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Introduction

Ce cours de topologie est la suite logique du cours de topologie générale et es-

paces métriques. Il est constitué de quatre chapitres. Dans le premier on étudie la

topologie quotient qui permet de construire de nouveaux espaces topologiques en

identifiant certains points entre eux, en écrasant des sous-espaces, ou en attachant

un espace à un autre espace. La souplesse de la topologie fait que ces quotients sont

moins homogènes que les quotients de nature algébrique que l’on connâıt déjà et

font apparâıtre des différences qui apportent à ce sujet son intérêt, mais aussi une

certaine complexité. Ces idées sont abordées dans la Section 1.

Dans le deuxième chapitre nous complétons nos connaissances de théorie des

groupes pour avoir en mains les outils nécessaires à la description des groupes fon-

damentaux des espaces topologiques. Nous travaillerons avec des groupes libres et

introduisons la notion de présentation d’un groupe aritraire, par générateurs et rela-

tions. L’idée est de donner une liste (minimale si possible) de générateurs et surtout

des relations qu’ils vérifient. Par exemple le groupe Z ⊕ Z est engendré par les élé-

ments x = (1; 0) et y = (0; 1). Avec la notation multiplicative ils vérifient une

relation, celle de commuter entre eux puisque le groupe est commutatif : xy = yx

et on définit alors le relateur xyx−1y−1 pour dire que la relation xyx−1y−1 = 1 est

satisfaite. Cette relation engendre en fait toutes les autres relations et on obtient une

présentation du groupe abélien libre à deux générateurs : ⟨x, y | xyx−1y−1⟩.
Dans le troisième chapitre nous revenons sur la notion d’homotopie entre che-

mins et la généralisons à des applications continues arbitraires. Le résultat central

de cette partie est le Théorème de Seifert et van Kampen qui donne des conditions

assez générales et très utiles dans la pratique permettant d’identifier le groupe fonda-

mental d’un pushout d’espaces avec le pushout de leurs groupes fondamentaux ! Ces

pushouts d’espaces X ← A → Y sont précisément obtenus en recollant les espaces

X et Y le long de leur “partie commune” donnée par l’image de A et le pushout
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6 INTRODUCTION

des groupes fondamentaux π1X ← π1A→ π1Y sera décrit de manière efficace grâce

à la théorie des groupes combinatoires développée dans le chapitre précédent. Ce

résultat admet une ribambelle de conséquences, certaines très générales concernent

l’attachement d’une cellule et son effet sur le π1, d’autres très concrètes, ce sera

le cas du calcul du groupe fondamental de toute surface, qui permet d’obtenir une

classification complètes des surfaces.

Dans le quatrième et dernier chapitre nous étudions les revêtements. Sans que le

vocabulaire ait été utilisé, l’application exponentielle R → S1 est ce qu’on appelle

un revêtement universel et ceci permet d’identifier le groupe fondamental du cercle,

avec le groupe des automorphismes de R compatibles avec l’exponentielle, i.e., les

translations +n pour n ∈ Z. Nous étudierons les revêtements, établirons un résul-

tat d’existence pour des espaces dotés d’une topologie“raisonnable” et terminerons

avec un théorème de correspondance galoisienne qui donne une bijection entre sous-

groupes du groupe fondamental et revêtements. Dans le cas du cercle, qui est connu,

cela se traduit précisément par le fait qu’il existe un revêtement à n feuillets du

cercle – l’application z 7→ zn – pour tout entier naturel n ≥ 1.

1. 3Blue1Brown

J’aimerais commencer ce cours de topologie en vous montrant une magnifique

vidéo de 3Blue1Brown que vous connaissez peut-être. Son titre est “Who cares about

topology ?” et il illustre comment de nombreuses idées que je vais essayer d’expliquer

dans ce cours peuvent être appliquées de manière surprenante pour résoudre un

problème apparemment sans lien avec la topologie. L’une des constructions qui est

décrite est celle d’un quotient, ce sera le sujet du premier chapitre de ce cours et un

outil fondamental pour obtenir de nouveaux espaces topologiques à partir d’espaces

connus.

Conjecture 1.1. La conjecture de Toeplitz ou conjecture du carré inscrit prédit

l’existence sur toute courbe de Jordan dans le plan de quatre points qui forment un

carré.

Otto Toeplitz est un mathématicien allemand (1881 - 1940) ayant travaillé à

Göttingen au début du siècle lorsque Hilbert, Klein, Minkowski, Courant y étaient.
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Nommé à Kiel, puis à Bonn, il fut forcé d’émigrer à Jérusalem en 1939 où il mourut

de la tuberculose l’année suivante.

Cette conjecture est encore ouverte de nos jours, du moins sous sa forme la plus

générale, mais il semblerait que le cas lisse ait été résolu pendant le confinement du

printemps 2020 par Greene et Lobb, dans un petit article de quatre pages (Cyclic

quadrilaterals and smooth Jordan curves) que l’on trouve sur MathArXiv. Voir aussi

l’article de vulgarisation très bien écrit :

https ://www.quantamagazine.org/new-geometric-perspective-cracks-old-problem-

about-rectangles-20200625/

Nous verrons dans le film une solution d’une version plus faible, le problème du

rectangle inscrit, démontré par Herbert Vaughan en 1977. Son idée est d’utiliser la

caractérisation d’un rectangle par le fait que les diagonales de même longueur se

coupent en leur milieu. Il s’agit donc de trouver deux paires de points sur la courbe

qui déterminent des segments de même longueur se coupant en leur milieu.

Pour cela on définit une fonction qui associe à toute paire de points de la courbe

C son point milieu dans le plan et on ajoute une troisième coordonnée qui est donné

par la longueur d de ce segment. Autrement dit nous avons construit une fonction

f : C × C → R3 donnée en dollars par la formule suivante :

(x1, y1;x2, y2) 7→ (
x1 + x2

2
,
y1 + y2

2
,
√
(x1 − x2)2 + (y1 − y2)2)

L’image de cette fonction décrit une surface S au-dessus du plan.

Lemme 1.2. La fonction f est continue et f(x, x) = (x, 0).

De fait nous devons être un peu plus précis car nous ne sommes pas intéressés par

des éléments de C×C, mais des paires non ordonnées puisque le segment déterminé

par deux points A et B de la courbe est le même si nous choisissons B et A. Le

choix d’une paramétrisation [0, 1] → R2 de la courbe fermée C permet de penser à

un point de la courbe comme étant un nombre réel compris entre 0 et 1. Chaque

nombre correspond exactement à un point de C et vice-versa, sauf aux extrémités

puisque la courbe est fermée : 0 et 1 correspondent au même point.

De même une paire de points de C correspond alors à une paire de points du

carré [0, 1]× [0, 1], mais il ne faut pas oublier de faire les identifications (0, t) = (1, t)
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et (s, 0) = (s, 1) pour tous nombres réels 0 ≤ s, t ≤ 1. Ceci définit le tore, un espace

muni de la topologie quotient héritée du carré.

Comme les paires qui nous intéressent sont non-ordonnées, nous voulons identifier

encore le point (s, t) avec (t, s). Autrement dit nous voulons plier le carré en deux le

long de la diagonale pour ne garder qu’un triangle.

Proposition 1.3. La surface qui paramétrise le choix de paires de points non

ordonnés d’une courbe fermée est le ruban de Moebius.

Démonstration. Nous devons identifier les cathètes du triangle rectangle iso-

cèle puisque (s, 0) = (s, 1) et que ce point du haut du carré a été identifié lors du

pliage avec (1, s). Pour mieux visualiser la surface ainsi obtenue il est plus agréable

de couper le triangle par sa hauteur, comme ci-dessous, pour d’abord identifier les

cathètes et obtenir un petit carré, avant de recoller la hauteur.

Il s’agit effectivement d’un carré dont on identifie deux côtés opposés, l’un étant

parcouru de gauche à droite et l’autre de droite à gauche : □
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Nous oublions maintenant la paramétrisation concrète de ce ruban de Moebius.

Soit M le ruban de Moebius et f̄ : M → R3 la fonction induite par f (par passage

au quotient).

Proposition 1.4. La fonction f̄ est continue et envoie ∂M sur la courbe C.

Démonstration. Le bord deM correspond à la diagonale du carré [0, 1]× [0, 1]

et on conclut par le Lemme 1.2. □

Théorème 1.5. Il existe sur toute courbe de Jordan dans le plan quatre points

qui forment un rectangle.

Démonstration. Nous cherchons deux paires de points dont les diagonales se

coupent en leur milieu et qui ont meme longueur. Autrement dit nous cherchons

deux points m,n de M tels que f̄(m) = f̄(n).

Considérons la surface dans R3 obtenue à partir de l’image de f̄ en ajoutant

l’intérieur de la courbe C. Cette surface fermée et sans bord est obtenue topologi-

quement en attachant à un ruban de Moebius un disque, l’identification étant faite

“bord à bord”. Cette surface est appelée plan projectif et connue comme RP 2.

Or, le plan projectif n’admet pas de plongement dans R3 comme “on le voit” sur

les différentes immersions proposées ci-dessus... □

2. Espaces topologiques

Ce semestre nous travaillons avec des espaces topologiques et des applications

continues entre deux objets de ce type. Nous rappelons la définition d’espace topo-

logique et fixons les notations que nous utiliserons dorénavant. Les notions de ce

document sont considérées comme étant acquises avant le début du cours et consti-

tuent donc des prérequis.
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Définition 2.1. Un espace (topologique) est un ensembleX muni d’une topologie

T ⊂ P(X) dont les éléments sont appelés ouverts de la topologie, telle que

(1) L’ensemble vide et X sont ouverts.

(2) Une intersection finie d’ouverts est ouverte.

(3) Une réunion arbitraire d’ouverts est ouverte.

On écrit parfois (X, T ) pour souligner l’importance de la topologie, mais lorsque

le contexte indique clairement quelle topologie est utilisée, on écrira simplement X

et on dira que X est un espace. Le complémentaire d’un ouvert est appelé fermé.

Exemple 2.2. La topologie discrète est définie par T = P(X) et si X est un

espace métrique, alors la topologie métrique a pour ouverts les réunions de boules

ouvertes.

Parmi les propriétés de séparation que vous avez étudiées nous rencontrerons

surtout celle de Hausdorff.

Définition 2.3. Un espace X est de Hausdorff, ou simplement séparé, si deux

points distincts x et y peuvent toujours être séparés par des voisinages ouverts U et

V , i.e. x ∈ U , y ∈ V et U ∩ V = ∅.

On appelle U un voisinage ouvert de x et en général un voisinage A d’un point

x est un sous-espace de X qui contient un voisinage ouvert de x.

Définition 2.4. Soient X, Y deux espaces. Une application f : X → Y est

continue si f−1(U) est un ouvert de X pour tout ouvert U de Y .

Une application qui envoie les ouverts, resp. les fermés, de X sur des ouverts,

resp. fermés, de Y est dite ouverte, resp. fermée. On vérifie par exemple le critère

suivant en montrant que les hypothèses impliquent que l’application est fermée.

Proposition 2.5. Une application bijective d’un espace compact vers un espace

séparé est un homéomorphisme.
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3. Notations

Dès maintenant toutes les applications sont continues, sauf mention du contraire.

On note

(a) Le singleton est l’espace ⋆ n’ayant qu’un seul point, i.e. {⋆}, muni de la topo-

logie ... discrète.

(b) L’espace Dn est la boule unité fermée (disque) dans Rn pour la métrique

euclidienne usuelle. On notera parfois en pour un espace homéomorphe à Dn.

L’intérieur D̊n ou e̊n est donc une boule ouverte.

(c) Le bord ∂Dn de Dn est la sphère unité Sn−1.

(d) On utilise le symbole ∼= pour les isomorphismes, ≈ pour les homéomorphismes

et ≃ pour les équivalences d’homotopie entre espaces ou les homotopies entre

applications.

On aime utiliser des symboles différents pour bien distinguer les catégories dans

lesquelles on travaille. Il est vrai que chacun des trois symboles de (d) désigne en fait

un isomorphisme (dans une catégorie algébrique, celle des groupes ou des anneaux,

dans la catégorie des espaces topologiques, ou la catégorie homotopique, nous y

reviendrons).





Chapitre 1

Les espaces quotients

Si X est un espace et q : X → Y est une application ensembliste surjective, on

peut toujours munir Y d’une topologie quotient. Dans ce chapitre nous proposons

plusieurs points de vue sur ce type de construction et étudions quelles propriétés (de

séparation, de compacité) de X se transmettent au quotient.

1. La topologie quotient

On considère dans cette section un espace (topologique) X et une surjection

ensembliste q : X → Y .

Définition 1.1. Un sous-ensemble U ⊂ Y est un ouvert de la topologie quotient

sur Y si et seulement si q−1(U) est un ouvert de X.

Quand Y est muni de la topologie quotient via q on dira que l’application q est

une application quotient, ou simplement un quotient, et que Y est un espace quotient

de X, ou simplement un quotient.

Remarque 1.2. On peut également définir la topologie quotient sur Y en carac-

térisant les fermés F de Y comme étant exactement ceux dont la préimage q−1(F )

est fermée dans X.

Lemme 1.3. La définition des ouverts de Y munit Y d’une topologie.

Démonstration. En exercice. □

Exemple 1.4. Soit I = [0; 1] l’intervalle fermé muni de la topologie métrique

(induite de celle de R) et Y = ]0; 1[
∐
{⋆} l’espace dont les points sont ceux de

l’intervalle ouvert, 0 < y < 1, et un point supplémentaire noté ⋆. On définit q : I → Y

par la formule

q(x) =

x si 0 < x < 1

⋆ sinon

13
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La topologie quotient sur Y en fait un espace homéomorphe au cercle. Explicitement

on peut définir un homéomorphisme f : S1 → Y par e2πit 7→ t pour t ̸= 0 et f(1) = ⋆.

Dans le début de cette section nous sommes partis d’une surjection ensembliste

et nous avons défini une topologie sur le quotient. Parfois on a deux espaces munis

d’une topologie connue et on dispose d’une application (continue) q : X → Y . On se

demande quand cette application est un quotient, c’est-à-dire quand la topologie de

Y cöıncide avec la topologie quotient.

Proposition 1.5. Si q : X → Y est une application surjective, continue et ou-

verte (ou fermée), alors q est un quotient.

Démonstration. Soit U ⊂ Y . Si U est ouvert, alors q−1(U) est ouvert dans

X par continuité. Réciproquement supposons que q−1(U) est ouvert dans X. Alors

l’image par q est ouverte parce que q est ouverte. Comme q est surjective, q(q−1(U)) =

U , si bien que U est ouvert.

Lorsque q est une application fermée, on conclut en montrant de la même façon

que Y \ U = q(X \ q−1(U)) est fermé. □

Exemple 1.6. On définit q : [0, 3]→ [0, 2] en contractant l’intervalle [1, 2] sur un

point. Explicitement

q(t) =


t si 0 ≤ t ≤ 1

1 si 1 < t ≤ 2

t− 1 si 2 < t ≤ 3

Alors q est une application quotient qui n’est pas ouverte puisque q(]1, 2[) = {1}.

La preuve du résultat suivant est claire. Cela sera utile pour construire des quo-

tients en plusieurs temps.

Proposition 1.7. Si p : X → Y et q : Y → Z sont deux quotients, alors q ◦ p
aussi est un quotient. □

Nous avons introduit la topologie quotient par une définition certes raisonnable,

mais qui était parachutée sans motivation préalable. Le théorème ci-dessous carac-

térise cette topologie et rend la définition naturelle. Il ajoute ensuite une propriété

très pratique qui donne la motivation manquante.
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Théorème 1.8. Soit X un espace topologique et q : X → Y une application

ensembliste surjective. La topologie quotient sur Y est la topologie la plus fine qui

rend q continue. De plus, si Y est muni de la topologie quotient, alors une application

g : Y → Z est continue si et seulement si la composée g ◦ q est continue.

Démonstration. L’affirmation sur la finesse de la topologie est claire puisque

si q est continue, alors q−1(U) est ouvert pour tout ouvert de Y .

Pour montrer la deuxième propriété, il suffit de prouver que si g ◦ q est continue,
alors g aussi est continue (car la composition de deux applications continues est

toujours continue). Soit V ⊂ Z un ouvert. Alors (g ◦ q)−1(V ) = q−1(g−1(V )) est un

ouvert de X. Par définition de la topologie quotient on conclut que g−1(V ) est un

ouvert de Y . Ainsi g est continue. □

Exemple 1.9. Soit C le cercle unité dans le plan donné en coordonnées par

C = {(x, y) ∈ R2 | x2 + y2 = 1}

On définit une fonction q : R → C en posant q(t) = e2iπt pour tout t ∈ R. Alors q
est continue, surjective et ouverte, c’est donc un quotient.

Je ferai parfois référence au résultat suivant sous le nom de critère de compacité.

Proposition 1.10. Soit q : X → Y une application quotient. Si X est compact,

Y aussi est compact.

Démonstration. L’image d’un compact par une application continue est tou-

jours compacte. □

2. Quotient par une relation

Il est souvent utile de décrire un espace quotient en donnant les points qui sont

identifiés par le biais d’une relation d’équivalence. Lorsque q : X → Y est une surjec-

tion, on peut toujours lui associer une relation définie par x ∼ x′ si et seulement si

q(x) = q(x′). Cette nouvelle manière de présenter les quotients est donc équivalente

à la manière originale introduite dans la section précédente.
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Définition 2.1. Soit ∼ une relation d’équivalence sur un espace X et q : X →
X/∼ la projection canonique. On appelle X/∼ l’espace quotient de X par ∼ lorsque

ce dernier est muni de la topologie quotient.

Exemple 2.2. Le cercle décrit dans l’Exemple 1.9 par une paramétrisation ex-

plicite dans le plan peut simplement être décrite comme quotient de l’intervalle [0, 1]

par la relation ∼ définie par s ∼ t si et seulement si s = t ou s, t ∈ {0, 1}.

Les quotients d’un intervalle sont ainsi décrits comme un bout de ficelle où cer-

tains points sont identifiés (en les collant). Il n’est plus nécessaire de décrire l’espace

quotient par une paramétrisation dans le plan ou l’espace. On a la propriété univer-

selle suivante dans ce contexte.

Proposition 2.3. Soit ∼ une relation d’équivalence sur un espace X et l’ap-

plication quotient q : X → X/∼. Alors pour toute application f : X → Y telle que

x ∼ x′ implique f(x) = f(x′)), il existe une unique application f̄ : X/∼ → Y avec

f̄ ◦ q = f .

Démonstration. Puisqu’on souhaite avoir f̄ ◦ q = f il faut poser f̄([x]) =

f(x), ce qui montre l’unicité. L’hypothèse “x ∼ x′ implique f(x) = f(x′)” permet

de déduire que f̄ est bien définie de manière ensembliste. Elle est continue par le

Théorème 1.8 puisque la composition f̄ ◦ q = f est continue. □

Un cas particulier important est la construction suivante, obtenue en écrasant un

sous-espace.

Définition 2.4. Soit A ⊂ X un sous-espace. Le collapse X/A est l’espace quo-

tient obtenu de X par la relation d’équivalence x ∼ y si et seulement si x = y ou

x, y ∈ A.

Exemple 2.5. Le cercle décrit dans l’Exemple 1.9 est le collapse [0, 1]/{0, 1}.

Lorsqu’on se donne une famille d’espaces, il est possible qu’en tant qu’espaces

ils ne soient pas disjoints. Pour cela on introduit pour tout espace Xα un espaces

Xα×{α} qui est homéomorphe, car c’est le produit avec un singleton. De cette façon

le nouvel espace remplace Xα mais porte avec lui son indice qui distingue ses points

de ceux de tous les autres espaces.
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Exemple 2.6. Si on choisit X1 = X2 = I, et qu’on souhaite malgré tout décrire

une réunion disjointe de deux intervalles, on pourra remplacer X1 par I ×{1} et X2

par I × {2}, de sorte que la réunion de ces nouveaux intervalles soit disjointe :

1 2

1

2

Définition 2.7. Soit A un ensemble et pour tout α ∈ A un espace Xα. La

réunion disjointe
∐
Xα est l’espace topologique

⋃
Xα × {α}. Les ouverts de cet

espace sont les réunions d’ouverts des Xα × {α}.

Lorsqu’on identifie les points de base de chacun des espaces d’une famille d’es-

paces {Xα | α ∈ I} on obtient un “bouquet” d’espaces.

Définition 2.8. Soit A un ensemble et pour tout α ∈ A un espace pointé

(Xα, xα). Le wedge
∨
Xα est le quotient

∐
Xα/{xα | α ∈ I}.

On peut montrer que le type d’homotopie ne dépend pas des points de base

choisis pour autant qu’ils se trouvent dans la même composante connexe par arcs

lorsque les espaces sont “gentils”. Ceci justifie l’abus de notation consistant à ne pas

mentionner les points de base.

Exemple 2.9. Le wedge de deux cercles S1 ∨ S1 est un 8.
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D’autres examples de quotients sont importants pour ce cours dans lequel ils vont

apparâıtre de manière récurrente.

Exemple 2.10. Le collapse Dn/Sn−1 est homéomorphe à la sphère Sn. Visuelle-

ment on peut bien se convaincre de l’exactitude de cette affirmation pour n = 2, le

disque dont on collapse le bord en un point donne bien une sphère. Une jolie vidéo

se trouve aussi ici : https ://www.youtube.com/watch ?v=IVkPGGC 2R8

Exhibons l’homéomorphisme pour le cas général. Soit f : Dn → Sn l’application

définie par

x 7→

(2x,
√

1− ∥2x∥2) si ∥x∥ ≤ 1/2

([4− 4∥x∥]x,−
√

1− [4− 4∥x∥]2 ∥x∥2) si ∥x∥ > 1/2

Cette application est définie de sorte à envoyer le cercle de rayon 1/2 sur l’équateur

de Sn, le disque intérieur sur l’hémisphère nord et l’anneau extérieur sur l’hémisphère

sud. On calcule également que tout point x du bord de Dn, donc de norme 1, est

envoyé sur (0,−1). Cette application passe donc au quotient et induit une application

f̄ : Dn/Sn−1 → Sn. C’est une bijection continue dont la source est un espace compact

par la Proposition 1.10 vers un espace séparé. C’est un homéomorphisme.

Un autre exemple dans le même style est l’identification du sommet ou du bas

d’un cylindre. Nous généraliserons cette construction immédiatement.

Exemple 2.11. Soit S1× I un cylindre de hauteur 1 et de base circulaire. Alors

le quotient S1 × I/S1 × 0 est homéomorphe à un disque D2 :

La même stratégie que ci-dessus s’applique à la fonction f(x, t) = tx pour x ∈ S1

et t ∈ I.

Définition 2.12. Soit X un espace et X × I le cylindre sur X. Le cône sur X

est l’espace quotient CX = X × I/X × 0.
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3. Quotient et axiomes de séparation

En général le quotient d’un espace séparé n’est pas séparé. Nous avons déjà

rencontré un exemple dans une série d’exercices. Un autre exemple classique est la

droite à deux origines.

Exemple 3.1. A partir de deux copies de R on identifie chaque point x de la

première copie avec le point x correspondant dans la deuxième copie, sauf les “zéros”,

qu’on ne peut séparer par des ouverts.

Plus formellement, considérons X = R × {0; 1} et la relation ∼ est définie par

(s, k) ∼ (t, ℓ) si et seulement si s = t et s ̸= 0 quand k ̸= ℓ. Si on considère le graphe

de la relation d’équivalence Γ ⊂ (R
∐

R)× (R
∐

R) on voit qu’il n’est pas fermé (les

copies (0, 0) et (1, 1) de R×R contiennent une droite diagonale, mais les deux autres

contiennent une droite privée d’un point) :

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

On rappelle que le graphe de la relation∼ est l’ensemble des paires (x, x′) ∈ X×X
telles que x ∼ x′. La clôture du graphe de la relation d’équivalence est en fait une

condition nécessaire pour que le quotient soit séparé. On (re)montre d’abord un

critère de séparabilité très utile, déjà vu lors d el’étude de la séparabilité dans le

cours sur les espaces métriques.

Lemme 3.2. Un espace X est séparé si et seulement si la diagonale ∆ est fermée

dans X ×X.
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Démonstration. Soit (x, y) ∈ X ×X un point ne se trouvant pas sur la dia-

gonale (i.e. x ̸= y). Considérons x ∈ U et y ∈ V deux voisinages ouverts. Alors

U ∩ V = ∅ si et seulement si U × V ∩∆ = ∅. Ainsi U et V séparent les points x et y

si et seulement si U × V est un voisinage ouverte de (x, y) pour la topologie produit

qui ne rencontre pas la diagonale. □

Une manière un peu alambiquée de voir le résultat ci-dessus est le suivant. La

relation triviale x ∼ x a pour graphe la diagonale ∆ de X × X. Si le quotient

X/∼= X est séparé alors ∆ doit être fermé.

Proposition 3.3. Soit ∼ une relation d’équivalence sur un espace X. Si X/∼
est séparé, alors le graphe Γ de la relation est fermé dans X ×X.

Démonstration. Si le quotient est séparé, la diagonale ∆ ⊂ (X/∼)× (X/∼)
est fermée. Or la préimage de ∆ par q×q : X×X → (X/∼)×(X/∼) est précisément

le graphe Γ, constitué des paires (x, y) telles que x̄ = ȳ, i.e. x ∼ y. On conclut par

continuité de q × q que Γ est fermé. □

Voici aussi un critère qui garantit que le quotient est séparé (mais qui ne donne

pas une condition nécessaire).

Définition 3.4. Soit q : X → Y une application quotient. On dit que A ⊂ X est

saturé ou q-saturé si A = q−1(q(A)). Pour B ⊂ X on appelle q−1(q(A)) la saturation

de A par l’application q.

Proposition 3.5. Soit ∼ une relation d’équivalence sur un espace X séparé. Si

q−1(q(x)) est compact dans X pour tout x ∈ X et que q−1(q(F )) est fermé dans X

pour tout fermé F ⊂ X, alors X/∼ est séparé.

Démonstration. Soit x̄ et ȳ deux points distincts de X/∼. Par hypothèse les

préimages q−1(x̄) = q−1(q(x)) et q−1(ȳ) sont compactes et disjointes. Il existe donc

des voisinages U et V , ouverts et disjoints dans X, qui séparent ces compacts car X

est séparé.

On doit maintenant rendre q(U) et q(V ) disjoints. Soient E = X \ U et F =

X \ V les complémentaires fermés. Par hypothèse les saturations E ′ = q−1(q(E)) et

F ′ = q−1(q(F )) sont fermés, si bien que les complémentaires U ′ = X \ q−1(q(E))
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et V ′ = X \ q−1(q(E)) sont ouverts. Comme l’espace X se décompose en réunion

disjointe de classes d’équivalence, U ′ et V ′ sont saturés, contiennent q−1(x̄) et q−1(ȳ)

respectivement, dont ils forment des voisinages. Comme U ′ ⊂ U et V ′ ⊂ V ils sont

disjoints.

Puisque U ′ = q−1(q(U ′)) (par saturation), la définition de la topologie quotient

garantit que q(U ′) est ouvert dans le quotient. Le même raisonnement s’applique à

q(V ′).

Pour terminer on contrôle que ces ouverts sont disjoints. Supposons qu’il existe

u′ ∈ U ′ et v′ ∈ V ′ tels que q(u′) = q(v′). Alors u′ ∈ q−1(q(v′)) ⊂ q−1(q(V ′)) = V ′, ce

qui est absurde puisque U ′ ∩ V ′ = ∅. □

Exemple 3.6. L’application exponentielle e : R → S1 présente le cercle, un

espace séparé, comme quotient de la droite réelle. Comme les saturations de points

ne sont pas conpactes (par exemple q−1(q(0)) = Z), le critère ne s’applique pas. Par
contre on peut restreindre q à un “domaine fondamental” pour s’y ramener puisque

e′ = e |[0;1]: [0; 1]→ S1 présente le cercle comme quotient d’une application qui vérifie

les conditions de la Proposition 3.5. On remarque que e−1(U) ∩ [0; 1] = e′−1(U) et

tout voisinage de 1 ∈ S1 contient l’image d’un intervalle ]− ε; ε[.

Corollaire 3.7. Soit A ⊂ X un sous-espace compact d’un espace X séparé.

Alors X/A est séparé.

