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Exercice 1.La propriété universelle du pushout.

1. Soit X, Y, Z des espaces topologiques, et f : X → Z, g : Y → Z deux applications continues.
Montrer qu’il existe une unique application continue f

∐
g : X

∐
Y → Z qui fait commuter

le diagramme

X

Y X
∐
Y

Z

i

fj

g

où i : X ↪→ X
∐
Y et j : Y ↪→ X

∐
Y sont les inclusions canoniques.

2. Soit T et Z deux espaces topologiques, et X, Y ⊂ T des sous-espaces ouverts de T . Si
f : X → Z et g : Y → Z sont des applications, montrer qu’il existe une unique application
f ∪ g : X ∪ Y → Z qui fait commuter le diagramme

X ∩ Y X

Y X ∪ Y

Z

⊂

⊂ i
f

j

g

où i : X ↪→ X ∪ Y et j : Y ↪→ X ∪ Y sont les inclusions canoniques. Et si les sous-espaces ne
sont pas ouverts ?

3. Soit (X, x0), (Y, y0), (Z, z0) des espaces topologiques pointés, et f : X → Z, g : Y → Z deux
applications pointées. Montrer qu’il existe une unique application pointée f ∨ g : X ∨ Y → Z
qui fait commuter le diagramme

{∗} X

Y X ∨ Y

Z

x0

y0 i
f

j

g

où i : X ↪→ X ∨ Y et j : Y ↪→ X ∨ Y sont les inclusions canoniques.

4. Soit X,Z des espaces topologiques et ϕ : Sn−1 → X, f : X → Z, g : Dn → Z des applications
continues. Montrer qu’il existe une unique application f ∪ϕg : X∪ϕ en → Z qui fait commuter



le diagramme

Sn−1 X

Dn X ∪ϕ en

Z

ϕ

i

fj

g

où i : X ↪→ X ∪ϕ en et j : Dn ↪→ X ∪ϕ en sont les inclusions canoniques.

5. Soient G, H, K des groupes avec deux morphismes α : K → G et β : K → H. Montrer que
pour tout groupe M , tel que ψ : H →M et ϕ : G→M avec ϕ ◦α = ψ ◦β, il existe un unique
homomorphisme ω : G∗K →M qui fait commuter le diagramme :

K H

G G ∗K H

M

β

α i
ψj

ϕ
ω

où i et j sont les morphismes canoniques.

Solution 1.

1. Les points de X
∐
Y sont de la forme (x, 0) avec x ∈ X ou (y, 1) avec y ∈ Y . On pose

f
∐

g :

{
(x, 0) 7−→ f(x)
(y, 1) 7−→ g(y)

et on vérifie que f
∐
g fait commuter le diagramme et que si h : X

∐
Y → Z est une autre

telle application, alors h = f
∐
g.

2. On pose cette fois

f ∪ g : z 7−→
{
f(z) si z ∈ X
g(z) si z ∈ Y

et on vérifie que cette formule définit bien une application X ∪ Y → Z. Cette application
est bien définie car f et g coincident sur X ∩ Y , et elle fait commuter le diagramme ci-
dessus. Elle est continue car X et Y sont ouverts, par le Pasting Lemma. L’unicité est claire
également : si h est une application X ∪ Y → Z faisant commuter le diagramme, alors
h(x) = f(x) = (f ∪ g)(x) pour tout x ∈ X et h(y) = g(y) = (f ∪ g)(y) pour tout y ∈ Y et
donc h = f ∪ g.

Si on ne suppose pas que les sous-espaces X, Y sont tous deux ouverts, alors il se peut que
leur union ne soit pas le pushout. Par exemple les deux hémicycles {eit | 0 ≤ t ≤ π} et
{eit | π ≤ t < 2π} recouvrent entièrement le cercle, mais le pushout obtenu en identifiant
leur intersection constituée d’un seul point, −1, est homéomorphe à un segment semi-ouvert.
Il existe ainsi des applications f et g vers [0, 2π[ qu’on ne peut étendre à S1.



3. Les points de X ∨ Y sont de la forme (x, 0) pour x ∈ X ou (y, 1) pour y ∈ Y , avec l’identifi-
cation (x0, 0) = (y0, 1). L’application f ∨ g est définie par

f ∨ g :
{

(x, 0) 7−→ f(x)

(y, 1) 7−→ g(y)
.

