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Exercice 1. Un espace mal pointé. Montrer qu’avec sa topologie de sous-espace de R2 le peigne
du topologue P = (0× I) ∪ (I × 0) ∪ ({1/n | n ≥ 1} × I) n’est pas bien pointé en (0, 1).

Solution 1. Soit V ⊂ P un voisinage de x0 = (0, 1) et h : V × I → V une homotopie pointée
entre l’identité et la fonction constante c : v 7→ x0. Alors puisque h est continue et que le peigne
est compact (et donc le produit avec I aussi), h est uniformément continue (h est définie sur un
ouvert mais comme le domaine et le but sont contenus dans des compacts, h s’étend par continuité
à l’adhérence de V qui est compacte) si bien qu’il existe un δ > 0 tel que pour tout x ∈ P vérifiant
∥x− x0∥ < δ on a

∥h(x, t)− h(x0, t)∥ < 1
2

pour tout t ∈ I. Puisque h est une homotopie pointée, on a h(x0, t) = x0 pour tout t et donc
∥h(x, t) − x0∥ < 1

2
. Par ailleurs, l’application h(x, ·) : I → V est un chemin reliant x au point x0

dans V . On utilise le fait suivant sur les chemins dans P :

Si n > 0 et t, t′ ∈ I et γ : I → P avec γ(0) = (0, t) et γ(1) = ( 1
n
, t′) un chemin reliant (0, t)

et ( 1
n
, t′), alors il existe t0 ∈ I tel que γ(t0) = (0, 0). En effet, l’espace P \ (0, 0) n’est pas connexe

par arcs. ses composantes connexes par arcs sont 0× (I \ 0) et P \ (0× I).

Soit n > 0 tel que 1
n
< δ et soit x = ( 1

n
, 1). On a donc l’existence de t0 ∈ I tel que h(x, t0) = (0, 0).

Ainsi
1
2
> ∥h(x, t0)− x0∥ = ∥(0, 0)− (1, 1)∥ = 1

C’est absurde, donc P n’est pas bien pointé en (0, 1). Le raisonnement s’applique aussi si on choi-
sit (0, t) pour tout 0 < t ≤ 1 à la place de (0, 1). En revanche, P est bien pointé en tout autre point.

Exercice 2. Soit I un ensemble quelconque et (Ai, ai)i∈I une famille d’espaces bien pointés. Montrer
que

π1(
∨
i∈I

(Ai)) ∼= ∗
i∈I

π1(Ai)

Solution 2.
Analogue à la preuve de la proposition 3.1 du polycopié.

Exercice 3. Attachement de 1−cellules. Soit (X, x0) un espace topologique et Y = X ∪f e1

où e1 = D1 = I et f : S0 → X. On veut calculer π1(Y ) en fonction des π1(X, x) pour x dans les
différentes composantes connexes de X.

1. Supposons que X soit connexe par arcs et bien pointé. Montrer que π1(Y ) = π1(X) ∗ Z.
2. Notons Z1 la composantes connexe de x0 dans X et Z2 celle de f(−1). Calculer π1(Y ) en

fonction de π1(Z1) et π1(Z2).

Solution 3.



1. Notons x = f(−1). On attache une copie de I = [−1, 1] à X en identifiant les extrémités à x et
x0. Comme X est connexe par arcs, il existe un chemin γ de x à x0. On peut utiliser ce chemin
γ pour construire une équivalence d’homotopie entre Y et Y ′ = X∪f ′e1 où f(−1) = f(1) = x0.
Désormais, on a attaché à X un lacet attaché à x0. Soit V un voisinage contractile de x0 dans
Y ′ (on utilise que X et I sont bien pointé). On utilise Van Kampen avec i(e1)∪V et i(X)∪V
pour conclure. On a noté les inclusions standards par i.

2. π1(Y ) = π1(Z1)∗π1(Z2). L’idée de la démonstration est qu’on peut construire une équivalence
d’homotopie entre Z1 et Z ′

1 = Z1 ∪x0 I où l’on attache I = [−1, 1] à Z1 via l’identification
1 ∼ x0. On attache l’intervalle seulement par une extrémité à Z1. On utilise que l’intervalle
est contractile.

Ensuite, on applique Van Kampen en utilisant comme ouverts A = Z1 ∪ (−1, 1] et B =
Z2 ∪ [−1, 1). A ≃ Z1 et B ≃ Z2 et A ∩B = (0, 1) ≃ pt.

Exercice 4. Espaces projectifs

1. Utiliser la structure cellulaire vue précédement pour calculer π1(RPn).

2. De même pour π1(CPn).

Solution 4.

1. On utilise la structure cellulaire de RPn avec une cellule de dimension k pour chaque 0 ≤ k ≤
n. On utilise le corollaire 4.4 du cours.

— Pour n = 1, par la partie (c) : π1(RP1) = Z.
— Pour n = 2 : par la partie (b), comme l’application d’attachement antipodale est donnée

par [x] ∗ [x] où [x] est générateur de π1(RP1), on a π1(RP2) = Z/2Z
— Pour n ≥ 2, par (a), on a π1(RPn) = Z/2Z.

