et ', ~ 1 pour tout a € I. Tout mot est équivalent & un mot ne
contenant aucune juxtaposition d’un générateur suivi ou précédé de son inverse et
on appelle un tel mot réduit, c’est sous cette forme qu’on représente généralement

un élément de F(I).

Par définition, on a une caractérisation de F'(I) par la propriété d’adjonction.
PROPOSITION 1.3. On a une bijection d’ensemble Hom(F(I),G) = G'.

DEMONSTRATION. En effet Hom(F (1), G) = mor(/, O(G)) par adjonction. Or,
un morphisme d’ensembles de I vers O(G) correspond a la donnée d’un élément g,

pour tout o € I. O

EXEMPLE 1.4. Soit / un ensemble a deux éléments et F'(2) le groupe libre associé.
On appelle a et b les générateurs puisqu’on peut ici se passer de la lourdeur des in-
dices. Les éléments de F'(2) = F'(a, b) sont les mots de la forme a™ ™ a"?b,y,, . . . a=b™*
pour k > 1, n;,m; € Z pour tous 1 <1 < k et seuls n; et my peuvent étre nuls. De
cette maniere on impose que ces mots sont réduits.

Les mots ab®a™" et ababa sont deux éléments de F'(a,b), représentés par des mots
réduits. La multiplication étant définie par la juxtaposition, on obtient le produit

suivant que 1'on réduit grace aux identifications mentionnées ci-dessus :

ab’*a™' - ababa = ab*a"'ababa = ab*baba = ab*aba
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2. Présentations de groupes

Soit G un groupe (discret), I un ensemble fini ou non, et {g, | a € I} des
générateurs du groupe G. On a donc un homomorphisme de groupes surjectifs F'(I) =

xqe1Z — G qu’on définit en envoyant le a-eme générateur x, sur ¢g,.

DEFINITION 2.1. Les éléments du noyau de F(I) — G sont appelés relateurs et
un choix {rg | 8 € J} de générateurs de ce noyau donne lieu a une présentation de

G par générateurs et relateurs. On écrit G = (zy,a € I | 15,5 € J).

REMARQUE 2.2. Chaque relateur est un élément du groupe libre F'(I), il s’écrit
donc comme un mot en les générateurs z,, et c’est sous cette forme que 'on indiquera
les relateurs dans la présentation. Le premier Théoreme d’isomorphisme pour les
groupes garantit que le quotient de F'(I) par le sous-groupe normal engendré par les

relateurs est isomorphe a G.

EXEMPLE 2.3. Le groupe trivial admet une présentation “vide” puisque F'(f)) = 1
dont le seul élément est le mot vide. En général tout groupe admet de nombreuses
présentations, par exemple (z | z2, z%) décrit aussi le groupe trivial.

Le groupe cyclique C,, admet (x | z™) comme présentation puisque le quotient
du groupe libre a un seul générateur F'(z) par le sous-groupe normal engendré par

x™ est un groupe cyclique d’ordre n.

EXEMPLE 2.4. Le groupe abélien libre Z x Z est engendré par deux éléments
(1;0) et (0;1). Le groupe libre F(x,y) a deux générateurs se surjecte sur Z X Z et le

noyau est engendré par le relateur qui indique la relation de commutativité entre les

deux générateurs. L'élément zyz—ty~! appartient au noyau de cet homomorphisme

puisque son image est (1;0) 4+ (0;1) — (1;0) — (0;1) = (0;0). Ainsi Z x Z = (z,y |
ryzty~1).

Je profite de cet exemple pour mettre en évidence la différence entre le sous-

1

groupe de F(z,y) engendré par le mot w = zyx~'y~! et le sous-groupe normal N

engendré par ce méme mot. En effet le premier est un groupe cyclique d’ordre infini

formé de toutes les puissances w™ pour n € Z, mais ce sous-groupe n’est pas normal

1

(par exemple zwz ™! ne s’y trouve pas). Pour former un quotient dans la catégorie
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des groupes on doit quotienter par un sous-groupe normal et on forme alors N en

ajoutant tous les produits de conjugués de w".

Le groupe symétrique S3 est engendré par les transpositions (12) et (23). Les
relations qui nous permettent d’écrire une présentation sont (12)? = (23)? = id,
autrement dit les transpositions sont des éléments d’ordre 2, et (12)(23) = (123) est
un élément d’ordre 3, i.e. [(12)(23)]® = id.

LEMME 2.5. On a un isomorphisme Sz = (x,y | 22, 9%, (2y)3).

DEMONSTRATION. Appelons G le groupe donné par cette présentation. Pour
démontrer que S3 = G, on constate que le choix des générateurs définit un homo-
morphisme surjectif F(z,y) — S3. Comme 2?2, y?, (zvy)® appartiennent au noyau par
construction, cet homomorphisme passe au quotient et définit un homomorphisme
surjectif G — S3. Il reste a montrer l'injectivité. Un élément de GG est représenté par
un mot en x et y. Les relateurs 22 et y? montrent qu’on peut toujours se restreindre
a un mot de la forme zyzy...r ou xyry...y s’il commence par x ou yxryx...r ou
yxyz ...y sinon. En effet toute puissance 2™ peut étre réduite modulo 2 dans G et
1

on observe aussi que 2 = 1 implique que =% = 7.

a donc six mots de moins d’au plus trois lettres 1, z,y, y, yx et zyz. Ils sont tous
différents car les images dans S3 le sont. Des qu'un mot a plus de trois lettres on
peut réduire le nombre de lettres en utilisant la relation xyxy = yx ou yryr = o

Y.
Le groupe G est donc constitué d’exactement six éléments, c’est Ss. O

Les méthodes décrites dans cette section sont utiles dans les deux sens. Si on
connait un groupe on peut vouloir en donner une présentation pour le comprendre
et travailler avec. Réciproquement on peut créer de nouveaux groupes en indiquant

un nombre de générateurs et une famille de relations que ceux-ci vérifient.

3. Le graphe de Cayley

Dans cette courte section nous introduisons la notion de graphe de Cayley qui

permet d’appréhender géométriquement la signification d’une présentation.
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DEFINITION 3.1. Soit G un groupe et S un ensemble de générateurs. Le graphe
de Cayley de G associé a S est le graphe coloré I' = T'(G, S) dont les sommets sont
les éléments du groupe, les couleurs sont les générateurs, et les arétes orientées de

couleur s € S relient un sommet g au sommet gs.

Voici le graphe de Cayley du groupe libre F(a,b) :

i

g
il

o
an

On choisira d’indiquer 'orientation par une fleche sur 'aréte, sauf pour des géné-
rateurs d’ordre 2 auquel cas on ne surchargera pas le dessin en indiquant simplement
une aréte non orientée au lieu d’une boucle. Ainsi le graphe de C5 donné par la pré-

sentation (x | x?) est simplement un intervalle plutot qu'une boucle :

O

EXEMPLE 3.2. Le graphe de Cayley de S; associé aux générateurs (12) et (23)
est alors un hexagone dont les arétes bicolores s’alternent. Si on avait choisi plutot

(12) et (123) comme générateurs on obtiendrait un tout autre graphe de Cayley :

A\
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Les lacets dans le graphe issus de I’élément neutre correspondent a des relations.

4. Le produit libre

On introduit une premiere construction qui consiste a “mettre ensemble” deux
groupes sans imposer aucune autre relation que d’identifier les deux éléments neutres.
Cette identification est nécessaire pour former un groupe et dans ce sens on voit peut-
étre 'analogie avec le wedge qui consistait a n’identifier que le strict minimum pour
recoller deux espaces donnés. Cette construction est facile a définir dans le langage

de la théorie des groupes combinatoire.

DEFINITION 4.1. Soit G un groupe donné par une présentation (r,,a € I |
rg, 0 € J) et H un groupe donné par une présentation (y,,y € K | s5,0 € L). Le
produit libre ou amalgame G x H est le groupe donné par la présentation (z,,y, |

T8, Ss).

LEMME 4.2. [l existe des homomorphismes de groupes injectifs i: G — G x H et
j:H—>GxH.

DEMONSTRATION. Définissons 7 par exemple. Soit ¢ € G. Il existe alors un
mot w dans le produit libre F'(I) qui représente g. Ecrivons pour insister sur les
générateurs qui apparaissent dans ce mot que w = w(x,) et on pose i(g) = w,
la classe de w(x,) dans le groupe libre F(I]] K) modulo le sous-groupe normal
engendré par les rz et les r5. Autrement dit on a construit un homomorphisme
F(I) - F(I][K) — G % H. Celui-ci passe au quotient puisque l'image de tout
relateur r, est triviale. L’homomorphisme induit ¢ est injectif puisque w(z,) = 1
dans le quotient si et seulement w(z,) = 1 dans G, aucune nouvelle relation en les
T, N'étant introduite dans G * H. De maniere plus convaincante peut-étre on peut
aussi considérer le quotient de GG * H par le sous-groupe normal engendré par H,
c’est-a-dire en introduisant les relations x, = 1 pour tout «. La présentation de ce
groupe quotient montre qu’il est isomorphe a G. Ainsi qoi: G — G * H — G est

I'identité si bien que 7 est injectif. 0

L’existence de ces homomorphismes ¢ et 7 nous permet d’énoncer la propriété

universelle du produit libre, qui établit un lien formel entre cette construction et le
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wedge d’espaces pointés ou la réunion disjointe d’espaces non pointés. Autrement

dit le produit libre n’est rien d’autre que le coproduit dans la catégorie des groupes.

PROPOSITION 4.3. Pour toute paire d’homomorphismes de groupes p: G — M
et : H — M, il existe un unique homomorphisme de groupes w: G« H — M tel

que woi =@ etwoj=1.

DEMONSTRATION. On se représente cela sous forme de diagramme commutatif :

On pose w(x,) = ¢(zq) et w(ys) = ¥(x,) pour tous z,,ys. Ceci définit un homo-
morphisme F(I[[ K) — M qui passe au quotient puisque w envoie les relateurs rg

sur ¢(rg) = 1 et de méme pour les relateurs r5. L'unicité de w est claire. O

EXEMPLE 4.4. On construit le produit libre de deux groupes libres. Considérons
G=H=F(1)=Z. Alors F'(1) x F'(1) est un groupe libre F'(2) & deux générateurs.
En effet, appelons x le générateur de G et y celui de H. Alors, la construction de G
H = F(z)* F(y) donne la présentation (x,y) = (x,y | 0), qui est celle de F'(2). Une
autre approche serait d’utiliser la propriété universelle de ce produit libre qui affirme
que tout homomorphisme de groupes F'(x)* F'(y) vers un groupe M est équivalente &
la donnée de deux homomorphismes F'(x) — M et F(y) — M. Or chacun d’eux est
entierement déterminé par I'image de x, respectivement celle de y. Autrement dit un
tel morphisme correspond au choix de deux éléments m,n € M. C’est précisément

la propriété universelle de F'(2). En général F'(n) x F'(m) = F(n +m).

EXEMPLE 4.5. Le groupe Cy * Cy admet la présentation (z,y | x2,4?). Ainsi les
homomorphismes de C x Cy vers un groupe arbitraire M correspondent au choix de
deux éléments m,n € M avec m? = 1 = n?.

Si on ajoute le relateur zyz~'y~! on obtient le quotient Cy x Cs, ce qu’on peut

aussi voir comme un quotient en deux temps du groupe libre F(2), d’abord en
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introduisant la relation xy = yx pour obtenir le groupe abélien libre Z x Z, puis
les deux relations 2z = 0 = 2y. Ainsi un homomorphisme de Z/2 x Z/2 vers un
groupe M correspond a la donnée de deux éléments m,n € M qui sont d’ordre

deux : m? = 1 = n?, et qui commutent entre eux : mn = nm.

5. Amalgames ou pushouts

On travaille dans cette section avec deux homomorphismes de groupes a: K — G
et : K — H. On construit le groupe le plus proche de G et H en faisant de sorte

que «a(x) soit identifié avec f(x) pour tout z € K.

DEFINITION 5.1. Soit G + K — H deux homomorphismes de groupes. Le
pushout ou amalgame G *xx H est le groupe quotient (G * H)/N ou N est le sous-
groupe normal engendré par a(z)3(z) ™t
Les inclusions G — G * H et H — G * H induisent des homomorphismes i: G —

Gxx H et j: H — G xx H et on peut énoncer alors la propriété universelle du

pushout.

PROPOSITION 5.2. Pour toute paire d’homomorphismes de groupes p: G — M
et: H— M tels que poa = 1o f3, il existe un unique homomorphisme de groupes

w: Gxg H— M tel que wotir = et woj=n1).

DEMONSTRATION. On se représente cela sous forme de diagramme commutatif :

K—" g

Par la Proposition 4.3 on a un unique homomorphisme w: G * H — M. Celui-ci
passe au quotient puisque w(a(z)B(z)~!) = 1. Ceci prouve I'existence.

L’unicité vient de la propriété universelle du produit libre et de celle du quotient.
Plus précisément, si w’ est un autre tel homomorphisme vers M, alors la composition

GLGxH—»Gx x H “s M doit étre égale a  par commutativité du diagramme
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ci-dessus, et de méme pour ©»: H — M. Or ces deux homomorphismes déterminent
completement ’homomorphisme G H — G xx H <= M par la propriété universelle
du produit libre et c¢’est le méme pour w. L’homomorphisme induit sur le quotient

est unique si bien que w = w'. 0

REMARQUE 5.3. La propriété universelle caractérise le pushout a isomorphisme
pres. Autrement dit un groupe I' admettant la propriété universelle décrite ci-dessus
est isomorphe a G xx H.

En effet ce groupe I' est alors muni de deux homomorphismes I: G — T et
J: H — T compatibles avec a et (3, et la propriété universelle permet d’obtenir un
homomorphisme ~v: I' = G xx H qui fait commuter le diagramme semblable a celui
de la Proposition 5.2 (par exemple o I = 7). Cette méme proposition nous garantit
I’existence d’'un homomorphisme w: G xx H — T'.

Regardons la composition 7y ow. On prétend que comme 'identité de G xx H elle
fait commuter les triangles formés par les homomorphismes ¢ et j. Il suffit en effet
de calculer

Yyowot=vyol=1i et yowoj=vyo0J=j
Or, la propriété universelle garantit 'unicité de cet homomorphisme et on conclut
que v ow est I'identité. Le méme argument, mais en utilisant la propriété universelle

de T" permet de montrer que w o~ = idr. On a prouvé que I' = G xx H.

EXEMPLE 5.4. Si K = 1 on retrouve le produit libre Gx H. Si H = 1 on obtient
le quotient de G par le sous-groupe normal engendré par K. En effet G x1 = G et
N = <K avec les notations de la Définition 5.1.

Ainsi le pushout du diagramme 1 <— Cy — S3 est le groupe trivial, alors que le

pushout du diagramme 1 < C5 — S5 est le groupe cyclique Cj.






Chapitre 4

Le Théoreme de Seifert-van Kampen

Nous arrivons ici au coeur de la théorie de I’homotopie apres les préparatifs de
nature topologiques (les quotients) et de théorie des groupes (combinatoire). Notre
but est de prouver le Théoreme de Seifert et van Kampen qui permet de calculer
le groupe fondamental d’un recollement d’espaces par une construction entierement
algébrique. Nous serons a méme de calculer le groupe fondamental de nombreux es-
paces : des wedges, des recollements de cellules, et en particulier les espaces projectifs,
réels ou complexes, surfaces orientables ou non, etc. En fait le groupe fondamental
des surfaces est capable de les distinguer entre elles, ce qui nous amenera a parler

du Théoréme de calssification des surfaces.

1. Le groupe fondamental d’un recollement

L’objectif de cette section est de calculer le groupe fondamental d’un recollement
de deux espaces. Nous allons supposer dans cette section que X = AU B est la
réunion de deux sous-espaces ouverts A et B dont l'intersection A N B = C' est un
sous-espace connexe par arcs (et ouvert). On choisit un point de base z5 € C' qu’on
utilise comme point de base pour chacun des quatre espaces, A, B, C' et X. Chaque
inclusion 7: A < X et j: B — X induit un homomorphisme i,: mA — mX et
Jx: mB — m X respectivement. Par la propriété universelle de la somme amalgamée

on obtient alors un homomorphisme ¢: mA x m B — m X.
LEMME 1.1. L’homomorphisme ¢: mAx m B — m X est surjectif.

