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Topologie 11 Corrigé 8

Exercice 1.La propriété universelle du pushout.

1. Soit XY, Z des espaces topologiques, et f: X — Z, g: Y — Z deux applications continues.
Montrer qu’il existe une unique application continue f[Jg: X [[Y — Z qui fait commuter
le diagramme

X
j l d
Yy 2 X[y
\\
A
ouni: X = X]J[Yetj:Y <= X][Y sont les inclusions canoniques.

2. Soit T et Z deux espaces topologiques, et X, Y C T des sous-espaces ouverts de T. Si
f: X > Zetg:Y — Z sont des applications, montrer qu’il existe une unique application
fUg: XUY — Z qui fait commuter le diagramme

Xny —S + X

TN
\%Z

oui: X —=>XUYetj:Y —= XUY sont les inclusions canoniques. Et si les sous-espaces ne
sont pas ouverts ?

/

3. Soit (X, z0), (Y,v0),(Z, z0) des espaces topologiques pointés, et f: X — Z, g:Y — Z deux
applications pointées. Montrer qu’il existe une unique application pointée fVg: X VY — 7
qui fait commuter le diagramme

{*}LX

yol | \l/l 7

Yy — 3 XVY

TNy

oni: X =< XVYetj:Y— XVY sont les inclusions canoniques.

4. Soit X, Z des espaces topologiques et ¢ : S" ' — X, f: X — Z, g: D" — Z des applications
continues. Montrer qu'il existe une unique application fUsg : X Uge™ — Z qui fait commuter



le diagramme

Sn—l ¢

X
D" —1— X Uyer
\ﬁ
Z

oui: X —= XUge"et j: D" — X Uy e" sont les inclusions canoniques.

/

5. Soient GG, H, K des groupes avec deux morphismes a: K — G et f: K — H. Montrer que
pour tout groupe M, tel que v»: H — M et ¢: G — M avec ¢poa = o f3, il existe un unique
homomorphisme w: Gxx — M qui fait commuter le diagramme :

L}H

. |

;)G*KH

ou ¢ et 7 sont les morphismes canoniques.

=

—

(4

)

Solution 1.

1. Les points de X [[Y sont de la forme (z,0) avec x € X ou (y,1) avec y € Y. On pose

J (@,0) — f(z)
ng'{ (y,1) > g(y)

et on vérifie que f]]g fait commuter le diagramme et que si h: X [[Y — Z est une autre
telle application, alors h = f]]g.

2. On pose cette fois
f(z) sizeX

ng:ZH{g(z) sizeVY

et on vérifie que cette formule définit bien une application X UY — Z. Cette application
est bien définie car f et g coincident sur X NY, et elle fait commuter le diagramme ci-
dessus. Elle est continue car X et Y sont ouverts, par le Pasting Lemma. L'unicité est claire
également : si h est une application X UY — Z faisant commuter le diagramme, alors
h(z) = f(z) = (f Ug)(x) pour tout z € X et h(y) = g(y) = (f U g)(y) pour tout y € Y et
donc h = fUg.

Si on ne suppose pas que les sous-espaces X, Y sont tous deux ouverts, alors il se peut que
leur union ne soit pas le pushout. Par exemple les deux hémicycles {e¢ | 0 < ¢ < 7} et
{e'* | m <t < 27} recouvrent entierement le cercle, mais le pushout obtenu en identifiant
leur intersection constituée d’un seul point, —1, est homéomorphe & un segment semi-ouvert.
Il existe ainsi des applications f et g vers [0, 2w[ qu’on ne peut étendre a S*.



3. Les points de X V'Y sont de la forme (x,0) pour z € X ou (y,1) pour y € Y, avec I'identifi-
cation (xg,0) = (yo,1). L’application f V g est définie par

@0 — ()
fvg'{<y,1> s 9ly)

Cette formule définit bien une application X VY — Z car f et g sont pointées.

4. Les points de X U, e sont de la forme (x,0) pour z € X ou (y,1) pour y € D", avec les
identifications (¢(y),0) = (y,1) pour tout y € D™ ~ S™ 1. La formule

z,0) — f(x)
Yy, 1) — g(y)

fU¢93{

définit bien une application X Uy €™ — Y car f o ¢(y) = g(y) pour tout y € S" ! ~ dD™.
On vérifie que cette application fait commuter tous les triangles du diagramme ci-dessus.
L’unicité est claire également.

5. Notons z; ...z, un élément de G xx H ou z; = j(g) et/ou z; =i(h) ou g € Get h € H. On
définit () ()
N ) wlg) sta = (g
flai) - { o(h) si z; = i(h)

Notons que f est bien définie car si z; = j(a(k)) = i(8(k)) pour k € K, par hypothese

o(g) = (h)
On définit finalement :

De maniere similaire aux questions précédentes, cette application est unique.

