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Exercice 1. Montrer que si S2 est décrite comme l’union de trois fermés A1, A2 et A3, l’un des
trois contient nécessairement deux points antipodaux.

Indication : utiliser le théorème de Borsuk-Ulam pour une certaine fonction de distance.

Solution 1. Définissons l’application suivante :

d : S2 → R2

x 7−→ (dist(x,A1), dist(x,A2))

où dist(x,Ai) := infy∈Ai
|x− y|.

Par le théorème de Borsuk-Ulam, il existe un couple de points antipodaux tels que d(x) = d(−x).
Ensuite, si l’une des coordonnées de d(x) est nulle (disons la ième coordonnée), alors x et −x
appartiennent à Ai. Sinon, les deux coordonnées sont strictement positives et x,−x n’appartiennent
ni à A1 ni à A2, ce qui implique que x et −x appartienne tà A3.

Exercice 2. Montrer que R, R2 et R3 ne sont pas homéomorphes entre eux.

Solution 2. S’il existe un homéomorphisme entre R, R2 et R3, alors il induit un homéomorphisme
entre R \ {∗}, R2 \ {∗} et R3 \ {∗}. Or :

— π0(R \ {∗}) = {+,−} tandis que R2 \ {∗} et R3 \ {∗} sont connexes par arcs.
— π1(R2\{∗}) ⊇ π1(S

1) = Z (par rétraction) tandis que π1(R3\{∗}) = {0} (on peut le prouver
en argumentant que tout lacet dans R3 \{∗} est compact et donc contenu dans une boule de
rayon R privée de l’origine, et on peut ensuite contruire une équivalence d’homotopie avec
S2. On peut aussi directement construire une équivalence d’homotopie entre S2 et R3 \ {∗}.

Exercice 3. L’argument de Eckmann-Hilton. Soit G un groupe topologique et m : G×G → G
la multiplication. On étudie dans cet exercice le groupe fondamental de G (pour le point de base
donné par l’élément neutre 1G). On définit une loi de composition • sur π1(G). Soient f, g : S1 → G
deux lacets. Le lacet f • g est défini par (f • g)(t) = m[f(t), g(t)].

1. Montrer que • définit bien une loi de composition sur π1(G), c’est-à-dire que [f •g] ne dépend
pas du choix des représentants des lacets f et g.

2. Montrer que les lois ⋆ et • vérifient la loi d’échange : (a ⋆ b) • (c ⋆ d) = (a • c) ⋆ (b • d).
3. Calculer (a ⋆ 1) • (1 ⋆ b) et (1 ⋆ a) • (b ⋆ 1) pour conclure que • = ⋆ et que cette multiplication

est commutative.

4. Conclure que π1(G) est un groupe commutatif.

Solution 3.

1. Si f ≃ f ′ et g ≃ g′ sont des chemins homotopes S1 → G, on en déduit facilement une
homotopie f × g ≃ f ′ × g′ entre applications S1 × S1 → G×G. Alors f • g est donnée par la
composée

S1 S1 × S1 G×G G∆ f×g µ



où ∆ : S1 → S1 × S1 est la diagonale t 7→ (t, t), et µ : G × G → G est la multiplication du
groupe G (qui est continue puisque G est un groupe topologique). Ainsi, comme f×g ≃ f ′×g′,
on a µ ◦ (f × g) ◦∆ ≃ µ ◦ (f ′ × g′) ◦∆, c’est-à-dire [f • g] = [f ′ • g′]

2. Si a, b, c, d : I → G sont des lacets de G, alors le lacet a ⋆ b est défini par

t 7−→
{

a(2t) si t ≤ 1
2

b(2t− 1) si t ≥ 1
2

et de même pour c ⋆ d. Par conséquent, le lacet (a ⋆ b) • (c ⋆ d) est donné par

t 7−→
{

a(2t) · c(2t) si t ≤ 1
2

b(2t− 1) · d(2t− 1) si t ≥ 1
2

et on a donc (a ⋆ b) • (c ⋆ d) = (a • c) ⋆ (b • d) (on remarque que la loi d’échange est vérifiée
au niveau des lacets, pas seulement pour les classes d’homotopies).

3. En utilisant que a ⋆ 1 = a et 1 ⋆ b = b (a et b étant maintenant des classes d’homotopie), on
calcule

a • b = (a ⋆ 1) • (1 ⋆ b)
= (a • 1) ⋆ (1 • b) = a ⋆ b

Et comme a ⋆ 1 = 1 ⋆ a, idem pour b,

a • b = (a ⋆ 1) • (1 ⋆ b)
= (1 ⋆ a) • (b ⋆ 1)
= (1 • b) ⋆ (a • 1) = b ⋆ a

et on déduit que a • b = b • a = a ⋆ b = b ⋆ a pour tous lacets a, b : I → B.

4. Puisque a ⋆ b = b ⋆ a pour tous lacets a, b : I → B, la multiplication induite [a ⋆ b] = [a] ⋆ [b]
sur π1G est commutative. On en déduit que π1G est abélien.

Exercice 4. Sous-groupe normal engendré par... Soit G un groupe et gi, i ∈ I des éléments
de G. On considère H = ⟨gi | i ∈ I⟩ le sous-groupe engendré par les gi et N = ◁gi | i ∈ I▷ le
sous-groupe normal engendré par les gi, i.e. le plus petit sous-groupe normal de G contenant les gi.

1. Montrer que N est l’intersection de tous les sous-groupes normaux de G contenant les gi.

2. Montrer que H est un sous-groupe de N , mais que H ̸= N en général. On pourra utiliser une
permutation dans un groupe symétrique ou un mot dans un groupe libre.