DEMONSTRATION. Soit 7: I — X un lacet basé en xq. Notre but est de découper
ce lacet en petits chemins entierement contenus soit dans A, sot dans B. La premiere
partie de la preuve suit I'argument des vidéos, un peu plus long que celui proposé
ensuite qui repose sur ’existence d’'un nombre de Lebesgue. Les deux approches se

rejoignent alors pour conclure de la méme maniere.

63
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Approche 1. Pour tout 0 < ¢ < 1, le point (¢) se trouve soit dans A, soit dans
B, la préimage par v de l'ouvert A ou B est donc un voisinage ouvert de ¢ dans
I'intervalle [0, 1]. On choisit un intervalle ouvert U; = (t — ¢,t + ¢) contenu dans ce
voisinage si bien que nous avons recouvert I avec des intervalles ouverts U; ayant
la propriété que v(U;) est entierement contenu dans I'un des ouverts A ou B. Par
compacité de I on extrait un recouvrement fini.

Ordonnons ces intervalles ouverts par ordre croissant des origines : Ces intervalles
sont alors [0, s1), (S2,83), - - ., (Sak, 1] et vérifient 0 < s9 < 54 < -+ < Sg5. Quitte &
enlever des ouverts superflus on peut bien supposer que sy; # s2j1+2. Puisque c’est un
recouvrement de I, on a aussi s; > sy et a nouveau, quitte a enlever des intervalles,
on peut supposer que sz > s;. De méme on pourrait fusionner deux intervalles
consécutifs si les images par v sont contenues dans le méme ouvert A ou B si bien
qu’on obtient finalement une suite d’intervalles dont les images par v s’alternent
dans A et B.

En particulier les intersections (sg;_1, S2;) sont envoyées dans C' = AN B. On
peut alors associer au recouvrement, en choisissant un point ¢; € (sgj_1,Sg;), une
partition 0 = ¢y < t; < --- < t, = 1 de sorte que I'image de l'intervalle fermé
[ti_1,1;] est entierement contenue dans A ou B pour tout 1 < i < n et les images de

deux intervalles adjacents ne sont pas contenues dans le méme ouvert.

Approche 2. Le recouvrement de I'intervalle I, compact et métrique, par les deux
ouverts v 1(A) et v7'(B) admet un nombre de Lebesgue . Ainsi tout intervalle

dans I de longueur < ¢ est entierement contenu dans I'un des deux ouverts. C’est
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en particulier le cas pour les intervalles [k/m, (k 4+ 1)/m] pour tout 0 < k < m — 1
si on choisit un entier m > 6~!. Quitte & concaténer les intervalles consécutifs dont
les images sont contenues dans le méme ouvert A ou B, on peut se ramener a une
partition de [ de la forme 0 < ¢ = ky/m < ty = ky/m--- < t, = 1 de sorte a
découper le lacet v en troncons qui s’alternent dans A et dans B, comme sur le

dessin ci-dessus.

Pour transformer ce découpage en concaténation de lacets, on procede comme
suit. Par connexité par arcs de AN B = C on choisit des chemins ~; enticrement
contenus dans C' reliant zo a v(¢;) pour 1 < i < n — 1. On appelle 7; le chemin

mverse.

Appelons encore ~¢ le chemin parcouru par ~ entre le temps t;_; et t;. Apres
reparamétrisation cela correspond donc au chemin ¢ — (¢ - (t; — t;—1) + t;_1). Ceci
nous permet de construire des lacets y1 x 1, puis 71 * Y2 * Fa, . ., Yno2 * Y * Y
et enfin 7, 1 xv"™. La concaténation de ces lacets donne le lacet v a homotopie pres,
puisque ; x 7v; est homotope au lacet constant.

Par conséquent la classe d’homotopie [y] est égale au produit des classes d’ho-

motopie
] I x P x%e] e % R ] - o1 x Y7

Chacun de ces lacets est par construction entierement contenu dans A ou dans B,
autrement dit chacun se trouve soit dans I'image de i,, soit dans 'image de j,. Ainsi

[v] appartient a I'image de ¢. O
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Il s’agit maintenant d’identifier le noyau de ¢: m A * myB — m X. Pour mettre
clairement en relation les groupes qui jouent un role dans la preuve, assez complexe,
du Théoreme de Seifert-van Kampen, observons que 'amalgame 71 A %, m B avec
lequel nous allons identifier m; X est obtenu comme pushout du diagramme suivant,

ou on note a: C'—= A et f: C'— B les inclusions :
(o7 ﬁ*
7T1A — 7T10 — 71'13

Par construction, 'espace X est quant a lui le pushout (recollement) du diagramme

suivant a gauche

7'['10 L 7T1A

bk

7TlB L> 7T1X

1?

%
=
R e

:

qui induit, en appliquant le foncteur 7; le carré commutatif a droite. Il existe donc un
homomorphisme ¢: m A*,,cm B — m X par la propriété universelle du pushout (de
groupes), dont la précomposition avec le quotient q: m A x 1 B — m A *;,c m B est
exactement ’lhomomorphisme ¢ construit ci-dessus puisqu’il coincide avec i, sur m A
et j, sur m B (et on conclut par la propriété universelle du produit libre). Autrement
dit ’homomorphisme ¢ factorise par I’amalgame et nous voulons montrer que ¢ est

un isomorphisme.

THEOREME 1.2. Soient A, B C X deux ouverts d’un espace X tels que X = AUB

et C'= AN B est connexe par arcs. Alors mX = m A *.,c mB.

DEMONSTRATION. Puisque ’homomorphisme ¢: m A m; B — m X est surjectif
par le Lemme 1.1, il reste a montrer que le noyau de ¢ est le sous-groupe normal N
engendré par a.(c)3; (c) pour ¢ € m,C.

Soit [v1], [2], - - -, [7¢] des classes d’homotopie de lacets basés en x( et entierement
contenus soit dans A, soit dans B. On suppose que la concaténation v = vy - -« * 7y,
est contractile dans X, i.e. le produit [v1]...[y] est un élément du produit libre
mAxm B se trouvant dans le noyau de ¢. On va prouver que cet élément appartient

a N = ker ¢, autrement dit que 7 = 1 dans 'amalgame m A *.,c m B.
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Soit H: I x I — X une homotopie de v = H (0, —) vers ¢,, = H(1,—). Observons
que H(s,0) = H(s,1) = x¢ pour tout s € I puisque cette homotopie est pointée
(entre des lacets basés en x(). On procede maintenant pour le carré I x I comme
pour Uintervalle dans le lemme ci-dessus. On choisit donc pour chaque point (s, )
un rectangle ouvert centré en (s, t) dont I'image est entierement contenue dans A ou
dans B. Par compacité on extrait de ce recouvrement ouvert un recouvrement fini
par des rectangles dont la cloture est envoyée dans A ou dans B, ce qui est possible
quitte a réduire la taille des rectangles ouverts choisis précédemment.

Soit 0 = 859 < 81 < +++ < Sp1 < Sp=1let0 =ty <ty < ---<t,=1
les coordonnées des bords de tous les rectangles. De cette maniere chaque rectangle
[si—1,8i] X [tj_1,1;] est contenu dans I'un des rectangles du recouvrement fini, si bien
que 'homotopie H envoie [s;_1,s;] X [tj_1,t;] soit dans A, soit dans B. Quitte a
raffiner cette partition on peut supposer que les s; contiennent les points séparant
les lacets v, autrement dit chaque 7, est parcouru sur un intervalle de la forme
[Si,_s8i,]- Nous numérotons maintenant les mn rectangles de bas en haut et de
droite a gauche. Pour tout 0 < k < mn nous définissons un chemin dans I x I de

sorte que

(1) il part de (s;,0) et arrive en (s;,1) ou (s;-1,1);
(2) il sépare les k premiers rectangles des mn — k autres;

(3) il parcourt uniquement des trongons verticaux ou horizontaux.
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L’image par H d’un tel chemin est un lacet basé en x(, appelons le wy, et remar-
quons que Wy = €y, €t Wy, = . Pour chacun des sommets P des rectangles on choisit
un chemin 0p reliant 2o & H(P) en choisissant le chemin constant si H(P) = xq (ce
qui est le cas sur le bord s = 1 et aux extrémités des lacets 7, par exemple), un che-
min entierement contenu dans A, B ou C selon que H(P) appartient a A, B ou C.
En précomposant et en postcomposant avec les chemins vyp et 4o correspondants
on décompose wy, en un produit de lacets. On observe que dés qu’'un sommet P est
partagé par des rectangles dont les images par H se trouvent I'un dans A et 'autre
dans B, alors forcément H(P) € C. En particulier le chemin choisi de zy a un tel
point est entierement contenu dans C'.

Analysons maintenant ce qui se passe lorsqu’on passe de wy a wgyq et montrons
par récurrence sur k que wgiq et wy se trouvent dans le noyau de ¢, ils deviennent
donc égaux dans m A ., m B. Pour voir les wy, comme éléments du produit libre
w1 Axm B on doit faire des choix. Ce sont comme on vient de le voir des concaténations
de lacets dans A ou B, et pour les lacets qui se trouvent dans C', a la fois dans A
et dans B, on suit la convention de choisir 'ouvert A ou B qui contient 'image du
rectangle se trouvant soit a droite, soit en dessous du segment horizontal ou vertical
concerné. Autrement dit, pour le lacet wy, la portion de chemin faisant ’angle autour
du rectangle k£ comme sur l'illustration ci-dessus détermine un lacet qui se trouve
dans B si 'homotopie H envoie le rectangle dans B.

L’homotopie H restreinte au rectangle numéro &+ 1 nous donne une déformation
continue entre wy, et wi.1, les autres lacets correspondants aux bords des autres rec-
tangles restent inchangés. Disons, sans restreindre la généralité, que cette homotopie
se passe dans A. Si les quatre lacets correspondants aux quatre cotés sont tous dans
A, alors cette homotopie a seulement changé le lacet parcouru sur J (on commence
par le coté du bas, puis on monte) en un lacet équivalent, parcouru sur I' dans
A (on monte d’abord, puis on continue horizontalement sur le c6té du haut). Les
concaténations correspondants a ces deux chemins sont alors égauxr dans le produit
libre m A % m; B, on a changé la classe d’homotopie d'un lacet par celle d’un lacet

homotope.
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Si par contre I'un de ces lacets, correspondant a I'un des cotés du rectangle,
se trouve dans B, alors nécessairement il se trouve dans 'intersection C, puisque
I’homotopie restreinte au rectangle k£ + 1 se trouve entierement dans A. Appelons 6
ce lacet. Il est d’une part considéré comme un lacet dans B dans le rectangle adjacent,
et ensuite dans A, dans le rectangle que nous étudions. Le passage par le rectangle
k 4 1 remplace alors le lacet 8.(0), i.e. le lacet # vu dans B, en a, (), le méme lacet
mais vu dans A. Autrement dit wy * wgy1 est dans le noyau N car o, (0)3(0)~! € N
par définition du produit amalgamé. En effet, si on appelle & le lacet parcouru avant
d’atteindre le coin inférieur du rectangle £+ 1 et ¢ celui parcouru apres avoir atteint

coin supérieur droit, alors wy = & x (o 0) * ¢ et wrr1 =+ (B oB) *(, si bien que
W x W1 = Ex (@0 @) *x(x(x(BoB)xE=Ex(aof)x(Bol)xE

dont la classe d’homotopie est un conjugué de ..(0)3(6)~!, donc dans N aussi. Ceci
montre que chaque modification entre deux wy, consécutifs ne fait intervenir que des
relateurs de IV et des équivalences de lacets dans A ou dans B.

On conclut enfin par induction que v = 1 x - - - ¥y, differe du lacet constant d’un
élément de N. 0

EXEMPLE 1.3. On recouvre S? par les deux ouverts A = S?\ N et B = 52\ S
ou N et S sont les poles nord et sud. Alors A ~ D? ~ % et de méme B ~ x.
En effet un disque ouvert se déforme continiment sur son centre, i.e. H(x,t) = tx
décrit une homotopie entre 'application constante en (0;0) et l'identité. De plus
ANB = S?\{N, S} est homéomorphe & un cylindre ouvert, qui a le type d’homotopie
d’un cercle. La contraction sur I’équateur donne léquivalence.

Ainsi le Théoréeme de Seifert-van Kampen identifie 7152 avec le pushout du dia-
gramme 1 <— Z — 1. Ce groupe est un quotient de 1 x1 = 1, c’est donc le groupe

trivial.

EXEMPLE 1.4. On regarde RP? comme un quotient de D?, les identifications
antipodales n’ayant lieu que sur le bord. On recouvre le plan projectif par deux
ouverts : A est l'intérieur du disque, homotope & un point, B est le quotient de D?
privé de son centre, qui a le type d’homotopie de RP! ~ S!. L’intersection AN B est

un disque ouvert privé du centre, c’est aussi un espace qui a le type d’homotopie d'un
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cercle. Pour calculer le groupe fondamental nous devons identifier 'homomorphisme

7Z=m(ANB)— mB = 7Z. Cet homomorphisme est induit par I'application
S' < D*\ (0;0) = D?\ (0;0) & [D*\ (0;0)]/~ = S'/~

La premiere inclusion inclut le cercle comme cercle de rayon 1/2 dans le disque et la
X

derniere homotopie envoie un point du disque x sur le bord H, si bien que le cercle
intérieur du disque est dilaté d’un facteur 2 avant de procéder aux identifications
antipodales. Cette application est de degré 2. Autrement dit le Théoreme de Seifert-
van Kampen identifie 7;RP? avec le pushout du diagramme 1 < Z 2, 7. On obtient

mRP? > 7,/2.

2. Espaces bien pointés

Pour pouvoir appliquer le Théoreme de Seifert-van Kampen pour les espaces
construits dans le chapitre précédent nous devons trouver des conditions qui per-
mettent de se ramener a un recouvrement par deux ouverts. Cela nous amene a
regarder les voisinages des points de base dans le cas d'un wedge et a construire des

colliers aux endroits ou on colle des cellules.

DEFINITION 2.1. Un espace pointé (X, ) est bien pointé si o admet un voisi-

nage V' qui est contractile au sens pointé.

Autrement dit on demande une homotopie H: V x I de I'identité vers la constante
Cao avec H(xg,t) = xo pour tout t. On peut déformer continument V' en z, sans que

ce point ne bouge au cours du temps.

REMARQUE 2.2. Attention. Nous utilisons ici une notion différente de ce qui est
usuellement fait. Un espace bien pointé (well pointed) est défini généralement comme
ayant la propriété d’extension des homotopies : Si F': g X I — Y est une homotopie
(un chemin, mais qu’on voit comme une homotopie entre ces deux extrémités) et
h: X — Y une application, alors on peut étendre 'homotopie F' en une homotopie
H: X x I — Y. La propriété d’extension se réfere au fait que H(zo,t) = F(xg,t)
pour tout ¢.

Pour nous la propriété d’avoir un “bon voisinage” du point de base suffira.
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EXEMPLE 2.3. Toute surface est bien pointée puisque tout point admet un voisi-
nage homéomorphe a un disque ouvert, qu’on peut contracter en son milieu. De fait
toute variété de dimension n arbitraire est bien pointée pour tout choix de point de

base.

EXEMPLE 2.4. Le peigne du topologue 0 x TUI x0U{1l/n | n > 1} x I avec

sa topologie de sous-espace de R? n’est pas bien pointé en (0;1). Voir exercices.

LEMME 2.5. Soient (X, o) et (Y,yo) deuz espaces bien pointés. Alors X VY est

aussi bien pointé.

DEMONSTRATION. On choisit des voisinages 79 € U C X et yp € V C Y
admettant des homotopies pointées F': U x [ — U et G: V x I — V qui contractent
Uen xzget Ven yy. Alors U VV est un voisinage ouvert du point de base de X VY
puisque sa préimage par l'application quotient ¢: X [T[Y — X VY est ouverte, c’est
UJJV. Une autre maniere de dire cela est que U V V est ouvert car c’est I'image
par g de 'ouvert saturé U] V.

De plus on construit une homotopie pointée H: (UVV)x 1 — UVV en définissant
en tout temps t que H(—,t): UVV — UV V est donnée par la propriété universelle
du wedge pour les applications F'(t) et G(t). Ainsi H(—,0) est I'identité, H(—, 1) est

I’application constante sur le point de base. O

3. Groupe fondamental d’un wedge

Nous traitons d’abord le cas du wedge de deux espaces pointés. Nous allons voir
en particulier que 7;(S! v S1) & F(2), le groupe libre & deux générateurs. Puis par
récurrence nous étudierons le cas d’'un nombre arbitraire, mais fini, d’espaces. Un
argument de passage a la limite permettra enfin de comprendre le cas d’un wedge
infini, nous y reviendrons dans les séries d’exercices.