Cette formule définit bien une application X ∨ Y → Z car f et g sont pointées.

4. Les points de X ∪ϕ en sont de la forme (x, 0) pour x ∈ X ou (y, 1) pour y ∈ Dn, avec les

identifications (ϕ(y), 0) = (y, 1) pour tout y ∈ ∂Dn ≈ Sn−1. La formule

f ∪ϕ g :
{

(x, 0) 7−→ f(x)

(y, 1) 7−→ g(y)

définit bien une application X ∪ϕ en → Y car f ◦ ϕ(y) = g(y) pour tout y ∈ Sn−1 ≈ ∂Dn.
On vérifie que cette application fait commuter tous les triangles du diagramme ci-dessus.
L’unicité est claire également.

5. Notons x1 . . . xn un élément de G ∗K H où xi = j(g) et/ou xi = i(h) ou g ∈ G et h ∈ H. On
définit

f(xi) :

{
ψ(g) si xi = j(g)
ϕ(h) si xi = i(h)

Notons que f est bien définie car si xi = j(α(k)) = i(β(k)) pour k ∈ K, par hypothèse
ϕ(g) = ψ(h)

On définit finalement :

ω : G ∗K H →M

(x1 . . . xn) = f(x1) . . . f(xn).

De manière similaire aux questions précédentes, cette application est unique.

Ces exemples ont pour but d’introduire la propriété universelle qui caractérise les pushouts :
on dit qu’un diagramme commutatif dans une catégorie C

X Y

Z S

f

g

est un pushout s’il vérifie la propriété universelle suivante : pour tout T et toutes applications
f ′ : Z → T , g′ : Y → T telles que f ′ ◦ f = g′ ◦ g (autrement dit, pour tout diagramme

X Y

Z T

f

g f ′

g′



commutatif dans C), il existe un unique morphisme h : S −→ T qui fait commuter le dia-
gramme

X Y

Z S

T

f

g

f ′

g′

h

L’application h est donc uniquement déterminée par f ′ et g′ par la propriété universelle. On
dit que f ′ et g′ sont les composantes de h et on note parfois h = f ′ ∐

X g
′.

Dans cet exercice, on a montré en utilisant la propriété universelle du pushout que les carrés
suivants

∅ X

Y X
∐
Y

Sn−1 X

Dn X ∪ϕ en

ϕ

sont des pushouts dans la catégorie C = Top des espaces topologiques. Les carrés

{∗} X

Y X ∨ Y

X ∩ Y X

Y X ∪ Y

sont aussi des pushouts, mais dans les catégories C = Top∗ des espaces topologiques pointés
et C = Top⊂T des sous-espaces de T respectivement. Enfin, le dernier carré est un pushout
dans la catégorie Gp des groupes.

Dans la catégorie Top des espaces topologiques, on a la caractérisation suivante des pushouts :
un diagramme commutatif d’espaces topologiques

X Y

Z S

f

g

est un pushout si et seulement si on peut trouver un homéomorphisme S ≈
(
Y
∐
Z
)
/ ∼ où

∼ est la relation d’équivalence engendrée par les relations f(x) ∼ g(x) pour tout x ∈ X.

On a des caractérisations analogues des pushouts dans Top∗ et Top⊂T en remplacant X
∐
Y

par X ∨ Y et X ∪ Y respectivement.

Exercice 2. On note Cn le groupe cyclique d’ordre n. Identifier les pushouts de groupes suivants :

1. Z← 0→ Z
2. Z id←− Z id−→ Z



3. 0←− Z ·n−→ Z
4. Z id←− Z ·n−→ Z
5. F (n)←− 1 −→ F (m)

6. Z/2 p←− Z q−→ Z/3 où p et q sont les réductions modulo 2 et 3

7. Z/m p←− Z q−→ Z/n où p et q sont les réductions modulo m et n

8. 1←− F (a)
xy−→ F (x, y) où l’application xy envoie le générateur a sur xy

9. 1←− F (a)
x2y2−−→ F (x, y) où l’application x2y2 envoie a sur x2y2

10. Montrer que ce dernier groupe n’est pas isomorphe à Z en exhibant un homomorphisme
surjectif sur C2 × C2.

Remarque. Un amalgame célèbre est C4 ∗C2 C6, un groupe isomorphe à SL2(Z). Un homomor-

phisme entre ces deux groupes est construit en considérant les matrices

(
0 −1
1 0

)
et

(
1 −1
1 0

)
.