Ces exemples ont pour but d’introduire la propriété universelle qui caractérise les pushouts :
on dit qu’un diagramme commutatif dans une catégorie C

X .y

£

est un pushout s’il vérifie la propriété universelle suivante : pour tout T' et toutes applications
f'oZ—=T,g:Y =T telles que f' o f = ¢ og (autrement dit, pour tout diagramme

Y
%

T

Q

Z

|

L

Q
<—

;



commutatif dans C), il existe un unique morphisme h : S — T qui fait commuter le dia-
gramme

L’application h est donc uniquement déterminée par f' et g’ par la propriété universelle. On
dit que f" et g’ sont les composantes de h et on note parfois h = ']y ¢’

Dans cet exercice, on a montré en utilisant la propriété universelle du pushout que les carrés

sutvants
g — X gn-1 __? . x
Y—>X]_[Y D" ——— X Uy e

sont des pushouts dans la catégorie C = Top des espaces topologiques. Les carrés

{x}) — X XNy —— X
| | | |
Y — XVY Y —— XUY

sont aussi des pushouts, mais dans les catégories C = Top, des espaces topologiques pointés
et C = Topcr des sous-espaces de T' respectivement. Enfin, le dernier carré est un pushout
dans la catégorie Gp des groupes.

Dans la catégorie Top des espaces topologiques, on a la caractérisation suivante des pushouts :
un diagramme commutatif d’espaces topologiques

x 1oy
]
J —— S

est un pushout si et seulement si on peut trouver un homéomorphisme S = (YH Z)/ ~ oU
~ est la relation d’équivalence engendrée par les relations f(z) ~ g(x) pour tout x € X.

On a des caractérisations analogues des pushouts dans Top. et Topcr en remplacant X [[Y
par X VY et X UY respectivement.

Exercice 2. On note C), le groupe cyclique d’ordre n. Identifier les pushouts de groupes suivants :

1. Z+~0—7

2. 2% 74 7



10.

R N i

0¢Z 5 Z

2877

F(n)«+1— F(m)

7/2 & 7.2 7./3 o p et ¢ sont les réductions modulo 2 et 3

Z)m & 7% 7./n ot p et ¢ sont les réductions modulo m et n

1 < F(a) & F(z,y) ot Papplication xy envoie le générateur a sur zy
1+ F(a) v, F(x,y) ot I'application 2?y? envoie a sur z2y?

Montrer que ce dernier groupe n’est pas isomorphe a Z en exhibant un homomorphisme
surjectif sur Cy x Cj.

Remarque. Un amalgame célebre est Cy *¢, Cg, un groupe isomorphe a SLy(Z). Un homomor-

1 0 1 0

. . 12 . 0 —1 1 -1
phisme entre ces deux groupes est construit en considérant les matrices ( ) et ( >

Solution 2

1.
2.

Il s’agit du produit libre Z x Z = (a, b | ), par définition du coproduit.

On a ici un isomorphisme Z = {(a,b|ab™") = (a|). En fait & chaque fois que 'un des homomor-
phismes du pushout est une identité, la propriété universelle permet de voir immédiatement
que le pushout est isomorphe au troisieme groupe.

On retrouve la présentation usuelle du groupe cyclique C,, = Z/nZ = (a | a™)

4. 11 s’agit d’un pushout trivial :

7 —" > 7

Autrement dit, on a un isomorphisme Z = {(a | ) = (a,b | a"b™!)

Il s’agit du groupe F(m+n) = (ay, -+ ,an, b1, -+, byn|). Les applications de structure F'(n) —
F(n+m) et F(n) — F(n+m) sont données respectivement par a; — a; et b; — b;.

Puisque 1 =1 mod 2 et 4 = 1 mod 3, les générateurs associés dans le pushout sont identifiés.
Le pushout est donc donné par la présentation (a,b | a?,b®, ab™). On en déduit a = b =1 et
(a,b]a? b® ab™') = 0 est le groupe trivial.

On a la présentation {a,b|a™,b", ab™!), et on construit un isomorphisme

<CL, b | amv bn7 ab_1> = <C ’ cngd(m,n)> = Opgcd(m,n)

8. On a la présentation (x,y | zy) = (v,27'|) = (z]) X Z.

9. On obtient (x,y | 2%y?) = m K ou K est la bouteille de Klein. On peut remarquer que la

classe de zy dans le quotient engendre un sous groupe normal : de la relation 2?y* = 1 on
déduit yz = (zy)~! puis

1 1

w(zy)r =1 (zy)r = y(zy)y ™ =y (zy)y = yz = (zy) "



10.

Ce sous groupe est cyclique et infini, donc isomorphe a Z. Le quotient admet la présentation
(r,y | 2*y®, wy) = (z,y |2y) = (x| ) = Z.
On obtient donc une suite exacte courte
0—=>7Z—mK—7Z—0.