Lorsqu’on construit le wedge AV B on aimerait pouvoir calculer le groupe fonda-
mental grace au Théoreme de Seifert-van Kampen. La premiere idée qui nous vient
a lesprit est de recouvrir le wedge avec les deux sous-espaces A et B. Or ces deux

sous-espaces ne sont pas ouverts en général! En effet la préimage de A par I'appli-

cation quotient q: A[[ B — AV B est A[]by. C’est ici que la notion d’espace bien
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pointé devient utile. Nous établissons dans le lemme suivant un résultat — pour des
espaces bien pointés — qui affirme que le groupe fondamental transforme un coproduit

d’espaces pointés en un coproduit de groupes.

PROPOSITION 3.1. Soient (A, ag) et (B,by) deux espaces bien pointés. Alors on
am(AV B)=mAxmB.

DEMONSTRATION. On choisit un voisinage ouvert U de ag dans A et un voisinage
ouvert V de by dans B avec des contractions pointées F' et GG sur leur point de base
respectif. On pose A’ = AVV C AVBet BB =UV B C AV B et on remarque
que A’, B’ fournissent un recouvrement ouvert du wedge puisque la préimage par
I'application quotient ¢ de A" par exemple est A[[V qui est un ouvert de la réunion
disjointe. Avant d’appliquer le Théoreme de Seifert-van Kampen qui s’applique donc
bien, il faut identifier le type d’homotopie des ouverts A", B" et C' = A'N B'.

On affirme que A’ ~ A, B’ ~ B et C' ~ *. On traite seulement le cas de A’ et on
observe que C! = UVV est contractile par le Lemme 2.5. On a une inclusioni: A C A’
et son inverse homotopique sera r: A* — A défini par la propriété universelle du
wedge en posant 7(a) = a pour a € A et r(v) = ag pour v € V. Ces choix définissent
bien r puisqu’ils sont compatibles sur les points de base : r(by) = ag = r(ao).

On a alors r o7 = 1dy4 et il reste a montrer que 7 o r est homotope a l'identité.
C’est ici que I'homotopie G entre en jeu. On définit H: A’ x I — A’ par les formules

suivantes, pour tout t € I :

a sir=a€A
H($7t>:
G(v,t) siz=veV

Ceci définit une application puisque H(ag,t) = ag ~ by = G(bg,t) et on vérifie que
H(z,0) = x pour tout z, alors que H(x,1) = (i o r)(x), Papplication qui écrase le
voisinage V' sur le point de base.

Par invariance homotopique on a par conséquent m A" = m A, m B = m B et
mC’ = 1. Le groupe fondamental du wedge AV B est donc le pushout du diagramme

mA < 1 — m B. On reconnait le produit libre m A x m B. O
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EXEMPLE 3.2. Le cercle étant bien pointé on calcule 7 (St V S) = F(2), le
groupe libre a deux générateurs. Le corollaire suivant permet en fait d’identifier le

groupe fondamental d'un wedge fini de copies de cercles.

COROLLAIRE 3.3. Soient n un entier naturel et (A1, ay), (As, as),...(An, a,) des

espaces bien pointés. Alors mi (A1 V-V A,) 2 mA *---xmA,.

DEMONSTRATION. On procede par récurrence sur n. La récurrence est initialisée

puisque le cas n = 1 est trivial et la Proposition 3.1 fournit le pas de récurrence. [J

REMARQUE 3.4. Ce résultat est encore vrai pour un wedge infini. Dans le cas dé-
nombrable on peut utiliser un argument de colimite pour les sous-espaces \/_; A; C
Voo, A; qui donnent une filtration du wedge par des sous-espaces dont les groupes
fondamentaux sont des produits libres m Ay * - - - x m; A,, par le Corollaire 3.3. Pour

un wedge non dénombrable il faudrait étudier le cas analogue, mais transfini...
4. Groupe fondamental et attachement de cellule

Avant de calculer le groupe fondamental d’un espace obtenu par attachement
d’une cellule, nous parlons rapidement de rétracte. Le type de rétracte qui va appa-
raitre dans notre argument sera le plus fort, les autres ont peut-étre été vus dans le

cours du semestre précédent.

DEFINITION 4.1. Un sous-espace i: A C X est un rétracte de X s’il existe une

application 7: X — A tel que r o7 = idy4.

Ainsi le cercle unité est un rétracte de la figure huit S' v S, mais ils n’ont pas
le méme type d’homotopie, ayant des groupes fondamentaux différents. L’espace
est un rétracte de tout espace X pour tout choix de point x € X correspondant a

I'image de 'application x — X.

REMARQUE 4.2. Cette notion est trop faible pour conclure quoi que ce soit de
positif sur le type d’homotopie, mais elle suffit déja a pouvoir exclure I'existence de
certaines applications, typiquement celle d'une application du disque sur le cercle
qui fixe le bord. En effet, une telle application serait une rétraction de I'inclusion
St c D? et elle induirait des homomorphismes au niveau des groupes fondamentaux

7Z — 0 — Z dont la composition serait (idg1 )., ¢’est-a-dire I'identité, une absurdité.
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DEFINITION 4.3. Un sous-espace i: A C X est un rétracte de déformation de X

s’il existe une application r7: X — A tel que roi =1id4 et i or ~ idx.

EXEMPLE 4.4. Le point (0; 1) est rétracte de déformation du peigne du topologue,
car c¢’est un espace contractile. De maniere informelle, on peut expliquer cela en trois
temps : on contracte d’abord toutes les dents du peigne sur la base horizontale du
peigne, puis on contracte cette base sur (0;0), et enfin on revient sur (0;1). Cette
homotopie ne fixe pas ce point et nous avons vu qu’il est impossible d’obtenir une
telle homotopie, ce qui empéche ce rétracte d’étre un rétracte de déformation fort

dans le sens suivant.

DEFINITION 4.5. Un sous-espace i: A C X est un rétracte de déformation fort
de X s’il existe une application r: X — A tel que r o7 = id et i o r est homotope

a tdx par une homotopie fixant A.

Autrement dit on suppose que I'homotopie H vérifie H(a,t) = a pour tout a € A
et tout 0 < ¢t < 1. Par exemple le cercle est un rétracte de déformation fort du
cylindre S' x I, mais concentrons-nous sur les exemples qui vont étre utile par la
suite. Considérons le collier Col(A) = A x [0,3/4[, un cylindre sur A ouvert d'un

coOté et fermé de 'autre qui a le type d’homotopie de A.

LEMME 4.6. Tout espace A est un rétracte de déformation fort de son collier

Col(A).

DEMONSTRATION. L’inclusion i: A < Col(A) envoie un point a sur le point
(a,0) de la base du collier et la rétraction r envoie (a,t) sur a. Ainsi r oi = id,. La
composition i o r envoie (a,t) sur (a,0) pour tout 0 < t < 3/4. On construit une
homotopie H: Col(A) x I — Col(A) en posant H(a,t,s) = (a,ts). Quand s = 0 on
a bien H(—,0) =ior et H(—,1) = idcoya). De plus H(a,0,s) = (a,0) pour tout s,

la base du collier ne bouge pas pendant I’homotopie. O

Soit CA = A x I/A x 1 le cone de base A ~ A x 0. On va aussi utiliser
C'A = Ax|1/4,1]/A x 1 un cone ouvert, sous-espace de C'A. Les deux espaces sont

contractiles (une homotopie les contracte sur le sommet du cone).
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PROPOSITION 4.7. Soient (X, o) et (A, ay) deuz espaces pointés avec A connexe
par arcs. Soit f: A — X wune application pointée et Y = X Uy CA l'espace pointé
obtenu de X en attachant une A-cellule le long de f. Alors mY = m X %4 1.

DEMONSTRATION. Exactement comme dans le cas d’un wedge nous devons mo-
difier le recouvrement de Y donné par les images de C'A et X dans l'espace quotient
Y =X][[CA/(a,0) ~ f(a) car ces sous-espaces ne sont pas ouverts en général. Nous
allons bien sur choisir d’'une part C’A, un cone ouvert dans C'A dont les points ne
sont pas affectés par les identifications du quotient, si bien qu’il est saturé et q(C’A)
est un ouvert de Y homéomorphe a C’A, donc contractile.

D’autre part nous posons X’ = ¢(X [[Col(A)). Comme X [[Col(A) est aussi
saturé (du fait que le collier contient toute la base A x 0), X’ est un ouvert et il est
clair que X’ et ¢(C"A) recouvrent Y. Nous affirmons d’abord que X’ a le méme type
d’homotopie que X. Rappelons que nous avons vu que X s’identifie a un sous-espace
de Y et appelons i: X — X’ I'inclusion évidente. Montrons que ce sous-espace est
un rétracte de déformation fort. La rétraction est donnée par 'identité sur X et for
sur le collier, ou r est la rétraction du Lemme 4.6. Ces choix sont compatibles avec
la relation d’équivalence puisque (f o r)(a,t) = f(a) ~ a. Ils induisent donc par la
propriété universelle du quotient une application R: X' — X.

On a bien R oi = idx, reste a construire une homotopie contractante. Pour
construire G: X’ x I — X' on observe d’abord que X' x I = ¢(X [[Col(A)) x I =
(X x I)]J(Col(A) x I)]/R ou la relation déquivalence R identifie (f(a),s) avec
(a,0,s) pour tout a € A et tout s € I. On va donc définir G séparément sur X x [
et sur Col(A) x I. On pose G(x,s) = i(x) pour tout s € I, si bien que X - ou
plutot i(X) - est un sous-espace de X’ qui reste constamment fixe pendant toute
la durée de I'homotopie G. On pose encore G(a,t,s) = (qo H)(a,t,s) = q(a,ts)
ou H est 'homotopie contractante du Lemme 4.6. L’application ainsi définie sur
la réunion disjointe (X x I)]J[(Col(A) x I) passe au quotient par la relation R
puisque G(f(a),s) =i(f(a)) et G(a,0,s) = q(a,0) définissent le méme point de X".

L’homotopie ainsi obtenue déforme continument ¢ o R en l'identité.
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Il reste encore a identifier le type d’homotopie de l'intersection X’ N ¢(C'A) =
q(Ax]1/4,3/4]. Cet ouvert est saturé et ¢ identifie homéomorphiquement le cylindre
ouvert de base A avec cette intersection. Ainsi X' N g(C'A) ~ A.

Comme A est connexe par arcs, les hypotheses du Théoreme de Seifert-van Kam-
pen sont vérifiées et on conclut que le groupe fondamental de Y, pour le point de
base yo = q(xo) = q((ao,0)), est isomorphe a mY = m X %, 4 m(CA). On conclut
par le fait que C'A est contractile. O

5. Groupe fondamental et attachement d’une cellule standard

Regardons ce qui se passe dans le cas particulier d’'un attachement d’une cellule
e" ~ D" ~ CS"1. On choisit (1;0;...;0) comme point de base de la sphere unité.
Lorsqu’on attache une cellule de dimension (assez) grande on ne modifie pas le groupe

fondamental :

COROLLAIRE 5.1. Soient (X, zo) un espace pointé et f: S"' — X une applica-
tion pointée avec n > 3. Soit Y = X Uy e™ l’espace pointé obtenu de X en attachant

une n-cellule le long de f. Alors mY = mX.

DEMONSTRATION. La sphere S™! est connexe par arcs si bien que la Proposi-
tion 4.7 s’applique. Comme 71 S"~! est trivial pour n > 3 (voir exercices), la conclu-

sion suit. O

EXEMPLE 5.2. Nous avons calculé le groupe fondamental mRP? 2 Z/2. Comme
I'espace projectif réel RP? admet une décomposition cellulaire de la forme RP? Ue3,

on conclut que mRP? = 7Z,/2.

Une application pointée f: S* — X représente un lacet dans X, basé en x(. Sa
classe d’homotopie est un élément [f] de m X et on notera Ny le sous-groupe normal
engendré par [f]. De maniére équivalente on peut dire que f induit une application
fi: mSY — m X, i..e un homomorphisme Z — 7 X. L’image de 1 est précidément
[f] = f.(1) puisque le générateur de ;5! est représenté par I'identité (ou toute autre
application de degré un). Ainsi Ny est le plus petit sous-groupe normal de m X qui

contient I'image de f,.
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COROLLAIRE 5.3. Soient (X, zo) un espace pointé et f: ST — X une application
pointée. Soit Y = X Uy €? 'espace pointé obtenu de X en attachant une 2-cellule le
long de f. Alors mY = m X/Ny.

DEMONSTRATION. Comme ci-dessus les conditions d’application de la Proposi-
tion 4.7 sont remplies. Ici m;.S! = Z et la conclusion suit du fait que I'amalgame
m X *,,61 1 est isomorphe au quotient de m X par le sous-groupe normal engendré

par I'image de f,: m St — m X. U

EXEMPLE 5.4. Soit K la bouteille de Klein, vue sous sa forme de quotient du carré
I x I par identification des bords verticaux a; et as orientés tous deux de bas en haut
et des bords horizontaux b; et by avec des orientations opposées. Ainsi K est obtenu
du wedge de deux cercles S* v S! par attachement d’une cellule de dimension 2.
Il reste & identifier I'application d’attachement f: S' — S' Vv S'. Appelons a et
b les lacets du wedge, images par passage au quotient des chemins a; et by. La
concaténation des chemins by x a; * by x @5 forme un lacet basé en (0;0) dont I'image
dans le wedge est bxaxbxa. Sa classe d’homotopie est faBa~! dans le groupe libre
F(a,B) = m(STVv S, Ainsi m K 2 («a, 8 | BaBa™t) le groupe de Klein.

Pour terminer nous aimerions encore étudier le cas d’un attachement d’une cellule
de dimension un. Cette situation correspond & un diagramme D! < S° Iy X et on
attache une “anse” entre zo = f(1) et un point f(—1) = z. Nous considérons le cas

ou x et xy appartiennent a la méme composante connexe par arcs.

COROLLAIRE 5.5. Soient (X, xo) un espace bien pointé et connexe par arcs et
f: 5% = X une application pointée. Soit Y = X Uy e' lespace pointé obtenu de X

en attachant une 1-cellule le long de f. Alors mY = m X % Z.

DEMONSTRATION. Comme S° n’est pas connexe par arcs, il faut passer par un
autre raisonnement que dans les corollaires précédents. Comme X est connexe par
arcs, 'application f est homotope a ’application constante (il existe un chemin
dans X entre xy et z). Par conséquent Y est homotope a l'espace obtenu comme
recollement de X [[ D'/zy ~ +1.

Or cet espace est un wedge X V S! car on peut identifier le quotient en deux
temps : d’abord X [[I/1 ~ —1 ~ S]] S!, puis on identifie le point de base de S!
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avec celui de X. Le cercle étant bien pointé et X 'étant également par hypothese

on conclut par la Proposition 3.1. O

EXEMPLE 5.6. Soit f: S® — St Iinclusion de la O-sphere dans la 1-spheére. L'es-

pace S Uy e! est homéomorphe a la lettre grecque ©. Son groupe fondamental est
7 % 7.

6. La classification des surfaces

Notre but dans les dernieres sections de cette partie n’est pas de démontrer la clas-
sification des surfaces (compactes sans bord), mais d’illustrer comment le Théoreme
de Seifert-van Kampen permet de calculer les groupes fondamentaux de toutes ces
surfaces et comment cela permet de les distinguer : deux surfaces ayant des groupes
fondamentaux non isomorphes ne sont pas homotopes, encore moins homéomorphes,
mais réciproquement deux surfaces non homéomorphes ont des groupes fondamen-
taux distincts. De fait, on peut méme extraire du groupe fondamental des invariants
plus grossiers qui font encore 'affaire, ce sera le sujet de la derniere section.

Les livres de Massey et de Lee sont de bonnes références pour une preuve de
la classification. Souvent les auteurs évitent de démontrer que toute surface admet
une triangulation et donc une présentation polygonale, c¢’est-a-dire une maniere de se
représenter une surface donnée comme quotient d’un polygone a 2k cotés, les identi-
fications ne concernant que les cotés qui sont identifiés deux a deux. On étiquette les
2k cotés avec les lettres aq, ..., a; ou leur inverse selon l'identification qui est faite.
Ainsi si le premier coté est aq, parcouru dans le sens trigonométrique, on trouvera
plus loin sur le bord une étiquette aq sur le i-eme coté si ce coté est identifié avec a4
dans le méme sens, ou a; ' s'il est identifié avec a; dans le sens contraire.