Démonstration. La préimage d’un point par l’application quotient q : X →
X/A est soit un singleton, soit A. La première condition de la Proposition 3.5 est

donc vérifiée. De plus, si F ⊂ X est fermé, alors q−1(q(F )) = F lorsque F ∩ A = ∅,
qui est fermé et sinon q−1(q(F )) = F ∪ A, qui est également fermé, car le compact

A est fermé dans l’expace séparé X. □

Exemple 3.8. On définit une relation d’équivalence sur R2 comme suit : x ∼ y

s’il existe A ∈ Z2 tel que x = y+ a. Le quotient est homéomorphe à un tore, un joli

espace compact et séparé, mais qui ne vérifie ni le critère de compacité, ni celui de

séparabilité... On retrouvera cet exemple dans les exercices et on pourra conclure en

identifiant un domaine fondamental.
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L’importance de la notion de saturation, qui semble peut-être artificielle au pre-

mier coup d’oeil, vient du fait qu’elle apparâıt naturellement lors de la comparaison

des quotients. Nous avons vu en effet qu’une application quotient q : X → Y n’est

pas nécessairement ouverte, mais par contre elle envoie des ouverts saturés sur des

ouverts par définition de la topologie quotient. De fait cette propriété caractérise la

topologie quotient.

Proposition 3.9. Soit q : X → Y une application continue et surjective. Alors

q est un quotient si et seulement si q(U) est un ouvert de Y pour tout U ouvert

saturé de X.

Démonstration. Il reste à montrer une implication. On suppose que q(U) est

un ouvert de Y pour tout U ouvert saturé de X. Soit V ⊂ Y un sous-ensemble et on

suppose que U = q−1(V ) est ouvert. On observe que U est saturé puisqu’il contient

par construction des classes déquivalence entières (si q(x) = q(x′), alors x et x′ sont

tous deux soit dans U , soit en dehors de U). Comme V = q(U), c’est l’image d’un

ouvert saturé, il est donc ouvert. □

Nous terminons cette section avec des exemples d’espaces quotient qui jouent un

rôle important dans l’histoire de la topologie algébrique. Nous avons travaillé avec

le plan projectif réel dans une série d’exercices et vu comment le définir comme un

espace de droites dans l’espace. Il est possible et historiquement adéquat de générali-

ser cette approche, mais nous préférons introduire les espaces projectifs directement

comme quotients de sphères par la relation “antipodale”.

Définition 3.10. L’espace projectif réel RP n est le quotient Sn/∼ où x ∼ y si

et seulement si x = ±y.

Exemple 3.11. Ainsi RP 0 est un point puisque c’est le quotient de la sphère S0

dans lequel on identifie +1 et −1. L’espace RP 1 est également facile à identifier, il

est homéomorphe à S1, et RP 2 est l’espace décrit dans la vidéo de 3Blue1Brown.

Proposition 3.12. L’espace projectif réel RP n est compact et séparé.
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Démonstration. La compacité suit de la Proposition 1.10 car Sn est compact.

Comme Sn est séparé et que q−1(q(F )) = −F ∪ F est compact pour tout fermé

F ⊂ Sn on conclut par le critère de séparabilité (Proposition 3.5). □

La sphère Sn est la sphère unité dans Rn+1 et les inversibles de norme 1 de R
sont ±1. Nous travaillons avec les nombres complexes C maintenant et le groupe

S1 des nombres complexes de norme 1 remplace ±1. La sphère unité S2n+1 est vue

comme sous-espace de Cn+1.

Définition 3.13. L’espace projectif complexe CP n est le quotient S2n+1/∼ où

x ∼ y si et seulement s’il existe un nombre complexe a ∈ S1 tel que x = ay.

Explicitement a agit sur y = (y1, . . . , yn+1) par a · y = (ay1, . . . , ayn+1). On peut

montrer par exemple que CP 1 est homéomorphe à la sphère S2, ce qui fait sens en

tout cas du point de vue des dimensions puisqu’on identifie des cercles de S3 à des

points de S2. Pour plus de détails on renvoie aux exercices.

Si on connâıt l’algèbre des quaternions H, on peut construire de manière analogue

les espaces projectifs quaternioniques...

4. Quotients par des actions de groupes

Comme c’était le cas dans l’exemple des espaces projectifs, de nombreuses rela-

tions d’équivalence proviennent de l’action d’un groupe sur un espace topologique.

Même si la plupart des espaces que nous construirons ainsi viendront de l’action d’un

groupe fini, les actions de groupes topologiques sont aussi intéressantes. C’est le cas

de S1 que nous venons de rencontrer ci-dessus.

Définition 4.1. Un groupe topologique est un groupe G muni d’une topologie

pour laquelle la multiplication m : G × G → G et l’inverse ι : G → G sont des

applications continues.

Tout groupe peut être vu comme groupe topologique si on le munit de la topologie

discrète. Nous appellerons alors ce groupe topologique discret simplement un groupe.

Ce sera en particulier le cas pour tous les groupes finis que nous rencontrerons.
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Exemple 4.2. Le cercle unité S1 ⊂ C est un groupe topologique pour la structure

de groupe donné par la multiplication complexe et pour la structure topologique

donnée par la topologie de sous-espace de C. Clairement la multiplication et l’inverse

sont continues, la formule de l’inverse en coordonnées, ι(a + bi) =
a− bi
a2 + b2

, montre

la continuité de ι par exemple.

De même le cercle unité S3 ⊂ H est un groupe topologique, qui n’est toutefois

pas commutatif. De fait les seules sphères que l’on peut munir d’une multiplication

sont S0, S1, S3 et ... S7, mais cette dernière multiplication octonionique n’est pas

associative.

Exemple 4.3. L’addition munit l’espace métrique Rn d’une structure de groupe

topologique. Le même raisonnement s’applique à Cn ou Qn.

Exemple 4.4. Le groupe multiplicatif des matrices inversibles GLn(R) est un

groupe topologique pour la topologie de sous-espace de Mn(R) ≈ Rn2
. Les formules

de la multiplication et de l’inverse en coordonnées, bien connues de l’algèbre linéaire,

montrent qu’elles sont continues.

On peut encore se restreindre à des sous-groupes plus petits : les matrices ortho-

gonales O(n), spéciales orthogonales SO(n) ou unitaires U(n) et spéciales unitaires

SU(n), etc.

Proposition 4.5. Si G est un groupe topologique, alors tout sous-groupe H < G

hérite d’une structure de groupe topologique.

Démonstration. La multiplication est celle de G et la continuité de m et de ι

suit de la définition de la topologie de sous-espace. □

Nous introduisons maintenant les actions de groupe, et essayerons de systémati-

quement les utiliser à droite. Tout fonctionne également pour les actions à gauche,

mutatis mutandis.

Définition 4.6. Une action (à droite) d’un groupe topologique G sur un espace

X est une application continue µ : X×G→ X, notée aussi simplement µ(x, g) = x·g,
telle que

(1) x · 1 = x pour tout x ∈ X ;
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(2) x · (gg′) = (x · g) · g′ pour tous x ∈ X et g, g′ ∈ G.

On peut aussi se représenter ces propriétés sous forme de diagrammes commuta-

tifs. Par exemple, si i désigne l’inclusion de l’élément neutre dans G, alors le triangle

suivant commute :

X X × eG X ×G

X
idX

∼= idX×i

µ

La deuxième propriété signifie que la carré suivant commute :

X ×G×G X ×G

X ×G X

idX×m

µ×idG

µ

µ

Définition 4.7. Soit X un espace sur lequel agit un groupe topologique G.

L’espace des orbites X/G est le quotient de X par la relation x ∼ y si et seulement

si il existe g ∈ G avec x = y · g.

Exemple 4.8. Le groupe C2, cyclique d’ordre 2, agit sur la sphère unité Sn ⊂
Rn+1 par l’action antipodale. Le générateur agit donc sur un point x en l’envoyant

sur −x. Le plus pratique pour cela est de choisir comme modèle pour C2 le groupe

des nombres réels de norme 1, c’est-à-dire {±1} = O(1) qui agit par multiplication

(à droite). L’espace quotient Sn/C2 est RP n.

De même S1 agit sur les sphères unité de Cn+1 et les quotients S2n+1/S1 sont les

espaces projectifs complexes CP n.

Le groupe additif Z2 agit par translations dans le plan R2. L’espace quotient

R2/Z2 est le tore.

Le cercle S1 agit sur la sphère S2 par rotations horizontales le long des parallèles

et S2/S1 est alors homéomorphe à un intervalle I. Les extrémités sont les classes

d’équivalence des pôles, les autres points celles d’un parallèle.

Remarque 4.9. Tout sous-groupe H < G agit par multiplication sur le groupe

topologique G. Cette action G × H → G donne lieu à un quotient G/H dont les

éléments sont précisément les orbites gH, classes d’équivalence de tous les éléments

g′ ∼ g, i.e. tous les g′ de la forme gh pour un h ∈ H. Ainsi g ∼ g′ si et seulement
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g−1g′ ∈ H. En particulier chaque classe dans le quotient a la même cardinalité, à

savoir |H|, alors que dans un quotient topologique arbitraire tout peut arriver.

Lorsque H ◁ G est un sous-groupe normal, le quotient hérite d’une structure de

groupe (topologique).

Exemple 4.10. Le sous-groupe S1 agit sur la sphère quaternionique S3 ⊂ H.

L’espace des orbites S3/S1 est homéomorphe à la sphère S2. On remarquera que

S1 < S3 n’est pas un sous-groupe normal puisque par exemple la conjugaison de

i ∈ S1 par 1
2
+

√
3
2
j donne 1

2
i−

√
3
2
k...

Proposition 4.11. Soit G un groupe topologique qui agit sur un espace X.

Alors :

(1) L’application quotient q : X → X/G est ouverte.

(2) Si X est compact, X/G aussi est compact.

(3) Si X et G sont compacts et séparés, alors X/G aussi est compact et séparé.

Démonstration. Comme la multiplication par g est un homéomorphisme sur

X (dont l’inverse est la multiplication par g−1), l’image U · g d’un ouvert U de X

est encore un ouvert. Or pour tout ouvert U ⊂ X, on a q−1(q(U)) =
⋃
g∈G U · g qui

est ouvert, ce qui montre que q(U) est ouvert dans le quotient.

Le deuxième point découle du critère de compacité et c’est la séparabilité du

dernier point qui va nous occuper pour la fin de la preuve. Pour cela nous vérifions

la définition. Comme X est séparé, la diagonale ∆ ⊂ X ×X est fermée et comme X

est compact, ∆ est compact aussi. On considère l’application G×X ×X → X ×X
donnée par (g, x, y) 7→ (x, yg). L’image de G × ∆ est le graphe Γ ⊂ X × X de la

relation d’équivalence définie par l’action de G. Or G étant compact, G × ∆ est

compact et son image Γ est compacte, donc en particulier fermée (car X × X est

séparé).

Considérons maintenant xG et yG deux orbites distinctes. Alors y ̸= xg pour tout

g ∈ G, autrement dit (x, y) ̸∈ Γ. Par définition de la topologie produit il existe alors

des voisinages ouverts x ∈ U et y ∈ V tels que U ×V et Γ sont disjoints. Les images

q(U) et q(V ) sont des voisinages ouverts des orbites q(x) et q(y) respectivement et

on prétend qu’ils sont disjoints.
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En effet, si zG ∈ q(U) ∩ q(V ), alors il existe g, g′ ∈ G tels que zg ∈ U et

zg′ ∈ V . Mais (zg, zg′) = (zg, zg · g−1g′) est alors un point de U × V et de Γ, une

contradiction. □

Exemple 4.12. Les espaces projectifs RP n et CP n sont compacts et séparés.

5. Quelques quotients liés aux groupes SO(n)

Dans cette petite section nous étudions d’un peu plus près quelques espaces

obtenus par des actions de groupes de matrices orthogonales, et retrouvons un espace

projectif (compact) introduit ci-dessus. On commence avec un résultat général sur

les espaces homogènes, i.e., des espaces sur lesquels un groupe agit transitivement.

Proposition 5.1. Soit G un groupe topologique compact qui agit transitivement

sur un espace X séparé. Alors G/Gx ≈ X pour tout point x ∈ X.

Démonstration. Fixons x ∈ X et considérons l’application φx : G→ X définie

par φx(g) = xg. On voit aussi que xg = xg′ si et seulement si xg′g−1 = x, i.e. g′g−1

appartient au stabilisateur Gx.

Par conséquent φx passe au quotient φ̄x : G/Gx → X et cette application est

injective par le calcul ci-dessus, et surjective par transitivité de l’action. Comme la

source G/Gx est compacte et que le but X est séparé, on conclut que φ̄x est un

homéomorphisme. □

Exemple 5.2. Soit n ≥ 2. Le groupe SO(n) agit transitivement sur la sphère

Sn−1 (par rotations, c’est-à-dire par multiplication matricielle sur un vecteur ligne

pour définir l’action à droite, ou peut-être de manière plus habituelle sur un vecteur

colonne, à gauche). Cette action est transitive.

Le stabilisateur d’un point, disons le vecteur en, est l’ensemble des rotations

dont l’axe est supporté par en, c’est le sous-groupe SO(n − 1) vu comme matrices

diagonales par blocs, un bloc étant de taille (n − 1) × (n − 1) et l’autre un 1 en

position (n, n). On applique la Proposition 5.1 pour conclure que le quotient de

groupes SO(n)/SO(n− 1) est homéomorphe à une sphère Sn−1.

Pour n = 1 on a O(1) ≈ S0 et SO(1) est le groupe trivial. Pour n = 2 on obtient

l’identification SO(2) ≈ S1 (qu’on peut en fait promouvoir en un isomorphisme de

groupes topologiques).
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Pour n = 3, on a SO(3)/SO(2) ≈ S2.

On termine cette section en identifiant SO(3) avec RP 3. On sait que RP 1 est

un cercle : L’application S1 → S1 donnée par l’élévation au carré dans C passe au

quotient et définit une application RP 1 → S1 qui est un homéomorphisme.

Proposition 5.3. On a un homéomorphisme SO(3) ≈ RP 3.

Démonstration. Par définition RP 3 est le quotient de S3 par la relation an-

tipodale. Comme tout point de ce quotient admet une préimage dans l’hémisphère

nord H, on peut également voir RP 3 comme le quotient de H par la relation antipo-

dale restreinte au bord. Finalement, comme H est homéomorphe au disque D3, on

voit que RP 3 ≈ D3/∼ où x ∼ y si et seulement si, soit x = y, soit y = −x lorsque

x, y ∈ S2 = ∂D3.

Construisons une application f : D3 → SO(3). On choisit d’envoyer le centre de

la boule, 0, sur l’identité et tout x ̸= 0 sur la rotation R(Ox, π∥x∥) d’axe Ox et

d’angle π∥x∥. Cette application est continue en tout point, sauf éventuellement au

voisinage de l’origine. La topologie de SO(3) étant celle de sous-espace de M3(R),
on voit que la rotation R(Ox, ϵ) est proche de l’identité (car cos ϵ est proche de ϵ et
sin ϵ est proche de zéro). Ceci implique qu’une rotation d’axe arbitraire et d’angle ϵ,

qui est obtenue en conjuguant la rotation précédente par une matrice de rotation S,

est proche de S · I3 · S−1 = I3. Ceci montre que f est également continue en 0.

On observe aussi que si ∥x∥ = 1, alors f(x) est une rotation d’angle π et d’axe

supporté par x, donc f(x) = f(−x). Par conséquent f passe au quotient et induit

une application f̄ : RP 3 → SO(3). Il reste à montrer que f̄ est un homéomorphisme.

L’injectivité vient du fait que deux rotations sont égales si et seulement leurs axes

sont les mêmes et leurs angles différent de 2π. Pour montrer la surjectivité considé-

rons une rotation arbitraire, d’angle α compris entre 0 et 2π et d’axe engendré par

un vecteur unitaire y. Alorsf(
α
π
y) = R(Oy, α) si α ≤ π

f((2π−α
π

) · (−y)) = R(Oy, α) si α ≥ π

Pour obtenir la rotation d’axeOy et d’angle α > π, on utilise ce que j’avais pensé faire

correctement dans la version 2022 de ces notes de cours, c’est-à-dire que R(Oy, α) =
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R(O(−y), 2π − α). Ainsi cette rotation est aussi dans l’image de f , c’est celle du

vecteur
2π − α
π

· (−y).
On conclut par le fait que la source RP 3 est compacte et le but SO(3) est

séparé. □

6. Recoller des espaces

Soient f : A → X et g : A → Y deux applications. Nous construisons un nouvel

espace à l’aide de X et de Y en identifiant leur “partie commune”A.

Définition 6.1. On note X ∪A Y le recollement obtenu de X
∐
Y en identifiant

f(a) avec g(a) pour tout a ∈ A.

Plus précisément X∪AY est le quotient de X
∐
Y par la relation d’équivalence ∼

engendrée par les identifications x ∼ y si x = y ou s’il existe a ∈ A tel que x = f(a)

et y = g(a). Nous précisons ici que c’est la relation d’équivalence engendrée par cette

règle puisque typiquement on identifiera aussi f(a) et f(b) si g(a) = g(b). En effet

on a alors

f(a) ∼ g(a) = g(b) ∼ f(b)

En général on identifie deux points s’il existe un “zigzag” de situations élémentaires

comme celle-ci.

Exemple 6.2. Si A est un sous-espace de deux espaces X et Y , i.e. f : A ↪→ X

et g : A ↪→ Y sont deux applications injectives, alors X ∪A Y est obtenu de X
∐
Y

en identifiant uniquement f(a) ∼ g(a). Par exemple, lorsque A = ⋆ est un singleton,

f et g correspondent alors au choix de deux points de base x0 ∈ X et y0 ∈ Y et le

recollement est le wedge X ∨ Y .

Remarque 6.3. Nous avons deux applications i : X → X∪AY et j : Y → X∪AY
définies respectivement par i(x) = [x] et j(y) = [y] où x ∈ X, y ∈ Y et [x] désigne la

classe de x dans le recollement. On a donc un carré commutatif

A Y

X X ∪A Y

f

g

j

i
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puisque j(g(a)) = [g(a)] = [f(a)] = i(f(a)). On identifie le recollement X ∪A Y avec

le pushout du diagramme X ← A → Y grâce à la propriété universelle dont cet

espace jouit.

Proposition 6.4. Soient f : A→ X et g : A→ Y deux applications. Pour toute

paire d’applications α : X → Z et β : Y → Z telles que α ◦ f = β ◦ g il existe une

unique application θ : X ∪A Y → Z telle que θ ◦ i = α, θ ◦ j = β.

Démonstration. On se représente cela sous forme de diagramme commutatif :

A Y

X X ∪A Y

Z

f

g

j
β

i

α

θ

Les applications α et β induisent une application H : X
∐
Y → Z. On observe que

H(f(a)) = α(f(a)) = β(g(a)) = H(g(a))

si bien que H passe au quotient et induit une application θ sur le quotient avec les

propriétés voulues. L’unicité vient du fait que la valeur de θ([x]) est imposée par les

hypothèses pour tout x ∈ X puisque θ([x]) = θ(i(x)) doit être égal à α(x) et de

même θ([y]) = β(y) pour tout y ∈ Y . □

Pour éviter les problèmes d’identification on va dès maintenant supposer que g est

l’inclusion d’un sous-espace fermé A de Y . En effet dans ce cas la classe de y dans le

quotient X∪AY contient uniquement y si y ̸∈ Img, et sinon y = g(a) pour un unique

point a ∈ A par injectivité de g et on a g(a) ∼ f(a). Ainsi on identifie x ∈ Imf avec

g(a) pour tout a dans la préimage f−1(x). On note q : X
∐
Y → X∪AY l’application

quotient.

Lemme 6.5. Soient X, Y deux espaces, g l’inclusion d’un sous-espace A ⊂ Y

fermé et f : A→ X. Pour tout sous-espace C ⊂ Y , on a

q−1(q(C)) = f(C ∩ A)
∐

C ∪ f−1(f(C ∩ A)).
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Démonstration. Soit y ∈ C. Si y ̸∈ A, alors la classe [y] est un singleton {y}.
Sinon la relation d’équivalence identifie dans le quotient y avec f(y) ∈ X, et par

saturation avec tous les points de f−1(f(y)). Ainsi

q−1(q(C)) = f(C ∩ A)
∐

(C \ A) ∪ f−1(f(C ∩ A))

Comme C ∩ A est contenu dans sa saturation par f , on obtient bien q−1(q(C)) =

f(C ∩ A)
∐
C ∪ f−1(f(C ∩ A)). □

Lemme 6.6. Soient X, Y deux espaces, g l’inclusion d’un sous-espace A ⊂ Y

fermé et f : A→ X. Pour tout sous-espace C ⊂ X, on a q−1(q(C)) = C
∐
f−1(C).

Démonstration. Si x ∈ C, alors x s’identifie dans le quotient avec f−1(x), ce

qui montre immédiatement le lemme. □

Proposition 6.7. Soient X, Y des espaces séparés, g l’inclusion d’un sous-

espace compact A ⊂ Y et f : A → X une application. Alors le pushout X ∪A Y
est séparé.

Démonstration. On prépare la démonstration en montrant d’abord que l’ap-

plication quotient q : X
∐
Y → X ∪A Y est fermée. Comme un fermé de la réunion

disjointe est une réunion disjointe de fermés, on traite le cas d’un fermé de X, puis

celui d’un fermé de Y . Le premier cas suit du Lemme 6.6 sans hypothèse sur A. Pour

le second on utilise le Lemme 6.5 en observant que, Y étant séparé, C ∩A est fermé

dans un compact, donc compact, si bien que f(C ∩ A) est compact dans un espace

séparé, donc fermé. Finalement, par définition des fermés de la topologie quotient,

on conclut que q(C) est fermé pour tout fermé de X
∐
Y .

Nous vérifions maintenant le critère de la Proposition 3.5. La saturation d’un

point est soit un point soit, par les calculs précédents, une union f(a)
∐
f−1(f(a))

si a ∈ A. Les préimages de points étant des fermés dans le compact A, elles sont

compactes. Les préparatifs de cette preuve montrent que la saturation d’un fermé

est fermée. □

7. Attachement de cellules

Un cas particulier et important de la construction précédente est celui où g est

l’inclusion A ↪→ CA de la base du cône. Le cas classique A = Sn−1 et g : Sn−1 ⊂
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Dn (on rappelle que le cône sur une sphère est homéomorphe à une boule) nous

permettra de construire une classe d’espaces fondamentale en théorie de l’homotopie,

par attachement de cellules.

Définition 7.1. Soit f : A→ X une application. On dit que le pushoutX∪ACA,
aussi noté X ∪f CA, est obtenu de X en attachant une A-cellule le long de f .

L’application f est appelée application d’attachement.

Grâce à la Proposition 6.7 on a un critère de séparation.

Proposition 7.2. Soient X,A des espaces séparés et f : A→ X une application.

Alors le pushout X ∪A CA est séparé si A est compact, et compact si de plus X est

aussi compact.

Démonstration. Le cône sur un espace séparé est séparé (on peut aussi utiliser

le critère lorsque A est compact, voir exercices). Si A est compact on conclut par la

Proposition 6.7 que X ∪ACA est séparé. Cet espace est compact quand X
∐
CA est

compact par le critère de compacité. □

Avant l’exemple suivant on introduit la suspension (non réduite) d’un espace.

Définition 7.3. Soit A un espace. La suspension ΣA est l’espace quotient du

cylindre A× I par la relation d’équivalence (a, t) ∼ (b, s) si et seulement si (a = b et

s = t) ou (s = t = 0) ou (s = t = 1).

Autrement dit on collapse séparément les deux bases du cylindre pour obtenir la

suspension.

Exemple 7.4. Soit f : A → X une application constante sur un point x0 ∈ X.

Alors l’espace X ∪A CA est homéomorphe à X ∨ ΣA.

La situation la plus courante en théorie de l’homotopie est celle où A = Sn−1 et

l’une des deux applications est l’inclusion de la sphère comme bord de la boule Dn.

On écrit en pour un espace homéomorphe à Dn.

Définition 7.5. Soit i : Sn−1 ↪→ Dn l’inclusion du bord de la boule. Pour toute

application f : Sn−1 → X, le recollement X ∪Sn−1 Dn s’écrit aussi (et de préférence)
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X ∪f en et on dit que cet espace est obtenu à partir de X en attachant une cellule

de dimension n.

Exemple 7.6. Le cercle S1 peut être vu comme ⋆∪D1 pour la seule application

d’attachement S0 → ⋆, ou comme S0∪idD1∪idD1 où les deux cellules de dimension

1 représentent les deux hémicycles de S1. Il existe de la même manière une structure

cellulaire sur Sn avec une seule 0-cellule et une seule n-cellule et une autre structure

avec deux cellules de chaque dimension comprise entre 0 et n, obtenue inductivement

de cette structure sur Sn−1 en attachant les deux hémisphères manquants.

Observons encore que pour ce modèle avec deux cellules en chaque dimension,

ces cellules sont permutées par l’action antipodale si bien que le quotient RP n hérite

d’une structure cellulaire avec exactement une cellule en chaque dimension. Nous en

verrons les détails en exercices, mais regardons plus attentivement le cas de RP 2 ici.

Exemple 7.7. L’espace projectif RP 0 est le quotient de S0 par l’antipodale,

autrement dit RP 0 est un point. On continue avec RP 1, le quotient de S1 par l’an-

tipodale. Puisque le demi-cercle Nord N contient un représentant de chaque classe,

la projection N → RP 1 est un quotient qui nous permet d’identifier RP 1 comme

le pushout [−1; 1] ← {±1} → RP 0. La propriété universelle du pushout établit un

homéomorphisme entre S1 et RP 1.

Le plan projectif RP 2 est le quotient d’un disque dont on identifie deux par deux

les points du bord, x ∼ −x. On peut montrer à la main que l’inclusion D2 ↪→ S2 in-

duit un homéomorphisme sur les espaces quotients définis par la relation antipodale,

ou utiliser le critère vu en exercice sur les fermés saturés (qui sont facile à décrire

ici). De ce point de vue le plan projectif est un cercle, à savoir RP 1, auquel on at-

tache une 2-cellule, représentée par l’intérieur du disque. Explicitement l’application

d’attachement est donnée par

S1 ≈ ∂D2 → S1/C2 = RP 1 ≈ S1

Autrement dit cette application d’attachement est l’application de degré 2, qui effec-

tue deux tours du cercle, un pour chaque demi-cercle. On construit alors le pushout

du diagrammeD2 ← S1 2−→ S1, qui est par définition S1∪2e
2. La propriété universelle

du pushout permet de construire une application vers RP 2 en choisissant l’inclusion
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de RP 1 sur le cercle et l’application quotient sur le disque. Cette bijection d’un

compact vers un espace de Hausdorff est un homéomorphisme.

Comme le disque est homéomorphe à un carré, on peut aussi en donner la repré-

sentation suivante (tirée de Wikipedia) :

Ainsi RP 2 admet une autre présentation cellulaire : c’est un cercle formé de deux

1-cellules, indiquées par a et b sur l’illustration ci-dessus. L’application d’attachement

est décrite cette fois par abab (on effectue à nouveau deux fois le tour du cercle).



Chapitre 2

Homotopies et groupe fondamental

Dans ce deuxième chapitre nous introduisons la notion générale d’homotopie

pour des applications X → Y . Elle nous permet de définit une relation d’équivalence

plus faible que celle d’homéomorphisme entre espaces, à savoir celle d’homotopie.

Lorsque la source X est un cercle, on retrouve dans le cadre pointé les homotopies de

lacets et par suite le groupe fondamental qui sera le grand protagoniste des chapitres

principaux de ce cours. A la fin du chapitre on retrouve les quotients, ayant eu un

peu de temps pour digérer ce concept difficile. On présente en particulier quelques

surfaces bien connues du point de vue de l’attachement des cellules : le tore, le plan

projectif, la bouteille de Klein. Pour former de nouvelles surfaces nous découvrons

l’opération de somme connexe.

1. Homotopie

Nous généralisons dans cette section la notion de lacets homotopes à des appli-

cations entre deux espaces arbitraires. Ces quelques définitions devraient éclairer la

démonstration de la contractilité du cône, voir le Lemme 1.7.

Définition 1.1. Soient f, g : X → Y deux applications. On dit que f et g sont

homotopes et on note f ≃ g s’il existe une application H : X × I → Y telle que

H(x, 0) = f et H(x, 1) = g pour tout x ∈ X. On dit que H est une homotopie de f

vers g.

On visualise H comme étant une déformation qui transforme continument f en

g au cours du temps t ∈ [0, 1] (on parcourt le cylindre X × I de bas en haut).

Proposition 1.2. La relation ≃ est une relation d’équivalence sur l’ensemble

des applications de X vers Y .

35
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Démonstration. L’homotopie constante H(x, t) = f(x) exhibe une homotopie

f ≃ f . La réflexivité suit du fait que si H est donnée on peut construire une homo-

topie “dans l’autre sens” en posant G(x, t) = H(x, 1− t), c’est-à-dire qu’on parcourt

le cylindre X × I de haut en bas.