Solution 2

1. Il s’agit du produit libre Z ∗ Z ∼= ⟨a, b | ⟩, par définition du coproduit.

2. On a ici un isomorphisme Z ∼= ⟨a, b |ab−1⟩ ∼= ⟨a |⟩. En fait à chaque fois que l’un des homomor-
phismes du pushout est une identité, la propriété universelle permet de voir immédiatement
que le pushout est isomorphe au troisième groupe.

3. On retrouve la présentation usuelle du groupe cyclique Cn = Z/nZ ∼= ⟨a | an⟩
4. Il s’agit d’un pushout trivial :

Z Z

Z Z

·n

·n

Autrement dit, on a un isomorphisme Z ∼= ⟨a | ⟩ ∼= ⟨a, b | anb−1⟩
5. Il s’agit du groupe F (m+n) ∼= ⟨a1, · · · , an, b1, · · · , bm |⟩. Les applications de structure F (n)→
F (n+m) et F (n)→ F (n+m) sont données respectivement par ai 7→ ai et bj 7→ bj.

6. Puisque 1 ≡ 1 mod 2 et 4 ≡ 1 mod 3, les générateurs associés dans le pushout sont identifiés.
Le pushout est donc donné par la présentation ⟨a, b | a2, b3, ab−1⟩. On en déduit a = b = 1 et
⟨a, b | a2, b3, ab−1⟩ ∼= 0 est le groupe trivial.

7. On a la présentation ⟨a, b | am, bn, ab−1⟩, et on construit un isomorphisme

⟨a, b | am, bn, ab−1⟩ ∼= ⟨c | cpgcd(m,n)⟩ ∼= Cpgcd(m,n)

8. On a la présentation ⟨x, y | xy⟩ ∼= ⟨x, x−1 | ⟩ ∼= ⟨x | ⟩ ∼= Z.
9. On obtient ⟨x, y | x2y2⟩ ∼= π1K où K est la bouteille de Klein. On peut remarquer que la

classe de xy dans le quotient engendre un sous groupe normal : de la relation x2y2 = 1 on
déduit yx = (xy)−1 puis

x(xy)x−1 = x−1(xy)x = y(xy)y−1 = y−1(xy)y = yx = (xy)−1.



Ce sous groupe est cyclique et infini, donc isomorphe à Z. Le quotient admet la présentation

⟨x, y | x2y2, xy⟩ ∼= ⟨x, y | xy⟩ ∼= ⟨x | ⟩ ∼= Z.

On obtient donc une suite exacte courte

0→ Z→ π1K → Z→ 0.

Cette suite exacte est scindée car Z est un groupe libre. Ainsi, le groupe π1K est un produit
semi direct Z ⋊ Z.

10. Un tel homomorphisme est donné par x 7→ (−,+) et y 7→ (+,−). Puisque (−,+)2 = (+,−)2
dans C2×C2, on obtient un morphisme de groupes ⟨x, y |x2y2⟩ → C2×C2. Il est surjectif car
xσyτ 7→ (σ, τ) pour tous σ, τ ∈ C2. Si π1K était isomorphe à Z, il serait en particulier cyclique
et son générateur aurait pour image par un morphisme vers C2×C2 un élément d’ordre 1 ou
2 et ne pourrait engendrer au mieux qu’un groupe cyclique d’ordre 2.

Exercice 3. Soit I un ensemble. Montrer que π1(∨i∈IS1) est un groupe libre.

Solution 3. On utilise Seifert-Van Kampen avec des ouvert Ui contenant le i−ème cercle et un
voisinage contractile du point base. L’intersection des Ui étant non vide, connexe, contractile,
π1(∨i∈IS1) est donné par le produit libre de I copies de Z, i.e. le groupe libre à I générateurs.

Exercice 4. Le tore. On se propose de calculer le groupe fondamental du tore.