Pour établir la classification une fois ceci supposé la partie technique de la preuve
ramene 'étude des surfaces a des présentations polygonales particulieres. Celles-ci
ne font intervenir que des identifications qui correspondent a des étiquetages a;a;
si les deux cotés consécutifs en question sont identifiés dans le méme sens (comme
pour le plan projectif) et [a;, a;11] = a;a;11a; 'a; ) siles quatre cotés consécutifs en
question sont identifiés deux a deux en alternance (le premier avec le troisieme et le

deuxieme avec le quatrieme) et en inversant le sens (comme pour le tore).
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THEOREME 6.1. Soit S une surface. Il existe alors une présentation polygonale
de S comme quotient d’un polygone ayant 2k cotés. De plus les cotés sont identifiés
deuz & deuz et, si S % S?, ne font intervenir que des identifications de type a;a; et
la;, a;+1]. De plus ont peut supposer que tous les a;a; sont consécutifs et enfin les 2k

sommets sont identifiés a un seul point.

Nous ne donnons pas la preuve de ce résultat, ce sera notre “boite noire”, mais
retenons qu’on peut associer a toute surface S un nombre k et un mot W du groupe

libre F'(aq, ..., ax) de 2k lettres particulier. Il fait apparaitre chaque générateur deux
2

fois, soit sous la forme d’un carré a7, soit sous la forme d’un commutateur [a;, a;41].

Seule la sphere fait exception :

EXEMPLE 6.2. La sphere S? est présentée usuellement par le quotient du disque
par son bord. Pour que la sphere fasse partie des exemples couverts par le théoreme

1

on pourrait utiliser le 2-gone et le mot aa™", mais dans ce cas les deux sommets ne

sont pas identifiés dans le quotient !

EXEMPLE 6.3. La construction des surfaces que nous avons déja rencontrées
précédemment dans le cours faisait précisément appel a une présentation polygonale
telle qu’elle est décrite dans le théoreme ci-dessus. Le tore par exemple est le quotient
d’un carré (un 4-gone) dont les cotés sont étiquetés de sorte a former un commutateur

la1, as], comme ceci :

g

A

Y ALY

Pour que cet exemple soit totalement en phase avec la théorie il aurait fallu appeler a;

les cotés A et as les cotés B dont on doit changer le sens pour obtenir le commutateur
donné. Je laisse cette illustration d’abord par flemmardise et aussi pour mettre en
lumiere I'arbitraire dans les choix effectués. Il n’est pas nécessaire de parcourir le

bord dans le sens trigonométrique pour attacher une cellule, on peut commencer
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en n'importe quel sommet du polygone et obtenir un autre mot qui donne une
présentation d’'un groupe isométrique, on peut renommer les cotés et changer leur
sens... Le plan projectif correspond au mot a?, c’est le quotient d'un 2-gone qu’on
visualise comme un disque D? dont les sommets sont &1 et les cotés sont les deux

hémicycles. Enfin la bouteille de Klein

1 >

B B

V. 4y

correspond au mot abab~! par exemple, mais on verra en exercice qu’il existe une

autre présentation a?a3.

PROPOSITION 6.4. Soit P un polygone a 2k cotés, W un mot de F(aq,...,ax)

comme ci-dessus et X le quotient de P par la relation d’équivalence décrite par ce

mot. Alors mX = (ay,...,a, | W).

DEMONSTRATION. L’espace X a une structure cellulaire transparente. Il est
formé d’un unique point, qu'on choisit comme point de base et qui correspond a
la classe de chaque sommet du polygone P. On attache a ce point k segments qui
correspondent chacun a une paire de cotés de P. On a ainsi obtenu un wedge de £
cercles qu’on étiquette aq, ..., ax, comme les cotés du polygone auxquels ils corres-
pondent. Ce wedge n’est rien d’autre que le quotient du bord de P par la relation
d’équivalence restreinte au bord.

On ajoute enfin une unique 2-cellule e?, homéomorphe & P, lintérieur de P
n’étant pas touché par les identifications dans le quotient. Explicitement I'application
quotient ¢: P — X se restreint en un homéomorphisme P&

Le Théoreme de Seifert-van Kampen s’applique a cet espace (plus précisément
c’est le Corollaire 5.3 qui permet de conclure). On obtient alors m X = m (VS!)/N;
ou f est l'application d’attachement de la 2-cellule sur le wedge de cercles. Or,
I’application d’attachement de P au polygone P est donnée par un homéomorphisme

S! — 0P, disons qu'on parcourt le bord de P dans le sens trigonométrique en
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commencant par le coté étiqueté a;. Par conséquent I’application d’attachement de
la cellule e? est obtenue en passan au quotient f: S' ~ 9P 4y VSt La classe
d’homotopie de cette application détermine un élément de 7 (VS!') = F(ay, ..., ax)

qui est exactement donné par W, ce qui termine la preuve. 0

On retiendra de cette proposition qu’une présentation polygonale est exactement
équivalente au calcul du groupe fondamental! Le méme mot qui décrit les identifi-

cations topologiques de I’espace quotient donne également I’amalgame de groupes.

EXEMPLE 6.5. Considérons la somme connexe de trois copies du plan projec-
tif. Comme le plan projectif admet une présentation polygonale correspondant au
mot a® (on identifie les deux demi-cercles bordant un disque), on obtient par la
méme technique que pour le tore & deux trous la présentation polygonale a?b?c?
pour RP2H#RP?#RP?, comme quotient d’un hexagone.

Voici quelques détails. On commence avec RP?#RP?, qu’on construit en enlevant
un voisinage de bord d dans chacun des plans projectifs en faisant de sorte que le
bord passe par le point de base, représenté par +1 dans le premier disque et —1 dans

le second.

% L
o o e

=

Y

On dédouble ce point de base pour transformer le lacet d en un segment (sans oublier
que ces deux points devront étre identifiés dans le quotient). Ceci nous amene a la
deuxieme image de l'illustration ci-dessus ot chaque plan projectif privé d’un petit

disque est représenté comme quotient d’un triangle. On effectue les identifications en
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changeant 'ordre, i.e., on recolle d’abord les segments d pour obtenir une présenta-
tion polygonale a partir d’un carré. Ainsi la somme connexe de deux plans projectifs
est une surface correspondant au mot a?b? (c’est donc une bouteille de Klein).

On refait la méme chose pour obtenir la somme connexe de trois copies du plan

projectif, sans donner tous les détails :

a

o
a
\\
et )
o 3
G

On conclut de la Proposition 6.4 que m (RP?*#RP?#RP?) = (a,b,c | a®b*c?).

Pour arriver a la classification des surfaces, nous avons encore besoin d’un lemme,
qui concerne l'espace de 'exemple précédent et dont la preuve suit exactement la

méme stratégie.

LEMME 6.6. On a un homéomorphisme T?*#RP? ~ RP?>#RP?#RP?.

DEMONSTRATION. On part de la présentation polygonale de la triple somme
connexe de plans projectifs, donnée par un hexagone et le mot a?b*c* comme expliqué
dans I’Exemple 6.5. On procede ensuite par découpage et réarrangement. On découpe
I’hexagone en un triangle et un pentagone en suivant un segment d tracé de sorte
a séparer les a et les b, comme indiqué sur la figure ci-dessous (on indique par un
trait violet un petit triangle comment on devra identifier les deux segments ainsi

obtenus) :
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—

L’ordre des identifications n’ayant pas d’importance, on recolle d’abord les cotés
a, quitte a retourner I'une des deux pieces pour que le sens soit compatible, puis on
coupe le long de e de sorte a créer a nouveau un triangle et un pentagone, mais cette
fois ce sont les ¢ qui ont été séparés. On identifie maintenant les b, dans le bon sens.

Avant la derniere opération, on observe que puisque le tore ne peux pas appa-
raitre dans la somme connexe de deux plans projectifs seulement, on doit absolument
séparer les trois paires de cotés a, b et ¢ pour avoir une chance de réarranger correcte-
ment les pieces. C’est maintenant chose faite et on reconnait un bout de commutateur
ede™!, mais il faut procéder a un dernier découpage pour placer le d~! manquant au
bon endroit. On découpe alors le long de f et on recolle les ¢ qui devaient encore
disparaitre.

On obtient pour finir la présentation donnée par le mot ede~*d~! f2. Si on coupait
encore un triangle dont deux cotés seraient ceux d’étiquette f, on obtiendrait un tore
troué et un plan projectif troué, si bien que cette derniere présentation correspond

bien & la somme connexe T?#RP2. O

REMARQUE 6.7. Si S est une surface dont la présentation polygonale est un 2k-
gone et les identifications correspondent au mot W et si T est une surface dont la

présentation polygonale est un 2¢-gone et les identifications correspondent au mot
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W' alors la somme connexe S#T' est une surface dont la présentation polygonale

est un 2(k + £)-gone et les identifications correspondent au mot WW"’.

THEOREME 6.8. Toute surface est homéomorphe soit a la sphére, soit a une

somme conneze de tores, soit a une somme connexe de plans projectifs.

DEMONSTRATION. Soit S une surface. On peut supposer que S n’est pas homéo-
morphe & S? et on utilise le Théoréme 6.1 pour présenter S comme quotient d’un
2k-gone. Si k = 2g est pair et que seuls des commutateurs apparaissent, alors S est
un tore & g trous. Si seuls des carrés apparaissent, W = a?...a3, alors S est une
somme connexe de k plans projectifs. C’est quand des carrés et des commutateurs
apparaissent simultanément qu’il faut travailler un peu.

Dans ce cas on peut choisir I'un des sommets du polygone comme point de base
pour faire en sorte que le mot commence par les commutateurs et se termine par
les carrés. On procede par récurrence sur le nombre de commutateurs. S’il n’y en
a qu’'un, on découpe un heptagone en ne gardant que les six cotés correspondant a
[a1, az)a3. Le quotient est une somme connexe (T?#RP?)\ U a laquelle on a 6té un
voisinage ouvert homéomorphe a un disque. Or, par le Lemme 6.6, cet espace est
homéomorphe & (RP?#RP?#RP?)\ V, ou V est un voisinage ouvert homéomorphe
a un disque. On recolle I’heptagone correspondant pour se retrouver avec une pré-

sentation équivalente, mais de (RP?)#*. L’argument de récurrence est identique. [J

EXEMPLE 6.9. Nous avons rencontré dans cette section la sphere, le tore, le
plan projectif et des sommes connexes de ceux-ci. Et la bouteille de Klein? On se
souviendra peut-étre d’un exercice qui nous avait permis de I'identifier & RP?#RP?.
C’est pour cette raison que la bouteille de Klein ne fait pas partie des exemples

élémentaires a partir desquels toutes les autres surfaces peuvent étre construites.

7. Abélianisation et caractéristique d’Euler

On commence par définir ’abélianisé d’un groupe et on montre que le groupe
fondamental abélianisé suffit a distinguer les surfaces les unes des autres. On introduit
ensuite la caractérsistique d’Euler, un simple nombre entier qui donne presque une

information aussi forte.
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DEFINITION 7.1. Soit G un groupe. L’ abélianisé Gy, est le groupe quotient de G

par le sous-groupe normal [G, G| des commutateurs.

On ajoute donc a une présentation de G les relateurs [g, h| pour tous g,h € G
pour faire en sorte que dans G, on ait la relation gh = gh, i.e., ce groupe est
commutatif.

On écrit parfois H1G ou Hi(G;Z) pour Gy, a cause de l'interprétation en tant
que groupe d’homologie de ce groupe abélien. L’homomorphisme quotient G — G
est le meilleur homomorphisme de G vers un groupe abélien, dans le sens ou tout
homomorphisme G — A vers un groupe abélien A factorise pas I’abélianisation.

C’est une propriété universelle vue en exercice.

EXEMPLE 7.2. Soit F' un groupe libre a k générateurs. Alors Fj;, est un groupe
abélien libre a k générateurs, isomorphe a Z*. Nous avons souvent travaillé avec la
présentation {a,b | [a,b]) de Z?, le raisonnement est le méme pour plus de deux
générateurs. En exercice on montre que l’abélianisé du groupe fondamental d’une

somme connexe de g tores est un groupe abélien libre a 2¢g générateurs.
PROPOSITION 7.3. L’abélianisé de 7 (RP?)#* est isomorphe a ZF~! x 7,/2.

DEMONSTRATION. Le groupe fondamental en question est 7 = (a1,...,a; |
a?...a}). Posons A =7Z"1x7Z/2 et appelons ey, ..., e, les générateurs du groupe
abélien libre Z*~! et f celui de Z/2. On construit ¢: T — A en définissant p(a;) = ¢;
pour i # k et p(ay) = f —ey — -+ — ex—1. Ces choix définissent bien un homomor-

phisme de groupes puisque
gp(a%ai) :2€1+"‘+2€k71+2(f—€1—"'—ekfl) :2f:0

De plus A étant abélien, tout commutateur de 7 est envoyé sur zéro dans A, si
bien que ¢ passe au quotient et induit ®: m,, — A. Pour montrer que ® est un
isomorphisme on exhibe un inverse W. On pose ¥(e;) = a; et W(f) =a;...ax, ou la

barre indique les classes dans 7,,. L’image de f est bien un élément d’ordre 2 car

2 _ _ 2 _ 7
(@ ap)*=ay...ap-a1...ap =aj...a; =1
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puisque les éléments commutent entre eux dans le quotient. La seule vérification a

faire est
\I/((I)(dk» = \Ij(f_el _"'—ek_1) :a1...a/§'67l1_1...d];711 = a
L’autre calcul ®(V(f)) = f est similaire. 0

Les groupes fondamentaux de la sphere, des tores a g trous et des sommes
connexes de plans projectifs sont tous distincts. Nous montrons mieux : leurs abélia-
nisés sont des groupes abéliens non isomorphes. Ceci nous permet de conclure que la
liste des surfaces faite dans le Théoreme 6.8 est complete, ce que nous savions déja,

mais aussi libre de répétition.

COROLLAIRE 7.4. Toute surface est homéomorphe a exactement l'une des sur-
faces suivantes : la sphére, une somme connexe de tores, ou une somme connezxe de

plans projectifs.

DEMONSTRATION. Deux surfaces homéomorphes sont homotopes. Elles ont donc
des groupes fondamentaux isomorphes, et a fortiori, leurs abélianisés sont des groupes
abéliens isomorphes. Or le groupe nul (pour la sphere 5?), les groupes libres Z7 (pour

les tores), et les groupes Z*~! x Z/2 sont non isomorphes deux a deux. O

On termine comme promis avec un invariant encore plus grossier.

DEFINITION 7.5. Soit X un espace connexe par arcs obtenu & partir d’'un wedge
de k cercles en attachant ¢ cellules de dimension 2. Alors x(X) =1 —k + ( est la

caractéristique d’Fuler de X.

On ne montre pas ici que cet invariant ne dépend pas de la présentation cellulaire
choisie (mais c’est le cas). On constate par exemple que x(S5?) = 2, que x(7?) = 0 et
plus généralement x(T?# ... #T?) = 2 — 2g si g est le nombre de tores apparaissant
dans la somme connexe, c’est-a-dire le nombre de trous. Enfin y(RP?# ... #RP?) =
2—g.

Ainsi pour un nombre entier n donné, il existe au plus deux surfaces ayant ce
nombre pour caractéristique d’Euler. Pour départager les deux possibilités, il n’est

pas nécessaire de calculer le groupe fondamental ou son abélianisé, il suffit en fait
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de savoir si la surface est orientable ou non, c’est-a-dire si elle contient un ruban de

Mobius ou non.






Chapitre 5

Revétements

Pour finir nous étudions les revétements d’espaces topologiques. Notre but est
de généraliser et développer une théorie concernant des applications quotients qui se
comportent particulierement bien par rapport au groupe fondamental, dans I'esprit
de ce que l'application exponentielle nous a permis de comprendre sur le groupe

fondamental du cercle.

1. Définitions et exemples

Nous supposerons sauf mention du contraire que tous les espaces de ce chapitre
sont connexes par arcs et localement connexes par arcs, i.e. tout voisinage ouvert

d’un point contient un voisinage connexe par arcs.