Enfin si G et H sont des homotopies respectivement de f vers g et de g vers h,

on construit une homotopie de f vers h en parcourant chaque cylindre de bas en

haut deux fois plus vite. Explicitement on définit F : X × I → Y par

(x, t) 7→

G(x, 2t) si 0 ≤ t ≤ 1/2

H(x, 2t− 1) si 1/2 < t ≤ 1

La continuité de F démontre la transitivité. □

La nécessité de reparamétriser le cylindre pour obtenir une homotopie qui dure

aussi 1 (seconde) crée un petit problème technique, que nous retrouverons sous une

autre forme lors de l’étude de l’associativité de la concaténation des chemins dans le

groupe fondamental.

Notation 1.3. Le quotient de l’ensemble de toutes les applications X → Y

par la relation d’équivalence ≃ est noté [X, Y ]. La classe d’une application f est

notée [f ].

Exemple 1.4. Soit f : X → Y et cy l’application constante en un point y ∈ Y .

Alors f est homotope à une application constante si et seulement si l’application

f s’étend au cône CX qui contient X via l’inclusion de la base i : X × 0 ↪→ CX.

Explicitement f ≃ cy si et seulement si il existe une application F : CX → Y telle

que F ◦ i = f et F ([x, 1]) = y où [x, 1] est la classe de (x, 1) dans le cône.

En particulier si X = S1, on a qu’une application f : S1 → Y est homotope à

une application constante si et seulement si f s’étend à une application sur D2.

Définition 1.5. Deux espaces X et Y ont le même type d’homotopie s’il existe

des applications f : X → Y et g : Y → X telles que g ◦ f ≃ idX et f ◦ g ≃ idY . On

note alors X ≃ Y et on appelle f et g des équivalences d’homotopie.



1. HOMOTOPIE 37

Ceci est vérifié en particulier lorsque les applications f et g sont inverses l’une

de l’autre (les deux compositions ne sont pas seulement homotopes à l’identité, elles

sont égales à l’identité). Ainsi deux espaces homéomorphes sont homotopes.

Exemple 1.6. Le cône CX a le même type d’homotopie qu’un point ⋆. On dit

que CX est contractile. L’application f : CX → ⋆ est la seule qui existe et on définit

g : ⋆ → CX par g(⋆) = [x, 0]. Alors f ◦ g = id⋆ et g ◦ f est homotope à l’identité

idCX , ce que nous montrons en construisant une “contraction”.

Lemme 1.7. Le cône CX est contractile pour tout espace X.

Démonstration. On définit une application H : X × I × I → X × I en posant

H(x, t, s) = (x, ts). Puisque H(x, 0, s) = (x, 0), cette application passe au quotient

et définit une contraction (ou homotopie contractante) H̄ : CX×I → CX en posant

H̄([x, t], s) = [x, st]). Lorsqu’on restreintH à s = 0 on obtient l’application constante

au sommet du cône et quand s = 1 c’est l’identité. □

Exemple 1.8. Le cercle, le ruban de Moebius, le tore plein, le plan privé d’un

point ont tous le même type d’homotopie. A voir en exercice.

Remarque 1.9. Les définitions ci-dessus ont un analogue pointé. On considère

dans ce cadre des espaces pointés (X, x0), autrement dit des espaces X munis d’un

point de base x0.

On parle alors d’homotopie pointée entre applications pointées pour des homoto-

pies qui fixent le point de base tout au long de l’homotopie : H(x0, t) = y0 pour tout

t. On notera alors [(X, x0), (Y, y0)]∗ pour l’ensemble des classes d’homotopie pointées

ou [X, Y ]∗ tout simplement lorsque le contexte est clair.

Exemple 1.10. L’inclusion i2 : S
1 ↪→ S1 ∨ S1 est homotope à l’application qui

parcourt le premier cercle sur le premier tiers de la source S1, puis le deuxième

cercle du wedge pendant le deuxième tiers et enfin le premier cercle dans l’autre sens

pendant le troisième tiers. On peut en effet définir une homotopie (non pointée) H

de sorte qu’au temps t elle parcoure un lacet dans le wedge en partant du point

correspondant à e2pit sur le premier cercle, complète le tour qui reste à faire, passe
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par le deuxième cercle, avant de revenir en arrière pour s’arrêter au point de départ.

Quand t = 1, il ne reste que i2.

Ces deux applications ne sont pas homotopes dans le sens pointé.

2. Attachement de cellules et homotopie

Le type d’homotopie du pushout ne dépend que de l’application d’attachement

à homotopie près.

Proposition 2.1. Si f, f ′ : A → X sont homotopes, alors Y = X ∪f CA et

Y ′ = X ∪f ′ CA ont le même type d’homotopie.

Démonstration. Soit H : A×I → X une homotopie de f vers f ′. On construit

h : Y → Y ′ par la propriété universelle en posant h(x) = x pour x ∈ X puisque Y

et Y ′ sont tous deux obtenus en ajoutant un cône au même espace X. Sur le cône

on pose

h[a, t] =

[a, 2(t− 1/2)] si 1/2 ≤ t ≤ 1

H(a, 2t) si 0 ≤ t < 1/2

La continuité est garantie par le fait que la base A × 0 du cône est identifiée dans

le quotient : H(a, 1) = f ′(a) ∼′ [a, 0] et on observe que pour t = 0 on a bien la

compatibilité nécéssaire puisque h[a, 0] = H(a, 0) = f(a).

Cette application envoie donc la moitié supérieure du cône (de Y ) sur le cône

de Y ′ en le parcourant deux fois plus vite et utilise la moitié inférieure du cône

pour “faire le lien” avec l’homotopie H. On peut imaginer qu’on “couche” la moitié

inférieure du cône dans X pour passer de f(A) à f ′(A), la continuité de h nous

obligeant à garder la base fixe dans X.

On définit de manière analogue une application h′ : Y ′ → Y en utilisant l’homo-

topie inverse H(−, 1− t). Il reste alors à montrer que h ◦ h′ ≃ idY ′ et h′ ◦ h ≃ idY .

On s’occupe seulement de cette dernière, l’autre est analogue.
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Pour pouvoir construire l’homotopie, il faut bien comprendre la composition h′◦h.
Sur X, c’est l’identité et sur le cône on a

[a, t] 7→


[a, 2t− 1] 7→ [a, 4t− 3] si 3/4 ≤ t ≤ 1

[a, 2t− 1] 7→ H(a, 1− 2(2t− 1)) = H(a, 3− 4t) si 1/2 ≤ t < 3/4

H(a, 2t) 7→ H(a, 2t) si 0 ≤ t < 1/2

On parcourt donc le cône quatre fois plus vite sur le quart du haut, on utilise l’ho-

motopie pour faire le lien une fois dans un sens, puis dans l’autre. On définit alors

une homotopie K : Y × I → Y par l’identité sur X, i.e. K(x, t) = x pour tout x ∈ X
et sur CA× I on prend de plus en plus de temps pour parcourir le cône et on utilise

de moins en moins l’homotopie H. Au temps s = 1/2 par exemple on ne parcourt

H que sur la moitié de son chemin avant de rebrousser chemin. Explicitement :

([a, t], s) 7→


[a, 4

4−3s
t− 3s

4−3s
] si 3/4 · s ≤ t ≤ 1

H(a, 3s− 4t) si 1/2 · s ≤ t < 3/4 · s

H(a, 2t) si 0 ≤ t < 1/2 · s

Quand s = 1 on obtient exactement la composition h′ ◦h calculée ci-dessus et quand

s = 0 c’est l’identité sur CA. □

Corollaire 2.2. Si f, f ′ : : Sn−1 → X sont deux applications homotopes, alors

les espaces X ∪f Dn et X ∪f ′ Dn sont homotopes. □

Exemple 2.3. Soit f : Sn−1 → X une application homotope à une constante.

Alors X ∪f Dn ≃ X ∨ Sn.

Il existe des espaces qu’on ne peut pas construire par attachement de cellules

(mais à homotopie faible près c’est le cas...). Et même quand c’est possible, il n’y a

aucun résultat d’unicité sur cette structure cellulaire. L’approximation d’un espace

par un modèle obtenu à partir d’attachements de cellules en amène à étudier les

CW-complexes. Les surfaces que nous allons rencontrer bientôt en font partie et bien

souvent c’est un bon cadre de travail, en particulier pour construire des méthodes

efficaces de calcul de ces invariants appelés groupes d’homologie.
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3. Homotopie et π0

On travaille dans cette section avec des espaces pointés, c’est-à-dire des paires

(X, x0) oùX est un espace et x0 ∈ X est un point. On désigne par π0X l’ensemble des

composantes connexes par arcs de X. Autrement dit il s’agit du quotient de X par

la relation d’équivalence de connexité par arcs. Chaque élément de π0X correspond

à un sous-espace de X, par exemple la classe [x0] est constituée de tous les points

x ∈ X pour lesquels il existe un chemin γ : I → X avec γ(0) = x0 et γ(1) = x.

Définition 3.1. Soient (A, a0) et (X, x0) deux espaces pointés. On note [A,X]∗

l’ensemble des classes d’homotopie pointées d’applications pointées f : A→ X (telles

que f(a0) = x0).

On choisit maintenant 1 comme point de base de S0, la sphère unité dans R.

Proposition 3.2. On a un isomorphisme π0X ∼= [S0, X]∗.

Démonstration. On définit une application [S0, X]∗ → π0X en associant à une

application f : S0 → X le point f(−1). Si on considère deux applications homotopes

f ≃ g, il existe une homotopie pointée H : S0× I → X de f vers g. Cette homotopie

est constante sur 1× I par définition et l’application H(−1, t) définit un chemin de

f(−1) vers g(−1). Autrement dit l’application passe au quotient.

Elle est surjective car pour toute composante connexe Y par arcs de X, on peut

choisir un point y ∈ Y et définir fy : S
0 → X en posant f(1) = x0 et f(−1) = y.

Montrons enfin l’injectivité. Soient f, g : S0 → X avec f(−1) = x et g(−1) = y

dans la même composante connexe par arcs de X. Il existe alors par définition un

chemin γ : I → X tel que γ(0) = x et γ(1) = y. On définit alors une homotopie H

en posant H(1, t) = x0 pour tout t et H(−1, t) = γ(t). Ainsi f ≃ g. □

4. Invariance homotopique

Pour préparer la suite sur le groupe fondamental nous établissons d’abord deux

propriétés d’invariance homotopique. Expliquons cela dans le cas libre (non pointé).

Deux applications homotopes induisent la même application sur les classes d’homo-

topie. Toute application f : X → Y induit une application f∗ : [A,X] → [A, Y ] par

postcomposition, i.e. f∗[u] = [f ◦u]. Cette application est bien définie puisque u ≃ v
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implique l’existence d’une homotopie H : A × I → X entre u et v. La composition

f ◦H est alors une homotopie entre f ◦ u et f ◦ v.

Proposition 4.1. Soient f et g deux applications homotopes X → Y . Alors f

et g induisent la même application [A,X]→ [A, Y ].

Démonstration. Soit H : X×I → Y une homotopie de f vers g et u : A→ X.

La composition

H ◦ (u× I) : A× I → X × I → Y

définit alors une homotopie de H ◦ (u × I)(a, 0) = H(u(a), 0) = f(u(a)) vers H ◦
(u× I)(a, 1) = H(u(a), 1) = g(u(a)). Ainsi f ◦ u ≃ g ◦ u. □

Proposition 4.2. Si X ≃ Y , alors on a une bijection [A,X] ∼= [A, Y ].

Démonstration. Soit f : X → Y et g : Y → X une équivalence d’homotopie

et un inverse. Ceci signifie que g ◦ f ≃ idX et f ◦ g ≃ idY . Ces applications f

et g induisent des applications f∗ et g∗ au niveau des classes d’homotopie telles que

décrites ci-dessus. La conposition (g◦f)∗ = g∗◦f∗ induit la même application que idX

par la Proposition 4.1. Or (idX)∗ est l’identitié. Le même raisonnement s’applique

également à f∗ ◦ g∗ ce qui démontre que f∗ et g∗ sont inverses l’une de l’autre. □

5. Le groupe fondamental

Un lacet de X est un chemin ω : I → X tel que ω(0) = ω(1). Si x0 est un point

de base fixé dans X et qu’on ne considère que les lacets basés en x0, on constate

alors qu’un lacet est une application qui passe au quotient par q : I → I/0 ∼ 1 ≈ S1.

Autrement dit, on choisit comme point de base de S1 le point 1 ∈ C et on identifie

les lacets basés en x0 avec les applications pointées (S1, 1)→ (X, x0).

Nous utiliserons les deux points de vue. La version des chemins est pratique

pour écrire des paramétrisations explicites, la version des lacets paramétrisés par le

cercle permet de faire le lien avec π0X, classes d’homotopie pointées d’origine S0 et

les groupes d’homotopie supérieurs πnX = [Sn, X]∗. Elle a aussi d’autres avantages

comme nous le verrons bientôt.
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Définition 5.1. Soit (X, x0) un espace pointé. Le groupe fondamental π1X =

π1(X, x0) est l’ensemble [S1, X]∗ muni de la loi de composition obtenue par conca-

ténation des chemins.

On note f ⋆g la concaténation des chemins f, g : I → X. On choisit la paramétri-

sation consistant à parcourir le chemin f deux fois plus vite que f pour 0 ≤ t ≤ 1/2,

puis le chemin g pour 1/2 ≤ t ≤ 1. La classe d’homotopie du chemin constant cx0 est

l’élément neutre pour cette opération, la concaténation est associative à homotopie

près et l’inverse de f est le “chemin inverse”, parcouru dans l’autre sens f(1− t). Cet
inverse n’est pas un inverse strict, mais un inverse à homotopie près. On revisite ce

résultat de manière diagrammatique en nous appuyant sur la version paramétrisée

par le cercle.

On rappelle que la suspension ΣA est le cylindre A × I dans lequel on collapse

séparément la base A× 0 et le couvercle A× 1.

Définition 5.2. Soit ΣA la suspension d’un espace A. L’application pinch (ou

pincement) est le quotient p : ΣA→ ΣA/A× 1/2.

On se retrouve donc avec deux copies “miniatures” de la suspension, attachées

ensemble en un sommet. Le type d’homotopie de cet espace est un wedge de deux

suspensions (photo tiré du livre de Rotman) :

Puisque le cercle S1 peut être vu comme la suspension de S0, il admet une

application pinch p : S1 → S1 ∨S1. Le modèle que nous choisissons pour faire le lien

avec la concaténation des chemins est de voir i comme la classe de (±1, 1) et −i
comme celle de (±1, 0) dans la suspension ΣS0 qui est un quotient de S0 × I. Le
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pinch est l’application quotient qui collapse la copie de S0 centrale, i.e., qui identifie

1 et −1.

Définition 5.3. Soit (X, x0) un espace pointé. L’application de pliage (fold

map) ∇ : X ∨X → X est l’application qui se restreint à l’identité sur chaque copie

de X.

La propriété universelle du wedge, comme quotient de X
∐
X, nous apprend

qu’une application X ∨ X → Y est déterminée par une application X
∐
X → Y ,

c’est-à-dire deux applications X → Y qui envoient x0 sur le même point de Y (pour

qu’elle passe au quotient). Dans le cas du pliage on choisit deux fois l’identité.

Proposition 5.4. Le groupe fondamental d’un espace est un groupe.

Démonstration. On observe d’abord que la concaténation des lacets est in-

duite par l’application pinch. En effet, étant donnés deux lacets α et β on a

f ⋆ g : S1 p−→ S1 ∨ S1 α∨β−−→ X ∨X ∇−→ X

L’illustration est tirée de Wikipedia. On parcourt en effet le lacet α pendant le

temps qui correspond à l’hémicycle supérieur, puis β. L’associativité de ⋆ vient alors

de la commutativité à homotopie près du diagramme

S1 S1 ∨ S1

S1 ∨ S1 S1 ∨ S1 ∨ S1

p

p

p∨id

id∨p

Explicitement, cela revient à déformer continuement une concaténation de trois che-

mins qu’on parcourt soit en une demi, un quart et un quart de seconde, soit en un

quart, un quart et une demi-seconde. Les formules ont été vues en cours le premier

semestre et se trouvent dans tous les livres d’introduction à la théorie de l’homotopie.
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Les autres vérifications sont les mêmes que celles vues le premier semestre. L’in-

verse d’un lacet est ce même lacet parcouru dans l’autre sens, la concaténation avec le

lacet original n’est pas constante, mais homotope au lacet constant, l’élément neutre

de π1X. □

Nous savons qu’une application X → Y induit une application f∗ : [A,X]∗ →
[A, Y ]∗ par post-composition. Maintenant que nous travaillons avec A = S1, nous

nous assurons que ces morphismes induits sont compatibles avec la structure de

groupe.

Corollaire 5.5. Une application pointée f : X → Y induit un homomorphisme

de groupes f∗ : π1X → π1Y . En particulier, si X ≃ Y , alors π1X ∼= π1Y est un

isomorphisme de groupes.

Démonstration. L’approche diagrammatique montre que f∗ envoie la conca-

ténation de deux lacets sur la composition passant par le haut dans le diagramme

suivant :

S1 S1 ∨ S1 X ∨X X

S1 ∨ S1 X ∨X Y ∨ Y Y

p

p α∨β

α∨β

∇

f∨f f

α∨β f∨f ∇

La composition du bas donne la concaténation des images (f ◦ α) ⋆ (f ◦ β). La
commutativité du diagramme (de chaque carré de ce diagramme) permet de conclure

que f∗ est un homomorphisme de groupes.

Cette observation avec la Proposition 4.2 qui fournit un isomorphisme d’en-

sembles entre π1X et π1Y lorsque X et Y ont le même type d’homotopie, permet de

conclure qu’il s’agit d’un isomorphisme de groupes dans ce cas. □

On termine cette section avec le calcul du groupe fondamental d’un produit.

Proposition 5.6. Soient (X, x0) et (Y, y0) deux espaces pointés. On a alors un

isomorphisme π1(X × Y ) ∼= π1X × π1Y .

Démonstration. Les projections pX : X × Y → X et pY : X × Y → Y sont

continues et induisent des homomorphismes π1(X×Y )→ π1X et π1(X×Y )→ π1Y .

L’homomorphisme produit g : π1(X × Y ) → π1X × π1Y est un isomorphisme car il

admet un inverse que nous définissons maintenant.



6. QUELQUES SURFACES 45

En fait, avant de passer au quotient dans les groupes fondamentaux, on reste

au niveau des applications C∗(S1,−). Pour une paire α : S1 → X et β : S1 → Y on

définit

F (α, β) : S1 ∆−→ S1 × S1 α×β−−→ X × Y

ce qui donne une application ensembliste C∗(S1, X) × C∗(S1, Y ) → C∗(S1, X × Y ).

Clairement (pX)∗(F (α, β)) = α et (pY )∗(F (α, β)) = β. Réciproquement, considérons

un lacet γ : S1 → X × Y , alors γ(t) = (γ1(t), γ2(t)) et les deux projections γi sont

continues par la définition de la topologie produit. Alors on pose G(γ) = (γ1, γ2).

Par construction G ◦ F est l’identité et on vérifie alors que l’autre composition

F (G(γ)) = F ((pX)∗(γ), (pY )∗(γ)) = F (γ1, γ2) = γ

est aussi l’identité. Ainsi F et G sont inverses l’un de l’autre.

Pour terminer on observe que la post-composition de F avec C∗(S1, X × Y ) →
π1(X × Y ) passe au quotient et définit f : π1X × π1Y → π1(X × Y ) et G induit

l’homomorphisme produit g introduit ci-dessus. Le calcul des compositions montre

que f et g sont inverses l’une de l’autre, ce qui prouve la proposition. □

Exemple 5.7. Le tore est le produit T 2 = S1×S1. Ainsi on obtient de π1S
1 ∼= Z,

l’isomorphisme π1T
2 ∼= Z × Z ∼= Z ⊕ Z. Sous forme de présentation de groupe que

nous étudierons dans le chapitre suivant, on dira que ce groupe est engendré par

deux générateurs x et y et soumis à la relation de commutation xy = yx, ce qu’on

écrit en introduisant le relateur xyx−1y−1 qui est identifié à l’élément neutre. On

écrit alors π1T
2 ∼= ⟨x, y | xyx−1y−1⟩.

6. Quelques surfaces

Nous revenons à la fin de ce chapitre sur les quotients avec la construction et

la description cellulaire de quelques surfaces importantes. Après une petite pause

homotopique c’est peut-être le bon moment de retrouver cette notion d’attachement

de cellule dans un cadre très concret.

Définition 6.1. Une surface est un espace séparé dans lequel tout point admet

un voisinage ouvert U homéomorphe à un disque ouvert D̊2, dont le bord ∂U est

homéomorphe à S1.
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Exemple 6.2. La sphère S2 et le tore T 2 = S1 × S1 sont des surfaces. Nous

avons déjà rencontré S2 = ⋆ ∪ e2, collapse de D2 par son bord S1. Quant au tore,

on peut le voir comme quotient de I × I par la relation d’équivalence donnée par

(s, 0) ∼ (s, 1) et (0, t) ∼ (1, t) pour tous 0 ≤ s, t ≤ 1.

L’application quotient q envoie l’intérieur du carré homéomorphiquement sur

son image dans le tore et le bord du carré est envoyé sur deux cercles, équateur et

méridien, se coupant en un point, à savoir q(0, 0). Appelons h : S1 → T 2 l’inclusion

de l’équateur (pour garder en tête que ce cercle vient des côtés horizontaux du carré

I× I) et bien sûr v : S1 → T 2 l’inclusion du méridien, provenant des côtés verticaux.

Ainsi T 2 est un wedge de deux cercles S1∨S1 auquel on attache une 2-cellule e2.

Plus précisément le bord du carré ∂(I×I) = □ ⊂ I×I a pour quotient via la relation
restreinte à □ un wedge de deux cercles S1

a ∨ S1
b où l’indice indique que le premier

cercle S1
a correspond aux segments horizontaux, parcouru de gauche à droite pendant

que le cercle est parcouru dans le sens trigonométrique, alors que le second correspond

aux segments verticaux parcourus de bas en haut, comme indiqué sur la figure. Le

tore est alors obtenu de ce wedge en attachant l’intérieur du carré, homéomorphe à

une cellule ouverte, puisque par définition de la relation d’équivalence, le quotient

q : I × I → T 2 se restreint à un homéomorphisme sur l’intérieur du carré.

Comment décrire l’application d’attachement ? Il s’agit d’identifier T 2 avec un

pushout de la forme S1
a ∨S1

b ← S1 → D2 après avoir identifié □ ≈ S1 et I × I ≈ D2.

L’application d’attachement f se lit en parcourant le bord du carré, disons en partant

de (0, 1) dans le sens trigonométrique inverse. En effet cette application correspond

précisément au quotient S1 ≈ □ → S1
a ∨ S1

b ce qui revient à concaténer les lacets

a ⋆ b ⋆ ā ⋆ b̄. L’inclusion S1
a ∨ S1

b ↪→ T 2 et le quotient I × I → T 2 sont compatibles
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avec cette application dans le sens où le carré suivant commute :

□ I × I

S1
a ∨ S1

b T 2

q

i

On a donc, après avoir remplacé le carré et son bord par les espaces homéomorphes

disque et cercle, une application induite par la propriété universelle du pushout

(S1
a ∨ S1

b ) ∪f e2 → T 2. Cette application est une bijection d’un espace compact vers

un espace séparé, c’est donc un homéomorphisme.

Pour conclure, on se souvient que le type d’homotopie du recollement ne dépend

que de l’application d’attachement à homotopie près. La concaténation des lacets

induisant la structure de groupe du groupe fondamental, on comprend que la classe

d’homotopie [f ] est le commutateur αβα−1β−1 ∈ π1(S1
a ∨ S1

b ), où α est la classe du

lacet [a] et β = [b].

Pour construire de nouvelles surfaces plus compliquées à partir de surfaces “élé-

mentaires”, l’opération de somme connexe sera bien utile. En fait nous allons voir

que cette opération permet de construire toutes les surfaces à partir de deux surfaces

“élémentaires”, le tore et le plan projectif, mais il faudra attendre le chapitre 4 pour

cela...

Définition 6.3. Soient S et T deux surfaces, s ∈ U ⊂ S, t ∈ V ⊂ T , deux

voisinages ouverts homéomorphes à des disques ouverts et dont les bords sont ho-

méomorphes à des cercles. La somme connexe S#T est l’espace quotient obtenu de

(S \ U)
∐
(T \ V ) en identifiant ∂U avec ∂V via un homéomorphisme.

Les bords de U et de V sont homéomorphes à un cercle, on peut donc composer

l’un de ces homéomorphismes avec l’inverse de l’autre pour obtenir f : ∂U → ∂V et

on identifiera tout point de ∂U avec f(u) ∈ ∂V . Dans ce cours nous nous satisfaisons

de la construction décrite ci-dessus, mais dans un cours de géométrie on montrerait

que S#T est encore une surface et que celle-ci ne dépend pas des choix qui ont

été faits : ni des points, ni des voisinages... On trouvera plus de détails sur cela

dans le livre de Lee, Introduction to Topological Manifolds. Pour généraliser cette



48 2. HOMOTOPIES ET GROUPE FONDAMENTAL

construction en dimension > 2 il faut tenir compte de l’orientation du bord des

voisinages. La théorie repose sur le Théorème du disque de Palais (1960).

On observe que la sphère S2 est un élément neutre pour cette opération : S2#S ≈
S pour toute surface S.

Exemple 6.4. On suit le procédé pour S = T = T 2 et on obtient un tore à deux

trous.

Expliquons cela pas à pas. Le tore est un carré dont on identifie les paires de

côtés parallèles. On choisit le point [(1/5; 1/5)] et un voisinage dont le bord est un

lacet comme montré sur le dessin suivant (Victor Protsak, Cornell) et on enlève son

intérieur :

L’opération indiquée par une flèche est mieux comprise si on imagine d’abord

que l’on sépare le point de départ et d’arrivée du lacet pour obtenir un pentagone

(sans oublier qu’il faudra les identifier à nouveau par la suite). La même opération
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se fait également avec l’autre tore si bien que la somme connexe est un quotient de

deux pentagones. Autrement dit on utilise la technique du quotient en deux temps

pour décrire la somme connexe non pas comme le quotient de deux tores troués,

mais comme deux pentagones que l’on recolle et ensuite on fera les identifications

nécessaires sur les côtés des carrés. On identifie les côtés des carrés d’origine comme

pour le tore et également les nouveaux côtés, entre eux (comme sur le dessin), par

définition de la somme connxex. Ceci explique pourquoi la somme connexe est un

quotient d’un octaèdre. On se rassure en vérifiant que les deux extrémités des seg-

ments correspondants au bord du voisinage sont bien identifiés.

En conclusion T 2#T 2 est un espace dont une structure cellulaire peut être décrite

par (S1 ∨ S1 ∨ S1 ∨ S1) ∪ e2.

Le wedge de quatre cercles correspond au quotient du bord de l’octaèdre. Le même

argument que pour le tore, basé sur la propriété universelle du pushout, la compacité

et Hausdorffitude, permet ensuite de montrer que T 2#T 2 est homéomorphe à (S1 ∨
S1 ∨ S1 ∨ S1) ∪f e2. On peut finalement identifier l’application d’attachement f qui

est un lacet dans le wedge de cercles. Par construction c’est l’application S1 →
S1
a ∨S1

b ∨S1
c ∨S1

d donnée à homéorphisme près par l’application quotient q restreinte

au bord de l’octaèdre. L’indice de chaque cercle correspond au côté portant la même

lettre sur l’octaèdre.

Choisissons un point de base sur l’octaèdre, disons le sommet situé entre A et C

ci-dessus. Un générateur de π1S
1 est alors donné par le lacet qui parcourt le bord de

l’octaèdre en partant de ce sommet dans le sens trigonométrique, i.e.

c′ ⋆ d′ ⋆ c̄′′ ⋆ d̄′′ ⋆ b′ ⋆ a′ ⋆ b̄′′ ⋆ ā′′

Pour distinguer les chemins on choisit d’appeler a′ et a′′ les chemins parcourus sur les

deux côtés identifiés portant la lettre A sur le dessin, le sens de ces chemins explique



50 2. HOMOTOPIES ET GROUPE FONDAMENTAL

les barres pour indiquer lesquels sont parcourus en sens inverse. Si a est le chemin

q ◦ a′ = q ◦ a′′ dans le quotient, on obtient alors

c ⋆ d ⋆ c̄ ⋆ d̄ ⋆ b ⋆ a ⋆ b̄ ⋆ ā

Or, chacun de ces chemins est un lacet dans le wedge de cercles, la lettre correspon-

dant à l’indice utilisé. Comme la concaténation induit la structure de groupe dans le

groupe fondamental, on voit que l’application d’attachement est représentée par le

lacet dont la classe d’homotopie est le commutateur [γ, δ][β, α] ∈ π1(S1
a∨S1

b∨S1
c∨S1

d).