Solution 4.

1. On note N =
⋂

gi∈K,K◁GK l’intersection de tous les sous-groupes normaux de G contenant
les gi. C’est un sous groupe normal de G. On a alors N ⊂ N car N est un sous groupe normal
contenant les gi. Montrons l’inclusion inverse. On sait que N est engendré par les ggig

−1 pour
g ∈ G et i ∈ I. Or si K ◁ G est un sous-groupe normal contenant les gi, alors ggig

−1 ∈ K
pour tout g ∈ G et tout i ∈ I. Ainsi on a N ⊂ N et finalement N = N.

2. Comme H contient tous les gi pour i ∈ I, et que H est stable par multiplication et passage
à l’inverse, on a ⟨gi, i ∈ I⟩ ⊂ N , ie. H ⊂ N .
En revanche on a H ̸= N en général : si τ ∈ Sn est une transposition, alors le sous-groupe ⟨τ⟩
engendré par τ est d’ordre 2 ie. ⟨τ⟩ ∼= C2. En revanche, le sous-groupe normal ◁τ▷ engendré
par τ contient toutes les transpositions, et donc ◁τ▷ = Sn ̸= ⟨τ⟩ pour n > 2.



Exercice 5. Présentations. Pour chacun des trois exemples suivants, compter le nombre d’éléments
et identifier le groupe en question.

1. D = ⟨a, b | a2, b4, abab⟩
2. Q = ⟨a, b | a2, b2, (ab)3⟩
3⋆. S = ⟨a, b, c | a2, b2, c2, (ab)3, (bc)3, (ac)2⟩
4. Construire un groupe G tel qu’un homomorphisme G → H corresponde au choix de trois

éléments x, y, z ∈ H avec x de 3−torsion, y de 6−torsion, z de 11−torsion et enfin xy = yx.

Solution 5.

1. Le groupe D compte au plus 8 éléments : 1, a, b, b2, b3, ab, ab2, ab3. En effet tout élément peut
être représenté par un mot utilisant les lettres a, b, b2 et b3 puisque a est d’ordre deux et
b d’ordre quatre. La dernière relation est équivalente à dire que dans D on a aba = b3 ou
ab = b3a, ce qui implique aussi que ab2 = b2a et ab3 = ba. Ainsi tout mot commençant par
b peut être converti en un mot commençant par a et dès que le mot fait intervenir abka, on
peut réduire sa longueur. Ceci montre que la liste ci-dessus est exhaustive.

On va montrer que D est isomorphe au groupe dihédral D8 qui est engendré par une rotation
ρ d’ordre 4 et une réflexion axiale r (d’ordre 2).

Les éléments de D8 sont donnés par D8 = {id, r, ρ, rρ, ρ2, rρ2, ρ3, rρ3} et l’on observe que
la relation rρr−1 = ρ−1 est vérifiée. Le morphisme φ : F (x, y) → D8 donné par x 7→ r et
y 7→ ρ passe donc au quotient et définit un morphisme de groupes surjectif

φ̄ : ⟨x, y | x2, y4, xyxy⟩ −→ D8

Par cardinalité on conclut que D a exactement huit éléments et que finalement on a bien un
isomrphisme D ∼= D8.

2. Q = S3. Voir la preuve du lemme 2.5 dans le polycopié de J. Scherer.

3. On va montrer que S ∼= S4, le groupe symmétrique sur 4 symboles. Soit N = ◁ac▷ ⊂ S
le sous-groupe normal engendré par ac. On vérifie que N est d’ordre 4. Ses éléments sont
1, ac, bacb, cbacbc. Le quotient S/N admet la présentation ⟨a, b, c | a2, b2, c2, (ab)3, (bc)3, (ac)⟩ ∼=
⟨a, b | a2, b2, (ab)3⟩.

Etudions maintenant ce quotient S/N ∼= ⟨a, b | a2, b2, (ab)3⟩. Il admet 6 éléments 1, a, b, ab, ba, aba.
On identifie ce groupe avec le groupe symmétrique S3 via le morphisme de groupes a 7→ (12),
b 7→ (23). La relation (12)(23) = (123) assure que ce morphisme est défini et surjectif. L’in-
jectivité découle comme précedemment du fait que les éléments 1, (12), (23), (123), (132), (13)
sont distincts dans S3.

De l’isomorphisme S/N ∼= S3 on conclut que S est d’ordre 24. On définit un morphisme
de groupes surjectif f : S → S4 par a 7→ (12), b 7→ (23), c 7→ (34). Cela est possible par la
propriété universelle du groupe S et le fait que les relations (12)2 = (23)2 = (34)2 = (123)3 =
(132)2 = (12)(34)(12)(34) sont vérifiées dans S4. Puisque S et S4 ont même ordre, on en
déduit que f est un isomorphisme S ∼= S4.



4. On pose G = ⟨x, y, z | x3, y6, z11, xyx−1y−1⟩. Etant donné un homomorphisme ϕ : G → H,
ϕ(x), ϕ(y), ϕ(z) sont trois éléments x, y, z ∈ H avec ϕ(x) de 3−torsion, ϕ(y) de 6−torsion,
ϕ(z) de 11−torsion et enfin ϕ(x)ϕ(y) = ϕ(y)ϕ(x).

Réciproquement, étant donné trois tels éléments, la propriété universelle des groupes libres
permet de construire un morphisme du groupe libre engendré par trois éléments vers G avec
les trois éléments choisis comme image des générateurs, et les hypothèses sur ces éléments
assurent que x3, y6, z11, xyx−1y−1 appartiennent au noyau et donc que ce morphisme passe au
quotient et induisent un morphisme de G vers H.