DEFINITION 1.1. Une application p: £ — X est un revétement si tout point
x € X admet un voisinage ouvert U connexe par arcs, appelé ouvert trivialisant,

tel que p~}(U) = UU; est une réunion disjointe non vide d’ouverts U; C FE avec

P |u,: Uy = U est un homéomorphisme.

REMARQUE 1.2. On observe que p est nécessairement surjective et on appelle p
projection. La préimage d’un point p~!(x) est la fibre au-dessus de x, E est I'espace
total et X la base de la projection. Enfin les U; sont les feuillets. On imagine lo-
calement un revément comme un mille-feuille ou les feuillets, tous homéomorphes,

s’empilent les uns au-dessus des autres et p les envoie tous sur la base du mille-feuille.

EXEMPLE 1.3. L’application exponentielle R — S! qui envoie ¢ sur e est un
revétement. Les applications de degré n du cercle dans lui-méme définies par la
formule complexe e 5 €™ également. Les fibres sont toutes constituées de n points.

L’application quotient par l'antipodale S™ — RP™ est aussi un revétement a
deux feuillets. Tout point de l'espace projectif a deux préimages dans S™ et on

peut choisir un ouvert U autour de 'un d’eux, connexe par arcs et assez petit pour

89
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qu’il soit disjoint de —U. Enfin, pour tout espace discret F' on peut construire le
revétement trivial X x F' — X donné par la projection sur la premiere composante.

L’espace total n’est pas connexe par arcs ici.

On établit deux propriétés élémentaires a la fin de cette section. La premiere

montre que les fibres sont discretes.

LEMME 1.4. Soit p: E — X un revétement. Chaque fibre est un espace discret

(en tant que sous-espace de E).

DEMONSTRATION. On choisit un ouvert trivialisant U 3 z. Pour tout feuillet U;
il existe un unique point z; € U; tel que p(x;) = x. Ainsi la fibre p~!(z) est constituée

des z; qui sont ouverts dans p~!(z) puisque U; Np~*(z) = {z;}. O
On montre ensuite que les revétements sont des cas particuliers de quotients.

PROPOSITION 1.5. Soit p: E — X un revétement. Alors p est une application

ouverte. En particulier ¢’est une application quotient.

DEMONSTRATION. Soit V' C E un ouvert. Nous montrons que p(V') est ouvert.
Pour x € p(V') on choisit un ouvert trivialisant U. Comme x = p(y) pour un y € V,
il existe un feuillet U; contenant y. De plus U; NV est un ouvert de E et donc de V
ayant la propriété que p se restreint en un homéomorphisme U; NV — p(U; V). En
particulier z est contenu dans p(U; N'V') qui est un ouvert de X contenu dans p(V).

La deuxieme affirmation est une conséquence du fait qu'une surjection (continue)

ouverte est un quotient. O

Ainsi la topologie de la base d'un revétement est toujours la topologie quotient.
On termine cette premiere section en établissant un résultat qui a ’air technique et

tres particulier, mais qui nous sera bien utile pour montrer des résultats d’unicité.

PROPOSITION 1.6. Soient p: E — X un revétement et Y un espace connexe. On
se donne f,qg: Y — E deux applications telles que po f = pog. Alors le sous-espace
Z={yeY | fly) =g(y)} est soit vide, soit Y tout entier.

DEMONSTRATION. On montre que Z est ouvert et fermé, et on conclut par la
connexité de Y. Pour y € Y on choisira dans les deux parties de la preuve un ouvert

trivialisant U de p(f(y)) et on appelle U; le feuillet qui contient f(y).
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Pour montrer que Z est ouvert, on suppose que y € Z et on observe que l'inter-
section f~1(U;) N g~ Y(U;) est un ouvert de Y qui contient y puisque f(y) € U; par
choix et que g(y) = f(y). Cet ouvert est entierement contenu dans Z parce que p|y,
est un homéomorphisme et on suppose que po f =pog.

Pour montrer que Z est fermé, on suppose que y ¢ Z. Il découle du fait que p|y,
est un homéomorphisme que g(y) & U;, car les deux points disctincts f(y) et g(y) ont
la méme image par p. Il existe donc j # i tel que g(y) appartient au feuillet U;. Ici
intersection f~1(U;) N g~*(U;) est un ouvert de Y qui contient y par construction.
Aucun point de cet ouvert ne se trouve dans Z puisque les feuillets U; et U; sont

disjoints, c’est donc un voisinage ouvert de y dans Y\ Z. 0

2. Morphismes de revétements

Comme toujours en mathématiques, c’est bien de définir des objets, ici les reve-
tements, mais pour comprendre les relations entre ces objets il faut aussi parler des

“morphismes” entre ces objets.

DEFINITION 2.1. Soient p1: By — X et py: By — X deux revétements. Une
application de revétements ou un morphisme de revétements est une application

f: By — Ej telle que pyo f = py.

Autrement dit, c’est une application entre les espaces totaux qui est compatible
avec les projections. En particulier un morphisme de revétements est un isomor-
phisme de revétements s’il admet un inverse dans la catégorie des revétements. Nous
nous restreignons maintenant au cas ou p; = py pour définir la notion d’automor-

phisme.

DEFINITION 2.2. Soit p: £ — X un revétement. Une application de revétements
f: E — FE est un automorphisme de p si elle admet un inverse g comme application

de revétements.

On a donc que fog et go f sont toutes deux égales a l'identité de E, et ces
applications sont compatibles avec la projection p. On remarque qu’on peut com-
poser des automorphismes si bien que I’ensemble de tous les automorphismes d’un

revément p forme un groupe noté Aut(p).
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EXEMPLE 2.3. L’addition d’un nombre entier n définit sur R un automorphisme
du revétement exponentiel au-dessus du cercle. L’ensemble de ces automorphismes

forme un groupe isomorphe a Z.

Il faut bien distinguer entre la composition de morphismes de revétements, qui
est bien définie et ne pose aucun probleme (la composition de morphismes est un

morphisme), et la composition des revétements eux-mémes.

PROPOSITION 2.4. Soit q: E' — E et p: E — X deux revétements. La composi-

tion q o p est encore un revétement si les fibres de q sont finies.

Cette proposition se trouve dans la série et un contre-exemple est proposé dans

le cas ou les fibres de ¢ sont infinies.

3. Relevement de chemins et d’homotopies

La propriété de relevement des chemins dont nous parlons ici prépare vraiment
le terrain a la théorie de ’homotopie moderne (et abstraite), dans laquelle certaines
applications, dont font partie les revetements, jouent un role important. On appelle
ces applications des fibrations et elle vérifient des propriétés de relevement telles que
celle que nous étudions maintenant.

On utilisera la théorie du nombre de Lebesgue étudiée dans le chapitre sur les
espaces métriques au premier semestre. Si X est un espace métrique compact re-
couvert par des ouverts Uj, il existe alors un nombre réel § > 0 tel que toute boule
ouverte B(x, ) centrée en € X est contenue dans un ouvert U;. Nous avons déja
rencontré ce type d’argument dans la preuve du Théoreme de Seifert-van Kampen

lorsque nous avons saucissonné un intervalle ou un carré.

THEOREME 3.1. Soit p: £ — X un revétement et v: I — X un chemin basé en
v(0) = xo = p(yo). Il existe alors un unique chemin 5: I — E tel que po 7 = 7 et
7(0) = wo-

Sous forme de diagramme on visualise la situation de la maniere illustrée ci-
dessous. On a un carré commutatif, donné par les hypotheses du théoreme, et on

affirme que la fleche traitillée qui fait commuter les deux triangles ainsi formés, existe
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et est unique :

N O
\
\Qll@
N S
\

N
<

Le fait que le triangle du haut commute dit que 5(0) = yo est le point de base choisi
dans Y et le triangle du bas traduit le fait que 7 releve . Ainsi on affirme que tout
chemin dans la base se releve dans 'espace total et que des que 'on a choisi le point

de départ de ce chemin, le relevement est unique. Passons a la preuve.

DEMONSTRATION. Soit U, un recouvrement de X par des ouverts trivialisants.
Comme [ est compact, on choisit ¢ le nombre de Lebesgue associé au recouvrement
de I par les 7~ 1(U,). Autrement dit, pour un entier n tel que 1/n < §, tout intervalle
fermé de diametre 1/n est envoyé entierement dans un ouvert trivialisant U, par 7.

On construit 4 inductivement en commencant par définir ce chemin sur l'inter-
valle [0; 1/n]. 11 existe oy tel que v([0;1/n]) C U,, et un feuillet U,, ;, qui contient
Yo puisque p(yo) = xo € Uy,. Si 1 désigne 'homéomorphisme inverse a p |y on

1,11

définit 4 sur [0;1/n] par la composition
[0;1/n] 5 Uy =5 Unyy — E

Supposons a présent que 7 a été défini sur Uintervalle [0;%/n] et relevons v sur
[k/n; (k+ 1)/n]. On dispose du point y, = ¥(k/n) qui se trouve par hypothese d’in-
duction dans la fibre au-dessus de y(k/n). Il existe a1 tel que y([k/n; (k+1)/n]) C
U

apy, €6 un feuillet Uy, 4, ., qui contient yy. Si ¢p41 désigne ’homéomorphisme in-

verse & plu, on définit 4 sur [k/n; (k + 1)/n| par la composition

k+1:k+1

[ke/n; (k +1)/n] = Usiis = Uapirsing, B

L’application 4 ainsi construite est clairement continue (par choix des valeurs en k/n)
et elle releve . Il reste a montrer I'unicité. Supposons donc qu’on a deux relevements
7 et 4’ et considérons le sous-espace Z de I qui consiste en tous les points ou ces
deux chemins coincident, comme dans la Proposition 1.6. Comme 5(0) = yo = 5'(0),
Z n’est pas vide. Par connexité de I c’est donc I tout entier, par le principe du “tout

ou rien”. O
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Il existe en fait une propriété de relevement beaucoup plus forte, mais que nous

ne démontrons pas.

THEOREME 3.2. Soit p: E — X un revétement, f:Y — E et H: Y xI — X
une homotopie pour po f = H(—,0). Il existe alors une homotopie H:Y xI—E
pour f telle que po H = H.

Sous forme de diagramme :

YXOL)E

A 7 p

Yy xI 1, x

Une conséquence immédiate de ce théoreme est le corollaire suivant, de relevement
des homotopies de chemins. On peut aussi le montrer en suivant la méme stratégie
que celle que nous avons suivie ci-dessus, mais bien stir en remplagant le saucis-
sonnage de l'intervalle par celui du carré I x I. La preuve est en exercice. Une
homotopie relative a un sous-espace fixe ce sous-espace tout au long de I’homotopie.
Dans I’énoncé suivant les homotopies de chemins sont relatives aux extrémités de ces
chemins, c’est-a-dire relatives a 0 et 1. Autrement dit on demande que H (0, —) est

constamment g, le point de départ et H(1, —) constamment x; le point d’arrivée.

COROLLAIRE 3.3. Soit p: E — X un revétement, ’y,B: I — E deux chemins
avee B(0) = yo = 5(0) et H: I x I — X une homotopie relative & {0;1} du chemin
v =pody = H(—,0) au chemin f = p of = H(—,1). Il existe alors une unique
homotopie H: I x I — E de 7 dB telle que po H = H.

La preuve de ce corollaire est une conséquence des observations suivantes et
du Théoreme 3.2 (ou de la version sur les homotopies entre chemins de la série

d’exercices).

(1) H(0,—) est un chemin constant si bien que I'unique relevement qu’il admet

est le chemin constant yo puisqu’il doit partir de yo = 5(0) ;

(2) H(1,—) est un chemin constant si bien que I'unique relevement qu’il admet

est un chemin constant y; = 4(1) pour la méme raison ;
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(3) H(—,0) est I'unique relevement de =, c’est ce qu'on demande et au bout de
I’homotopie on trouve un chemin qui releve 3 et qui commence en g, si bien

que par unicité a nouveau ce chemin doit étre 3.

Les conséquences de I'existence de ces relevements sont multiples, nous en citons

deux pour conclure cette section.

COROLLAIRE 3.4. Soit p: E — X un revétement. Toutes les fibres (discrétes)

ont le méme cardinal.

DEMONSTRATION. Soient zg,z; € X. Comme X est connexe par arcs, il existe
un chemin v: I — X entre xy = 7(0) et 7 = y(1). On sait déja que les fibres
sont discretes par le Lemme 1.4, il reste a établir une bijection entre elles. Or, le
Théoreme 3.1 permet de trouver pour tout y € p~'(x¢) un unigue chemin 7, qui

releve 7 et tel que 7,(0) = y. On construit alors une application bien définie

®: pHao) — p ()

y— (1)

Cette application est une bijection puisqu’on peut construire son inverse de la méme

maniere, en choisissant 4 comme chemin dans 'autre sens. O

Pour finir nous montrons que les revétements induisent toujours des injections
au niveau des groupes fondamentaux. C’est peut-étre un fait qui n’est pas intuiti-
vement clair puisque 'espace total est “plus gros” que la base, alors que son groupe

fondamental est “plus petit”.

COROLLAIRE 3.5. Soit p: E — X un revétement. Alors p,: mE — m X est un

monomorphisme.

DEMONSTRATION. On applique le Corollaire 3.3 & des lacets f,g: I — E. Ainsi

f(0) = g(0) = xo = f(1) = g(1). Supposons que p.[f] = pig], i.e. po f ~. pog.

Alors il existe une homotopie relative entre f et g, i.e. [f] = [g]. O
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4. Revétements et actions de groupes

Dans cette section GG est un groupe discret qui agit sur un espace X a droite.
On appelle ¢: X — X/G l'application quotient et on cherche des conditions sous

lesquelles ce quotient est un revetement.

DEFINITION 4.1. L’action de G sur X est totalement discontinue si pour tout

x € X il existe un voisinage U 3 z tel que U - g N U = ) pour tout g # 14.

On observe que dans le cas d'une action totalement discontinue on a alors aussi
U-gNU-h=10des que g # h. 1l suffit en effet de faire agir h~! & droite pour
se ramener a la définition. A conditions d’imposer les hypotheses standards de ce
chapitre sur la topologie de X toute action totalement discontinue donne lieu a un

revétement.

PROPOSITION 4.2. Si G agit de maniere totalement discontinue sur un espace X
conneze par arcs et localement conneze par arcs, alors le quotient q: X — X /G est

un revétement.

DEMONSTRATION. Soit G un point de X/G et U un voisinage de x comme dans
la Définition 4.1. Alors ¢ (¢(U)) = UgU - g, une réunion disjointe d’ouverts de X
par la remarque faite ci-dessus. En particulier ¢(U) est un voisinage ouvert de zG et
on montre que c¢’est un ouvert trivialisant pour conclure.

Pour cela on considere la restriction de ¢ a U - g. Cette application est continue,
mais aussi ouverte : si V' C U, alors ¢(V') C q(U) est un ouvert pour la méme raison
que ¢(U) est un ouvert. Comme ¢(V - g) = q(V'), cela reste valide pour V - g. Reste
a voir que c’est une bijection U - g — ¢(U). La surjectivité est claire et enfin si
q(ug) = q(vg), alors il existe h € G tel que ug = vgh, si bien que h = 1 car 'action
est totalement discontinue. On conclut que ug = vg : on a bien une bijection et

U-g=q(U), qui est un ouvert trivialisant. O

Ceci permet de construire de nombreux revétements.

EXEMPLE 4.3. (1) L’action de Z sur R par translations est totalement dis-

continue. Le quotient est S' via 1'application exponentielle.
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(2) L’action antipodale de Cj sur S™ est totalement discontinue. Le quotient est
RP™.

(3) On peut aussi construire de nombreux revétements d’un bouquet de cercles.
Par exemple I'action du groupe cyclique C} sur quatre points, quatre segments
et quatre cercles par rotations, comme indiqué ci-dessous, donne un revéte-
ment & quatre feuillets de S' Vv S'. On va souvent illustrer la théorie avec ce
type de revétements, ils ont la particularité d’avoir une jolie représentation
graphique, de ne faire intervenir que des espaces construits par attachements

de 1-cellules sur un espace discret.

b
1 N 6:1 \’l
2
O
OL{ N . Yy Q& 2
(a8
D \“ls
by
by

Ici 'action de Cy permute cycliquement les arétes a; et de méme pour les b;.
Pour préciser encore, disons que le générateur envoie A sur B, B sur C, etc.

et a; sur a;y1, b; sur b;;1 ou les indices se lisent modulo 4.