La lettre grecque α = [a], β = [b], etc.

Un autre choix de point de base sur le bord de l’octogone donnerait un autre mot

en α, β, γ, δ.

Exemple 6.5. La bouteille de Klein K est obtenue par le quotient suivant :

AinsiK admet une présentation cellulaire de la forme (S1∨S1)∪e2. L’application
d’attachement est décrite ici par abab−1. Si on recolle d’abord les côtés B on obtient

un cylindre dont on doit identifier encore les bases, en les parcourant l’une dans un

sens, et l’autre dans l’autre sens. Pour avoir une meilleure intuition géométrique de

cette surface non orientable (qui ne se plonge pas dans R3), on peut la décomposer

en deux parties connues. Coupons le carré ci-dessus le long de deux segments ver-

ticaux se trouvant au quart et aux trois quarts de la distance horizontalement. On

recolle les côtés B pour se retrouver avec deux bandes dont il faut identifier les côtés

horizontaux comme indiqué par les flèches et les côtés verticaux que nous venons de

couper :
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Il s’agit de deux bandes de Möbius que l’on recolle le long de leur bord. Le plan

projectif est formé d’une bande de Möbius et d’un disque, alors que la bouteille de

Klein est formée de deux bandes de Möbius.





Chapitre 3

Théorie des groupes combinatoires

Dans ce chapitre notre but est de donner quelques compléments de théorie des

groupes. Nous commençons avec des rappels sur les groupes libres, parelrons de

présentations de groupes, puis étudierons la notion de pushout de groupes. Une fois

cet outil puissant en mains nous serons à même de calculer le groupe fondamental

de nombreux espaces : espaces projectifs, réels ou complexes, surfaces orientables ou

non, etc. Ce sera le programme pour le chapitre suivant

1. Groupes libres

Intuitivement un groupe libre est formé à partir d’un choix de générateurs, sou-

vent appelés xi et indexés par un ensemble d’indices I, fini ou non, qu’on utilise pour

former tous les éléments qui doivent se trouver dans ce groupe pour que les axiomes

soient satisfaits, mais sans ajouter aucune autre relation qui ne serait pas imposée

par ces axiomes.

Exemple 1.1. Si on choisit I = ∅, alors le groupe libre à zéro générateurs est

le groupe trivial 1. Si on choisit un générateur x, alors on doit forcément introduire

son inverse x−1 et tous les produits finis possibles si bien qu’on obtient un ensemble

{xn | n ∈ Z}. Le produit xn · xm = xn+m munit cet ensemble d’une structure

de groupe si bien qu’il mérite le nom de groupe libre à un élément. Ce groupe est

isomorphe à (Z,+) via l’isomorphisme xn 7→ n. Il jouit de la propriété caractéristique

suivante :

Hom(Z, G) ∼= G

Explicitement un homomorphisme f vers un groupe arbitraire G est entièrement

déterminé par l’image f(1) = g, et inversément tout élément de G définit un homo-

morphisme f : Z→ G (on pose f(n) = gn).

53
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Formellement on définit un groupe libre en général par le foncteur adjoint de

l’oubli O : Groupes→ Ensembles, qui associe à un groupe G l’ensemble sous-jacent

constitué de ses éléments.

Définition 1.2. Soit F : Ensembles → Groupes le foncteur adjoint à gauche

de O. On appelle groupe libre tout groupe de la forme F (I) où I est un ensemble,

dont les éléments s’appellent les générateurs de F (I).

Pour des questions de commodité d’écriture on aime associer à tout α ∈ I un

élément xα, et explicitement F (I) est alors l’ensemble formé des mots xn1
α1
. . . xnk

αk
,

pour xαi
∈ I et ni ∈ Z. La loi de composition est la concaténation des mots et le

neutre est donné par le mot vide, qu’on écrit 1. Pour que ceci définisse bien une

structure de groupe, on doit imposer la relation xαx
−1
α = 1, c’est-à-dire que F (I) est

le quotient de l’ensemble de tous les mots par la relation d’équivalence engendrée

par xαx
−1
α ∼ 1 et x−1

α xα ∼ 1 pour tout α ∈ I. Tout mot est équivalent à un mot ne

contenant aucune juxtaposition d’un générateur suivi ou précédé de son inverse et

on appelle un tel mot réduit, c’est sous cette forme qu’on représente généralement

un élément de F (I).

Par définition, on a une caractérisation de F (I) par la propriété d’adjonction.

Proposition 1.3. On a une bijection d’ensemble Hom(F (I), G) ∼= GI .

Démonstration. En effet Hom(F (I), G) ∼= mor(I,O(G)) par adjonction. Or,

un morphisme d’ensembles de I vers O(G) correspond à la donnée d’un élément gα

pour tout α ∈ I. □

Exemple 1.4. Soit I un ensemble à deux éléments et F (2) le groupe libre associé.

On appelle a et b les générateurs puisqu’on peut ici se passer de la lourdeur des in-

dices. Les éléments de F (2) = F (a, b) sont les mots de la forme an1bm1an2bm2 . . . a
nkbmk

pour k ≥ 1, ni,mi ∈ Z pour tous 1 ≤ i ≤ k et seuls n1 et mk peuvent être nuls. De

cette manière on impose que ces mots sont réduits.

Les mots ab2a−1 et ababa sont deux éléments de F (a, b), représentés par des mots

réduits. La multiplication étant définie par la juxtaposition, on obtient le produit

suivant que l’on réduit grâce aux identifications mentionnées ci-dessus :

ab2a−1 · ababa = ab2a−1ababa = ab2baba = ab3aba
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2. Présentations de groupes

Soit G un groupe (discret), I un ensemble fini ou non, et {gα | α ∈ I} des

générateurs du groupeG. On a donc un homomorphisme de groupes surjectifs F (I) =

∗α∈IZ→ G qu’on définit en envoyant le α-ème générateur xα sur gα.

Définition 2.1. Les éléments du noyau de F (I) ↠ G sont appelés relateurs et

un choix {rβ | β ∈ J} de générateurs de ce noyau donne lieu à une présentation de

G par générateurs et relateurs. On écrit G ∼= ⟨xα, α ∈ I | rβ, β ∈ J⟩.

Remarque 2.2. Chaque relateur est un élément du groupe libre F (I), il s’écrit

donc comme un mot en les générateurs xα et c’est sous cette forme que l’on indiquera

les relateurs dans la présentation. Le premier Théorème d’isomorphisme pour les

groupes garantit que le quotient de F (I) par le sous-groupe normal engendré par les

relateurs est isomorphe à G.

Exemple 2.3. Le groupe trivial admet une présentation“vide”puisque F (∅) = 1

dont le seul élément est le mot vide. En général tout groupe admet de nombreuses

présentations, par exemple ⟨x | x2, x3⟩ décrit aussi le groupe trivial.

Le groupe cyclique Cn admet ⟨x | xn⟩ comme présentation puisque le quotient

du groupe libre à un seul générateur F (x) par le sous-groupe normal engendré par

xn est un groupe cyclique d’ordre n.

Exemple 2.4. Le groupe abélien libre Z × Z est engendré par deux éléments

(1; 0) et (0; 1). Le groupe libre F (x, y) à deux générateurs se surjecte sur Z×Z et le

noyau est engendré par le relateur qui indique la relation de commutativité entre les

deux générateurs. L’élément xyx−1y−1 appartient au noyau de cet homomorphisme

puisque son image est (1; 0) + (0; 1) − (1; 0) − (0; 1) = (0; 0). Ainsi Z × Z ∼= ⟨x, y |
xyx−1y−1⟩.

Je profite de cet exemple pour mettre en évidence la différence entre le sous-

groupe de F (x, y) engendré par le mot w = xyx−1y−1 et le sous-groupe normal N

engendré par ce même mot. En effet le premier est un groupe cyclique d’ordre infini

formé de toutes les puissances wn pour n ∈ Z, mais ce sous-groupe n’est pas normal

(par exemple xwx−1 ne s’y trouve pas). Pour former un quotient dans la catégorie
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des groupes on doit quotienter par un sous-groupe normal et on forme alors N en

ajoutant tous les produits de conjugués de wn.

Le groupe symétrique S3 est engendré par les transpositions (12) et (23). Les

relations qui nous permettent d’écrire une présentation sont (12)2 = (23)2 = id,

autrement dit les transpositions sont des éléments d’ordre 2, et (12)(23) = (123) est

un élément d’ordre 3, i.e. [(12)(23)]3 = id.

Lemme 2.5. On a un isomorphisme S3
∼= ⟨x, y | x2, y2, (xy)3⟩.

Démonstration. Appelons G le groupe donné par cette présentation. Pour

démontrer que S3
∼= G, on constate que le choix des générateurs définit un homo-

morphisme surjectif F (x, y)→ S3. Comme x2, y2, (xy)3 appartiennent au noyau par

construction, cet homomorphisme passe au quotient et définit un homomorphisme

surjectif G→ S3. Il reste à montrer l’injectivité. Un élément de G est représenté par

un mot en x et y. Les relateurs x2 et y2 montrent qu’on peut toujours se restreindre

à un mot de la forme xyxy . . . x ou xyxy . . . y s’il commence par x ou yxyx . . . x ou

yxyx . . . y sinon. En effet toute puissance xn peut être réduite modulo 2 dans G et

on observe aussi que x̄2 = 1 implique que x̄−1 = x̄.

Le relateur xyxyxy indique enfin que x̄ȳx̄ȳx̄ȳ = 1 dans G. Ainsi x̄ȳx̄ = ȳx̄ȳ. On

a donc six mots de moins d’au plus trois lettres 1, x̄, ȳ, x̄ȳ, ȳx̄ et x̄ȳx̄. Ils sont tous

différents car les images dans S3 le sont. Dès qu’un mot a plus de trois lettres on

peut réduire le nombre de lettres en utilisant la relation x̄ȳx̄ȳ = ȳx̄ ou ȳx̄ȳx̄ = x̄ȳ.

Le groupe G est donc constitué d’exactement six éléments, c’est S3. □

Les méthodes décrites dans cette section sont utiles dans les deux sens. Si on

connâıt un groupe on peut vouloir en donner une présentation pour le comprendre

et travailler avec. Réciproquement on peut créer de nouveaux groupes en indiquant

un nombre de générateurs et une famille de relations que ceux-ci vérifient.

3. Le graphe de Cayley

Dans cette courte section nous introduisons la notion de graphe de Cayley qui

permet d’appréhender géométriquement la signification d’une présentation.
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Définition 3.1. Soit G un groupe et S un ensemble de générateurs. Le graphe

de Cayley de G associé à S est le graphe coloré Γ = Γ(G,S) dont les sommets sont

les éléments du groupe, les couleurs sont les générateurs, et les arêtes orientées de

couleur s ∈ S relient un sommet g au sommet gs.

Voici le graphe de Cayley du groupe libre F (a, b) :

On choisira d’indiquer l’orientation par une flèche sur l’arête, sauf pour des géné-

rateurs d’ordre 2 auquel cas on ne surchargera pas le dessin en indiquant simplement

une arête non orientée au lieu d’une boucle. Ainsi le graphe de C2 donné par la pré-

sentation ⟨x | x2⟩ est simplement un intervalle plutôt qu’une boucle :

Exemple 3.2. Le graphe de Cayley de S3 associé aux générateurs (12) et (23)

est alors un hexagone dont les arêtes bicolores s’alternent. Si on avait choisi plutôt

(12) et (123) comme générateurs on obtiendrait un tout autre graphe de Cayley :
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Les lacets dans le graphe issus de l’élément neutre correspondent à des relations.

4. Le produit libre

On introduit une première construction qui consiste à “mettre ensemble” deux

groupes sans imposer aucune autre relation que d’identifier les deux éléments neutres.

Cette identification est nécessaire pour former un groupe et dans ce sens on voit peut-

être l’analogie avec le wedge qui consistait à n’identifier que le strict minimum pour

recoller deux espaces donnés. Cette construction est facile à définir dans le langage

de la théorie des groupes combinatoire.

Définition 4.1. Soit G un groupe donné par une présentation ⟨xα, α ∈ I |
rβ, β ∈ J⟩ et H un groupe donné par une présentation ⟨yγ, γ ∈ K | sδ, δ ∈ L⟩. Le
produit libre ou amalgame G ∗ H est le groupe donné par la présentation ⟨xα, yγ |
rβ, sδ⟩.

Lemme 4.2. Il existe des homomorphismes de groupes injectifs i : G→ G ∗H et

j : H → G ∗H.

Démonstration. Définissons i par exemple. Soit g ∈ G. Il existe alors un

mot w dans le produit libre F (I) qui représente g. Ecrivons pour insister sur les

générateurs qui apparaissent dans ce mot que w = w(xα) et on pose i(g) = w̄,

la classe de w(xα) dans le groupe libre F (I
∐
K) modulo le sous-groupe normal

engendré par les rβ et les rδ. Autrement dit on a construit un homomorphisme

F (I) → F (I
∐
K) ↠ G ∗ H. Celui-ci passe au quotient puisque l’image de tout

relateur rα est triviale. L’homomorphisme induit i est injectif puisque w(xα) = 1

dans le quotient si et seulement w(xα) = 1 dans G, aucune nouvelle relation en les

xα n’étant introduite dans G ∗H. De manière plus convaincante peut-être on peut

aussi considérer le quotient de G ∗ H par le sous-groupe normal engendré par H,

c’est-à-dire en introduisant les relations xγ = 1 pour tout γ. La présentation de ce

groupe quotient montre qu’il est isomorphe à G. Ainsi q ◦ i : G → G ∗ H → G est

l’identité si bien que i est injectif. □

L’existence de ces homomorphismes i et j nous permet d’énoncer la propriété

universelle du produit libre, qui établit un lien formel entre cette construction et le
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wedge d’espaces pointés ou la réunion disjointe d’espaces non pointés. Autrement

dit le produit libre n’est rien d’autre que le coproduit dans la catégorie des groupes.

Proposition 4.3. Pour toute paire d’homomorphismes de groupes φ : G → M

et ψ : H → M , il existe un unique homomorphisme de groupes ω : G ∗ H → M tel

que ω ◦ i = φ et ω ◦ j = ψ.

Démonstration. On se représente cela sous forme de diagramme commutatif :

1 H

G G ∗H

M

j
ψ

i

φ

ω

On pose ω(xα) = φ(xα) et ω(yβ) = ψ(xγ) pour tous xα, yβ. Ceci définit un homo-

morphisme F (I
∐
K) → M qui passe au quotient puisque ω envoie les relateurs rβ

sur φ(rβ) = 1 et de même pour les relateurs rδ. L’unicité de ω est claire. □

Exemple 4.4. On construit le produit libre de deux groupes libres. Considérons

G = H = F (1) ∼= Z. Alors F (1) ∗ F (1) est un groupe libre F (2) à deux générateurs.

En effet, appelons x le générateur de G et y celui de H. Alors, la construction de G∗
H = F (x)∗F (y) donne la présentation ⟨x, y⟩ = ⟨x, y | ∅⟩, qui est celle de F (2). Une
autre approche serait d’utiliser la propriété universelle de ce produit libre qui affirme

que tout homomorphisme de groupes F (x)∗F (y) vers un groupeM est équivalente à

la donnée de deux homomorphismes F (x)→M et F (y)→M . Or chacun d’eux est

entièrement déterminé par l’image de x, respectivement celle de y. Autrement dit un

tel morphisme correspond au choix de deux éléments m,n ∈ M . C’est précisément

la propriété universelle de F (2). En général F (n) ∗ F (m) ∼= F (n+m).

Exemple 4.5. Le groupe C2 ∗C2 admet la présentation ⟨x, y | x2, y2⟩. Ainsi les
homomorphismes de C2 ∗C2 vers un groupe arbitraire M correspondent au choix de

deux éléments m,n ∈M avec m2 = 1 = n2.

Si on ajoute le relateur xyx−1y−1 on obtient le quotient C2 × C2, ce qu’on peut

aussi voir comme un quotient en deux temps du groupe libre F (2), d’abord en
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introduisant la relation xy = yx pour obtenir le groupe abélien libre Z × Z, puis
les deux relations 2x = 0 = 2y. Ainsi un homomorphisme de Z/2 × Z/2 vers un

groupe M correspond à la donnée de deux éléments m,n ∈ M qui sont d’ordre

deux : m2 = 1 = n2, et qui commutent entre eux : mn = nm.

5. Amalgames ou pushouts

On travaille dans cette section avec deux homomorphismes de groupes α : K → G

et β : K → H. On construit le groupe le plus proche de G et H en faisant de sorte

que α(x) soit identifié avec β(x) pour tout x ∈ K.

Définition 5.1. Soit G ← K → H deux homomorphismes de groupes. Le

pushout ou amalgame G ∗K H est le groupe quotient (G ∗H)/N où N est le sous-

groupe normal engendré par α(x)β(x)−1.

Les inclusions G→ G ∗H et H → G ∗H induisent des homomorphismes i : G→
G ∗K H et j : H → G ∗K H et on peut énoncer alors la propriété universelle du

pushout.

Proposition 5.2. Pour toute paire d’homomorphismes de groupes φ : G → M

et ψ : H →M tels que φ ◦α = ψ ◦β, il existe un unique homomorphisme de groupes

ω : G ∗K H →M tel que ω ◦ i = φ et ω ◦ j = ψ.

Démonstration. On se représente cela sous forme de diagramme commutatif :

K H

G G ∗K H

M

α

β

j
ψ

i

φ

ω

Par la Proposition 4.3 on a un unique homomorphisme ω : G ∗ H → M . Celui-ci

passe au quotient puisque ω(α(x)β(x)−1) = 1. Ceci prouve l’existence.

L’unicité vient de la propriété universelle du produit libre et de celle du quotient.

Plus précisément, si ω′ est un autre tel homomorphisme versM , alors la composition

G
i−→ G ∗H ↠ G ∗K H

ω′
−→ M doit être égale à φ par commutativité du diagramme
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ci-dessus, et de même pour ψ : H → M . Or ces deux homomorphismes déterminent

complètement l’homomorphisme G∗H ↠ G∗KH
ω′
−→M par la propriété universelle

du produit libre et c’est le même pour ω. L’homomorphisme induit sur le quotient

est unique si bien que ω = ω′. □

Remarque 5.3. La propriété universelle caractérise le pushout à isomorphisme

près. Autrement dit un groupe Γ admettant la propriété universelle décrite ci-dessus

est isomorphe à G ∗K H.

En effet ce groupe Γ est alors muni de deux homomorphismes I : G → Γ et

J : H → Γ compatibles avec α et β, et la propriété universelle permet d’obtenir un

homomorphisme γ : Γ→ G ∗K H qui fait commuter le diagramme semblable à celui

de la Proposition 5.2 (par exemple γ ◦ I = i). Cette même proposition nous garantit

l’existence d’un homomorphisme ω : G ∗K H → Γ.

Regardons la composition γ ◦ω. On prétend que comme l’identité de G∗KH elle

fait commuter les triangles formés par les homomorphismes i et j. Il suffit en effet

de calculer

γ ◦ ω ◦ i = γ ◦ I = i et γ ◦ ω ◦ j = γ ◦ J = j

Or, la propriété universelle garantit l’unicité de cet homomorphisme et on conclut

que γ ◦ω est l’identité. Le même argument, mais en utilisant la propriété universelle

de Γ permet de montrer que ω ◦ γ = idΓ. On a prouvé que Γ ∼= G ∗K H.

Exemple 5.4. Si K = 1 on retrouve le produit libre G ∗H. Si H = 1 on obtient

le quotient de G par le sous-groupe normal engendré par K. En effet G ∗ 1 ∼= G et

N = ◁K▷ avec les notations de la Définition 5.1.

Ainsi le pushout du diagramme 1 ← C2 → S3 est le groupe trivial, alors que le

pushout du diagramme 1← C3 → S3 est le groupe cyclique C2.





Chapitre 4

Le Théorème de Seifert-van Kampen

Nous arrivons ici au coeur de la théorie de l’homotopie après les préparatifs de

nature topologiques (les quotients) et de théorie des groupes (combinatoire). Notre

but est de prouver le Théorème de Seifert et van Kampen qui permet de calculer

le groupe fondamental d’un recollement d’espaces par une construction entièrement

algébrique. Nous serons à même de calculer le groupe fondamental de nombreux es-

paces : des wedges, des recollements de cellules, et en particulier les espaces projectifs,

réels ou complexes, surfaces orientables ou non, etc. En fait le groupe fondamental

des surfaces est capable de les distinguer entre elles, ce qui nous amènera à parler

du Théorème de calssification des surfaces.

1. Le groupe fondamental d’un recollement

L’objectif de cette section est de calculer le groupe fondamental d’un recollement

de deux espaces. Nous allons supposer dans cette section que X = A ∪ B est la

réunion de deux sous-espaces ouverts A et B dont l’intersection A ∩ B = C est un

sous-espace connexe par arcs (et ouvert). On choisit un point de base x0 ∈ C qu’on

utilise comme point de base pour chacun des quatre espaces, A, B, C et X. Chaque

inclusion i : A ↪→ X et j : B ↪→ X induit un homomorphisme i∗ : π1A → π1X et

j∗ : π1B → π1X respectivement. Par la propriété universelle de la somme amalgamée

on obtient alors un homomorphisme ϕ : π1A ∗ π1B → π1X.

Lemme 1.1. L’homomorphisme ϕ : π1A ∗ π1B → π1X est surjectif.

Démonstration. Soit γ : I → X un lacet basé en x0. Notre but est de découper

ce lacet en petits chemins entièrement contenus soit dans A, sot dans B. La première

partie de la preuve suit l’argument des vidéos, un peu plus long que celui proposé

ensuite qui repose sur l’existence d’un nombre de Lebesgue. Les deux approches se

rejoignent alors pour conclure de la même manière.

63



64 4. LE THÉORÈME DE SEIFERT-VAN KAMPEN

Approche 1. Pour tout 0 ≤ t ≤ 1, le point γ(t) se trouve soit dans A, soit dans

B, la préimage par γ de l’ouvert A ou B est donc un voisinage ouvert de t dans

l’intervalle [0, 1]. On choisit un intervalle ouvert Ut = (t − ε, t + ε) contenu dans ce

voisinage si bien que nous avons recouvert I avec des intervalles ouverts Ut ayant

la propriété que γ(Ut) est entièrement contenu dans l’un des ouverts A ou B. Par

compacité de I on extrait un recouvrement fini.

Ordonnons ces intervalles ouverts par ordre croissant des origines : Ces intervalles

sont alors [0, s1), (s2, s3), . . . , (s2k, 1] et vérifient 0 < s2 < s4 < · · · < s2k. Quitte à

enlever des ouverts superflus on peut bien supposer que s2j ̸= s2j+2. Puisque c’est un

recouvrement de I, on a aussi s1 > s2 et à nouveau, quitte à enlever des intervalles,

on peut supposer que s3 > s1. De même on pourrait fusionner deux intervalles

consécutifs si les images par γ sont contenues dans le même ouvert A ou B si bien

qu’on obtient finalement une suite d’intervalles dont les images par γ s’alternent

dans A et B.

En particulier les intersections (s2j−1, s2j) sont envoyées dans C = A ∩ B. On

peut alors associer au recouvrement, en choisissant un point tj ∈ (s2j−1, s2j), une

partition 0 = t0 < t1 < · · · < tn = 1 de sorte que l’image de l’intervalle fermé

[ti−1, ti] est entièrement contenue dans A ou B pour tout 1 ≤ i ≤ n et les images de

deux intervalles adjacents ne sont pas contenues dans le même ouvert.

Approche 2. Le recouvrement de l’intervalle I, compact et métrique, par les deux

ouverts γ−1(A) et γ−1(B) admet un nombre de Lebesgue δ. Ainsi tout intervalle

dans I de longueur < δ est entièrement contenu dans l’un des deux ouverts. C’est
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en particulier le cas pour les intervalles [k/m, (k + 1)/m] pour tout 0 ≤ k ≤ m − 1

si on choisit un entier m > δ−1. Quitte à concaténer les intervalles consécutifs dont

les images sont contenues dans le même ouvert A ou B, on peut se ramener à une

partition de I de la forme 0 < t1 = k1/m < t2 = k2/m · · · < tn = 1 de sorte à

découper le lacet γ en tronçons qui s’alternent dans A et dans B, comme sur le

dessin ci-dessus.

Pour transformer ce découpage en concaténation de lacets, on procède comme

suit. Par connexité par arcs de A ∩ B = C on choisit des chemins γi entièrement

contenus dans C reliant x0 à γ(ti) pour 1 ≤ i ≤ n − 1. On appelle γ̄i le chemin

inverse.

Appelons encore γi le chemin parcouru par γ entre le temps ti−1 et ti. Après

reparamétrisation cela correspond donc au chemin t 7→ γ(t · (ti − ti−1) + ti−1). Ceci

nous permet de construire des lacets γ1 ⋆ γ̄1, puis γ1 ⋆ γ
2 ⋆ γ̄2, . . . , γn−2 ⋆ γ

n−1 ⋆ γ̄n−1

et enfin γn−1 ⋆ γ
n. La concaténation de ces lacets donne le lacet γ à homotopie près,

puisque γ̄i ⋆ γi est homotope au lacet constant.

Par conséquent la classe d’homotopie [γ] est égale au produit des classes d’ho-

motopie

[γ1 ⋆ γ̄1] · [γ1 ⋆ γ2 ⋆ γ̄2] . . . [γn−2 ⋆ γ
n−1 ⋆ γ̄n−1] · [γn−1 ⋆ γ

n]

Chacun de ces lacets est par construction entièrement contenu dans A ou dans B,

autrement dit chacun se trouve soit dans l’image de i∗, soit dans l’image de j∗. Ainsi

[γ] appartient à l’image de ϕ. □
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Il s’agit maintenant d’identifier le noyau de ϕ : π1A ∗ π1B → π1X. Pour mettre

clairement en relation les groupes qui jouent un rôle dans la preuve, assez complexe,

du Théorème de Seifert-van Kampen, observons que l’amalgame π1A ∗π1C π1B avec

lequel nous allons identifier π1X est obtenu comme pushout du diagramme suivant,

où on note α : C ↪→ A et β : C ↪→ B les inclusions :

π1A
α∗←− π1C

β∗−→ π1B

Par construction, l’espace X est quant à lui le pushout (recollement) du diagramme

suivant à gauche

C A π1C π1A

B X π1B π1X

β

α

j β∗

α∗

i∗

i j∗

qui induit, en appliquant le foncteur π1 le carré commutatif à droite. Il existe donc un

homomorphisme ϕ̄ : π1A∗π1C π1B → π1X par la propriété universelle du pushout (de

groupes), dont la précomposition avec le quotient q : π1A ∗ π1B → π1A ∗π1C π1B est

exactement l’homomorphisme ϕ construit ci-dessus puisqu’il cöıncide avec i∗ sur π1A

et j∗ sur π1B (et on conclut par la propriété universelle du produit libre). Autrement

dit l’homomorphisme ϕ factorise par l’amalgame et nous voulons montrer que ϕ̄ est

un isomorphisme.

Théorème 1.2. Soient A,B ⊂ X deux ouverts d’un espace X tels que X = A∪B
et C = A ∩B est connexe par arcs. Alors π1X ∼= π1A ∗π1C π1B.

Démonstration. Puisque l’homomorphisme ϕ : π1A ∗ π1B → π1X est surjectif

par le Lemme 1.1, il reste à montrer que le noyau de ϕ est le sous-groupe normal N

engendré par α∗(c)β
−1
∗ (c) pour c ∈ π1C.

Soit [γ1], [γ2], . . . , [γℓ] des classes d’homotopie de lacets basés en x0 et entièrement

contenus soit dans A, soit dans B. On suppose que la concaténation γ = γ1 ⋆ · · · ⋆ γℓ
est contractile dans X, i.e. le produit [γ1] . . . [γℓ] est un élément du produit libre

π1A∗π1B se trouvant dans le noyau de ϕ. On va prouver que cet élément appartient

à N = ker q, autrement dit que γ = 1 dans l’amalgame π1A ∗π1C π1B.
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Soit H : I×I → X une homotopie de γ = H(0,−) vers cx0 = H(1,−). Observons

que H(s, 0) = H(s, 1) = x0 pour tout s ∈ I puisque cette homotopie est pointée

(entre des lacets basés en x0). On procède maintenant pour le carré I × I comme

pour l’intervalle dans le lemme ci-dessus. On choisit donc pour chaque point (s, t)

un rectangle ouvert centré en (s, t) dont l’image est entièrement contenue dans A ou

dans B. Par compacité on extrait de ce recouvrement ouvert un recouvrement fini

par des rectangles dont la clôture est envoyée dans A ou dans B, ce qui est possible

quitte à réduire la taille des rectangles ouverts choisis précédemment.