1. Trouver un recouvrement du tore T 2 par deux ouverts A et B, le second étant contractile.
Identifier le type d’homotopie de A, B et A ∩B.

2. Identifier les groupes fondamentaux de A, B et A∩B, ainsi que l’homomorphisme induit par
l’inclusion A ∩B ⊂ A.

3. Calculer π1T
2.

Solution 4.

1. Dans le modèle du tore comme quotient du carré I2
q−→ I2/ ∼≈ T 2 on prend B = q(I◦×I◦) ⊂

T 2 et A = q
(
I2 \ {(1

2
, 1
2
)}

)
. Alors B ≈ D2 est contractile et

A ∩B = q
(
I◦ × I◦ \ {(1

2
, 1
2
)}

)
≈ I◦ × I◦ \ {(1

2
, 1
2
)}

comme q est un homéomorphisme sur I◦ × I◦. On trouve facilement une rétraction par
déformation de I2 \ [1

2
, 1
2
]× [1

2
, 1
2
] sur le sous-espace ∂I2 ≈ S1 de sorte que A ∩B ≃ S1.

Pour identifier le type d’homotopie de A, on remarque que la rétraction de I2 \{(1
2
, 1
2
)} sur le

sous-espace ∂I2 passe au quotient, on a une équivalence d’homotopie qui fixe ∂I2. On trouve
donc A ≃ S1 ∨ S1.

2. On trouve π1(B) ∼= 0, π1(A ∩ B) ∼= π1(S
1) ∼= Z et π1(A) ∼= π1(S

1 ∨ S1) ∼= Z ∗ Z ∼= F (a, b) le
groupe libre à deux générateurs a et b.
Le morphisme Z→ F (a, b) induit par l’inclusion A∩B ⊂ A est donné par 1 7→ aba−1b−1. En
effet, avant de passer au quotient la situation est la suivante : un cercle s’inclut dans A ∩ B
qui s’inclut dans A qui se retracte sur le bord du carré. Selon le choix de point de base le
lacet decrit ci-dessus parcourt donc les arètes du carre dans le sens trigonometrique disons.
Après passage au quotient on trouve précisement le commutateur.



3. Par le théorème de Seifert-van-Kampen :

π1(T
2) ∼= π1(A) ∗π1(A∩B) π1(B) ∼= ⟨a, b | aba−1b−1⟩ = ⟨a, b | ab = ba⟩.

et on obtient donc π1(T
2) ∼= Z⊕ Z.

Exercice 5.On considère ici un graphe comme un espace topologique dont les arêtes sont homéomorphes
à I et les extrémités sont identifiées si elles correspondent au même sommet. Plus formellement si
Γ est un graphe dont les arêtes sont e ∈ E et les sommets s ∈ S, il s’agit d’une réunion disjointe de
copies de I, autant qu’il y a d’arêtes et d’une réunion disjointe de points, autant qu’il y a de som-
mets :

∐
E([0, 1], e)

∐ ∐
S(∗, s), que l’on quotiente par les relations (0, e) ∼ (∗, s) si s est l’origine

de l’arête e et (1, e) ∼ (∗, s) si s est son but.

1. Soit Γ un graphe. Montrer que le collapse d’une arête a entre deux sommets distincts produit
une équivalence d’homotopie q : Γ→ Γ/a.

2. Soit K4 le graphe complet a 4 sommets. Un graphe complet est tel qu’il y a une arête entre
chaque paire de sommets disjoints. Calculer π1(K4).

3. Plus généralement, étant donné un graphe Γ quelconque, donner une formule pour π1(Γ) en
terme de son nombre d’arêtes et de sommets.

Solution 5.

1. Le segment I est homotope au point. Une arête reliant deux sommets distincts est homéomorphe
à I.

2. On peut contracter 3 arêtes de K4. Il reste alors trois autres arêtes, donc K4 est homotope
au wedge de 3 cercles, son groupe fondamental est donné par le groupe libre F (3).

3. On réduit d’abord le problème au cas des graphes connexes. En général on peut toujours
contracter #sommets − 1 arêtes entre deux sommets distincts. Ainsi, si le nombre de telles
arêtes est au moins égal à #sommets− 1,

π1(Γ) = F (#aretes−#sommets+ 1)

Sinon,
π1(Γ) = F (#loop)