Cette suite exacte est scindée car Z est un groupe libre. Ainsi, le groupe 7 K est un produit
semi direct Z x Z.

Un tel homomorphisme est donné par z + (—,+) et y — (+, —). Puisque (—, +)? = (+, —)?
dans Cy x Cy, on obtient un morphisme de groupes (z, y | %y?) — Cy x Cy. 1l est surjectif car
x%y” — (o, 7) pour tous o, 7 € Cy. Si m K était isomorphe & Z, il serait en particulier cyclique
et son générateur aurait pour image par un morphisme vers Cy X Cs un élément d’ordre 1 ou
2 et ne pourrait engendrer au mieux qu’un groupe cyclique d’ordre 2.

Exercice 3. Soit / un ensemble. Montrer que m;(V;c;S?) est un groupe libre.

Solution 3. On utilise Seifert-Van Kampen avec des ouvert U; contenant le :—eme cercle et un
voisinage contractile du point base. L’intersection des U; étant non vide, connexe, contractile,
71 (VierSt) est donné par le produit libre de I copies de Z, i.e. le groupe libre & I générateurs.

Exercice 4. Le tore. On se propose de calculer le groupe fondamental du tore.

1.

Trouver un recouvrement du tore 72 par deux ouverts A et B, le second étant contractile.
Identifier le type d’homotopie de A, B et AN B.

Identifier les groupes fondamentaux de A, B et AN B, ainsi que ’homomorphisme induit par
I'inclusion AN B C A.

Calculer m T2

Solution 4.

1.

Dans le modele du tore comme quotient du carré I? — I?/ ~ ~ T2 on prend B = ¢(I°xI°) C
T? et A=q(I*\{(3,2)}). Alors B = D? est contractile et

ANB = (% PALG DY) = 1 P\ {3, 1)

comme ¢ est un homéomorphisme sur I° x I°. On trouve facilement une rétraction par
déformation de I?\ [3, 1] x [1, 3] sur le sous-espace 9I? ~ S* de sorte que AN B ~ S*.
Pour identifier le type d’homotopie de A, on remarque que la rétraction de 12\ {(%, $)} sur le
sous-espace 012 passe au quotient, on a une équivalence d’homotopie qui fixe 72. On trouve
donc A ~ S*v St

On trouve 7(B) 20, m(ANB) 2 m(S') 2 Z et m(A) X m(S'VSH X Z+Z = F(a,b) le
groupe libre a deux générateurs a et b.

Le morphisme Z — F(a,b) induit par 'inclusion AN B C A est donné par 1 +— aba~'b~!. En
effet, avant de passer au quotient la situation est la suivante : un cercle s’inclut dans AN B
qui s’inclut dans A qui se retracte sur le bord du carré. Selon le choix de point de base le
lacet decrit ci-dessus parcourt donc les aretes du carre dans le sens trigonometrique disons.
Apres passage au quotient on trouve précisement le commutateur.



3. Par le théoreme de Seifert-van-Kampen :
T1(T?) 2 71 (A) *7,(anp) T1(B) = {a,b | aba™'b™") = {a,b | ab = ba).

et on obtient donc 7 (T?) X Z & Z.

Exercice 5. On considere ici un graphe comme un espace topologique dont les arétes sont homéomorphes
a I et les extrémités sont identifiées si elles correspondent au méme sommet. Plus formellement si

" est un graphe dont les arétes sont e € F et les sommets s € S, il s’agit d'une réunion disjointe de
copies de I, autant qu’il y a d’arétes et d’une réunion disjointe de points, autant qu’il y a de som-
mets : [[5([0,1],e) [T [1g(*,s), que 'on quotiente par les relations (0,e) ~ (x,s) si s est 'origine

de laréte e et (1,e) ~ (*,s) si s est son but.

1. Soit I' un graphe. Montrer que le collapse d’'une aréte a entre deux sommets distincts produit
une équivalence d’homotopie ¢: I' — T'/a.

2. Soit K, le graphe complet a 4 sommets. Un graphe complet est tel qu’il y a une aréte entre
chaque paire de sommets disjoints. Calculer m(Ky).

3. Plus généralement, étant donné un graphe I' quelconque, donner une formule pour 7 (I") en
terme de son nombre d’arétes et de sommets.

Solution 5.
1. Le segment I est homotope au point. Une aréte reliant deux sommets distincts est homéomorphe
al.
2. On peut contracter 3 arétes de K. Il reste alors trois autres arétes, donc K, est homotope
au wedge de 3 cercles, son groupe fondamental est donné par le groupe libre F'(3).

3. On réduit d’abord le probleme au cas des graphes connexes. En général on peut toujours
contracter #sommets — 1 arétes entre deux sommets distincts. Ainsi, si le nombre de telles
arétes est au moins égal a #sommets — 1,

m (') = F(#aretes — #sommets + 1)

Sinon,

(L) = F(#loop)