Soit 0 = s0 < s1 < · · · < sm−1 < sm = 1 et 0 = t0 < t1 < · · · < tn = 1

les coordonnées des bords de tous les rectangles. De cette manière chaque rectangle

[si−1, si]× [tj−1, tj] est contenu dans l’un des rectangles du recouvrement fini, si bien

que l’homotopie H envoie [si−1, si] × [tj−1, tj] soit dans A, soit dans B. Quitte à

raffiner cette partition on peut supposer que les si contiennent les points séparant

les lacets γk, autrement dit chaque γk est parcouru sur un intervalle de la forme

[sik−1
, sik ]. Nous numérotons maintenant les mn rectangles de bas en haut et de

droite à gauche. Pour tout 0 ≤ k ≤ mn nous définissons un chemin dans I × I de

sorte que

(1) il part de (si, 0) et arrive en (si, 1) ou (si−1, 1) ;

(2) il sépare les k premiers rectangles des mn− k autres ;

(3) il parcourt uniquement des tronçons verticaux ou horizontaux.
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L’image par H d’un tel chemin est un lacet basé en x0, appelons le ωk et remar-

quons que ω0 = cx0 et ωmn = γ. Pour chacun des sommets P des rectangles on choisit

un chemin θP reliant x0 à H(P ) en choisissant le chemin constant si H(P ) = x0 (ce

qui est le cas sur le bord s = 1 et aux extrémités des lacets γr par exemple), un che-

min entièrement contenu dans A, B ou C selon que H(P ) appartient à A, B ou C.

En précomposant et en postcomposant avec les chemins γP et γ̄Q correspondants

on décompose ωk en un produit de lacets. On observe que dès qu’un sommet P est

partagé par des rectangles dont les images par H se trouvent l’un dans A et l’autre

dans B, alors forcément H(P ) ∈ C. En particulier le chemin choisi de x0 à un tel

point est entièrement contenu dans C.

Analysons maintenant ce qui se passe lorsqu’on passe de ωk à ωk+1 et montrons

par récurrence sur k que ωk+1 et ωk se trouvent dans le noyau de ϕ, ils deviennent

donc égaux dans π1A ∗π1C π1B. Pour voir les ωk comme éléments du produit libre

π1A∗π1B on doit faire des choix. Ce sont comme on vient de le voir des concaténations

de lacets dans A ou B, et pour les lacets qui se trouvent dans C, à la fois dans A

et dans B, on suit la convention de choisir l’ouvert A ou B qui contient l’image du

rectangle se trouvant soit à droite, soit en dessous du segment horizontal ou vertical

concerné. Autrement dit, pour le lacet ωk, la portion de chemin faisant l’angle autour

du rectangle k comme sur l’illustration ci-dessus détermine un lacet qui se trouve

dans B si l’homotopie H envoie le rectangle dans B.

L’homotopie H restreinte au rectangle numéro k+1 nous donne une déformation

continue entre ωk et ωk+1, les autres lacets correspondants aux bords des autres rec-

tangles restent inchangés. Disons, sans restreindre la généralité, que cette homotopie

se passe dans A. Si les quatre lacets correspondants aux quatre côtés sont tous dans

A, alors cette homotopie a seulement changé le lacet parcouru sur L(on commence

par le côté du bas, puis on monte) en un lacet équivalent, parcouru sur
L

dans

A (on monte d’abord, puis on continue horizontalement sur le côté du haut). Les

concaténations correspondants à ces deux chemins sont alors égaux dans le produit

libre π1A ∗ π1B, on a changé la classe d’homotopie d’un lacet par celle d’un lacet

homotope.
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Si par contre l’un de ces lacets, correspondant à l’un des côtés du rectangle,

se trouve dans B, alors nécessairement il se trouve dans l’intersection C, puisque

l’homotopie restreinte au rectangle k + 1 se trouve entièrement dans A. Appelons θ

ce lacet. Il est d’une part considéré comme un lacet dans B dans le rectangle adjacent,

et ensuite dans A, dans le rectangle que nous étudions. Le passage par le rectangle

k+ 1 remplace alors le lacet β∗(θ), i.e. le lacet θ vu dans B, en α∗(θ), le même lacet

mais vu dans A. Autrement dit ωk ⋆ ω̄k+1 est dans le noyau N car α∗(θ)β(θ)
−1 ∈ N

par définition du produit amalgamé. En effet, si on appelle ξ le lacet parcouru avant

d’atteindre le coin inférieur du rectangle k+1 et ζ celui parcouru après avoir atteint

coin supérieur droit, alors ωk = ξ ⋆ (α ◦ θ) ⋆ ζ et ωk+1 = ξ ⋆ (β ◦ θ) ⋆ ζ, si bien que

ωk ⋆ ω̄k+1 = ξ ⋆ (α ◦ θ) ⋆ ζ ⋆ ζ̄ ⋆ (β ◦ θ) ⋆ ξ̄ ≃ ξ ⋆ (α ◦ θ) ⋆ (β ◦ θ) ⋆ ξ̄

dont la classe d’homotopie est un conjugué de α∗(θ)β(θ)
−1, donc dans N aussi. Ceci

montre que chaque modification entre deux ωk consécutifs ne fait intervenir que des

relateurs de N et des équivalences de lacets dans A ou dans B.

On conclut enfin par induction que γ = γ1 ⋆ · · · ⋆γℓ diffère du lacet constant d’un

élément de N . □

Exemple 1.3. On recouvre S2 par les deux ouverts A = S2 \ N et B = S2 \ S
où N et S sont les pôles nord et sud. Alors A ≈ D̊2 ≃ ⋆ et de même B ≃ ⋆.

En effet un disque ouvert se déforme continûment sur son centre, i.e. H(x, t) = tx

décrit une homotopie entre l’application constante en (0; 0) et l’identité. De plus

A∩B = S2\{N,S} est homéomorphe à un cylindre ouvert, qui a le type d’homotopie

d’un cercle. La contraction sur l’équateur donne léquivalence.

Ainsi le Théorème de Seifert-van Kampen identifie π1S
2 avec le pushout du dia-

gramme 1 ← Z → 1. Ce groupe est un quotient de 1 ∗ 1 ∼= 1, c’est donc le groupe

trivial.

Exemple 1.4. On regarde RP 2 comme un quotient de D2, les identifications

antipodales n’ayant lieu que sur le bord. On recouvre le plan projectif par deux

ouverts : A est l’intérieur du disque, homotope à un point, B est le quotient de D2

privé de son centre, qui a le type d’homotopie de RP 1 ≈ S1. L’intersection A∩B est

un disque ouvert privé du centre, c’est aussi un espace qui a le type d’homotopie d’un



70 4. LE THÉORÈME DE SEIFERT-VAN KAMPEN

cercle. Pour calculer le groupe fondamental nous devons identifier l’homomorphisme

Z ∼= π1(A ∩B)→ π1B ∼= Z. Cet homomorphisme est induit par l’application

S1 ↪→ D̊2 \ (0; 0) ↪→ D2 \ (0; 0) q−→ [D2 \ (0; 0)]/∼ ≃−→ S1/∼

La première inclusion inclut le cercle comme cercle de rayon 1/2 dans le disque et la

dernière homotopie envoie un point du disque x sur le bord
x

∥x∥
, si bien que le cercle

intérieur du disque est dilaté d’un facteur 2 avant de procéder aux identifications

antipodales. Cette application est de degré 2. Autrement dit le Théorème de Seifert-

van Kampen identifie π1RP 2 avec le pushout du diagramme 1← Z 2−→ Z. On obtient

π1RP 2 ∼= Z/2.

2. Espaces bien pointés

Pour pouvoir appliquer le Théorème de Seifert-van Kampen pour les espaces

construits dans le chapitre précédent nous devons trouver des conditions qui per-

mettent de se ramener à un recouvrement par deux ouverts. Cela nous amène à

regarder les voisinages des points de base dans le cas d’un wedge et à construire des

colliers aux endroits où on colle des cellules.

Définition 2.1. Un espace pointé (X, x0) est bien pointé si x0 admet un voisi-

nage V qui est contractile au sens pointé.

Autrement dit on demande une homotopieH : V ×I de l’identité vers la constante
cx0 avec H(x0, t) = x0 pour tout t. On peut déformer continument V en x0 sans que

ce point ne bouge au cours du temps.

Remarque 2.2. Attention. Nous utilisons ici une notion différente de ce qui est

usuellement fait. Un espace bien pointé (well pointed) est défini généralement comme

ayant la propriété d’extension des homotopies : Si F : x0× I → Y est une homotopie

(un chemin, mais qu’on voit comme une homotopie entre ces deux extrémités) et

h : X → Y une application, alors on peut étendre l’homotopie F en une homotopie

H : X × I → Y . La propriété d’extension se réfère au fait que H(x0, t) = F (x0, t)

pour tout t.

Pour nous la propriété d’avoir un “bon voisinage” du point de base suffira.
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Exemple 2.3. Toute surface est bien pointée puisque tout point admet un voisi-

nage homéomorphe à un disque ouvert, qu’on peut contracter en son milieu. De fait

toute variété de dimension n arbitraire est bien pointée pour tout choix de point de

base.

Exemple 2.4. Le peigne du topologue 0 × I ∪ I × 0 ∪ {1/n | n ≥ 1} × I avec

sa topologie de sous-espace de R2 n’est pas bien pointé en (0; 1). Voir exercices.

Lemme 2.5. Soient (X, x0) et (Y, y0) deux espaces bien pointés. Alors X ∨ Y est

aussi bien pointé.

Démonstration. On choisit des voisinages x0 ∈ U ⊂ X et y0 ∈ V ⊂ Y

admettant des homotopies pointées F : U × I → U et G : V × I → V qui contractent

U en x0 et V en y0. Alors U ∨ V est un voisinage ouvert du point de base de X ∨ Y
puisque sa préimage par l’application quotient q : X

∐
Y → X ∨Y est ouverte, c’est

U
∐
V . Une autre manière de dire cela est que U ∨ V est ouvert car c’est l’image

par q de l’ouvert saturé U
∐
V .

De plus on construit une homotopie pointéeH : (U∨V )×I → U∨V en définissant

en tout temps t que H(−, t) : U ∨V → U ∨V est donnée par la propriété universelle

du wedge pour les applications F (t) et G(t). Ainsi H(−, 0) est l’identité, H(−, 1) est
l’application constante sur le point de base. □

3. Groupe fondamental d’un wedge

Nous traitons d’abord le cas du wedge de deux espaces pointés. Nous allons voir

en particulier que π1(S
1 ∨ S1) ∼= F (2), le groupe libre à deux générateurs. Puis par

récurrence nous étudierons le cas d’un nombre arbitraire, mais fini, d’espaces. Un

argument de passage à la limite permettra enfin de comprendre le cas d’un wedge

infini, nous y reviendrons dans les séries d’exercices.

Lorsqu’on construit le wedge A∨B on aimerait pouvoir calculer le groupe fonda-

mental grâce au Théorème de Seifert-van Kampen. La première idée qui nous vient

à l’esprit est de recouvrir le wedge avec les deux sous-espaces A et B. Or ces deux

sous-espaces ne sont pas ouverts en général ! En effet la préimage de A par l’appli-

cation quotient q : A
∐
B → A ∨ B est A

∐
b0. C’est ici que la notion d’espace bien
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pointé devient utile. Nous établissons dans le lemme suivant un résultat – pour des

espaces bien pointés – qui affirme que le groupe fondamental transforme un coproduit

d’espaces pointés en un coproduit de groupes.

Proposition 3.1. Soient (A, a0) et (B, b0) deux espaces bien pointés. Alors on

a π1(A ∨B) ∼= π1A ∗ π1B.

Démonstration. On choisit un voisinage ouvert U de a0 dans A et un voisinage

ouvert V de b0 dans B avec des contractions pointées F et G sur leur point de base

respectif. On pose A′ = A ∨ V ⊂ A ∨ B et B′ = U ∨ B ⊂ A ∨ B et on remarque

que A′, B′ fournissent un recouvrement ouvert du wedge puisque la préimage par

l’application quotient q de A′ par exemple est A
∐
V qui est un ouvert de la réunion

disjointe. Avant d’appliquer le Théorème de Seifert-van Kampen qui s’applique donc

bien, il faut identifier le type d’homotopie des ouverts A′, B′ et C ′ = A′ ∩B′.

On affirme que A′ ≃ A, B′ ≃ B et C ′ ≃ ∗. On traite seulement le cas de A′ et on

observe que C ′ = U∨V est contractile par le Lemme 2.5. On a une inclusion i : A ⊂ A′

et son inverse homotopique sera r : A′ → A défini par la propriété universelle du

wedge en posant r(a) = a pour a ∈ A et r(v) = a0 pour v ∈ V . Ces choix définissent

bien r puisqu’ils sont compatibles sur les points de base : r(b0) = a0 = r(a0).

On a alors r ◦ i = idA et il reste à montrer que i ◦ r est homotope à l’identité.

C’est ici que l’homotopie G entre en jeu. On définit H : A′× I → A′ par les formules

suivantes, pour tout t ∈ I :

H(x, t) =

a si x = a ∈ A

G(v, t) si x = v ∈ V

Ceci définit une application puisque H(a0, t) = a0 ∼ b0 = G(b0, t) et on vérifie que

H(x, 0) = x pour tout x, alors que H(x, 1) = (i ◦ r)(x), l’application qui écrase le

voisinage V sur le point de base.

Par invariance homotopique on a par conséquent π1A
′ ∼= π1A, π1B

′ ∼= π1B et

π1C
′ = 1. Le groupe fondamental du wedge A∨B est donc le pushout du diagramme

π1A← 1→ π1B. On reconnâıt le produit libre π1A ∗ π1B. □
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Exemple 3.2. Le cercle étant bien pointé on calcule π1(S
1 ∨ S1) ∼= F (2), le

groupe libre à deux générateurs. Le corollaire suivant permet en fait d’identifier le

groupe fondamental d’un wedge fini de copies de cercles.

Corollaire 3.3. Soient n un entier naturel et (A1, a1), (A2, a2), . . . (An, an) des

espaces bien pointés. Alors π1(A1 ∨ · · · ∨ An) ∼= π1A1 ∗ · · · ∗ π1An.

Démonstration. On procède par récurrence sur n. La récurrence est initialisée

puisque le cas n = 1 est trivial et la Proposition 3.1 fournit le pas de récurrence. □

Remarque 3.4. Ce résultat est encore vrai pour un wedge infini. Dans le cas dé-

nombrable on peut utiliser un argument de colimite pour les sous-espaces
∨n
i=1Ai ⊂∨∞

i=1Ai qui donnent une filtration du wedge par des sous-espaces dont les groupes

fondamentaux sont des produits libres π1A1 ∗ · · · ∗ π1An par le Corollaire 3.3. Pour

un wedge non dénombrable il faudrait étudier le cas analogue, mais transfini...

4. Groupe fondamental et attachement de cellule

Avant de calculer le groupe fondamental d’un espace obtenu par attachement

d’une cellule, nous parlons rapidement de rétracte. Le type de rétracte qui va appa-

râıtre dans notre argument sera le plus fort, les autres ont peut-être été vus dans le

cours du semestre précédent.

Définition 4.1. Un sous-espace i : A ⊂ X est un rétracte de X s’il existe une

application r : X → A tel que r ◦ i = idA.

Ainsi le cercle unité est un rétracte de la figure huit S1 ∨ S1, mais ils n’ont pas

le même type d’homotopie, ayant des groupes fondamentaux différents. L’espace ⋆

est un rétracte de tout espace X pour tout choix de point x ∈ X correspondant à

l’image de l’application ⋆→ X.

Remarque 4.2. Cette notion est trop faible pour conclure quoi que ce soit de

positif sur le type d’homotopie, mais elle suffit déjà à pouvoir exclure l’existence de

certaines applications, typiquement celle d’une application du disque sur le cercle

qui fixe le bord. En effet, une telle application serait une rétraction de l’inclusion

S1 ⊂ D2 et elle induirait des homomorphismes au niveau des groupes fondamentaux

Z→ 0→ Z dont la composition serait (idS1)∗, c’est-à-dire l’identité, une absurdité.
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Définition 4.3. Un sous-espace i : A ⊂ X est un rétracte de déformation de X

s’il existe une application r : X → A tel que r ◦ i = idA et i ◦ r ≃ idX .

Exemple 4.4. Le point (0; 1) est rétracte de déformation du peigne du topologue,

car c’est un espace contractile. De manière informelle, on peut expliquer cela en trois

temps : on contracte d’abord toutes les dents du peigne sur la base horizontale du

peigne, puis on contracte cette base sur (0; 0), et enfin on revient sur (0; 1). Cette

homotopie ne fixe pas ce point et nous avons vu qu’il est impossible d’obtenir une

telle homotopie, ce qui empêche ce rétracte d’être un rétracte de déformation fort

dans le sens suivant.

Définition 4.5. Un sous-espace i : A ⊂ X est un rétracte de déformation fort

de X s’il existe une application r : X → A tel que r ◦ i = idA et i ◦ r est homotope

à idX par une homotopie fixant A.

Autrement dit on suppose que l’homotopie H vérifie H(a, t) = a pour tout a ∈ A
et tout 0 ≤ t ≤ 1. Par exemple le cercle est un rétracte de déformation fort du

cylindre S1 × I, mais concentrons-nous sur les exemples qui vont être utile par la

suite. Considérons le collier Col(A) = A × [0, 3/4[, un cylindre sur A ouvert d’un

côté et fermé de l’autre qui a le type d’homotopie de A.

Lemme 4.6. Tout espace A est un rétracte de déformation fort de son collier

Col(A).

Démonstration. L’inclusion i : A ↪→ Col(A) envoie un point a sur le point

(a, 0) de la base du collier et la rétraction r envoie (a, t) sur a. Ainsi r ◦ i = idA. La

composition i ◦ r envoie (a, t) sur (a, 0) pour tout 0 ≤ t ≤ 3/4. On construit une

homotopie H : Col(A)× I → Col(A) en posant H(a, t, s) = (a, ts). Quand s = 0 on

a bien H(−, 0) = i ◦ r et H(−, 1) = idCol(A). De plus H(a, 0, s) = (a, 0) pour tout s,

la base du collier ne bouge pas pendant l’homotopie. □

Soit CA = A × I/A × 1 le cône de base A ≈ A × 0. On va aussi utiliser

C ′A = A×]1/4, 1]/A× 1 un cône ouvert, sous-espace de CA. Les deux espaces sont

contractiles (une homotopie les contracte sur le sommet du cône).
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Proposition 4.7. Soient (X, x0) et (A, a0) deux espaces pointés avec A connexe

par arcs. Soit f : A → X une application pointée et Y = X ∪f CA l’espace pointé

obtenu de X en attachant une A-cellule le long de f . Alors π1Y ∼= π1X ∗π1A 1.

Démonstration. Exactement comme dans le cas d’un wedge nous devons mo-

difier le recouvrement de Y donné par les images de CA et X dans l’espace quotient

Y = X
∐
CA/(a, 0) ∼ f(a) car ces sous-espaces ne sont pas ouverts en général. Nous

allons bien sûr choisir d’une part C ′A, un cône ouvert dans CA dont les points ne

sont pas affectés par les identifications du quotient, si bien qu’il est saturé et q(C ′A)

est un ouvert de Y homéomorphe à C ′A, donc contractile.

D’autre part nous posons X ′ = q(X
∐
Col(A)). Comme X

∐
Col(A) est aussi

saturé (du fait que le collier contient toute la base A× 0), X ′ est un ouvert et il est

clair que X ′ et q(C ′A) recouvrent Y . Nous affirmons d’abord que X ′ a le même type

d’homotopie que X. Rappelons que nous avons vu que X s’identifie à un sous-espace

de Y et appelons i : X ↪→ X ′ l’inclusion évidente. Montrons que ce sous-espace est

un rétracte de déformation fort. La rétraction est donnée par l’identité sur X et f ◦r
sur le collier, où r est la rétraction du Lemme 4.6. Ces choix sont compatibles avec

la relation d’équivalence puisque (f ◦ r)(a, t) = f(a) ∼ a. Ils induisent donc par la

propriété universelle du quotient une application R : X ′ → X.

On a bien R ◦ i = idX , reste à construire une homotopie contractante. Pour

construire G : X ′ × I → X ′ on observe d’abord que X ′ × I = q(X
∐
Col(A))× I ≈

[(X × I)
∐
(Col(A) × I)]/R où la relation déquivalence R identifie (f(a), s) avec

(a, 0, s) pour tout a ∈ A et tout s ∈ I. On va donc définir G séparément sur X × I
et sur Col(A) × I. On pose G(x, s) = i(x) pour tout s ∈ I, si bien que X - ou

plutôt i(X) - est un sous-espace de X ′ qui reste constamment fixe pendant toute

la durée de l’homotopie G. On pose encore G(a, t, s) = (q ◦ H)(a, t, s) = q(a, ts)

où H est l’homotopie contractante du Lemme 4.6. L’application ainsi définie sur

la réunion disjointe (X × I)
∐
(Col(A) × I) passe au quotient par la relation R

puisque G(f(a), s) = i(f(a)) et G(a, 0, s) = q(a, 0) définissent le même point de X ′.

L’homotopie ainsi obtenue déforme continument i ◦R en l’identité.
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Il reste encore à identifier le type d’homotopie de l’intersection X ′ ∩ q(C ′A) =

q(A×]1/4, 3/4[. Cet ouvert est saturé et q identifie homéomorphiquement le cylindre

ouvert de base A avec cette intersection. Ainsi X ′ ∩ q(C ′A) ≃ A.

Comme A est connexe par arcs, les hypothèses du Théorème de Seifert-van Kam-

pen sont vérifiées et on conclut que le groupe fondamental de Y , pour le point de

base y0 = q(x0) = q((a0, 0)), est isomorphe à π1Y ∼= π1X ∗π1A π1(CA). On conclut

par le fait que CA est contractile. □

5. Groupe fondamental et attachement d’une cellule standard

Regardons ce qui se passe dans le cas particulier d’un attachement d’une cellule

en ≈ Dn ≈ CSn−1. On choisit (1; 0; . . . ; 0) comme point de base de la sphère unité.

Lorsqu’on attache une cellule de dimension (assez) grande on ne modifie pas le groupe

fondamental :

Corollaire 5.1. Soient (X, x0) un espace pointé et f : Sn−1 → X une applica-

tion pointée avec n ≥ 3. Soit Y = X ∪f en l’espace pointé obtenu de X en attachant

une n-cellule le long de f . Alors π1Y ∼= π1X.

Démonstration. La sphère Sn−1 est connexe par arcs si bien que la Proposi-

tion 4.7 s’applique. Comme π1S
n−1 est trivial pour n ≥ 3 (voir exercices), la conclu-

sion suit. □

Exemple 5.2. Nous avons calculé le groupe fondamental π1RP 2 ∼= Z/2. Comme

l’espace projectif réel RP 3 admet une décomposition cellulaire de la forme RP 2∪ e3,
on conclut que π1RP 3 ∼= Z/2.

Une application pointée f : S1 → X représente un lacet dans X, basé en x0. Sa

classe d’homotopie est un élément [f ] de π1X et on notera Nf le sous-groupe normal

engendré par [f ]. De manière équivalente on peut dire que f induit une application

f∗ : π1S
1 → π1X, i..e un homomorphisme Z → π1X. L’image de 1 est précidément

[f ] = f∗(1) puisque le générateur de π1S
1 est représenté par l’identité (ou toute autre

application de degré un). Ainsi Nf est le plus petit sous-groupe normal de π1X qui

contient l’image de f∗.
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Corollaire 5.3. Soient (X, x0) un espace pointé et f : S1 → X une application

pointée. Soit Y = X ∪f e2 l’espace pointé obtenu de X en attachant une 2-cellule le

long de f . Alors π1Y ∼= π1X/Nf .

Démonstration. Comme ci-dessus les conditions d’application de la Proposi-

tion 4.7 sont remplies. Ici π1S
1 ∼= Z et la conclusion suit du fait que l’amalgame

π1X ∗π1S1 1 est isomorphe au quotient de π1X par le sous-groupe normal engendré

par l’image de f∗ : π1S
1 → π1X. □

Exemple 5.4. SoitK la bouteille de Klein, vue sous sa forme de quotient du carré

I×I par identification des bords verticaux a1 et a2 orientés tous deux de bas en haut

et des bords horizontaux b1 et b2 avec des orientations opposées. Ainsi K est obtenu

du wedge de deux cercles S1 ∨ S1 par attachement d’une cellule de dimension 2.

Il reste à identifier l’application d’attachement f : S1 → S1 ∨ S1. Appelons a et

b les lacets du wedge, images par passage au quotient des chemins a1 et b1. La

concaténation des chemins b1 ⋆ a1 ⋆ b2 ⋆ ā2 forme un lacet basé en (0; 0) dont l’image

dans le wedge est b ⋆ a ⋆ b ⋆ ā. Sa classe d’homotopie est βαβα−1 dans le groupe libre

F (α, β) ∼= π1(S
1 ∨ S1). Ainsi π1K ∼= ⟨α, β | βαβα−1⟩ le groupe de Klein.

Pour terminer nous aimerions encore étudier le cas d’un attachement d’une cellule

de dimension un. Cette situation correspond à un diagramme D1 ← S0 f−→ X et on

attache une “anse” entre x0 = f(1) et un point f(−1) = x. Nous considérons le cas

où x et x0 appartiennent à la même composante connexe par arcs.

Corollaire 5.5. Soient (X, x0) un espace bien pointé et connexe par arcs et

f : S0 → X une application pointée. Soit Y = X ∪f e1 l’espace pointé obtenu de X

en attachant une 1-cellule le long de f . Alors π1Y ∼= π1X ∗ Z.

Démonstration. Comme S0 n’est pas connexe par arcs, il faut passer par un

autre raisonnement que dans les corollaires précédents. Comme X est connexe par

arcs, l’application f est homotope à l’application constante (il existe un chemin

dans X entre x0 et x). Par conséquent Y est homotope à l’espace obtenu comme

recollement de X
∐
D1/x0 ∼ ±1.

Or cet espace est un wedge X ∨ S1 car on peut identifier le quotient en deux

temps : d’abord X
∐
I/1 ∼ −1 ≈ S

∐
S1, puis on identifie le point de base de S1
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avec celui de X. Le cercle étant bien pointé et X l’étant également par hypothèse

on conclut par la Proposition 3.1. □

Exemple 5.6. Soit f : S0 → S1 l’inclusion de la 0-sphère dans la 1-sphère. L’es-

pace S1 ∪f e1 est homéomorphe à la lettre grecque Θ. Son groupe fondamental est

Z ∗ Z.

6. La classification des surfaces

Notre but dans les dernières sections de cette partie n’est pas de démontrer la clas-

sification des surfaces (compactes sans bord), mais d’illustrer comment le Théorème

de Seifert-van Kampen permet de calculer les groupes fondamentaux de toutes ces

surfaces et comment cela permet de les distinguer : deux surfaces ayant des groupes

fondamentaux non isomorphes ne sont pas homotopes, encore moins homéomorphes,

mais réciproquement deux surfaces non homéomorphes ont des groupes fondamen-

taux distincts. De fait, on peut même extraire du groupe fondamental des invariants

plus grossiers qui font encore l’affaire, ce sera le sujet de la dernière section.

Les livres de Massey et de Lee sont de bonnes références pour une preuve de

la classification. Souvent les auteurs évitent de démontrer que toute surface admet

une triangulation et donc une présentation polygonale, c’est-à-dire une manière de se

représenter une surface donnée comme quotient d’un polygone à 2k côtés, les identi-

fications ne concernant que les côtés qui sont identifiés deux à deux. On étiquette les

2k côtés avec les lettres a1, . . . , ak ou leur inverse selon l’identification qui est faite.

Ainsi si le premier côté est a1, parcouru dans le sens trigonométrique, on trouvera

plus loin sur le bord une étiquette a1 sur le i-ème côté si ce côté est identifié avec a1

dans le même sens, ou a−1
1 s’il est identifié avec a1 dans le sens contraire.