2. On utilise la structure cellulaire suivante de CPn :

CPn = e0 ∪ e2 ∪ e4 ∪ · · · ∪ e2n

Comme on attache la 2−cellule à une 0−cellule, l’application d’attachement est le lacet trivial,
donc par (a) et (b) du corollaire 4.4, π1(CPn) = 0 pour tout n ≥ 1.

Exercice 5. Bouteille de Klein Soit K la bouteille de Klein, vue comme quotient de I × I en
identifiant les bords verticaux orientés dans le même sens et les bords horizontaux orientés dans un
sens opposé.

1. Rappeler l’application d’attachement f : S1 → S1 ∨S1 qui permet de voir K comme S1 ∨S1

avec une 2−cellule attachée.

2. Donner une présentation de π1(K).

Solution 5.
— L’application d’attachement est donnée par a ∗ b ∗ a−1 ∗ b, si a est le lacet correspondant au

bord horizontal et b au bord vertical du carré.
— Par le corollaire 4.4 (b), on a π1(K) = ⟨a, b | aba−1b⟩ puisque la classe d’homotopie de

a ∗ b ∗ a−1 ∗ b dans π1(S
1 ∨ S1 = Z ∗ Z est aba−1b.

Exercice 6. Calculer les groupes fondamentaux de :



1. R2 \ {(0; 0); (1; 0); . . . ; (n; 0)} pour tout n ∈ N.
2. R3 \ (Ox ∪Oy ∪Oz)

3. R3 \ S1 où S1 est le cercle unité dans le plan Oxy.

Solution 6.

1. Pour n ∈ N, on note Xn = R2 \ {(0; 0); (1; 0); . . . ; (n; 0)}. Pour n = 0, on a déjà vu que
R2 \ (0; 0) se rétracte par déformation sur le cercle S1 ⊂ X0 et donc π1X0

∼= Z. On montre
par récurrence sur n que π1(Xn) ∼= Fn+1 est le groupe libre à n+1 générateurs. Le cas n = 0
est vérifié.
Si on suppose que π1(Xn) ∼= Fn+1, on considère les deux ouverts U, V ⊂ Xn+1 définis par

U = {(x; y) ∈ Xn+1 ; x < 2
3
} et V = {(x; y) ∈ Xn+1 ; x > 1

3
}

Alors U ≈ X0 et V ≈ Xn. On a de plus U ∪ V = Xn+1 et U ∩ V =
]
1
3
, 2
3

[
× R ≈ R2 est

contractile. Ainsi, pour tout choix de point base z ∈ U ∩ V le théorème de Van Kampen et
l’hypothèse de récurrence donnent

π1(Xn+1, z) ∼= π1(U, z) ∗ π1(V, z)
∼= π1(X0) ∗ π1(Xn)
∼= Z ⋆ Fn+1

∼= Fn+2

2. On pose X = R3 \ (Ox ∪ Oy ∪ Oz). On considère le sous-espace Y = {x ∈ X ; ∥x∥ = 1}
constitué des vecteurs de X de norme 1. Alors Y = S2 \ {±ex,±ey,±ez} est la sphère privée
de 6 points. Or puisque S2 \ {p} ≈ R2 pour tout p ∈ S2, on a

Y ≈ S2 \ {p0, · · · , p5} ≈ R2 \ {p0, · · · , p4} ≃ R2 \ {(0; 0), · · · , (4; 0)} = X4

Par l’exercice précédent, on conclut que π1Y ∼= π1X4
∼= F5. Pour 0 ≤ t ≤ 1, la formule

ht : X −→ X

x 7−→ x+ t
(

x
∥x∥ − x

)
définit une équivalence d’homotopie de X vers Y . On a donc X ≃ Y et

π1X ∼= π1Y ∼= F5 .

3. On pourra construire un recouvrement ouvert en enlevant d’une part le disque D de bord S1

et en choisissant d’autre part un tore plein contenant l’intérieur D̊.

On pose X = R3 \ S1. Soit U = R3 \ D avec D le disque unité fermé dans le plan Oxy, et
V le volume de révolution obtenu à partir du disque ouvert D̊ par rotation autour de l’axe
y = 2, z = 0.

Alors U et V sont des ouverts de X avec U ∪ V = X et U ∩ V consiste en tout le tore plein
ouvert V , mais privé du disque D̊. Par ailleurs, V est homotope au cercle de R3 d’équation



(y− 2)2 + z2 = 4 (l’âme du tore) et de même l’intersection U ∩V se rétracte par déformation
sur ce cercle privé de l’origine O.

Ainsi V a le type d’homotopie d’un cercle, U ∩V est contractile, et enfin on a une équivalence
U ≃ R3 \ {O} ≃ S2 . En particulier π1V ∼= π1S

1 ∼= Z, mais les groupes fondamentaux de U
et de U ∩ V sont triviaux. Finalement, le théorème de Van Kampen permet de conclure que
π1X ∼= π1U ∗π1(U∩V ) π1V ∼= Z ∗1 1 ∼= Z. Le générateur de ce groupe d’homotopie est un lacet
qui forme un entrelac non-trivial avec le cercle S1, par exemple l’âme du tore V .