5. Propriétés de relevement

Comme nous en avons peut-étre eu l'intuition en démontrant la propriété des
relevements des homotopies entre chemins, il est possible de relever d’autres applica-
tions grace aux relevements uniques des chemins. On rappelle que sauf mention du
contraire les espaces considérés sont tous connexes par arcs et localement connexes

par arcs.

PROPOSITION 5.1. Soit p: E — X un revétement et f:Y — X une application.
On fixe des points de base ey € E,xqg € X etyy € Y de sorte que ces applications sont
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pointées. Alors f admet un relevement f: Y — E tel que po f = f si et seulement

St f*(7ﬁY) C p*(ﬁlE)

DEMONSTRATION. La condition sur les groupes fondamentaux est clairement
nécessaire puisque si p o f = f, alors aussi p, o f* = f, et donc 'image de f, doit
étre contenue dans celle de p,. C’est le fait que cette condition est nécessaire qui est
plus surprenant et nous demandera plus de travail.

Supposons des maintenant que f,(mY") C p.(m E) et considérons un point y € Y.
Par connexité par arcs, il existe un chemin v: I — Y avec v(0) = yo et (1) = v.
Par la propriété de relevement des chemins, il existe un unique chemin ~: I — E

qui releve fo~. On pose alors f(y) = 7(1). On remarque que

p(f(y) = p(3(1)) = F(v(1)) = f(y)

Nous devons encore montrer que ce relevement est bien défini et que c’est une fonction
continue. Soit 7/ un autre chemin de yo a y et 4’ le relevement correspondant. La
concaténation des chemins f o+’ x f o~ est alors un lacet w basé en zo € X. La
classe d’homotopie [w] = f.[y *7] est dans 'image de f, si bien que par hypothese
il existe un lacet & basé en eq tel que pi[a] = [w].

On ne peut pas conclure que les lacets p o & et w sont égaux, mais ils sont
homotopes (dans le sens pointé). Appelons H: I x I — X une telle homotopie. Nous

sommes dans la situation du diagramme suivant :

Ix0 -4 F

i
i - P

IxI 1, x

Par la propriété de relevements des homotopies entre chemins (démontrée en exer-
cice), le relevement H existe et forme une homotopie entre @ et un lacet @ = H(—, 1).
Par commutativité du diagramme @ est un relevement de w, pas seulement a ho-
motopie pres, mais strictement : p o @ = w. Par définition de w il s’agit donc de la
concaténation des relevements de foy' et de f o . Or, par unicité de ce relevement,
on a @ = 4’ 7. En particulier cette concaténation de chemins doit étre un lacet ce

qui signifie exactement que (1) = 4/(1).
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Ainsi f est bien définie, il reste encore a montrer que c’est une application conti-
nue, autrement dit que la préimage de tout ouvert O de E est ouverte. Pour ce faire
nous allons trouver, pour tout point e € O et tout y € f‘l(e) un voisinage ouvert
yeV Y tel que f(V)CO.

Soit U un ouvert trivialisant de p(e) et appelons U, le feuillet qui contient e.
On remplace U, par O N U, des maintenant, et U par son image par p, ce qui
nous permet de supposer que p se restreint en un homéomorphisme en un voisinage
U. C O de e. Comme f est continue, f~!(U) est un ouvert de Y qui contient y car
f(y) = (po f)(y) = p(e). On peut choisir alors un voisinage V' de y connexe par arcs
(Y est localement connexe par arcs) tel que f(V) C U.

Pour conclure on prouve que f (V) Cc U, C O. Soit v € V. Pour calculer f (v) on
peut choisir n'importe quel chemin allant de 4y a v et on décide de fixer un chemin
~v de yg a y, puis de le concaténer avec un chemin S allant de y a v, entierement
contenu dans V. Le relevement de v x § est la concaténation v x 3 o J est le seul
chemin de E relevant f o 3 et satisfaisant 3(0) = f(y). Par définition f(v) = B(1).
Or [ étant contenu dans V', f o § est entierement contenu dans 'ouvert trivialisant
U, si bien que le relevement B peut se construire en composant f o § avec l'inverse
de 'homéomorphisme p |y, . En particulier £ est contenu dans U, ce qui termine la

démonstration. O

6. Le revétement universel

La proposition précedente donne non seulement un critere pratique permettant de
comprendre quelles applications on peut relever dans I’espace total d'un revétement,
elle indique aussi que si p: ' — X est un revetement avec mFE = 1, alors on
peut toujours relever p dans l'espace total d’un revétement arbitraire p': £/ — X
puisque I'image de p, sera alors réduite a I’élément neutre. Ainsi p factorise comme

la, composition
pnELE L X

Tout revétement est coincé entre ’espace total E et la base X. De fait nous verrons

qu’on peut obtenir tous les revetements a partir de ce revétement.
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EXEMPLE 6.1. Le revétement exponentiel p: R — St a cette particularité que
mR = 1. Les autres revétements du cercle que nous connaissons (et il n’y en pas
d’autre), i.e. les applications de degré n données par f,: S* — St ou f,(e) = ™

it/n

regoivent un relévement p: R — St a savoir p(t) = e'/" de sorte que p = f,, o p.

DEFINITION 6.2. Un revétement X de X est appelé revétement universel si le

groupe fondamental de son espace total est trivial : mX =1.

REMARQUE 6.3. Si un revétement universel existe, considérons un ouvert trivia-

lisant U C X. Alors on a la situation suivante :

A
7z
A
7z
7z

s

U— X
et nous savons que le relevement indiqué en traitillés existe puisqu’on peut choisir
I'inverse de 'homéomorphisme entre un feuillet et U. Par conséquent on tire de la
Proposition 5.1 que i.(mU) C p*(ﬂlX) = 1. Ceci indique que X ne peut étre un
espace arbitraire, il doit exister des voisinages dans lesquels les lacets sont contractiles
dans X. Par exemple les voisinages peuvent étre contractiles ou simplement connexes,
auquel cas mU = 1, mais la condition nécessaire que nous donnons ci-dessous est

moins forte.

DEFINITION 6.4. Un espace X est semi-localement simplement conneze si tout
point z € X admet un voisinage U tel que l'inclusion i: (U;z) C (X;2) induit

I’homomorphisme trivial i,m (U; z) — m(X; ).
La Remarque 6.3 nous a permis de comprendre la chose suivante.

LEMME 6.5. St un revétement universel de X existe, alors X est semi-localement

simplement conneze. O

Avant de passer a la construction des revétements universels et de montrer ainsi
que la condition précédente est suffisante, nous donnons I'idée générale. Les démons-
trations des propriétés de relevement nous ont donné l'intuition que les relevements

de chemins jouent un role central : nous avons vu que les points de l'espace total
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correspondent précisément aux extrémités des relevements de chemins, au choix des
chemins pres dans la base.

On décide donc de construire X comme I'ensemble {[y] | v: I — X;~(0) = z}.
On précise que X est un espace pointé, dont le point de base est zy et que les
classes d’homotopie [y] sont des classes relatives aux extrémités, c¢’est-a-dire que
deux chemins v et 4/ allant tous deux de zy & un point  sont homotopes (rel {0;1})

s’il existe une homotopie H telle que
(1) H commence en 7, i.e. on a H(s,0) = v(s) pour tout 0 < s <1;
(2) H finit en 7/, i.e. on a H(s,1) = +/(s) pour tout 0 < s < 1;
(3) H fixe zp pendant toute '’homotopie, i.e. H(0;t) = x¢ pour tout 0 <t <1;
(4) H fixe x pendant toute I'homotopie, i.e. H(1;t) = x pour tout 0 < ¢t < 1.

Pour munir Pensemble X d’une topologie, on construit d’abord une base d’ouverts

de la topologie de X adaptée a la situation.

DEFINITION 6.6. On appelle B ’ensemble de tous les ouverts U de X qui sont

connexes par arcs et tels que mU — m X est 'homomorphisme trivial.

On se permet ici de ne pas indiquer le point de base puisque n’importe quel point
de U fait l'affaire et on choisira le méme point de base dans X pour comparer les

groupes fondamentaux.

REMARQUE 6.7. Puisque U et X sont connexes par arcs tout autre choix de
point de base donne des groupes fondamentaux isomorphes. Soient u, v’ € U deux
points et v un chemin dans U entre u et u’. Alors la conjugaison par 7 induit un
isomorphisme 71 (U;u) — 71 (U; ') défini explicitement par w +— y*w =7, et il en va
de méme pour X. En particulier 'homomorphisme 71 (U;u) — 71 (X;u) est trivial

si et seulement si m (U;u') — m1(X;u') est trivial.
On montre que B forme bien une base d’ouverts de la topologie de X.

LEMME 6.8. Soit X un espace connexe par arcs, localement connexe par arcs
et semi-localement simplement connexe. Alors B forme une base d’ouverts de la

topologie de X.
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DEMONSTRATION. Soit O un ouvert de X. On doit montrer d’abord que tout
point z € O admet dans O un voisinage ouvert U € B. Or, comme X est semi-
localement simplement connexe il existe un ouvert O, voisinage de X tel que
m1(O1;2) — 7 (X; ) est 'homomorphisme trivial. Puisque X est aussi localement
connexe par arcs, il existe un ouvert connexe par arcs U C O N O; qui contient x.

Alors la composition suivante est ’lhomomorphisme induit par I'inclusion U C X :
m(U;x) = m(ONO0y;x) = m(01;2) — m(X;x)

Le dernier homomorphisme étant trivial, la composition aussi, si bien que U € B.

Il reste encore a vérifier que tout point = de l'intersection de deux ouverts U, V
de B admet un voisinage de B dans U NV'. Le seul probleme éventuel est la connexité
par arcs, on choisit donc la composante connexe par arcs C' de U NV qui contient x.
Cette composante est un ouvert connexe par arcs et finalement, comme avant, la
composition

m(Cix) > mUNV;z) - mU;z) = m(X;2)

est triviale. Ainsi C € B. O

Nous sommes préts a construire une base d’ouverts définissant une topologie sur

I’ensemble X.

DEFINITION 6.9. Soit v: I — X un chemin avec y(0) = zq et [7] la classe

d’homotopie relative a {0;1}. Pour U € B un ouvert de base contenant x = 7(1), on

pose Uy = {[y*Bl € X | B: I — U;3(0) = x}.

LEMME 6.10. Soit X un espace connexe par arcs, localement connexe par arcs
et semi-localement simplement connexe. Alors les U forment une base d’ouverts B

d’une topologie sur X .

DEMONSTRATION. On doit d’abord montrer que les ouverts de base recouvrent
tout X. Soit donc [y] € X, dont un représentant est un chemin v: I — X avec
v(0) = . Appelons (1) = z. Comme B est une base par le Lemme 6.8, il existe un
ouvert U € B contenant x. Alors, si ¢, est le chemin constant [y] = [y % ¢,] € U}).

On doit aussi traiter le cas d'une intersection de deux ouverts de base. Soient

U, Viy) € B et [a] un élément de leur intersection (si I'intersection est vide il n'y



6. LE REVETEMENT UNIVERSEL 103

a rien a faire). Comme [a] € U}, il existe un chemin § contenu dans U tel que
[y % ] = [a. On affirme qu’alors U = Upy. En effet, pour tout chemin ¢ dans U

avec 0(0) = (1) on a d’une part
[k 0] = [y x B x 0] € Upy
et d’autre part pour tout chemin §’ dans U avec '(0) = y(1) on a

[yx B =[yxBxpxB]=[axBxp] € Udq

Par le méme argument on établit 1'égalité V|, = V|,). Pour conclure on profite du fait
que B est une base d’ouverts de la topologie de X et on choisit un ouvert W C UNV
contenant «(1). Alors I'inclusion Wiy C Ujg N Vg est claire et comme [o] € Wy

comme montré ci-dessus, la démonstration est terminée. 0]

COROLLAIRE 6.11. Soient v et " deux chemins avec v(0) = xo = +'(0) et (1) =

x = (1) tels que [y] # [7']. Alors, si U est un ouvert de B contenant x, on a
Up) N Upyy =0

DEMONSTRATION. Si [a] est un élément de I'intersection U},)NU},, alors, comme
dans la preuve ci-dessus, on conclut que U, = U} = U} En particulier, il existe un
chemin 4" dans U tel que [y] = [y’ ']. Les chemins étant composables et les classes
d’homotopie étant relatives on voit que ' est un lacet basé en x car il commence
en 7'(1) = x et s’arréte en (1) = . Par choix de B le lacet ' est donc contractile

dans X, i.e. ' >, ¢,. Ainsi, dans X, ona [y] = [y x| = [y x| = [¥] O

Nous avons choisi une base d’ouverts convenable dans X et construit une topolo-
gie sur X. Nous sommes préts & définir une application p: X — X et il faudra encore
montrer que p est continue, que c¢’est aussi un revetement, et enfin que ce revétement
est universel. En particulier X doit étre un espace connexe par arcs et localement

connexe par arcs. On commence par relever les chemins de X dans 'espace X.

LEMME 6.12. Soit v: I — X un chemin avec v(0) = xo. L’application T': [ — X
définie par T(t) = [v], oti 7y est le chemin 7y |j0, est continue. En particulier X est

connexe par arcs.
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DEMONSTRATION. La preuve de la continuité est en exercice. L’idée est de cal-
culer la préimage d'un ouvert de base Ul,. Si v ne rencontre pas U, cette préimage
est vide (et donc ouverte), mais si ¢t € I'"!(U}y)), cela signifie que 7, est homotope
a un chemin de la forme a x 3 avec 8 un chemin dans U, et Up) = U}, comme
ci-dessus.

En particulier v(¢) € U et par continuité du chemin v on en déduit qu’il existe
un voisinage ouvert de ¢ de la forme |t — ¢, t+¢[ N/ dans la préimage de U. On affirme
qu’alors ce méme ouvert de I est également contenu dans I'™!(U},,)), ce qui suit du
fait que le chemin parcouru par ~ entre le temps ¢ et ¢ 4+ a pour |a| < € est contenu
dans U.

La continuité étant admise, on observe que I est un chemin dans X entre le point

de base [cy,] et [7], si bien que X est connexe par arcs. O

Les autres propriétés vont suivre de l'existence d’ouverts trivialisants pour p,

dont l'existence va nous prendre la plus grande partie de la preuve suivante.

PROPOSITION 6.13. L’application p: X — X, définie par p[y] = ~v(1), est un

revétement. Elle est en particulier continue et X est localement connexe par arcs.

DEMONSTRATION. La connexité par arcs de X montre que p est surjective. La
continuité de p vient du fait que la préimage de U par p est par définition la réunion
des U}, pour tous les chemins «y qui se terminent dans U. Par connexité par arcs de U
on peut fixer un point x; € U et seulement considérer les chemins qui se terminent
en xp, quitte a concaténer avec un chemin dans U et son inverse, comme dans la
preuve du Lemme 6.10. Le Corollaire 6.11 montre ensuite que cette préimage est une
réunion disjointe de Ul,}, ou la réunion est prise sur toutes les classes d’homotopie
relative de chemins de zg & x;.

Pour montrer que les ouverts de la base B sont tous des ouverts trivialisants pour
p, on doit démontrer que les feuillets sont les Up,. On observe avant de se lancer dans
la preuve que ceci implique que X est localement connexe par arcs puisque chaque
Uy est connexe par arcs, étant homéomorphe a U. Montrons donc que p ‘Um est

un homéomorphisme sur U. C’est une surjection parce que U est connexe par arcs.
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Ainsi, pour tout x € U, il existe un chemin S contenu dans U entre z; et x. Alors
ply*pl = p(1) ==

L’injectivité est un peu plus délicate. Supposons que (3,5 : I — U sont deux
chemins allant de z1 & x si bien que les éléments [y % 3] et [y '] de U}, ont méme

image sous p (ils se terminent au méme endroit).

On doit montrer qu'ils sont égaux. Considérons le lacet ' 3 basé en ;. Comme
U € B ce lacet est contractile dans X via une homotopie pointée H. Ainsi H(—,1) =
Cz, et H(—,0) = B'x .

Ainsi, puisque les homotopies pointées de lacets sont des homotopies relatives aux
extrémités de ces chemins fermés, on a [y] = [y % ¢,,] = [y * B’ B]. Par conséquent

on a aussi
[y xB] =y xB' % Bx Bl = [y* ' xca] = [y 5]

ce qui établit I'injectivité. Comme p est continue, il reste seulement a voir qu’elle est

ouverte, ce qui suit du fait que p(Up;) = U. O
THEOREME 6.14. L’application p: X — X est un revétement universel.