Pour établir la classification une fois ceci supposé la partie technique de la preuve

ramène l’étude des surfaces à des présentations polygonales particulières. Celles-ci

ne font intervenir que des identifications qui correspondent à des étiquetages aiai

si les deux côtés consécutifs en question sont identifiés dans le même sens (comme

pour le plan projectif) et [ai, ai+1] = aiai+1a
−1
i a−1

i+1 si les quatre côtés consécutifs en

question sont identifiés deux à deux en alternance (le premier avec le troisième et le

deuxième avec le quatrième) et en inversant le sens (comme pour le tore).
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Théorème 6.1. Soit S une surface. Il existe alors une présentation polygonale

de S comme quotient d’un polygone ayant 2k côtés. De plus les côtés sont identifiés

deux à deux et, si S ̸≈ S2, ne font intervenir que des identifications de type aiai et

[ai, ai+1]. De plus ont peut supposer que tous les aiai sont consécutifs et enfin les 2k

sommets sont identifiés à un seul point.

Nous ne donnons pas la preuve de ce résultat, ce sera notre “bôıte noire”, mais

retenons qu’on peut associer à toute surface S un nombre k et un mot W du groupe

libre F (a1, . . . , ak) de 2k lettres particulier. Il fait apparâıtre chaque générateur deux

fois, soit sous la forme d’un carré a2i , soit sous la forme d’un commutateur [ai, ai+1].

Seule la sphère fait exception :

Exemple 6.2. La sphère S2 est présentée usuellement par le quotient du disque

par son bord. Pour que la sphère fasse partie des exemples couverts par le théorème

on pourrait utiliser le 2-gone et le mot aa−1, mais dans ce cas les deux sommets ne

sont pas identifiés dans le quotient !

Exemple 6.3. La construction des surfaces que nous avons déjà rencontrées

précédemment dans le cours faisait précisément appel à une présentation polygonale

telle qu’elle est décrite dans le théorème ci-dessus. Le tore par exemple est le quotient

d’un carré (un 4-gone) dont les côtés sont étiquetés de sorte à former un commutateur

[a1, a2], comme ceci :

Pour que cet exemple soit totalement en phase avec la théorie il aurait fallu appeler a1

les côtés A et a2 les côtés B dont on doit changer le sens pour obtenir le commutateur

donné. Je laisse cette illustration d’abord par flemmardise et aussi pour mettre en

lumière l’arbitraire dans les choix effectués. Il n’est pas nécessaire de parcourir le

bord dans le sens trigonométrique pour attacher une cellule, on peut commencer
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en n’importe quel sommet du polygone et obtenir un autre mot qui donne une

présentation d’un groupe isométrique, on peut renommer les côtés et changer leur

sens... Le plan projectif correspond au mot a2, c’est le quotient d’un 2-gone qu’on

visualise comme un disque D2 dont les sommets sont ±1 et les côtés sont les deux

hémicycles. Enfin la bouteille de Klein

correspond au mot abab−1 par exemple, mais on verra en exercice qu’il existe une

autre présentation a21a
2
2.

Proposition 6.4. Soit P un polygone à 2k côtés, W un mot de F (a1, . . . , ak)

comme ci-dessus et X le quotient de P par la relation d’équivalence décrite par ce

mot. Alors π1X ∼= ⟨a1, . . . , ak | W ⟩.

Démonstration. L’espace X a une structure cellulaire transparente. Il est

formé d’un unique point, qu’on choisit comme point de base et qui correspond à

la classe de chaque sommet du polygone P . On attache à ce point k segments qui

correspondent chacun à une paire de côtés de P . On a ainsi obtenu un wedge de k

cercles qu’on étiquette a1, . . . , ak, comme les côtés du polygone auxquels ils corres-

pondent. Ce wedge n’est rien d’autre que le quotient du bord de P par la relation

d’équivalence restreinte au bord.

On ajoute enfin une unique 2-cellule e2, homéomorphe à P̊ , l’intérieur de P

n’étant pas touché par les identifications dans le quotient. Explicitement l’application

quotient q : P → X se restreint en un homéomorphisme P̊ → e̊2.

Le Théorème de Seifert-van Kampen s’applique à cet espace (plus précisément

c’est le Corollaire 5.3 qui permet de conclure). On obtient alors π1X ∼= π1(∨S1)/Nf

où f est l’application d’attachement de la 2-cellule sur le wedge de cercles. Or,

l’application d’attachement de P̊ au polygone P est donnée par un homéomorphisme

S1 → ∂P , disons qu’on parcourt le bord de P dans le sens trigonométrique en
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commençant par le côté étiqueté a1. Par conséquent l’application d’attachement de

la cellule e2 est obtenue en passan au quotient f : S1 ≈ ∂P
q−→ ∨S1. La classe

d’homotopie de cette application détermine un élément de π1(∨S1) ∼= F (a1, . . . , ak)

qui est exactement donné par W , ce qui termine la preuve. □

On retiendra de cette proposition qu’une présentation polygonale est exactement

équivalente au calcul du groupe fondamental ! Le même mot qui décrit les identifi-

cations topologiques de l’espace quotient donne également l’amalgame de groupes.

Exemple 6.5. Considérons la somme connexe de trois copies du plan projec-

tif. Comme le plan projectif admet une présentation polygonale correspondant au

mot a2 (on identifie les deux demi-cercles bordant un disque), on obtient par la

même technique que pour le tore à deux trous la présentation polygonale a2b2c2

pour RP 2#RP 2#RP 2, comme quotient d’un hexagone.

Voici quelques détails. On commence avec RP 2#RP 2, qu’on construit en enlevant

un voisinage de bord d dans chacun des plans projectifs en faisant de sorte que le

bord passe par le point de base, représenté par +1 dans le premier disque et −1 dans

le second.

On dédouble ce point de base pour transformer le lacet d en un segment (sans oublier

que ces deux points devront être identifiés dans le quotient). Ceci nous amène à la

deuxième image de l’illustration ci-dessus où chaque plan projectif privé d’un petit

disque est représenté comme quotient d’un triangle. On effectue les identifications en
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changeant l’ordre, i.e., on recolle d’abord les segments d pour obtenir une présenta-

tion polygonale à partir d’un carré. Ainsi la somme connexe de deux plans projectifs

est une surface correspondant au mot a2b2 (c’est donc une bouteille de Klein).

On refait la même chose pour obtenir la somme connexe de trois copies du plan

projectif, sans donner tous les détails :

On conclut de la Proposition 6.4 que π1(RP 2#RP 2#RP 2) ∼= ⟨a, b, c | a2b2c2⟩.

Pour arriver à la classification des surfaces, nous avons encore besoin d’un lemme,

qui concerne l’espace de l’exemple précédent et dont la preuve suit exactement la

même stratégie.

Lemme 6.6. On a un homéomorphisme T 2#RP 2 ≈ RP 2#RP 2#RP 2.

Démonstration. On part de la présentation polygonale de la triple somme

connexe de plans projectifs, donnée par un hexagone et le mot a2b2c2 comme expliqué

dans l’Exemple 6.5. On procède ensuite par découpage et réarrangement. On découpe

l’hexagone en un triangle et un pentagone en suivant un segment d tracé de sorte

à séparer les a et les b, comme indiqué sur la figure ci-dessous (on indique par un

trait violet un petit triangle comment on devra identifier les deux segments ainsi

obtenus) :
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L’ordre des identifications n’ayant pas d’importance, on recolle d’abord les côtés

a, quitte à retourner l’une des deux pièces pour que le sens soit compatible, puis on

coupe le long de e de sorte à créer à nouveau un triangle et un pentagone, mais cette

fois ce sont les c qui ont été séparés. On identifie maintenant les b, dans le bon sens.

Avant la dernière opération, on observe que puisque le tore ne peux pas appa-

râıtre dans la somme connexe de deux plans projectifs seulement, on doit absolument

séparer les trois paires de côtés a, b et c pour avoir une chance de réarranger correcte-

ment les pièces. C’est maintenant chose faite et on reconnâıt un bout de commutateur

ede−1, mais il faut procéder à un dernier découpage pour placer le d−1 manquant au

bon endroit. On découpe alors le long de f et on recolle les c qui devaient encore

disparâıtre.

On obtient pour finir la présentation donnée par le mot ede−1d−1f 2. Si on coupait

encore un triangle dont deux côtés seraient ceux d’étiquette f , on obtiendrait un tore

troué et un plan projectif troué, si bien que cette dernière présentation correspond

bien à la somme connexe T 2#RP 2. □

Remarque 6.7. Si S est une surface dont la présentation polygonale est un 2k-

gone et les identifications correspondent au mot W et si T est une surface dont la

présentation polygonale est un 2ℓ-gone et les identifications correspondent au mot
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W ′, alors la somme connexe S#T est une surface dont la présentation polygonale

est un 2(k + ℓ)-gone et les identifications correspondent au mot WW ′.

Théorème 6.8. Toute surface est homéomorphe soit à la sphère, soit à une

somme connexe de tores, soit à une somme connexe de plans projectifs.

Démonstration. Soit S une surface. On peut supposer que S n’est pas homéo-

morphe à S2 et on utilise le Théorème 6.1 pour présenter S comme quotient d’un

2k-gone. Si k = 2g est pair et que seuls des commutateurs apparaissent, alors S est

un tore à g trous. Si seuls des carrés apparaissent, W = a21 . . . a
2
k, alors S est une

somme connexe de k plans projectifs. C’est quand des carrés et des commutateurs

apparaissent simultanément qu’il faut travailler un peu.

Dans ce cas on peut choisir l’un des sommets du polygone comme point de base

pour faire en sorte que le mot commence par les commutateurs et se termine par

les carrés. On procède par récurrence sur le nombre de commutateurs. S’il n’y en

a qu’un, on découpe un heptagone en ne gardant que les six côtés correspondant à

[a1, a2]a
2
3. Le quotient est une somme connexe (T 2#RP 2) \ U à laquelle on a ôté un

voisinage ouvert homéomorphe à un disque. Or, par le Lemme 6.6, cet espace est

homéomorphe à (RP 2#RP 2#RP 2) \V , où V est un voisinage ouvert homéomorphe

à un disque. On recolle l’heptagone correspondant pour se retrouver avec une pré-

sentation équivalente, mais de (RP 2)#k. L’argument de récurrence est identique. □

Exemple 6.9. Nous avons rencontré dans cette section la sphère, le tore, le

plan projectif et des sommes connexes de ceux-ci. Et la bouteille de Klein ? On se

souviendra peut-être d’un exercice qui nous avait permis de l’identifier à RP 2#RP 2.

C’est pour cette raison que la bouteille de Klein ne fait pas partie des exemples

élémentaires à partir desquels toutes les autres surfaces peuvent être construites.

7. Abélianisation et caractéristique d’Euler

On commence par définir l’abélianisé d’un groupe et on montre que le groupe

fondamental abélianisé suffit à distinguer les surfaces les unes des autres. On introduit

ensuite la caractérsistique d’Euler, un simple nombre entier qui donne presque une

information aussi forte.
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Définition 7.1. Soit G un groupe. L’abélianisé Gab est le groupe quotient de G

par le sous-groupe normal [G,G] des commutateurs.

On ajoute donc à une présentation de G les relateurs [g, h] pour tous g, h ∈ G
pour faire en sorte que dans Gab on ait la relation gh = gh, i.e., ce groupe est

commutatif.

On écrit parfois H1G ou H1(G;Z) pour Gab à cause de l’interprétation en tant

que groupe d’homologie de ce groupe abélien. L’homomorphisme quotient G → Gab

est le meilleur homomorphisme de G vers un groupe abélien, dans le sens où tout

homomorphisme G → A vers un groupe abélien A factorise pas l’abélianisation.

C’est une propriété universelle vue en exercice.

Exemple 7.2. Soit F un groupe libre à k générateurs. Alors Fab est un groupe

abélien libre à k générateurs, isomorphe à Zk. Nous avons souvent travaillé avec la

présentation ⟨a, b | [a, b]⟩ de Z2, le raisonnement est le même pour plus de deux

générateurs. En exercice on montre que l’abélianisé du groupe fondamental d’une

somme connexe de g tores est un groupe abélien libre à 2g générateurs.

Proposition 7.3. L’abélianisé de π1(RP 2)#k est isomorphe à Zk−1 × Z/2.

Démonstration. Le groupe fondamental en question est π = ⟨a1, . . . , ak |
a21 . . . a

2
k⟩. Posons A = Zk−1×Z/2 et appelons e1, . . . , ek−1 les générateurs du groupe

abélien libre Zk−1 et f celui de Z/2. On construit φ : π → A en définissant φ(ai) = ei

pour i ̸= k et φ(ak) = f − e1 − · · · − ek−1. Ces choix définissent bien un homomor-

phisme de groupes puisque

φ(a21 . . . a
2
k) = 2e1 + · · ·+ 2ek−1 + 2(f − e1 − · · · − ek−1) = 2f = 0

De plus A étant abélien, tout commutateur de π est envoyé sur zéro dans A, si

bien que φ passe au quotient et induit Φ: πab → A. Pour montrer que Φ est un

isomorphisme on exhibe un inverse Ψ. On pose Ψ(ei) = āi et Ψ(f) = a1 . . . ak, où la

barre indique les classes dans πab. L’image de f est bien un élément d’ordre 2 car

(a1 . . . ak)
2 = a1 . . . ak · a1 . . . ak = a21 . . . a

2
k = 1̄
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puisque les éléments commutent entre eux dans le quotient. La seule vérification à

faire est

Ψ(Φ(āk)) = Ψ(f − e1 − · · · − ek−1) = a1 . . . ak · ā−1
1 . . . ā−1

k−1 = āk

L’autre calcul Φ(Ψ(f)) = f est similaire. □

Les groupes fondamentaux de la sphère, des tores à g trous et des sommes

connexes de plans projectifs sont tous distincts. Nous montrons mieux : leurs abélia-

nisés sont des groupes abéliens non isomorphes. Ceci nous permet de conclure que la

liste des surfaces faite dans le Théorème 6.8 est complète, ce que nous savions déjà,

mais aussi libre de répétition.

Corollaire 7.4. Toute surface est homéomorphe à exactement l’une des sur-

faces suivantes : la sphère, une somme connexe de tores, ou une somme connexe de

plans projectifs.

Démonstration. Deux surfaces homéomorphes sont homotopes. Elles ont donc

des groupes fondamentaux isomorphes, et a fortiori, leurs abélianisés sont des groupes

abéliens isomorphes. Or le groupe nul (pour la sphère S2), les groupes libres Zg (pour
les tores), et les groupes Zk−1 × Z/2 sont non isomorphes deux à deux. □

On termine comme promis avec un invariant encore plus grossier.

Définition 7.5. Soit X un espace connexe par arcs obtenu à partir d’un wedge

de k cercles en attachant ℓ cellules de dimension 2. Alors χ(X) = 1 − k + ℓ est la

caractéristique d’Euler de X.

On ne montre pas ici que cet invariant ne dépend pas de la présentation cellulaire

choisie (mais c’est le cas). On constate par exemple que χ(S2) = 2, que χ(T 2) = 0 et

plus généralement χ(T 2# . . .#T 2) = 2− 2g si g est le nombre de tores apparaissant

dans la somme connexe, c’est-à-dire le nombre de trous. Enfin χ(RP 2# . . .#RP 2) =

2− g.
Ainsi pour un nombre entier n donné, il existe au plus deux surfaces ayant ce

nombre pour caractéristique d’Euler. Pour départager les deux possibilités, il n’est

pas nécessaire de calculer le groupe fondamental ou son abélianisé, il suffit en fait
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de savoir si la surface est orientable ou non, c’est-à-dire si elle contient un ruban de

Möbius ou non.





Chapitre 5

Revêtements

Pour finir nous étudions les revêtements d’espaces topologiques. Notre but est

de généraliser et développer une théorie concernant des applications quotients qui se

comportent particulièrement bien par rapport au groupe fondamental, dans l’esprit

de ce que l’application exponentielle nous a permis de comprendre sur le groupe

fondamental du cercle.

1. Définitions et exemples

Nous supposerons sauf mention du contraire que tous les espaces de ce chapitre

sont connexes par arcs et localement connexes par arcs, i.e. tout voisinage ouvert

d’un point contient un voisinage connexe par arcs.

Définition 1.1. Une application p : E → X est un revêtement si tout point

x ∈ X admet un voisinage ouvert U connexe par arcs, appelé ouvert trivialisant,

tel que p−1(U) = ∪Ui est une réunion disjointe non vide d’ouverts Ui ⊂ E avec

p |Ui
: Ui → U est un homéomorphisme.

Remarque 1.2. On observe que p est nécessairement surjective et on appelle p

projection. La préimage d’un point p−1(x) est la fibre au-dessus de x, E est l’espace

total et X la base de la projection. Enfin les Ui sont les feuillets. On imagine lo-

calement un revêment comme un mille-feuille où les feuillets, tous homéomorphes,

s’empilent les uns au-dessus des autres et p les envoie tous sur la base du mille-feuille.

Exemple 1.3. L’application exponentielle R → S1 qui envoie t sur eit est un

revêtement. Les applications de degré n du cercle dans lui-même définies par la

formule complexe eit 7→ eint également. Les fibres sont toutes constituées de n points.

L’application quotient par l’antipodale Sn → RP n est aussi un revêtement à

deux feuillets. Tout point de l’espace projectif a deux préimages dans Sn et on

peut choisir un ouvert U autour de l’un d’eux, connexe par arcs et assez petit pour

89
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qu’il soit disjoint de −U . Enfin, pour tout espace discret F on peut construire le

revêtement trivial X ×F → X donné par la projection sur la première composante.

L’espace total n’est pas connexe par arcs ici.

On établit deux propriétés élémentaires à la fin de cette section. La première

montre que les fibres sont discrètes.

Lemme 1.4. Soit p : E → X un revêtement. Chaque fibre est un espace discret

(en tant que sous-espace de E).

Démonstration. On choisit un ouvert trivialisant U ∋ x. Pour tout feuillet Ui
il existe un unique point xi ∈ Ui tel que p(xi) = x. Ainsi la fibre p−1(x) est constituée

des xi qui sont ouverts dans p
−1(x) puisque Ui ∩ p−1(x) = {xi}. □

On montre ensuite que les revêtements sont des cas particuliers de quotients.

Proposition 1.5. Soit p : E → X un revêtement. Alors p est une application

ouverte. En particulier c’est une application quotient.

Démonstration. Soit V ⊂ E un ouvert. Nous montrons que p(V ) est ouvert.

Pour x ∈ p(V ) on choisit un ouvert trivialisant U . Comme x = p(y) pour un y ∈ V ,

il existe un feuillet Ui contenant y. De plus Ui ∩ V est un ouvert de E et donc de V

ayant la propriété que p se restreint en un homéomorphisme Ui∩V → p(Ui∩V ). En

particulier x est contenu dans p(Ui ∩ V ) qui est un ouvert de X contenu dans p(V ).

La deuxième affirmation est une conséquence du fait qu’une surjection (continue)

ouverte est un quotient. □

Ainsi la topologie de la base d’un revêtement est toujours la topologie quotient.

On termine cette première section en établissant un résultat qui a l’air technique et

très particulier, mais qui nous sera bien utile pour montrer des résultats d’unicité.

Proposition 1.6. Soient p : E → X un revêtement et Y un espace connexe. On

se donne f, g : Y → E deux applications telles que p ◦ f = p ◦ g. Alors le sous-espace

Z = {y ∈ Y | f(y) = g(y)} est soit vide, soit Y tout entier.

Démonstration. On montre que Z est ouvert et fermé, et on conclut par la

connexité de Y . Pour y ∈ Y on choisira dans les deux parties de la preuve un ouvert

trivialisant U de p(f(y)) et on appelle Ui le feuillet qui contient f(y).
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Pour montrer que Z est ouvert, on suppose que y ∈ Z et on observe que l’inter-

section f−1(Ui) ∩ g−1(Ui) est un ouvert de Y qui contient y puisque f(y) ∈ Ui par
choix et que g(y) = f(y). Cet ouvert est entièrement contenu dans Z parce que p |Ui

est un homéomorphisme et on suppose que p ◦ f = p ◦ g.
Pour montrer que Z est fermé, on suppose que y ̸∈ Z. Il découle du fait que p |Ui

est un homéomorphisme que g(y) ̸∈ Ui, car les deux points disctincts f(y) et g(y) ont

la même image par p. Il existe donc j ̸= i tel que g(y) appartient au feuillet Uj. Ici

l’intersection f−1(Ui) ∩ g−1(Uj) est un ouvert de Y qui contient y par construction.

Aucun point de cet ouvert ne se trouve dans Z puisque les feuillets Ui et Uj sont

disjoints, c’est donc un voisinage ouvert de y dans Y \ Z. □

2. Morphismes de revêtements

Comme toujours en mathématiques, c’est bien de définir des objets, ici les revê-

tements, mais pour comprendre les relations entre ces objets il faut aussi parler des

“morphismes” entre ces objets.

Définition 2.1. Soient p1 : E1 → X et p2 : E2 → X deux revêtements. Une

application de revêtements ou un morphisme de revêtements est une application

f : E1 → E2 telle que p2 ◦ f = p1.

Autrement dit, c’est une application entre les espaces totaux qui est compatible

avec les projections. En particulier un morphisme de revêtements est un isomor-

phisme de revêtements s’il admet un inverse dans la catégorie des revêtements. Nous

nous restreignons maintenant au cas où p1 = p2 pour définir la notion d’automor-

phisme.

Définition 2.2. Soit p : E → X un revêtement. Une application de revêtements

f : E → E est un automorphisme de p si elle admet un inverse g comme application

de revêtements.

On a donc que f ◦ g et g ◦ f sont toutes deux égales à l’identité de E, et ces

applications sont compatibles avec la projection p. On remarque qu’on peut com-

poser des automorphismes si bien que l’ensemble de tous les automorphismes d’un

revêment p forme un groupe noté Aut(p).
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Exemple 2.3. L’addition d’un nombre entier n définit sur R un automorphisme

du revêtement exponentiel au-dessus du cercle. L’ensemble de ces automorphismes

forme un groupe isomorphe à Z.

Il faut bien distinguer entre la composition de morphismes de revêtements, qui

est bien définie et ne pose aucun problème (la composition de morphismes est un

morphisme), et la composition des revêtements eux-mêmes.

Proposition 2.4. Soit q : E ′ → E et p : E → X deux revêtements. La composi-

tion q ◦ p est encore un revêtement si les fibres de q sont finies.

Cette proposition se trouve dans la série et un contre-exemple est proposé dans

le cas où les fibres de q sont infinies.

3. Relèvement de chemins et d’homotopies

La propriété de relèvement des chemins dont nous parlons ici prépare vraiment

le terrain à la théorie de l’homotopie moderne (et abstraite), dans laquelle certaines

applications, dont font partie les revêtements, jouent un rôle important. On appelle

ces applications des fibrations et elle vérifient des propriétés de relèvement telles que

celle que nous étudions maintenant.

On utilisera la théorie du nombre de Lebesgue étudiée dans le chapitre sur les

espaces métriques au premier semestre. Si X est un espace métrique compact re-

couvert par des ouverts Ui, il existe alors un nombre réel δ > 0 tel que toute boule

ouverte B̊(x, δ) centrée en x ∈ X est contenue dans un ouvert Ui. Nous avons déjà

rencontré ce type d’argument dans la preuve du Théorème de Seifert-van Kampen

lorsque nous avons saucissonné un intervalle ou un carré.

Théorème 3.1. Soit p : E → X un revêtement et γ : I → X un chemin basé en

γ(0) = x0 = p(y0). Il existe alors un unique chemin γ̃ : I → E tel que p ◦ γ̃ = γ et

γ̃(0) = y0.

Sous forme de diagramme on visualise la situation de la manière illustrée ci-

dessous. On a un carré commutatif, donné par les hypothèses du théorème, et on

affirme que la flèche traitillée qui fait commuter les deux triangles ainsi formés, existe
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et est unique :

0 E

I X

i

y0

p

γ

γ̃

Le fait que le triangle du haut commute dit que γ̃(0) = y0 est le point de base choisi

dans Y et le triangle du bas traduit le fait que γ̃ relève γ. Ainsi on affirme que tout

chemin dans la base se relève dans l’espace total et que dès que l’on a choisi le point

de départ de ce chemin, le relèvement est unique. Passons à la preuve.

Démonstration. Soit Uα un recouvrement de X par des ouverts trivialisants.

Comme I est compact, on choisit δ le nombre de Lebesgue associé au recouvrement

de I par les γ−1(Uα). Autrement dit, pour un entier n tel que 1/n < δ, tout intervalle

fermé de diamètre 1/n est envoyé entièrement dans un ouvert trivialisant Uα par γ.

On construit γ̃ inductivement en commençant par définir ce chemin sur l’inter-

valle [0; 1/n]. Il existe α1 tel que γ([0; 1/n]) ⊂ Uα1 et un feuillet Uα1,i1 qui contient

y0 puisque p(y0) = x0 ∈ Uα1 . Si φ1 désigne l’homéomorphisme inverse à p |Uα1,i1
on

définit γ̃ sur [0; 1/n] par la composition

[0; 1/n]
γ−→ Uα1

φ1−→ Uα1,i1 ↪→ E

Supposons à présent que γ̃ a été défini sur l’intervalle [0; k/n] et relevons γ sur

[k/n; (k+ 1)/n]. On dispose du point yk = γ̃(k/n) qui se trouve par hypothèse d’in-

duction dans la fibre au-dessus de γ(k/n). Il existe αk+1 tel que γ([k/n; (k+1)/n]) ⊂
Uαk+1

et un feuillet Uαk+1,ik+1
qui contient yk. Si φk+1 désigne l’homéomorphisme in-

verse à p |Uαk+1,ik+1
on définit γ̃ sur [k/n; (k + 1)/n] par la composition

[k/n; (k + 1)/n]
γ−→ Uαk+1

φk+1−−−→ Uαk+1,ik+1
↪→ E

L’application γ̃ ainsi construite est clairement continue (par choix des valeurs en k/n)

et elle relève γ. Il reste à montrer l’unicité. Supposons donc qu’on a deux relèvements

γ̃ et γ̃′ et considérons le sous-espace Z de I qui consiste en tous les points où ces

deux chemins cöıncident, comme dans la Proposition 1.6. Comme γ̃(0) = y0 = γ̃′(0),

Z n’est pas vide. Par connexité de I c’est donc I tout entier, par le principe du “tout

ou rien”. □
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Il existe en fait une propriété de relèvement beaucoup plus forte, mais que nous

ne démontrons pas.

Théorème 3.2. Soit p : E → X un revêtement, f : Y → E et H : Y × I → X

une homotopie pour p ◦ f = H(−, 0). Il existe alors une homotopie H̃ : Y × I → E

pour f telle que p ◦ H̃ = H.

Sous forme de diagramme :

Y × 0 E

Y × I X

i

f

p

H

H̃

Une conséquence immédiate de ce théorème est le corollaire suivant, de relèvement

des homotopies de chemins. On peut aussi le montrer en suivant la même stratégie

que celle que nous avons suivie ci-dessus, mais bien sûr en remplaçant le saucis-

sonnage de l’intervalle par celui du carré I × I. La preuve est en exercice. Une

homotopie relative à un sous-espace fixe ce sous-espace tout au long de l’homotopie.

Dans l’énoncé suivant les homotopies de chemins sont relatives aux extrêmités de ces

chemins, c’est-à-dire relatives à 0 et 1. Autrement dit on demande que H(0,−) est
constamment x0, le point de départ et H(1,−) constamment x1 le point d’arrivée.

Corollaire 3.3. Soit p : E → X un revêtement, γ̃, β̃ : I → E deux chemins

avec β̃(0) = y0 = γ̃(0) et H : I × I → X une homotopie relative à {0; 1} du chemin

γ = p ◦ γ̃ = H(−, 0) au chemin β = p ◦ β̃ = H(−, 1). Il existe alors une unique

homotopie H̃ : I × I → E de γ̃ à β̃ telle que p ◦ H̃ = H.

La preuve de ce corollaire est une conséquence des observations suivantes et

du Théorème 3.2 (ou de la version sur les homotopies entre chemins de la série

d’exercices).

(1) H(0,−) est un chemin constant si bien que l’unique relèvement qu’il admet

est le chemin constant y0 puisqu’il doit partir de y0 = γ̃(0) ;

(2) H(1,−) est un chemin constant si bien que l’unique relèvement qu’il admet

est un chemin constant y1 = γ̃(1) pour la même raison ;
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(3) H̃(−, 0) est l’unique relèvement de γ, c’est ce qu’on demande et au bout de

l’homotopie on trouve un chemin qui relève β et qui commence en y0, si bien

que par unicité à nouveau ce chemin doit être β̃.

Les conséquences de l’existence de ces relèvements sont multiples, nous en citons

deux pour conclure cette section.

Corollaire 3.4. Soit p : E → X un revêtement. Toutes les fibres (discrètes)

ont le même cardinal.

Démonstration. Soient x0, x1 ∈ X. Comme X est connexe par arcs, il existe

un chemin γ : I → X entre x0 = γ(0) et x1 = γ(1). On sait déjà que les fibres

sont discrètes par le Lemme 1.4, il reste à établir une bijection entre elles. Or, le

Théorème 3.1 permet de trouver pour tout y ∈ p−1(x0) un unique chemin γ̃y qui

relève γ et tel que γ̃y(0) = y. On construit alors une application bien définie

Φ: p−1(x0) −→ p−1(x1)

y 7−→ γ̃y(1)

Cette application est une bijection puisqu’on peut construire son inverse de la même

manière, en choisissant γ̄ comme chemin dans l’autre sens. □

Pour finir nous montrons que les revêtements induisent toujours des injections

au niveau des groupes fondamentaux. C’est peut-être un fait qui n’est pas intuiti-

vement clair puisque l’espace total est “plus gros” que la base, alors que son groupe

fondamental est “plus petit”.

Corollaire 3.5. Soit p : E → X un revêtement. Alors p∗ : π1E → π1X est un

monomorphisme.

Démonstration. On applique le Corollaire 3.3 à des lacets f, g : I → E. Ainsi

f(0) = g(0) = x0 = f(1) = g(1). Supposons que p∗[f ] = p∗[g], i.e. p ◦ f ≃∗ p ◦ g.
Alors il existe une homotopie relative entre f et g, i.e. [f ] = [g]. □
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4. Revêtements et actions de groupes

Dans cette section G est un groupe discret qui agit sur un espace X à droite.

On appelle q : X → X/G l’application quotient et on cherche des conditions sous

lesquelles ce quotient est un revêtement.

Définition 4.1. L’action de G sur X est totalement discontinue si pour tout

x ∈ X il existe un voisinage U ∋ x tel que U · g ∩ U = ∅ pour tout g ̸= 1G.

On observe que dans le cas d’une action totalement discontinue on a alors aussi

U · g ∩ U · h = ∅ dès que g ̸= h. Il suffit en effet de faire agir h−1 à droite pour

se ramener à la définition. À conditions d’imposer les hypothèses standards de ce

chapitre sur la topologie de X toute action totalement discontinue donne lieu à un

revêtement.

Proposition 4.2. Si G agit de manière totalement discontinue sur un espace X

connexe par arcs et localement connexe par arcs, alors le quotient q : X → X/G est

un revêtement.

Démonstration. Soit xG un point de X/G et U un voisinage de x comme dans

la Définition 4.1. Alors q−1(q(U)) = ∪GU · g, une réunion disjointe d’ouverts de X

par la remarque faite ci-dessus. En particulier q(U) est un voisinage ouvert de xG et

on montre que c’est un ouvert trivialisant pour conclure.

Pour cela on considère la restriction de q à U · g. Cette application est continue,

mais aussi ouverte : si V ⊂ U , alors q(V ) ⊂ q(U) est un ouvert pour la même raison

que q(U) est un ouvert. Comme q(V · g) = q(V ), cela reste valide pour V · g. Reste
à voir que c’est une bijection U · g → q(U). La surjectivité est claire et enfin si

q(ug) = q(vg), alors il existe h ∈ G tel que ug = vgh, si bien que h = 1 car l’action

est totalement discontinue. On conclut que ug = vg : on a bien une bijection et

U · g ≈ q(U), qui est un ouvert trivialisant. □

Ceci permet de construire de nombreux revêtements.

Exemple 4.3. (1) L’action de Z sur R par translations est totalement dis-

continue. Le quotient est S1 via l’application exponentielle.
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(2) L’action antipodale de C2 sur Sn est totalement discontinue. Le quotient est

RP n.

(3) On peut aussi construire de nombreux revêtements d’un bouquet de cercles.

Par exemple l’action du groupe cyclique C4 sur quatre points, quatre segments

et quatre cercles par rotations, comme indiqué ci-dessous, donne un revête-

ment à quatre feuillets de S1 ∨ S1. On va souvent illustrer la théorie avec ce

type de revêtements, ils ont la particularité d’avoir une jolie représentation

graphique, de ne faire intervenir que des espaces construits par attachements

de 1-cellules sur un espace discret.

Ici l’action de C4 permute cycliquement les arêtes ai et de même pour les bi.

Pour préciser encore, disons que le générateur envoie A sur B, B sur C, etc.

et ai sur ai+1, bi sur bi+1 où les indices se lisent modulo 4.

5. Propriétés de relèvement

Comme nous en avons peut-être eu l’intuition en démontrant la propriété des

relèvements des homotopies entre chemins, il est possible de relever d’autres applica-

tions grâce aux relèvements uniques des chemins. On rappelle que sauf mention du

contraire les espaces considérés sont tous connexes par arcs et localement connexes

par arcs.

Proposition 5.1. Soit p : E → X un revêtement et f : Y → X une application.

On fixe des points de base e0 ∈ E, x0 ∈ X et y0 ∈ Y de sorte que ces applications sont
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pointées. Alors f admet un relèvement f̃ : Y → E tel que p ◦ f̃ = f si et seulement

si f∗(π1Y ) ⊂ p∗(π1E).

Démonstration. La condition sur les groupes fondamentaux est clairement

nécessaire puisque si p ◦ f̃ = f , alors aussi p∗ ◦ f̃∗ = f∗ et donc l’image de f∗ doit

être contenue dans celle de p∗. C’est le fait que cette condition est nécessaire qui est

plus surprenant et nous demandera plus de travail.

Supposons dès maintenant que f∗(π1Y ) ⊂ p∗(π1E) et considérons un point y ∈ Y .

Par connexité par arcs, il existe un chemin γ : I → Y avec γ(0) = y0 et γ(1) = y.

Par la propriété de relèvement des chemins, il existe un unique chemin γ̃ : I → E

qui relève f ◦ γ. On pose alors f̃(y) = γ̃(1). On remarque que

p(f̃(y)) = p(γ̃(1)) = f(γ(1)) = f(y)

Nous devons encore montrer que ce relèvement est bien défini et que c’est une fonction

continue. Soit γ′ un autre chemin de y0 à y et γ̃′ le relèvement correspondant. La

concaténation des chemins f ◦ γ′ ⋆ f ◦ γ est alors un lacet ω basé en x0 ∈ X. La

classe d’homotopie [ω] = f∗[γ
′ ⋆ γ] est dans l’image de f∗ si bien que par hypothèse

il existe un lacet α̃ basé en e0 tel que p∗[α̃] = [ω].

On ne peut pas conclure que les lacets p ◦ α̃ et ω sont égaux, mais ils sont

homotopes (dans le sens pointé). Appelons H : I×I → X une telle homotopie. Nous

sommes dans la situation du diagramme suivant :

I × 0 E

I × I X

i

α̃

p

H

H̃

Par la propriété de relèvements des homotopies entre chemins (démontrée en exer-

cice), le relèvement H̃ existe et forme une homotopie entre α̃ et un lacet ω̃ = H̃(−, 1).
Par commutativité du diagramme ω̃ est un relèvement de ω, pas seulement à ho-

motopie près, mais strictement : p ◦ ω̃ = ω. Par définition de ω il s’agit donc de la

concaténation des relèvements de f ◦γ′ et de f ◦ γ. Or, par unicité de ce relèvement,

on a ω̃ = γ̃′ ⋆ γ̃. En particulier cette concaténation de chemins doit être un lacet ce

qui signifie exactement que γ̃(1) = γ̃′(1).
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Ainsi f̃ est bien définie, il reste encore à montrer que c’est une application conti-

nue, autrement dit que la préimage de tout ouvert O de E est ouverte. Pour ce faire

nous allons trouver, pour tout point e ∈ O et tout y ∈ f̃−1(e) un voisinage ouvert

y ∈ V ⊂ Y tel que f̃(V ) ⊂ O.

Soit U un ouvert trivialisant de p(e) et appelons Ue le feuillet qui contient e.

On remplace Ue par O ∩ Ue dès maintenant, et U par son image par p, ce qui

nous permet de supposer que p se restreint en un homéomorphisme en un voisinage

Ue ⊂ O de e. Comme f est continue, f−1(U) est un ouvert de Y qui contient y car

f(y) = (p ◦ f̃)(y) = p(e). On peut choisir alors un voisinage V de y connexe par arcs

(Y est localement connexe par arcs) tel que f(V ) ⊂ U .

Pour conclure on prouve que f̃(V ) ⊂ Ue ⊂ O. Soit v ∈ V . Pour calculer f̃(v) on

peut choisir n’importe quel chemin allant de y0 à v et on décide de fixer un chemin

γ de y0 à y, puis de le concaténer avec un chemin β allant de y à v, entièrement

contenu dans V . Le relèvement de γ ⋆ β est la concaténation γ̃ ⋆ β̃ où β̃ est le seul

chemin de E relevant f ◦ β et satisfaisant β̃(0) = f̃(y). Par définition f̃(v) = β̃(1).

Or β étant contenu dans V , f ◦ β est entièrement contenu dans l’ouvert trivialisant

U , si bien que le relèvement β̃ peut se construire en composant f ◦ β avec l’inverse

de l’homéomorphisme p |Ue . En particulier β̃ est contenu dans Ue ce qui termine la

démonstration. □

6. Le revêtement universel

La proposition précedente donne non seulement un critère pratique permettant de

comprendre quelles applications on peut relever dans l’espace total d’un revêtement,

elle indique aussi que si p : E → X est un revêtement avec π1E = 1, alors on

peut toujours relever p dans l’espace total d’un revêtement arbitraire p′ : E ′ → X

puisque l’image de p∗ sera alors réduite à l’élément neutre. Ainsi p factorise comme

la composition

p : E
p̃−→ E ′ p′−→ X

Tout revêtement est coincé entre l’espace total E et la base X. De fait nous verrons

qu’on peut obtenir tous les revêtements à partir de ce revêtement.
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Exemple 6.1. Le revêtement exponentiel p : R → S1 a cette particularité que

π1R = 1. Les autres revêtements du cercle que nous connaissons (et il n’y en pas

d’autre), i.e. les applications de degré n données par fn : S
1 → S1 où fn(e

it) = eint

reçoivent un relèvement p̃ : R→ S1 à savoir p̃(t) = eit/n de sorte que p = fn ◦ p̃.

Définition 6.2. Un revêtement X̃ de X est appelé revêtement universel si le

groupe fondamental de son espace total est trivial : π1X̃ = 1.

Remarque 6.3. Si un revêtement universel existe, considérons un ouvert trivia-

lisant U ⊂ X. Alors on a la situation suivante :

X̃

U X

p

i

et nous savons que le relèvement indiqué en traitillés existe puisqu’on peut choisir

l’inverse de l’homéomorphisme entre un feuillet et U . Par conséquent on tire de la

Proposition 5.1 que i∗(π1U) ⊂ p∗(π1X̃) = 1. Ceci indique que X ne peut être un

espace arbitraire, il doit exister des voisinages dans lesquels les lacets sont contractiles

dansX. Par exemple les voisinages peuvent être contractiles ou simplement connexes,

auquel cas π1U = 1, mais la condition nécessaire que nous donnons ci-dessous est

moins forte.

Définition 6.4. Un espace X est semi-localement simplement connexe si tout

point x ∈ X admet un voisinage U tel que l’inclusion i : (U ;x) ⊂ (X;x) induit

l’homomorphisme trivial i∗π1(U ;x)→ π1(X;x).

La Remarque 6.3 nous a permis de comprendre la chose suivante.

Lemme 6.5. Si un revêtement universel de X existe, alors X est semi-localement

simplement connexe. □

Avant de passer à la construction des revêtements universels et de montrer ainsi

que la condition précédente est suffisante, nous donnons l’idée générale. Les démons-

trations des propriétés de relèvement nous ont donné l’intuition que les relèvements

de chemins jouent un rôle central : nous avons vu que les points de l’espace total
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correspondent précisément aux extrêmités des relèvements de chemins, au choix des

chemins près dans la base.

On décide donc de construire X̃ comme l’ensemble {[γ] | γ : I → X; γ(0) = x0}.
On précise que X est un espace pointé, dont le point de base est x0 et que les

classes d’homotopie [γ] sont des classes relatives aux extrêmités, c’est-à-dire que

deux chemins γ et γ′ allant tous deux de x0 à un point x sont homotopes (rel {0; 1})
s’il existe une homotopie H telle que

(1) H commence en γ, i.e. on a H(s, 0) = γ(s) pour tout 0 ≤ s ≤ 1 ;

(2) H finit en γ′, i.e. on a H(s, 1) = γ′(s) pour tout 0 ≤ s ≤ 1 ;

(3) H fixe x0 pendant toute l’homotopie, i.e. H(0; t) = x0 pour tout 0 ≤ t ≤ 1 ;

(4) H fixe x pendant toute l’homotopie, i.e. H(1; t) = x pour tout 0 ≤ t ≤ 1.

Pour munir l’ensemble X̃ d’une topologie, on construit d’abord une base d’ouverts

de la topologie de X adaptée à la situation.

Définition 6.6. On appelle B l’ensemble de tous les ouverts U de X qui sont

connexes par arcs et tels que π1U → π1X est l’homomorphisme trivial.

On se permet ici de ne pas indiquer le point de base puisque n’importe quel point

de U fait l’affaire et on choisira le même point de base dans X pour comparer les

groupes fondamentaux.

Remarque 6.7. Puisque U et X sont connexes par arcs tout autre choix de

point de base donne des groupes fondamentaux isomorphes. Soient u, u′ ∈ U deux

points et γ un chemin dans U entre u et u′. Alors la conjugaison par γ induit un

isomorphisme π1(U ;u)→ π1(U ;u
′) défini explicitement par ω 7→ γ̄ ⋆ω ⋆γ, et il en va

de même pour X. En particulier l’homomorphisme π1(U ;u) → π1(X;u) est trivial

si et seulement si π1(U ;u
′)→ π1(X;u′) est trivial.

On montre que B forme bien une base d’ouverts de la topologie de X.

Lemme 6.8. Soit X un espace connexe par arcs, localement connexe par arcs

et semi-localement simplement connexe. Alors B forme une base d’ouverts de la

topologie de X.
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Démonstration. Soit O un ouvert de X. On doit montrer d’abord que tout

point x ∈ O admet dans O un voisinage ouvert U ∈ B. Or, comme X est semi-

localement simplement connexe il existe un ouvert O1, voisinage de X tel que

π1(O1;x) → π1(X;x) est l’homomorphisme trivial. Puisque X est aussi localement

connexe par arcs, il existe un ouvert connexe par arcs U ⊂ O ∩ O1 qui contient x.

Alors la composition suivante est l’homomorphisme induit par l’inclusion U ⊂ X :

π1(U ;x)→ π1(O ∩O1;x)→ π1(O1;x)→ π1(X;x)

Le dernier homomorphisme étant trivial, la composition aussi, si bien que U ∈ B.
Il reste encore à vérifier que tout point x de l’intersection de deux ouverts U, V

de B admet un voisinage de B dans U ∩V . Le seul problème éventuel est la connexité

par arcs, on choisit donc la composante connexe par arcs C de U ∩V qui contient x.

Cette composante est un ouvert connexe par arcs et finalement, comme avant, la

composition

π1(C;x)→ π1(U ∩ V ;x)→ π1(U ;x)→ π1(X;x)

est triviale. Ainsi C ∈ B. □

Nous sommes prêts à construire une base d’ouverts définissant une topologie sur

l’ensemble X̃.

Définition 6.9. Soit γ : I → X un chemin avec γ(0) = x0 et [γ] la classe

d’homotopie relative à {0; 1}. Pour U ∈ B un ouvert de base contenant x = γ(1), on

pose U[γ] = {[γ ⋆ β] ∈ X̃ | β : I → U ; β(0) = x}.

Lemme 6.10. Soit X un espace connexe par arcs, localement connexe par arcs

et semi-localement simplement connexe. Alors les U[γ] forment une base d’ouverts B̃
d’une topologie sur X̃.

Démonstration. On doit d’abord montrer que les ouverts de base recouvrent

tout X̃. Soit donc [γ] ∈ X̃, dont un représentant est un chemin γ : I → X avec

γ(0) = x0. Appelons γ(1) = x. Comme B est une base par le Lemme 6.8, il existe un

ouvert U ∈ B contenant x. Alors, si cx est le chemin constant [γ] = [γ ⋆ cx] ∈ U[γ].

On doit aussi traiter le cas d’une intersection de deux ouverts de base. Soient

U[γ], V[γ′] ∈ B̃ et [α] un élément de leur intersection (si l’intersection est vide il n’y
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a rien à faire). Comme [α] ∈ U[γ], il existe un chemin β contenu dans U tel que

[γ ⋆ β] = [α]. On affirme qu’alors U[γ] = U[α]. En effet, pour tout chemin δ dans U

avec δ(0) = α(1) on a d’une part

[α ⋆ δ] = [γ ⋆ β ⋆ δ] ∈ U[γ]

et d’autre part pour tout chemin β′ dans U avec β′(0) = γ(1) on a

[γ ⋆ β′] = [γ ⋆ β ⋆ β̄ ⋆ β′] = [α ⋆ β̄ ⋆ β′] ∈ U[α]

Par le même argument on établit l’égalité V[γ′] = V[α]. Pour conclure on profite du fait

que B est une base d’ouverts de la topologie de X et on choisit un ouvertW ⊂ U ∩V
contenant α(1). Alors l’inclusion W[α] ⊂ U[α] ∩ V[α] est claire et comme [α] ∈ W[α]

comme montré ci-dessus, la démonstration est terminée. □

Corollaire 6.11. Soient γ et γ′ deux chemins avec γ(0) = x0 = γ′(0) et γ(1) =

x = γ′(1) tels que [γ] ̸= [γ′]. Alors, si U est un ouvert de B contenant x, on a

U[γ] ∩ U[γ′] = ∅

Démonstration. Si [α] est un élément de l’intersection U[γ]∩U[γ′], alors, comme

dans la preuve ci-dessus, on conclut que U[γ] = U[α] = U[γ′]. En particulier, il existe un

chemin β′ dans U tel que [γ] = [γ′ ⋆β′]. Les chemins étant composables et les classes

d’homotopie étant relatives on voit que β′ est un lacet basé en x car il commence

en γ′(1) = x et s’arrête en γ(1) = x. Par choix de B le lacet β′ est donc contractile

dans X, i.e. β′ ≃∗ cx. Ainsi, dans X, on a [γ] = [γ′ ⋆ β′] = [γ′ ⋆ c′x] = [γ′]. □

Nous avons choisi une base d’ouverts convenable dans X et construit une topolo-

gie sur X̃. Nous sommes prêts à définir une application p : X̃ → X et il faudra encore

montrer que p est continue, que c’est aussi un revêtement, et enfin que ce revêtement

est universel. En particulier X̃ doit être un espace connexe par arcs et localement

connexe par arcs. On commence par relever les chemins de X dans l’espace X̃.

Lemme 6.12. Soit γ : I → X un chemin avec γ(0) = x0. L’application Γ: I → X̃

définie par Γ(t) = [γt], où γt est le chemin γ |[0,t], est continue. En particulier X̃ est

connexe par arcs.



104 5. REVÊTEMENTS

Démonstration. La preuve de la continuité est en exercice. L’idée est de cal-

culer la préimage d’un ouvert de base U[α]. Si γ ne rencontre pas U , cette préimage

est vide (et donc ouverte), mais si t ∈ Γ−1(U[α]), cela signifie que γt est homotope

à un chemin de la forme α ⋆ β avec β un chemin dans U , et U[α] = U[γt] comme

ci-dessus.

En particulier γ(t) ∈ U et par continuité du chemin γ on en déduit qu’il existe

un voisinage ouvert de t de la forme ]t−ϵ, t+ϵ[∩I dans la préimage de U . On affirme

qu’alors ce même ouvert de I est également contenu dans Γ−1(U[γt]), ce qui suit du

fait que le chemin parcouru par γ entre le temps t et t+ a pour |a| < ϵ est contenu

dans U .

La continuité étant admise, on observe que Γ est un chemin dans X̃ entre le point

de base [cx0 ] et [γ], si bien que X̃ est connexe par arcs. □

Les autres propriétés vont suivre de l’existence d’ouverts trivialisants pour p,

dont l’existence va nous prendre la plus grande partie de la preuve suivante.

Proposition 6.13. L’application p : X̃ → X, définie par p[γ] = γ(1), est un

revêtement. Elle est en particulier continue et X̃ est localement connexe par arcs.

Démonstration. La connexité par arcs de X montre que p est surjective. La

continuité de p vient du fait que la préimage de U par p est par définition la réunion

des U[γ] pour tous les chemins γ qui se terminent dans U . Par connexité par arcs de U

on peut fixer un point x1 ∈ U et seulement considérer les chemins qui se terminent

en x1, quitte à concaténer avec un chemin dans U et son inverse, comme dans la

preuve du Lemme 6.10. Le Corollaire 6.11 montre ensuite que cette préimage est une

réunion disjointe de U[γ], où la réunion est prise sur toutes les classes d’homotopie

relative de chemins de x0 à x1.

Pour montrer que les ouverts de la base B sont tous des ouverts trivialisants pour

p, on doit démontrer que les feuillets sont les U[γ]. On observe avant de se lancer dans

la preuve que ceci implique que X̃ est localement connexe par arcs puisque chaque

U[γ] est connexe par arcs, étant homéomorphe à U . Montrons donc que p |U[γ]
est

un homéomorphisme sur U . C’est une surjection parce que U est connexe par arcs.
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Ainsi, pour tout x ∈ U , il existe un chemin β contenu dans U entre x1 et x. Alors

p[γ ⋆ β] = β(1) = x.

L’injectivité est un peu plus délicate. Supposons que β, β′ : I → U sont deux

chemins allant de x1 à x si bien que les éléments [γ ⋆ β] et [γ ⋆ β′] de U[γ] ont même

image sous p (ils se terminent au même endroit).

✗

.?÷
On doit montrer qu’ils sont égaux. Considérons le lacet β′ ⋆ β̄ basé en x1. Comme

U ∈ B ce lacet est contractile dans X via une homotopie pointée H. Ainsi H(−, 1) =
cx1 et H(−, 0) = β′ ⋆ β̄.

Ainsi, puisque les homotopies pointées de lacets sont des homotopies relatives aux

extrêmités de ces chemins fermés, on a [γ] = [γ ⋆ cx1 ] = [γ ⋆ β′ ⋆ β̄]. Par conséquent

on a aussi

[γ ⋆ β] = [γ ⋆ β′ ⋆ β̄ ⋆ β] = [γ ⋆ β′ ⋆ cx] = [γ ⋆ β′]

ce qui établit l’injectivité. Comme p est continue, il reste seulement à voir qu’elle est

ouverte, ce qui suit du fait que p(U[γ]) = U . □

Théorème 6.14. L’application p : X̃ → X est un revêtement universel.

Démonstration. Il faut montrer que X̃ est connexe par arcs et simplement

connexe. C’est un espace connexe par arcs par le Lemme 6.12 et on prouve mainte-

nant que π1X̃ = 1.

Soit Ω un lacet basé en [cx0 ], notre point de base favori au-dessus de x0. Alors

ω = p◦Ω est un lacet de X basé en x0, si bien qu’il admet un unique relèvement, i.e.

un chemin ω̃, une fois que l’on choisit son origine ω̃(0) = [cx0 ]. Or le chemin t 7→ [ωt]
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construit dans le Lemme 6.12 est un relèvement de ω et en t = 0 on a bien ω0 = cx0 .

C’est donc ce relèvement unique.

Mais Ω aussi est un relèvement de ω par définition de ce dernier. On conclut

de cela qu’en particulier ces relèvements cöıncident à la fin du chemin, c’est-à-dire

[ω1] = [ω] est égal dans X̃ à Ω(1). Or, Ω est un lacet, ce qui signifie que Ω(1) =

Ω(0) = [cx0 ]. Autrement dit [cx0 ] = [ω] = p∗[Ω].

On conclut alors par injectivité de p∗ (c’est vrai pour tout revêtement) que Ω est

homotope au lacet constant. □

7. Monodromie

Soit p : E → X un revêtement. On choisit un point de base x0 ∈ X et un point

de base e0 ∈ p−1(x0) dans la fibre de p au-dessus de x0 de sorte que l’on peut voir p

comme une application pointée. On étudie dans cette section les relations qu’il y a

entre le groupe fondamental de X et les changements de point de base dans E.

On rappelle que si ω est un lacet de X basé en x0, alors il existe un unique

relèvement ω̃ dans E dans le sens suivant : dès que l’origine e0 est fixée, ω̃ est le seul

chemin tel que ω̃(0) = e0 et p ◦ ω̃ = ω.

Définition 7.1. Le groupe fondamental π1(X;x0) agit sur p
−1(x0) à droite par

e0 · [ω] = ω̃(1). On appelle cette action la monodromie.

On remarque que cette action est bien définie grâce aux propriétés de relèvement

unique des chemins et des homotopies entre chemins. Les mêmes raisons montrent

qu’il s’agit bien d’une action :

Remarque 7.2. Concrètement si ω est un lacet basé en x0 on le relève en un

unique chemin ω̃ d’origine e0 ∈ p−1(x0) et e0 · [ω] = ω̃(1) = e1. Pour faire agir [α] sur

e1 on répète le procédé et on relève ce lacet en un chemin α̃ commençant en e1 et se

terminant en (e0 · [ω]) · [α] = α̃(1). Or le chemin ω̃ ⋆ α̃ est le seul chemin d’origine e0

qui relève la concaténation des lacets ω ⋆ α. Ainsi (e0 · [ω]) · [α] = e0 · ([ω][α]).

Proposition 7.3. L’action de monodromie est transitive sur la fibre p−1(x0), le

stabilisateur de e0 est le sous-groupe p∗(π1(E; e0)) < π1(X;x0) et la fibre p−1(x0) est

un ensemble en bijection avec le quotient π1(X;x0)/p∗(π1(E; e0)).
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Démonstration. Soit e ∈ p−1(x0). Comme E est connexe par arcs, il existe un

chemin ω̃ de e0 à e. Alors p ◦ ω̃ est un lacet ω tel que e0 · [ω] = e, ce qui montre la

transitivité.

Le stabilisateur de e0 est constitué des classes d’homotopie de lacets qui se re-

lèvent en un lacet. Nous avons vu en exercice qu’il s’agit précisément des classes dans

l’image de p∗. On tire de cela que l’action de monodromie factorise par le quotient

π1(X;x0)/p∗(π1(E; e0)) et on conclut par transitivité. □

Pour établir ce résultat nous avons fixé un point de base dans la fibre au-dessus de

x, mais on pourrait en choisir un autre. Aussi, au vu de la démonstration (en exercice)

de l’unicité du revêtement universel, on pourrait penser que tous les revêtements sont

classifiés par leur groupe fondamental. Il faut être plus soigneux !

Lemme 7.4. Soit p : E → X un revêtement, e, e′ ∈ p−1(x0) deux points dans la

fibre au-dessus de x. Alors les groupes p∗(π1(E; e)) et p∗(π1(E; e
′)) sont conjugués

dans π1(X;x0).

Démonstration. Puisque E est connexe par arcs il existe un chemin ω̃ entre e

et e′ et p ◦ ω̃ = ω est un lacet de X basé en x0. Pour écrire un isomorphisme entre

π1(E; e) et π1(E; e
′) on utilise ce chemin, pour conjuguer un lacet α̃ basé en e et

obtenir ¯̃ω ⋆ α̃ ⋆ ω̃ un lacet basé en e′. Or, l’image d’une telle concaténation de lacets

par p est le lacet ω̄ ⋆ α ⋆ ω.

Au niveau des groupes fondamentaux on obtient alors que l’image p∗(π1(E; e
′))

est le conjugué [ω]−1p∗(π1(E; e))[ω]. □

Rappelons que deux revêtements sont isomorphes s’il existe un morphisme de

revêtements inversible au-dessus de la base.

Proposition 7.5. Deux revêtements p : E → X et p′ : E ′ → X sont isomorphes

si et seulement si les sous-groupes p∗(π1(E; e)) et p
′
∗(π1(E

′; e′)) sont conjugués dans

π1(X;x0).

Démonstration. On choisit un point de base x0 ∈ X et des points de base e et

e′ dans les fibres respectives de p et p′. Si les revêtements sont isomorphes, il existe

des morphismes de revêtement f : E → E ′ et g : E ′ → E tels que g ◦ f = idE et
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f ◦ g = idE′ . Ces applications ne sont peut-être pas pointées si bien que les groupes

fondamentaux de E et E ′ sont isomorphes après conjugaison par un chemin comme

dans le Lemme 7.4. Les images sont donc conjuguées dans π1(X;x0).