DEMONSTRATION. Il faut montrer que X est connexe par arcs et simplement
connexe. C’est un espace connexe par arcs par le Lemme 6.12 et on prouve mainte-
nant que 7r1)~( =1.

Soit 2 un lacet basé en [c,,], notre point de base favori au-dessus de zy. Alors
w = po est un lacet de X basé en xq, si bien qu’il admet un unique relevement, i.e.

un chemin @, une fois que 1'on choisit son origine w(0) = [cy,]. Or le chemin ¢ — [wy]
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construit dans le Lemme 6.12 est un relevement de w et en ¢ = 0 on a bien wy = ¢, .
C’est donc ce relevement unique.

Mais €2 aussi est un relevement de w par définition de ce dernier. On conclut
de cela qu’en particulier ces relevements coincident a la fin du chemin, c¢’est-a-dire
[wi] = [w] est égal dans X & Q(1). Or, Q est un lacet, ce qui signifie que Q(1) =
Q(0) = [cg). Autrement dit [c,,] = [w] = p.[].

On conclut alors par injectivité de p, (c’est vrai pour tout revétement) que €2 est

homotope au lacet constant. [

7. Monodromie

Soit p: E — X un revétement. On choisit un point de base zy € X et un point
de base ey € p~'(xg) dans la fibre de p au-dessus de xy de sorte que I'on peut voir p
comme une application pointée. On étudie dans cette section les relations qu’il y a
entre le groupe fondamental de X et les changements de point de base dans F.

On rappelle que si w est un lacet de X basé en z, alors il existe un unique
relevement w dans F dans le sens suivant : des que 1'origine eq est fixée, w est le seul

chemin tel que ©(0) = e et po & = w.

DEFINITION 7.1. Le groupe fondamental 7 (X; x¢) agit sur p~'(x¢) & droite par

ep - [w] = @(1). On appelle cette action la monodromie.

On remarque que cette action est bien définie grace aux propriétés de relevement
unique des chemins et des homotopies entre chemins. Les mémes raisons montrent

qu’il s’agit bien d’une action :

REMARQUE 7.2. Concréetement si w est un lacet basé en zy on le releve en un
unique chemin & d’origine ey € p~!(xg) et eg - [w] = (1) = e1. Pour faire agir [a] sur
e1 on répete le procédé et on releve ce lacet en un chemin & commencant en e; et se
terminant en (e - [w]) - [a] = @(1). Or le chemin @ x & est le seul chemin d’origine ¢

qui releve la concaténation des lacets w * a. Ainsi (e - [w]) - [a] = eg - ([w][a]).

PROPOSITION 7.3. L’action de monodromie est transitive sur la fibre p~*(z0), le
stabilisateur de ey est le sous-groupe p.(mi(E;eq)) < m(X;x0) et la fibre p~'(zq) est

un ensemble en bijection avec le quotient w1 (X; o) /p«(m1(E;ep)).
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DEMONSTRATION. Soit e € p~'(xg). Comme E est connexe par arcs, il existe un
chemin @ de ey a e. Alors p o @ est un lacet w tel que eq - [w] = €, ce qui montre la
transitivité.

Le stabilisateur de ey est constitué des classes d’homotopie de lacets qui se re-
levent en un lacet. Nous avons vu en exercice qu’il s’agit précisément des classes dans
I'image de p,. On tire de cela que 'action de monodromie factorise par le quotient

m1(X;20)/p«(m1(E; €p)) et on conclut par transitivité. O

Pour établir ce résultat nous avons fixé un point de base dans la fibre au-dessus de
x, mais on pourrait en choisir un autre. Aussi, au vu de la démonstration (en exercice)
de I'unicité du revétement universel, on pourrait penser que tous les revétements sont

classifiés par leur groupe fondamental. Il faut étre plus soigneux!

LEMME 7.4. Soit p: E — X un revétement, e, e’ € p~*(xo) deur points dans la
fibre au-dessus de x. Alors les groupes p.(mi(E;e)) et p.(mi(E;€’)) sont conjugués

dans m (X; o).

DEMONSTRATION. Puisque F est connexe par arcs il existe un chemin @ entre e
et ¢ et pow = w est un lacet de X basé en xy. Pour écrire un isomorphisme entre
m1(E;e) et m(F;€') on utilise ce chemin, pour conjuguer un lacet & basé en e et
obtenir @ * & x @ un lacet basé en €’. Or, I'image dune telle concaténation de lacets
par p est le lacet W x a x w.

Au niveau des groupes fondamentaux on obtient alors que 'image p.(m(F;¢€’))

est le conjugué [w] 1 p. (71 (E;e))|w]. O

Rappelons que deux revétements sont isomorphes s’il existe un morphisme de

revétements inversible au-dessus de la base.

PROPOSITION 7.5. Deux revétements p: E — X et p': E' — X sont isomorphes
si et seulement si les sous-groupes p,(mi(E;e)) et pl(m(E';€")) sont conjugués dans
m1(X; 20).

DEMONSTRATION. On choisit un point de base z¢ € X et des points de base e et
¢/ dans les fibres respectives de p et p’. Si les revétements sont isomorphes, il existe

des morphismes de revétement f: E — E' et g: ' — E tels que go f = idg et
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fog=1idg. Ces applications ne sont peut-étre pas pointées si bien que les groupes
fondamentaux de E et E’ sont isomorphes apres conjugaison par un chemin comme
dans le Lemme 7.4. Les images sont donc conjuguées dans my (X; xo).

Réciproquement supposons qu’il existe un lacet w de X basé en z( tel que

(W] pu(mi(Es e))[w] = pi(mi(E'; €))

Si on choisit € = @(1) comme point de base au lieu de e (en relevant le lacet de X
en un chemin de E d’origine e), alors par le lemme précédent on a p,(m (F;€)) =
pl(m (E";€)). Ceci permet de relever p en une application pointée f: (E,€) — (E';€’)
et aussi p’ en une application pointée go (E’;e’) — (F,¢€) par la Proposition 5.1. La
composition go f releve alors p dans F et envoie € sur lui-méme. L’identité aussi est
un tel relevement et on conclut par le principe du “tout ou rien” que g o f = idg.
Le méme raisonnement s’applique & f o g et on conclut que les revétements sont

isomorphes. O

Pour obtenir I'isomorphisme, nous avons du choisir un nouveau point de base
dans E. On ne peut pas fixer les points de base a ’avance et s’attendre a obtenir un

isomorphisme pointé.
8. Correspondance galoisienne

On vient de voir qu’il est naturel d’étudier la classification des revétements a iso-
morphisme pres et qu’alors il vaut mieux se concentrer sur les classes de conjugaison
de sous-groupes de G = 71 (X;xg) & cause de la flexibilité du choix du point de base
dans 'espace total. Dans cette section nous établissons précisément une classifica-
tion des revetements en fonction de ces classes de conjugaison de sous-groupes. Dans
les sections suivantes nous porterons notre attention sur les sous-groupes normaux,
comme en algebre.

Soit Cov(X) 'ensemble des classes d’isomorphisme des revétements de X (on
ne fixe pas le point de base de I'espace total) et Conj(G) 'ensemble des classes de
conjugaison de sous-groupes du groupe fondamental G. On définit deux applications.
La premiere associe a un sous-groupe H < G un quotient du revétement universel
X par la relation d’équivalence suivante : [y] ~ [¥] si et seulement si [y + 7] € H.

Nous avons montré en exercice que ce quotient forme un revétement py: Xy — X et
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qu’avec le choix du point de base donné par I'image de [¢,,] € X,ona Im(py). = H.

Ceci définit notre premiere application
®: Conj(G) — Cov(X)
[H] — Xy
La Proposition 7.5 montre que le type d’isomorphisme du revétement ne dépend que

de la classe de conjugaison de H, i.e. ® est bien définie. L’analyse rappelée ci-dessus

sur le groupe fondamental de Xy démontre aussi que notre deuxieme application
U: Cov(X) — Conj(G)
E— [p(m(E;e))]

est un inverse a gauche de ® puisque V(®[H]) = VU(Xy) = [H]. 1l ne reste plus
qu’a démontrer que 'autre composition est aussi l’'identité pour obtenir le premier

Théoreme de Correspondance galoisienne pour les revétements.

THEOREME 8.1. Les applications ® et W établissent une bijection entre Cov(X)
et Conj(G).

DEMONSTRATION. Soit p: E — X un revétement et, pour un choix de point de
base e € p~(xg), soit H = p.(m(E;e€)). On construit alors Xy le revétement associé
et on doit montrer que E et Xy sont isomorphes en tant que revetements de X.
C’est encore la Proposition 7.5 qui nous permet de conclure puisque les images des

groupes fondamentaux de E et de Xy sont toutes deux égales a H. O

Il peut étre utile de remarquer ici que le groupe fondamental d’'un revétement
s'injecte dans le groupe fondamental de la base ce qui explique pourquoi les images

de ces groupes ont une chance de déterminer le revétement.

9. Groupes d’automorphismes

Pour un revétement p: £ — X nous avons deux actions de groupes. L'une est
celle du groupe Aut(p) des automorphismes de p, qui agit naturellement a gauche

sur 'espace total X (en fixant la base) :

Aut(p) x E— E; f-e= f(e)
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Pour obtenir une action & droite on doit faire agir f par son inverse : e- f = f~1(e).
L’autre action est la monodromie du groupe fondamental m(X;xo) sur la fibre
p~ (o). Notre but est de comprendre les liens entre ces deux actions et nous verrons
qu’ils sont particulierement étroits pour les revétements les plus réguliers, appelés
galoisiens. Dans cette section on passe par un intermédiaire utile, un certain groupe
de bijections d’une fibre.

Si f € Aut(p), alors po f(e) = p(e) = xo pour tout e dans la fibre au-dessus
de xg. Ainsi on peut associer a f sa restriction & p~!(zy). On montre que cette
application est 7 (X; xo)-équivariante, i.e. elle est compatible avec 'action du groupe

fondamental.
LEMME 9.1. On a f(e - [w]) = f(e) - [w] pour tout [w] € m1(X; xp).

DEMONSTRATION. Par définition de la monodromie on a e - [w] = @(1). Or fow

est un chemin qui releve w et commence en f(e). Ainsi f(e) - [w] = (fo@)(1) =
f(@(1)). O
Pour ne pas alourdir la terminologie on dira simplement que la bijection f |,-1(g)

est m (X; xg)-équivariante.

PROPOSITION 9.2. L’application qui associe a tout f € Aut(p) la restriction de f

a p~Y(xg) établit une bijection entre Aut(p) et les bijections mi(X; xzq)-Eéquivariantes

de p~*(zo).

DEMONSTRATION. Le fait que f |,-1(;,) est une bijection vient du fait que f
a un inverse. On sait déja qu'un automorphisme f est déterminé par 'image d'un
point de la fibre (comme relevement de 'identité et le principe du tout ou rien). Il
reste donc a montrer que toute bijection équivariante ¢ provient de 'action d’un
automorphisme. On choisit un point de base ey, dans la fibre et on considere le
stabilisateur de ey qui est p.(m(E;ep) par la Proposition 7.3. Si ¢(ey) = ey, on

calcule pour [w] € p,(m(E;e€) :

e1 - [w] = @(eon) - [w] = dle - [w]) = P(eg) = e

Ainsi p,(m(E;eq) C py(m1(F;e1) (le stabilisateur de eq), si bien que nous obtenons

un relevement f: E — FE qui envoie ¢y sur e;. On prétend que ¢ est la restriction



10. REVETEMENTS GALOISIENS 111

de f ala fibre. Soit e € p~!(xg). Par transitivité de I'action de 7 (X;zg) il existe un

[w] tel que e = eq - [w]. Alors on conclut par équivariance que

fe) = fleo - [w]) = flen) - [w] = ex - [w] = @(eo) - [w] = (e - [w]) = (e)
ce qui conclut la preuve. O

On remarque que les deux ensembles sont munis de lois de groupes données par la
composition, la bijection ci-dessus est donc promue en un isomorphisme de groupes.
Ce qui va nous permettre de faire le lien entre ’action du groupe des automorphismes
d’un revétement et celui du groupe fondamental sur les fibres, ¢’est que cette derniere

action est une action de groupe, voir Remarque 7.2.

10. Revétements galoisiens

Pour compléter I'analogie avec la correspondance galoisienne classique pour les
extensions de corps, on identifie parmi les revétements les plus symétriques dans
un certain sens. Si le groupe de Galois algébrique permute les racines du polynome

minimal, le groupe fondamental permute les points de la fibre p~!(z).

DEFINITION 10.1. Un revétement p: E — X est galoisien si pour toute paire de

points e, e’ € p~!(x) il existe un automorphisme f de E tel que f(e) = €.

EXEMPLE 10.2. Les revétements a deux feuillets de S' Vv S! que nous avons

rencontrés dans les exercices sont des revétements galoisiens :

e

La nature symétrique de ces espaces permet en effet de reconnaitre dans les
deux cas qu’'une rotation de 7 radians est un automorphisme (compatible avec la
projection). Du point de vue de I'image du groupe fondamental dans le groupe libre
F(a,b) a deux générateurs nous verrons tout-a-1’heure que ceci correspond au fait

qu’il s’agit d’un sous-groupe d’indice deux, et donc normal.
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EXEMPLE 10.3. Le collier de perles, revétement a une infinité de feuillets du

bouquet de deux cercles est aussi galoisien :

HONORORORON

Ici les translations horizontales sont des automorphismes de revétements.

EXEMPLE 10.4. Il y a de nombreux revétements non galoisiens de SV S!, par

exemple :

b 2 Az

On voit que le seul automorphisme est l'identité car la compatibilité avec la
projection implique quun automorphisme doit permuter non seulement les points de
la fibre z;, mais aussi les a; et les b;. La symétrie axiale d’axe horizontale ne convient
pas non plus car elle inverse le sens des fleches... Du point de vue des groupes, on
constate que I'image du groupe fondamental du revétement, qui est engendré par les
lacets aq, bsbo, b3asasbs, byasbiasbs a pour image dans F'(a,b) le sous-groupe d’indice

3 donné par les générateurs a, b%, ba’b~! et baba='b~!.

EXEMPLE 10.5. On termine avec un dernier revetement £ — S*'V St pour le

plaisir de retrouver le groupe symétrique Sj3 :



10. REVETEMENTS GALOISIENS 113

ba
Ay, !bé'

ﬂ

Qa, * \93\".55
[N e
.\55_\\

oyl |

J’ai dessiné le graphe de Cayley de sorte qu’il soit clair que deux générateurs
suffisent a engendrer S3 si bien que S3 est un quotient de F'(a,b) (par le sous-
groupe normal dont I'image est induite au niveau des groupes fondamentaux par le
revétement), mais surtout pour mieux voir que ce revétement est galoisien. En effet
la rotation de 27 /3 permute cycliquement les trois sommets de chacune des bases
du prisme et la rotation d’angle m dont ’axe passe par le milieu des arétes az et ay
et le milieu de la face verticale située entre b3 et by transpose les sommets supérieurs
et inférieurs.

Ce revétement est galoisien et l'image dans F(a,b) de m F est engendrée par

a®,b® et abab.

PropPOSITION 10.6. Un revétement p: E — X est galoisien si et seulement si

ps(mE) est un sous-groupe normal de m X .

DEMONSTRATION. Nous avons vu dans la Proposition 7.5 que deux revétements
sont isomorphes si et seulement si les images de leur groupe fondamental respectif
sont conjuguées. Si un automorphisme f: (E,e) — (E,¢’) est pointé (et envoie e sur
¢’), alors les images sont égales (car p = po f).

Ainsi, si p est galoisien, tous les conjugués p.(m(FE;e)) ou e parcourt la la fibre
p~1(z) sont égaux, si bien que ce sous-groupe est normal. Réciproquement, si ce
sous-groupe est normal on tire de la propriété de relevement Proposition 5.1 quun
automorphisme f comme ci-dessus existe pour tout choix e, e’ € p~!(zy) puisque

pe(mi(E;¢€’)) C pu(mi(E;e)) (ils sont méme égaux). O
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On arrive finalement au deuxieme Théoreme de Correspondance galoisienne.

THEOREME 10.7. Soit p: E — X un revétement galoisien. Alors on a un iso-

morphisme de groupes Aut(p) = m(X; x0)/p«(m1(E;eq), pour tout choix de points
de base 1o € X et ey € p~t(xg).

DEMONSTRATION. Nous avons établi un isomorphisme dans la Proposition 9.2
entre les automorphismes de p et les bijections équivariantes de la fibre. Nous construi-
sons maintenant une telle bijection équivariante Blw| pour tout lacet [w] dans la
base en le faisant agir par monodromie sur le point de base de la fibre choisi :
Blw](eg) = e - [w] et pour tout e € p~!(zg) il existe par transitivité de la monodro-
mie, Proposition 7.3, un lacet [a] € m(X;x0) tel que e - [a] = e. Ce lacet n’est pas

unique, mais il est bien défini modulo p,.(7;(E;eq), le stabilisateur. On pose alors
Blw](e) = e - [w* q]

L’équivariance provient du fait que la monodromie est bien une action, Remarque 7.2.
En effet, pour tout [w'] € m(X;z0) on observe que le lacet [a x w'] agit par mono-

dromie sur ey comme [w'] agit sur eg - [a] = e. Ainsi
Blw](e- [w']) =€p - [wrxaxw'] =€y [w*a] - [w]=Blw|(e) - [w]

La monodromie définit de fait un homomorphisme de groupe B de 71 (X; xg) vers
les bijections équivariantes de la fibre p~!(x() puisque par la Remarque 7.2 encore

une fois :
B([w][w)(eo) = €p - [wrw'] = (e - [w]) - W] = Blw](B[w](eo))

Le produit des lacets dans le groupe fondamental correspond donc bien a la compo-
sition des bijections. Calculons le noyau de cet homomorphisme. Une classe [w] fixe
tous les points de la fibre si et seulement il se releve en un lacet basé en e, ce qui
arrive si et seulement si [w] € p.(m(E;e), pour tout e € p~!(zy). Comme le revéte-
ment est galoisien, la Proposition 10.6 montre que I'image par p, est un sous-groupe
normal (le méme pour tout choix de point de base dans la fibre).

Il reste a montrer la surjectivité de I’homomorphisme que B induit sur le quotient

T (X5 20)/pe(m1(E; €9). Soit ¢ une bijection 7 (X; x)-équivariante de la fibre et e
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un point de p~!(zy). Par transitivité de la monodromie, Proposition 7.3, il existe
[w] € m(X;z0) tel que ¢(eg) = €g - [w]. Alors ¢ et Blw| coincident sur eg, ce sont

donc des bijections égales par équivariance. 0

EXEMPLE 10.8. Le revétement a six feuillets construit dans 'Exemple 10.5 est
galoisien et correspond a une action du groupe symétrique Sz sur ’espace total. Ce

groupe d’automorphismes est identifié au quotient {(a,b | a?, b, abab).
11. Revétements et action de groupes

Pour terminer le cours et bien comprendre la correspondance galoisienne pour
les revétements, nous expliquons comment les revétements galoisiens se voient du
point de vue de 'action d’un groupe (abstrait ou d’automorphismes de revétements).
Encore une fois tous les espaces sont connexes par arcs et localement connexes par
arcs. Nous commencons par montrer que tout revétement galoisien est obtenu comme

un quotient par une action de groupe (totalement discontinue).

ProrosITION 11.1. Sip: E — X est un revétement galoisien, alors X est ho-
méomorphe a E/Aut(p).

DEMONSTRATION. Appelons g 'application quotient F — E/Aut(p). Par la pro-
priété universelle du quotient, on obtient de p une application induite p: FE/Aut(p) —
X puisque p(f(e)) = p(e) pour tout e € E et tout automorphisme f par définition
de ce qu’est un morphisme de revétement. On a donc po g = p.

Pour construire I'inverse on considere le diagramme suivant :

E — E/Aut(p)

Pour z € X et e € p~!(z) un élément dans la fibre au-dessus de z, on pose ¢(z) =
q(e). On vérifie d’abord que cette formule définit bien une application ensembliste. Si
¢’ est un autre point de la fibre, la transitivité de I'action de Aut(p) (le revétement
est galoisien) garantit l'existence d’un automorphisme f tel que f(e) = €. Ainsi
q(e') = q(f(e)) = q(e) par définition du quotient dans lequel on identifie les orbites

sous l'action du groupe d’automorphismes. On a alors go p = q.
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Nous devons encore montrer que ¢ est continue et pour cela on étudie la préimage
d'un ouvert U C E/Aut(p). Comme ¢ est continue ¢~ *(U) est un ouvert de E et
par surjectivité de p (qui est un revétement), on a ¢ *(U) = p[g~}(U)]. Or, tout
revétement est ouvert, et on conclut que g~1(U) est ouvert.

Pour terminer la preuve nous montrons que ¢ et p sont inverses I'un de 'autre.

Soit x € X. Alors,

p(q(x)) = plq(e)) = p(e) =z et g(p(eAut(p))) = q(p(e)) = g(e) = eAut(p)
avec les notations comme ci-dessus. O

Nous continuons avec une sorte de réciproque qui nous permet de construire des
revétements galoisiens comme des quotients qui ne sont pas arbitraires, mais donnés

par une (jolie) action de groupe.

PROPOSITION 11.2. Soit G un groupe qui agit de maniére totalement disconti-
nue sur un espace E. Alors lapplication quotient q: E — E/G est un revétement

galoisien et Aut(q) = G.

DEMONSTRATION. On sait déja qu'une action totalement discontinue définit un
revetement. Identifions maintenant le groupe des automorphismes. Clairement G
s’'identifie a un sous-groupe de G = Aut(q) via g — f,, Pautomorphisme défini par
fq(e) = e g. C’est un automorphisme compatible avec ¢ puisque ¢(e) = ¢(e - g) par
définition du quotient.

Soit f € Aut(q) et e € E. Alors f(e) est un point dans la fibre au-dessus de e.
Comme G agit transitivement sur l'orbite e - G = ¢7!(e), il existe g € G tel que
e-g = f(e), si bien que f et la multiplication par g sont deux relevements de
Iidentité qui coincident sur le point e. Comme E est connexe, le principe du “tout
ou rien” s’applique et on conclut que f = f,. Par conséquent G = G.

En particulier 'action de ce dernier groupe est transitive sur les fibres et ¢ est

galoisien (par définition). O

Cette proposition a une conséquence particulierement importante pour le calcul

des groupes fondamentaux.
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COROLLAIRE 11.3. Soit G un groupe qui agit de maniére totalement discontinue

sur un espace E simplement connezxe. Alors m(E/G) = G.

DEMONSTRATION. On sait que le revétement ¢: £ — FE/G est galoisien par
la Proposition 11.2 et Aut(q) = G. Or, par hypothese, E est simplement connexe
et on conclut alors que le groupe G des automorphismes de ¢ s’identifie au quo-

tient du groupe fondamental de la base par 'image de celui de l’espace total :
m(E/G)/q.(mE) =m(E/G)/1 = m(E/G). 0J

Ces clarifications nous permettent enfin de revister la correspondance galoisienne
et de comprendre comment dans la pratique on construit les revétements intermé-
diaires entre X et X. On suppose des maintenant que X est aussi semi-localement
simplement connexe de sorte que le revétement universel p: X — X existe. Via l'iso-
morphisme Aut(p) = GG = m X, on note H le sous-groupe de G qui correspond
a H <@.

THEOREME 11.4. Soit H < G = m X. Alors le sous- revétement Xy peut s’ob-

tenir comme quotient )?/El et pg: Xg — X est alors le revétement donné par la

formule py(eH) = eG.

DEMONSTRATION. La Proposition 11.2 nous apprend que g : X — )?/f[ est un
revétement galoisien et 7, (X /H) = H = H par le corollaire.
De plus py est 'application induite sur le quotient par la projection du revéete-

ment universel p: X > X. 0

Ce Théoreme semble n’étre qu'une suite de tautologies, mais il donne en fait une
construction bien plus explicite que la méthode abstraite décrite dans les exercices et
basée sur la description du revétement universel comme espace de classes d’homoto-
pie relatives de chemins. En particulier nous apprenons que le revétement universel
de X est aussi celui de Xp : c’est un espace simplement connexe sur lequel le “grand”
groupe GG = m X agit totalement discontinument, mais on peut aussi y faire agir un
“petit” groupe H < G. Ainsi, tous les revétements du bouquet de deux cercles sont
des quotients du graphe de Cayley de F(a,b)! Ceux qui correspondent a des ac-
tions de sous-groupes normaux sont plus symétriques et produisent des revétements

galoisiens de S* Vv St






Chapitre 6

Un coup d’oeil en avant

J’aimerais rapidement donner quelques directions possibles qui généralisent ou
étendent les constructions et les méthodes que nous avons étudiées ensemble ce

semestre. On commence par les groupes d’homotopie supérieurs.

1. Les groupes d’homotopie supérieurs

DEFINITION 1.1. Soit (X, ) un espace pointé et (S™, e1) la sphere unité de R™*
basée en e; = (1;0;...;0). Le n-éme groupe d’homotopie m,(X;xo), parfois simple-

ment noté 7, X est le groupe des classes d’homotopie pointées [(S™, e1), (X, zo)].

La structure de groupe vient du fait que S™ ~ ¥S""! et on peut “pincer” une
n-sphere le long de I’équateur pour obtenir une application S™ — S™V.S™ qui permet
de construire un produit. De maniére équivalente on peut aussi voir S™ ~ St A 571

et utiliser le pinch sur le cercle, qu’on smashe avec S 1.
PROPOSITION 1.2. Soit n > 2. Alors m, X est un groupe abélien.

On peut dessiner 'homotopie entre ab et ba, ou utiliser le truc de Eckmann-Hilton
pour deux lois de composition, I'une définie en utilisant la premiere copie de S* dans
ST AS™ 1 et lautre en utilisant la derniere dans S ' A St. Un autre point de vue est
encore donné par le fait que les lacets de X forment un espace (topologique), appelé
espace de lacets et noté QX = map, (S, X). L’ensemble de toutes les applications

(continues, et ici pointées) est muni d'une topologie, la topologie compacte-ouverte.

DEFINITION 1.3. Soient X,Y deux espaces. Pour K compact dans X et U ouvert
de Y, on définit V (K, U) comme étant constitué des applications continues f: X —
Y telles que f(K) C U. La topologie compacte-ouverte sur C(X,Y) a pour ouverts
toutes les réunions arbitraires d’intersection finies de V (K, U). On note map(X,Y)
I’espace des applications continues de X vers Y.

119
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Autrement dit les V' (K, U) forment une prébase de la topologie compacte-ouverte.
Cette topologie rend la composition d’applications et ’évaluation continues. Elle a
aussi le bon gott de faire en sorte que map(x, X) ~ X. La loi exponentielle est
moins tautologique que ce qu’on souhaiterait, mais si on se restreint a des espaces

convenables (Hausdorff et localement compacts), alors on a un homéomorphisme
map(X x Y, Z) =~ map(X, map(Y, Z))

D’un point de vue ensembliste on se convainc facilement qu’étant donné une applica-
tion (continue) X XY — Z, on forme une application f,: Y — Z par f.(y) = f(z,y),
qui définit une application (continue) X — map(Y, Z).

Dans le cas pointé cette adjonction entre, a gauche, X — X x Y et, a droite,

Z — map(Y, Z) fait intervenir '’analogue pointé du produit, i.e. le produit smash :
map, (X AY, Z) ~ map, (X, map,(Y, Z))

En particulier, lorsque X =Y = S! on obtient map,(S?, Z) ~ map,(S',Q2). 1l y
a deux manieres de définir une loi de composition ici. Sur la source grace au pinch,
ou sur le but, via la concaténation de lacets. Ces deux lois passent au quotient et
munissent momap,(S?, 7Z) & [S% Z] = mZ de deux structures de groupe. En fait

elles coincident et sont commutatives.

2. Les fibrations

Revenons un moment aux revétements, et plus particulierement au revétement
universel. Notons G — X & X pour nous souvenir que toutes les fibres de p sont
en bijection avec G = m X. Les bonnes propriétés de ce revétement ne s’arrétent
pas la ou nous les avons laissées. La nature discrete des fibres et le fait qu’on a
construit X de sorte que 7'('15(: = 1, fait non seulement que m X est isomorphe a G,
mais 7, X = Wn)? pour tout n > 2. Remarquons en particulier que ceci implique que
TSt = 0 pour tout n > 2 car le revétement universel est non seulement simplement
connexe, mais contractile.

Il existe d’autres applications qui partagent ce type de propriétés avec les re-
vetements, ce sont les fibrés ou de maniere plus générale, les fibrations. La défini-

tion fait intervenir des propriétés de relevement d’homotopie dans l'esprit de ce que
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nous avons établi pour les revétements, et les actions de groupes topologiques en
donnent des exemples que nous avons déja rencontrés, comme 'application de Hopf
n: 8% — 8% qu'on pourra alors écrire S' < S3 25 S2. La remarque faite sur les

groupes d’homotopie supérieurs du cercle fait que m,5® = 7,5? pour tout n > 3,

mais m.5? = 0 alors que mS? = Z, le générateur étant I'identité, de degré un.

THEOREME 2.1. II existe une fibration X (n) — X — X[n] ot X(n) est le revéte-
ment n-conneze de X et X[n] la n-éme section de Postnikov de X, i.e. mX(n) =0

pour k <n et mpX[n] =0 pour k > n.

Ceci implique aussi que les groupes d’homotopie non triviaux de X(n) et de
X[n] coincident avec ceux de X. Quand n =1 on a X(1) = X et X[1] = K(G,1) un
espace connexe par arcs dont le seul groupe d’homotopie non trivial est le premier,
isomorphe a G = m X.

Entre le moment de la définition des groupes d’homotopie par Cech dans les
années 30 et les années 60, de nombreux travaux ont permis une meilleure compré-
hension de la nature de ces invariants homotopiques. Les résultats spectaculaires de
Serre dans les années 50 montrent que tous ces groupes sont finis, sauf 7,5" = Z
et my,_15%" (comme cest le cas de m35% = m35% = 7Z), et que pour tout premier
p il existe de la p-torsion dans 7,S", il calcule méme la dimension de la premiere
occurrence de Z/p, qui se trouve dans 7,49, 35™ pour tout n > 3.

On trouvera sur la page suivante un tableau de ce qui est connu en petites
dimensions (Wikipedia). Les escaliers noirs et les couleurs suggerent les propriétés
de stabilité, et la forme plus complexe des groupes d’homotopie au-dessus de ce rang
stable montre la difficulté et laisse peut-étre entrevoir I'impossibilité d'un calcul

complet.
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3. L’invariant de Hopf

Mentionnons encore le fameux Théoreme de I'invariant de Hopf, di a Adams vers
1960. Les groupes d’homotopie des spheres sont équipés d'un produit gradué, appelé
produit de Whitehead. De méme que le tore S* x S* se décompose en SV StUe?, en
général on a une décomposition cellulaire de S™ x S™ en S™V S™Ue™ ™. L application

d’attachement est le produit de Whitehead
[tny t] 2 ST Gy ST

qu’on écrit comme un commutateur par analogie avec le cas connu n = m = 1. Pour

deux applications (pointées) a: S™ — X et §: S™ — X, on peut alors construire
[, B]: S™m1 5 gry sm 2 vy x Y X

et utiliser ces “commutateurs” pour définir une notion de nilpotence homotopique...
Par exemple [idg2,idg2] = 21 ot n est application de Hopf, générateur de 7352
En général on peut construire [idgn,idgn] € mo,—15™. Ceci n'est que 'ombre du
probleme de I'invariant de Hopf, pour lequel il faudrait introduire les invariants de
cohomologie, mais c¢’est peut-étre et malgré tout frappant de savoir que ces crochets
de Whitehead ont un invariant égal a deux et que les seuls groupes d’homotopie

Ton—1S™ oll une application de Hopf d’invariant 1 existe sont w352, 7,94 et m5S5%.

EXZ420
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Si on ajoute encore S pour laquelle I'invariant de Hopf n’est pas défini, les
dimensions de ces spheres sont exactement celles des R-algebres non nécessaire-
ment associatives R, C, H et . On peut associer a ces algebres des plans projectifs
RP?, CP? HP? et OP? dont la décomposition cellulaire est précisément S™ U e?" et

I’application d’attachement a pour invariant de Hopf 1. De plus :

THEOREME 3.1. Les sphéres S° 81,53, S7 sont les seules qui admettent une

structure de H-espace.

On a une structure de groupe discret fini sur S°, de groupe topologique commu-

tatif pour S, non commutatif pour S et finalement non associatif pour S7...