Réciproquement supposons qu’il existe un lacet ω de X basé en x0 tel que

[ω]−1p∗(π1(E; e))[ω] = p′∗(π1(E
′; e′))

Si on choisit ϵ = ω̃(1) comme point de base au lieu de e (en relevant le lacet de X

en un chemin de E d’origine e), alors par le lemme précédent on a p∗(π1(E; ϵ)) =

p′∗(π1(E
′; e′)). Ceci permet de relever p en une application pointée f : (E, ϵ)→ (E ′; e′)

et aussi p′ en une application pointée g ◦ (E ′; e′)→ (E, ϵ) par la Proposition 5.1. La

composition g ◦ f relève alors p dans E et envoie ϵ sur lui-même. L’identité aussi est

un tel relèvement et on conclut par le principe du “tout ou rien” que g ◦ f = idE.

Le même raisonnement s’applique à f ◦ g et on conclut que les revêtements sont

isomorphes. □

Pour obtenir l’isomorphisme, nous avons dû choisir un nouveau point de base

dans E. On ne peut pas fixer les points de base à l’avance et s’attendre à obtenir un

isomorphisme pointé.

8. Correspondance galoisienne

On vient de voir qu’il est naturel d’étudier la classification des revêtements à iso-

morphisme près et qu’alors il vaut mieux se concentrer sur les classes de conjugaison

de sous-groupes de G = π1(X;x0) à cause de la flexibilité du choix du point de base

dans l’espace total. Dans cette section nous établissons précisément une classifica-

tion des revêtements en fonction de ces classes de conjugaison de sous-groupes. Dans

les sections suivantes nous porterons notre attention sur les sous-groupes normaux,

comme en algèbre.

Soit Cov(X) l’ensemble des classes d’isomorphisme des revêtements de X (on

ne fixe pas le point de base de l’espace total) et Conj(G) l’ensemble des classes de

conjugaison de sous-groupes du groupe fondamental G. On définit deux applications.

La première associe à un sous-groupe H < G un quotient du revêtement universel

X̃ par la relation d’équivalence suivante : [γ] ∼ [γ′] si et seulement si [γ ⋆ γ̄′] ∈ H.

Nous avons montré en exercice que ce quotient forme un revêtement pH : XH → X et
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qu’avec le choix du point de base donné par l’image de [cx0 ] ∈ X̃, on a Im(pH)∗ = H.

Ceci définit notre première application

Φ: Conj(G) −→ Cov(X)

[H] 7−→ XH

La Proposition 7.5 montre que le type d’isomorphisme du revêtement ne dépend que

de la classe de conjugaison de H, i.e. Φ est bien définie. L’analyse rappelée ci-dessus

sur le groupe fondamental de XH démontre aussi que notre deuxième application

Ψ: Cov(X) −→ Conj(G)

E 7−→ [p∗(π1(E; e))]

est un inverse à gauche de Φ puisque Ψ(Φ[H]) = Ψ(XH) = [H]. Il ne reste plus

qu’à démontrer que l’autre composition est aussi l’identité pour obtenir le premier

Théorème de Correspondance galoisienne pour les revêtements.

Théorème 8.1. Les applications Φ et Ψ établissent une bijection entre Cov(X)

et Conj(G).

Démonstration. Soit p : E → X un revêtement et, pour un choix de point de

base e ∈ p−1(x0), soit H = p∗(π1(E; e)). On construit alors XH le revêtement associé

et on doit montrer que E et XH sont isomorphes en tant que revêtements de X.

C’est encore la Proposition 7.5 qui nous permet de conclure puisque les images des

groupes fondamentaux de E et de XH sont toutes deux égales à H. □

Il peut être utile de remarquer ici que le groupe fondamental d’un revêtement

s’injecte dans le groupe fondamental de la base ce qui explique pourquoi les images

de ces groupes ont une chance de déterminer le revêtement.

9. Groupes d’automorphismes

Pour un revêtement p : E → X nous avons deux actions de groupes. L’une est

celle du groupe Aut(p) des automorphismes de p, qui agit naturellement à gauche

sur l’espace total X (en fixant la base) :

Aut(p)× E → E; f · e = f(e)
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Pour obtenir une action à droite on doit faire agir f par son inverse : e · f = f−1(e).

L’autre action est la monodromie du groupe fondamental π1(X;x0) sur la fibre

p−1(x0). Notre but est de comprendre les liens entre ces deux actions et nous verrons

qu’ils sont particulièrement étroits pour les revêtements les plus réguliers, appelés

galoisiens. Dans cette section on passe par un intermédiaire utile, un certain groupe

de bijections d’une fibre.

Si f ∈ Aut(p), alors p ◦ f(e) = p(e) = x0 pour tout e dans la fibre au-dessus

de x0. Ainsi on peut associer à f sa restriction à p−1(x0). On montre que cette

application est π1(X;x0)-équivariante, i.e. elle est compatible avec l’action du groupe

fondamental.

Lemme 9.1. On a f(e · [ω]) = f(e) · [ω] pour tout [ω] ∈ π1(X;x0).

Démonstration. Par définition de la monodromie on a e · [ω] = ω̃(1). Or f ◦ ω̃
est un chemin qui relève ω et commence en f(e). Ainsi f(e) · [ω] = (f ◦ ω̃)(1) =

f(ω̃(1)). □

Pour ne pas alourdir la terminologie on dira simplement que la bijection f |p−1(x0)

est π1(X;x0)-équivariante.

Proposition 9.2. L’application qui associe à tout f ∈ Aut(p) la restriction de f

à p−1(x0) établit une bijection entre Aut(p) et les bijections π1(X;x0)-équivariantes

de p−1(x0).

Démonstration. Le fait que f |p−1(x0) est une bijection vient du fait que f

a un inverse. On sait déjà qu’un automorphisme f est déterminé par l’image d’un

point de la fibre (comme relèvement de l’identité et le principe du tout ou rien). Il

reste donc à montrer que toute bijection équivariante ϕ provient de l’action d’un

automorphisme. On choisit un point de base e0 dans la fibre et on considère le

stabilisateur de e0 qui est p∗(π1(E; e0) par la Proposition 7.3. Si ϕ(e0) = e1, on

calcule pour [ω] ∈ p∗(π1(E; e0) :

e1 · [ω] = ϕ(e0) · [ω] = ϕ(e0 · [ω]) = ϕ(e0) = e1

Ainsi p∗(π1(E; e0) ⊂ p∗(π1(E; e1) (le stabilisateur de e1), si bien que nous obtenons

un relèvement f : E → E qui envoie e0 sur e1. On prétend que ϕ est la restriction
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de f à la fibre. Soit e ∈ p−1(x0). Par transitivité de l’action de π1(X;x0) il existe un

[ω] tel que e = e0 · [ω]. Alors on conclut par équivariance que

f(e) = f(e0 · [ω]) = f(e0) · [ω] = e1 · [ω] = ϕ(e0) · [ω] = ϕ(e0 · [ω]) = ϕ(e)

ce qui conclut la preuve. □

On remarque que les deux ensembles sont munis de lois de groupes données par la

composition, la bijection ci-dessus est donc promue en un isomorphisme de groupes.

Ce qui va nous permettre de faire le lien entre l’action du groupe des automorphismes

d’un revêtement et celui du groupe fondamental sur les fibres, c’est que cette dernière

action est une action de groupe, voir Remarque 7.2.

10. Revêtements galoisiens

Pour compléter l’analogie avec la correspondance galoisienne classique pour les

extensions de corps, on identifie parmi les revêtements les plus symétriques dans

un certain sens. Si le groupe de Galois algébrique permute les racines du polynôme

minimal, le groupe fondamental permute les points de la fibre p−1(x0).

Définition 10.1. Un revêtement p : E → X est galoisien si pour toute paire de

points e, e′ ∈ p−1(x) il existe un automorphisme f de E tel que f(e) = e′.

Exemple 10.2. Les revêtements à deux feuillets de S1 ∨ S1 que nous avons

rencontrés dans les exercices sont des revêtements galoisiens :

La nature symétrique de ces espaces permet en effet de reconnâıtre dans les

deux cas qu’une rotation de π radians est un automorphisme (compatible avec la

projection). Du point de vue de l’image du groupe fondamental dans le groupe libre

F (a, b) à deux générateurs nous verrons tout-à-l’heure que ceci correspond au fait

qu’il s’agit d’un sous-groupe d’indice deux, et donc normal.
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Exemple 10.3. Le collier de perles, revêtement à une infinité de feuillets du

bouquet de deux cercles est aussi galoisien :

Ici les translations horizontales sont des automorphismes de revêtements.

Exemple 10.4. Il y a de nombreux revêtements non galoisiens de S1 ∨ S1, par

exemple :

On voit que le seul automorphisme est l’identité car la compatibilité avec la

projection implique qu’un automorphisme doit permuter non seulement les points de

la fibre xi, mais aussi les ai et les bi. La symétrie axiale d’axe horizontale ne convient

pas non plus car elle inverse le sens des flèches... Du point de vue des groupes, on

constate que l’image du groupe fondamental du revêtement, qui est engendré par les

lacets a1, b3b2, b3a3a2b̄3, b3a3b1ā3b̄3 a pour image dans F (a, b) le sous-groupe d’indice

3 donné par les générateurs a, b2, ba2b−1 et baba−1b−1.

Exemple 10.5. On termine avec un dernier revêtement E → S1 ∨ S1, pour le

plaisir de retrouver le groupe symétrique S3 :
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J’ai dessiné le graphe de Cayley de sorte qu’il soit clair que deux générateurs

suffisent à engendrer S3 si bien que S3 est un quotient de F (a, b) (par le sous-

groupe normal dont l’image est induite au niveau des groupes fondamentaux par le

revêtement), mais surtout pour mieux voir que ce revêtement est galoisien. En effet

la rotation de 2π/3 permute cycliquement les trois sommets de chacune des bases

du prisme et la rotation d’angle π dont l’axe passe par le milieu des arêtes a3 et a4

et le milieu de la face verticale située entre b3 et b4 transpose les sommets supérieurs

et inférieurs.

Ce revêtement est galoisien et l’image dans F (a, b) de π1E est engendrée par

a2, b3 et abab.

Proposition 10.6. Un revêtement p : E → X est galoisien si et seulement si

p∗(π1E) est un sous-groupe normal de π1X.

Démonstration. Nous avons vu dans la Proposition 7.5 que deux revêtements

sont isomorphes si et seulement si les images de leur groupe fondamental respectif

sont conjuguées. Si un automorphisme f : (E, e)→ (E, e′) est pointé (et envoie e sur

e′), alors les images sont égales (car p = p ◦ f).
Ainsi, si p est galoisien, tous les conjugués p∗(π1(E; e)) où e parcourt la la fibre

p−1(x0) sont égaux, si bien que ce sous-groupe est normal. Réciproquement, si ce

sous-groupe est normal on tire de la propriété de relèvement Proposition 5.1 qu’un

automorphisme f comme ci-dessus existe pour tout choix e, e′ ∈ p−1(x0) puisque

p∗(π1(E; e
′)) ⊂ p∗(π1(E; e)) (ils sont même égaux). □
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On arrive finalement au deuxième Théorème de Correspondance galoisienne.

Théorème 10.7. Soit p : E → X un revêtement galoisien. Alors on a un iso-

morphisme de groupes Aut(p) ∼= π1(X;x0)/p∗(π1(E; e0), pour tout choix de points

de base x0 ∈ X et e0 ∈ p−1(x0).

Démonstration. Nous avons établi un isomorphisme dans la Proposition 9.2

entre les automorphismes de p et les bijections équivariantes de la fibre. Nous construi-

sons maintenant une telle bijection équivariante B[ω] pour tout lacet [ω] dans la

base en le faisant agir par monodromie sur le point de base de la fibre choisi :

B[ω](e0) = e0 · [ω] et pour tout e ∈ p−1(x0) il existe par transitivité de la monodro-

mie, Proposition 7.3, un lacet [α] ∈ π1(X;x0) tel que e0 · [α] = e. Ce lacet n’est pas

unique, mais il est bien défini modulo p∗(π1(E; e0), le stabilisateur. On pose alors

B[ω](e) = e0 · [ω ⋆ α]

L’équivariance provient du fait que la monodromie est bien une action, Remarque 7.2.

En effet, pour tout [ω′] ∈ π1(X;x0) on observe que le lacet [α ⋆ ω′] agit par mono-

dromie sur e0 comme [ω′] agit sur e0 · [α] = e. Ainsi

B[ω](e · [ω′]) = e0 · [ω ⋆ α ⋆ ω′] = e0 · [ω ⋆ α] · [ω′] = B[ω](e) · [ω′]

La monodromie définit de fait un homomorphisme de groupe B de π1(X;x0) vers

les bijections équivariantes de la fibre p−1(x0) puisque par la Remarque 7.2 encore

une fois :

B([ω][ω′])(e0) = e0 · [ω ⋆ ω′] = (e0 · [ω]) · [ω′] = B[ω′](B[ω](e0))

Le produit des lacets dans le groupe fondamental correspond donc bien à la compo-

sition des bijections. Calculons le noyau de cet homomorphisme. Une classe [ω] fixe

tous les points de la fibre si et seulement il se relève en un lacet basé en e, ce qui

arrive si et seulement si [ω] ∈ p∗(π1(E; e), pour tout e ∈ p−1(x0). Comme le revête-

ment est galoisien, la Proposition 10.6 montre que l’image par p∗ est un sous-groupe

normal (le même pour tout choix de point de base dans la fibre).

Il reste à montrer la surjectivité de l’homomorphisme que B induit sur le quotient

π1(X;x0)/p∗(π1(E; e0). Soit ϕ une bijection π1(X;x0)-équivariante de la fibre et e0
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un point de p−1(x0). Par transitivité de la monodromie, Proposition 7.3, il existe

[ω] ∈ π1(X;x0) tel que ϕ(e0) = e0 · [ω]. Alors ϕ et B[ω] cöıncident sur e0, ce sont

donc des bijections égales par équivariance. □

Exemple 10.8. Le revêtement à six feuillets construit dans l’Exemple 10.5 est

galoisien et correspond à une action du groupe symétrique S3 sur l’espace total. Ce

groupe d’automorphismes est identifié au quotient ⟨a, b | a2, b3, abab⟩.

11. Revêtements et action de groupes

Pour terminer le cours et bien comprendre la correspondance galoisienne pour

les revêtements, nous expliquons comment les revêtements galoisiens se voient du

point de vue de l’action d’un groupe (abstrait ou d’automorphismes de revêtements).

Encore une fois tous les espaces sont connexes par arcs et localement connexes par

arcs. Nous commençons par montrer que tout revêtement galoisien est obtenu comme

un quotient par une action de groupe (totalement discontinue).

Proposition 11.1. Si p : E → X est un revêtement galoisien, alors X est ho-

méomorphe à E/Aut(p).

Démonstration. Appelons q l’application quotient E → E/Aut(p). Par la pro-

priété universelle du quotient, on obtient de p une application induite p̄ : E/Aut(p)→
X puisque p(f(e)) = p(e) pour tout e ∈ E et tout automorphisme f par définition

de ce qu’est un morphisme de revêtement. On a donc p̄ ◦ q = p.

Pour construire l’inverse on considère le diagramme suivant :

E E/Aut(p)

X

p

q

q̄

Pour x ∈ X et e ∈ p−1(x) un élément dans la fibre au-dessus de x, on pose q̄(x) =

q(e). On vérifie d’abord que cette formule définit bien une application ensembliste. Si

e′ est un autre point de la fibre, la transitivité de l’action de Aut(p) (le revêtement

est galoisien) garantit l’existence d’un automorphisme f tel que f(e) = e′. Ainsi

q(e′) = q(f(e)) = q(e) par définition du quotient dans lequel on identifie les orbites

sous l’action du groupe d’automorphismes. On a alors q̄ ◦ p = q.
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Nous devons encore montrer que q̄ est continue et pour cela on étudie la préimage

d’un ouvert U ⊂ E/Aut(p). Comme q est continue q−1(U) est un ouvert de E et

par surjectivité de p (qui est un revêtement), on a q̄−1(U) = p[q−1(U)]. Or, tout

revêtement est ouvert, et on conclut que q̄−1(U) est ouvert.

Pour terminer la preuve nous montrons que q̄ et p̄ sont inverses l’un de l’autre.

Soit x ∈ X. Alors,

p̄(q̄(x)) = p̄(q(e)) = p(e) = x et q̄(p̄(eAut(p))) = q̄(p(e)) = q(e) = eAut(p)

avec les notations comme ci-dessus. □

Nous continuons avec une sorte de réciproque qui nous permet de construire des

revêtements galoisiens comme des quotients qui ne sont pas arbitraires, mais donnés

par une (jolie) action de groupe.

Proposition 11.2. Soit G un groupe qui agit de manière totalement disconti-

nue sur un espace E. Alors l’application quotient q : E → E/G est un revêtement

galoisien et Aut(q) ∼= G.

Démonstration. On sait déjà qu’une action totalement discontinue définit un

revêtement. Identifions maintenant le groupe des automorphismes. Clairement G

s’identifie à un sous-groupe de G̃ = Aut(q) via g 7→ fg, l’automorphisme défini par

fg(e) = e · g. C’est un automorphisme compatible avec q puisque q(e) = q(e · g) par
définition du quotient.

Soit f ∈ Aut(q) et e ∈ E. Alors f(e) est un point dans la fibre au-dessus de ē.

Comme G agit transitivement sur l’orbite e · G = q−1(ē), il existe g ∈ G tel que

e · g = f(e), si bien que f et la multiplication par g sont deux relèvements de

l’identité qui cöıncident sur le point e. Comme E est connexe, le principe du “tout

ou rien” s’applique et on conclut que f = fg. Par conséquent G ∼= G̃.

En particulier l’action de ce dernier groupe est transitive sur les fibres et q est

galoisien (par définition). □

Cette proposition a une conséquence particulièrement importante pour le calcul

des groupes fondamentaux.
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Corollaire 11.3. Soit G un groupe qui agit de manière totalement discontinue

sur un espace E simplement connexe. Alors π1(E/G) ∼= G.

Démonstration. On sait que le revêtement q : E → E/G est galoisien par

la Proposition 11.2 et Aut(q) ∼= G. Or, par hypothèse, E est simplement connexe

et on conclut alors que le groupe G̃ des automorphismes de q s’identifie au quo-

tient du groupe fondamental de la base par l’image de celui de l’espace total :

π1(E/G)/q∗(π1E) = π1(E/G)/1 ∼= π1(E/G). □

Ces clarifications nous permettent enfin de revister la correspondance galoisienne

et de comprendre comment dans la pratique on construit les revêtements intermé-

diaires entre X̃ et X. On suppose dès maintenant que X est aussi semi-localement

simplement connexe de sorte que le revêtement universel p : X̃ → X existe. Via l’iso-

morphisme Aut(p) = G̃ ∼= G = π1X, on note H̃ le sous-groupe de G̃ qui correspond

à H < G.

Théorème 11.4. Soit H < G = π1X. Alors le sous- revêtement XH peut s’ob-

tenir comme quotient X̃/H̃ et pH : XH → X est alors le revêtement donné par la

formule pH(eH̃) = eG̃.

Démonstration. La Proposition 11.2 nous apprend que qH : X̃ → X̃/H̃ est un

revêtement galoisien et π1(X̃/H̃) ∼= H̃ ∼= H par le corollaire.

De plus pH est l’application induite sur le quotient par la projection du revête-

ment universel p : X̃ → X. □

Ce Théorème semble n’être qu’une suite de tautologies, mais il donne en fait une

construction bien plus explicite que la méthode abstraite décrite dans les exercices et

basée sur la description du revêtement universel comme espace de classes d’homoto-

pie relatives de chemins. En particulier nous apprenons que le revêtement universel

de X est aussi celui de XH : c’est un espace simplement connexe sur lequel le “grand”

groupe G = π1X agit totalement discontinument, mais on peut aussi y faire agir un

“petit” groupe H < G. Ainsi, tous les revêtements du bouquet de deux cercles sont

des quotients du graphe de Cayley de F (a, b) ! Ceux qui correspondent à des ac-

tions de sous-groupes normaux sont plus symétriques et produisent des revêtements

galoisiens de S1 ∨ S1.





Chapitre 6

Un coup d’oeil en avant

J’aimerais rapidement donner quelques directions possibles qui généralisent ou

étendent les constructions et les méthodes que nous avons étudiées ensemble ce

semestre. On commence par les groupes d’homotopie supérieurs.

1. Les groupes d’homotopie supérieurs

Définition 1.1. Soit (X, x0) un espace pointé et (Sn, e1) la sphère unité de Rn+1

basée en e1 = (1; 0; . . . ; 0). Le n-ème groupe d’homotopie πn(X;x0), parfois simple-

ment noté πnX est le groupe des classes d’homotopie pointées [(Sn, e1), (X, x0)].

La structure de groupe vient du fait que Sn ≈ ΣSn−1 et on peut “pincer” une

n-sphère le long de l’équateur pour obtenir une application Sn → Sn∨Sn qui permet

de construire un produit. De manière équivalente on peut aussi voir Sn ≈ S1 ∧ Sn−1

et utiliser le pinch sur le cercle, qu’on smashe avec Sn−1.

Proposition 1.2. Soit n ≥ 2. Alors πnX est un groupe abélien.

On peut dessiner l’homotopie entre ab et ba, ou utiliser le truc de Eckmann-Hilton

pour deux lois de composition, l’une définie en utilisant la première copie de S1 dans

S1∧Sn−1 et l’autre en utilisant la dernière dans Sn−1∧S1. Un autre point de vue est

encore donné par le fait que les lacets de X forment un espace (topologique), appelé

espace de lacets et noté ΩX = map∗(S
1, X). L’ensemble de toutes les applications

(continues, et ici pointées) est muni d’une topologie, la topologie compacte-ouverte.

Définition 1.3. Soient X, Y deux espaces. Pour K compact dans X et U ouvert

de Y , on définit V (K,U) comme étant constitué des applications continues f : X →
Y telles que f(K) ⊂ U . La topologie compacte-ouverte sur C(X, Y ) a pour ouverts

toutes les réunions arbitraires d’intersection finies de V (K,U). On note map(X, Y )

l’espace des applications continues de X vers Y .
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Autrement dit les V (K,U) forment une prébase de la topologie compacte-ouverte.

Cette topologie rend la composition d’applications et l’évaluation continues. Elle a

aussi le bon goût de faire en sorte que map(∗, X) ≈ X. La loi exponentielle est

moins tautologique que ce qu’on souhaiterait, mais si on se restreint à des espaces

convenables (Hausdorff et localement compacts), alors on a un homéomorphisme

map(X × Y, Z) ≈ map(X,map(Y, Z))

D’un point de vue ensembliste on se convainc facilement qu’étant donné une applica-

tion (continue)X×Y → Z, on forme une application fx : Y → Z par fx(y) = f(x, y),

qui définit une application (continue) X → map(Y, Z).

Dans le cas pointé cette adjonction entre, à gauche, X 7→ X × Y et, à droite,

Z 7→ map(Y, Z) fait intervenir l’analogue pointé du produit, i.e. le produit smash :

map∗(X ∧ Y, Z) ≈ map∗(X,map∗(Y, Z))

En particulier, lorsque X = Y = S1 on obtient map∗(S
2, Z) ≈ map∗(S

1,ΩZ). Il y

a deux manières de définir une loi de composition ici. Sur la source grâce au pinch,

ou sur le but, via la concaténation de lacets. Ces deux lois passent au quotient et

munissent π0map∗(S
2, Z) ∼= [S2, Z] = π2Z de deux structures de groupe. En fait

elles cöıncident et sont commutatives.

2. Les fibrations

Revenons un moment aux revêtements, et plus particulièrement au revêtement

universel. Notons G ↪→ X̃
p−→ X pour nous souvenir que toutes les fibres de p sont

en bijection avec G = π1X. Les bonnes propriétés de ce revêtement ne s’arrêtent

pas là où nous les avons laissées. La nature discrète des fibres et le fait qu’on a

construit X̃ de sorte que π1X̃ = 1, fait non seulement que π1X est isomorphe à G,

mais πnX ∼= πnX̃ pour tout n ≥ 2. Remarquons en particulier que ceci implique que

πnS
1 = 0 pour tout n ≥ 2 car le revêtement universel est non seulement simplement

connexe, mais contractile.

Il existe d’autres applications qui partagent ce type de propriétés avec les re-

vêtements, ce sont les fibrés ou de manière plus générale, les fibrations. La défini-

tion fait intervenir des propriétés de relèvement d’homotopie dans l’esprit de ce que
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nous avons établi pour les revêtements, et les actions de groupes topologiques en

donnent des exemples que nous avons déjà rencontrés, comme l’application de Hopf

η : S3 → S2 qu’on pourra alors écrire S1 ↪→ S3 η−→ S2. La remarque faite sur les

groupes d’homotopie supérieurs du cercle fait que πnS
3 ∼= πnS

2 pour tout n ≥ 3,

mais π2S
3 = 0 alors que π2S

2 ∼= Z, le générateur étant l’identité, de degré un.

Théorème 2.1. Il existe une fibration X⟨n⟩ → X → X[n] où X⟨n⟩ est le revête-
ment n-connexe de X et X[n] la n-ème section de Postnikov de X, i.e. πkX⟨n⟩ = 0

pour k ≤ n et πkX[n] = 0 pour k > n.

Ceci implique aussi que les groupes d’homotopie non triviaux de X⟨n⟩ et de

X[n] cöıncident avec ceux de X. Quand n = 1 on a X⟨1⟩ = X̃ et X[1] = K(G, 1) un

espace connexe par arcs dont le seul groupe d’homotopie non trivial est le premier,

isomorphe à G = π1X.

Entre le moment de la définition des groupes d’homotopie par Cech dans les

années 30 et les années 60, de nombreux travaux ont permis une meilleure compré-

hension de la nature de ces invariants homotopiques. Les résultats spectaculaires de

Serre dans les années 50 montrent que tous ces groupes sont finis, sauf πnS
n ∼= Z

et π4n−1S
2n (comme c’est le cas de π3S

2 ∼= π3S
3 ∼= Z), et que pour tout premier

p il existe de la p-torsion dans π∗S
n, il calcule même la dimension de la première

occurrence de Z/p, qui se trouve dans πn+2p−3S
n pour tout n ≥ 3.

On trouvera sur la page suivante un tableau de ce qui est connu en petites

dimensions (Wikipedia). Les escaliers noirs et les couleurs suggèrent les propriétés

de stabilité, et la forme plus complexe des groupes d’homotopie au-dessus de ce rang

stable montre la difficulté et laisse peut-être entrevoir l’impossibilité d’un calcul

complet.
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3. L’invariant de Hopf

Mentionnons encore le fameux Théorème de l’invariant de Hopf, dû à Adams vers

1960. Les groupes d’homotopie des sphères sont équipés d’un produit gradué, appelé

produit de Whitehead. De même que le tore S1×S1 se décompose en S1∨S1∪ e2, en
général on a une décomposition cellulaire de Sn×Sm en Sn∨Sm∪en+m. L’application
d’attachement est le produit de Whitehead

[ιn, ιm] : S
n+m−1 → Sn ∨ Sm

qu’on écrit comme un commutateur par analogie avec le cas connu n = m = 1. Pour

deux applications (pointées) α : Sn → X et β : Sm → X, on peut alors construire

[α, β] : Sn+m−1 → Sn ∨ Sm α∨β−−→ X ∨X ∇−→ X

et utiliser ces “commutateurs” pour définir une notion de nilpotence homotopique...

Par exemple [idS2 , idS2 ] = 2η où η est l’application de Hopf, générateur de π3S
2.

En général on peut construire [idSn , idSn ] ∈ π2n−1S
n. Ceci n’est que l’ombre du

problème de l’invariant de Hopf, pour lequel il faudrait introduire les invariants de

cohomologie, mais c’est peut-être et malgré tout frappant de savoir que ces crochets

de Whitehead ont un invariant égal à deux et que les seuls groupes d’homotopie

π2n−1S
n où une application de Hopf d’invariant 1 existe sont π3S

2, π7S
4 et π15S

8.
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Si on ajoute encore S1 pour laquelle l’invariant de Hopf n’est pas défini, les

dimensions de ces sphères sont exactement celles des R-algèbres non nécessaire-

ment associatives R,C,H et O. On peut associer à ces algèbres des plans projectifs

RP 2,CP 2,HP 2 et OP 2 dont la décomposition cellulaire est précisément Sn ∪ e2n et

l’application d’attachement a pour invariant de Hopf 1. De plus :

Théorème 3.1. Les sphères S0, S1, S3, S7 sont les seules qui admettent une

structure de H-espace.

On a une structure de groupe discret fini sur S0, de groupe topologique commu-

tatif pour S1, non commutatif pour S3 et finalement non associatif pour S7...


