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Exercice 1.

1. Montrer que ΣA/(A× {1/2}) est homotope au wedge ΣA ∨ ΣA.

2. Rappeler la définition de l’opération de concaténation et de l’opération produit via le pinch
pour n = 1.

∗, · : π1(X, x0)× π1(X, x0) → π1(X, x0)

et montrer que ces deux opérations coincident.

Solution 1.

1. On exhibe en fait un homéomorphisme ΣA/(A × {1/2}) ≈ ΣA ∨ ΣA. Les points du wedge
ΣA ∨ ΣA sont notés (a, t)i avec a ∈ A, t ∈ [0, 1] etle sous-exposant indique que le point
appartient à la i−ème copie, i = 1, 2. On a les identifications (a, 1)1 = (a′, 0)2, (a, t)i = (a′, t)i
pour a, a′ ∈ A, t = 0, 1 et i = 1, 2.

On définit une application f : ΣA → ΣA ∨ ΣA par

f(a, t) =

{
(a, 2t)1 si 0 ≤ t ≤ 1

2

(a, 2t− 1)2 si 1
2
≤ t ≤ 1

On vérifie que f passe au quotient car f((a, 1
2
)) = f((a′, 1

2
)) pour tous a, a′ ∈ A. Elle induit

donc une application φ : ΣA/(A× {1/2}) → ΣA ∨ ΣA. De plus, φ est bijective car (a, t)1 7→
(a, t

2
), (a, t)2 7→ (a, 1+t

2
)en fournit un inverse. Finalement φ fournit un homéomorphisme

ΣA/(A× {1/2}) ≈ ΣA ∨ ΣA.

2. Soient γ, γ′ deux lacets basés en x0. Montrons que γ ∗ γ′ = γ · γ′.

Ici, on utilise l’identification S1 = I/ ∼ et pour simplifier la notation, on écrit encore t pour
l’image de t dans S1.

Ainsi, en utilisant le point 1, si 0 ≤ t ≤ 1
2
, p(t) = (2t)1, le point est dans la première copie de

S1 ∨ S1, et on applique γ à p(t). Ainsi, γ · γ′(t) = ∇((γ(2t))1) = γ(2t) = γ ∗ γ′(t).

De même, si 1
2
≤ t ≤ 1, p(t) = (2t− 1)2, le point est dans la deuxième copie de S1 ∨ S1 et on

applique γ′ à p(t). Ainsi, γ′ · γ(t) = ∇((γ′(2t− 1))2) = γ′(2t− 1) = γ ∗ γ′(t).

Illustration : Page Wikipedia sur le Groupe fondamental

Exercice 2.
Démontrer l’associativité de l’opération produit · pour n = 1.
Indication : on dit qu’un diagramme

A B

C D

i

g

f

h



commute à homotopie près si f ◦ g ≃ h ◦ i. On pourra utiliser le diagramme vu en cours et montrer qu’il commute
à homotopie près.

Solution 2. Etant donné α, β, γ, on a (α · β) · γ ≃ α · (β · γ) si le diagramme

S1 S1 ∨ S1

S1 ∨ S1 S1 ∨ S1 ∨ S1

p

p

id∨p

p∨id

commute à homotopie près. On a :

(id ∨ p) ◦ p(t) =

 (2t)1 si 0 ≤ t ≤ 1
2

(4t− 2)2 si 1
2 ≤ t ≤ 3

4
(4t− 3)3 si 3

4 ≤ t ≤ 1

où l’on écrit encore t pour l’image de t dans S1, et on utilise le sous-exposant i ∈ {1, 2, 3} pour indiquer que l’élément
appartient à la i−ème copie de S1 dans le wedge. De même, on calcule :

(p ∨ id) ◦ p(t) =

 (4t)1 si 0 ≤ t ≤ 1
4

(4t− 1)2 si 1
4 ≤ t ≤ 1

2
(2t− 1)3 si 1

2 ≤ t ≤ 1

On construit finalement une homotopie H : S1 × I → S1 ∨ S1 ∨ S1 de (p ∨ id) ◦ p vers (id ∨ p) ◦ p.

H(t, s) =


( 4t
1+s )1 si 0 ≤ t ≤ 1+s

4

(4t− 1− s)2 si 1+s
4 ≤ t ≤ 2+s

4
( 4t−2−s

2−s )3 si 2+s
4 ≤ t ≤ 1

Il faut vérifier que cette homotopie est bien définie (c’est à dire que l’image de ( 1+s
4 , s) par exemple est unique) et

continue.

Exercice 3. Le tore à deux trous
En topologie, une surface est un espace topologique séparé dont chaque point admet un voisinage homéomorphe au
disque ouvert D2 \ ∂D2. Etant donné deux surfaces on définit leur somme connexe à homéomorphisme près, comme
la surface obtenue en retirant un ouvert homéomorphe à un disque à chacune des surfaces, et en identifiant les bords.
On note S1♯S2. On appelle tore à g trous (ou tore de genre g), la somme connexe T♯ . . . ♯T de g tores T = S1 × S1.

1. Donner une description du tore à deux trous comme quotient d’un octogone, à la manière dont le tore est
obtenu comme quotient du carré.

2. Identifier une structure cellulaire de ce tore à deux trous. On demande en particulier de calculer le nombre
de 0-cellules, de 1-cellules et de 2-cellules, puis de décrire les applications d’attachement.

3. (optionnel) Généraliser au tore à 3 puis à g trous.

Solution 3.

1. On etiquette les différentes arêtes du bord de l’octogone O comme suit : aba−1b−1cdc−1d−1. Son quotient
O/ ∼ par la relation d’équivalence engendrée par les identifications des arêtes a, b, c, d est homéomorphe à
T#T , le tore à 2 trous. Pour s’en convaincre, on peut visionner les animations suivantes : https://youtu.be/
1XM1CatvwqY$ et https://youtu.be/I83K-on4X5A, venant du site https://analysis-situs.math.cnrs.

fr/.

2. Le bord ∂O du polygône P est tel que son image dans le quotient O/ ∼ est un bouquet de 4 cercles, donc 4
cellules de dimension 1 et une cellule de dimension 0. Le tore à 2 trous est obtenu à partir de ce bouquet en
recollant une 2-cellule : T#T ∼=

∨4
1 S

1 ∪f e2. L’application d’attachement f : S1 −→
∨4

1 S
1 est donnée par la

composée

S1 ∂O O
∨4

1 S
1 ⊂ O/ ∼≈ ⊂ q

https://youtu.be/1XM1CatvwqY$
https://youtu.be/1XM1CatvwqY$
https://youtu.be/I83K-on4X5A
https://analysis-situs.math.cnrs.fr/
https://analysis-situs.math.cnrs.fr/


3. On considère un polygône P régulier à 4g côtés dans le plan R2 dont on étiquète les différentes arêtes du bord
comme suit a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g . Son quotient P/ ∼ par la relation d’équivalence engendrée par les
identifications des arêtes a1, b1, . . . , ag, bg est homéomorphe à T# . . .#T , le tore à g trous. Voici une dernière
animation pour la route, avec le tore à trois trous : https://youtu.be/hSuUDPhJg6c.

Illustration des identifications pour le tore, le tore à deux trous et le tore à trois trous. Tirée de https://

analysis-situs.math.cnrs.fr/-Introduction-a-l-Analysis-situs-par-les-surfaces-.html

Exercice 4.

1. Montrer que le produit des groupes d’homotopie est commutatif pour n = 2. On pourra utiliser une représentation
graphique d’une homotopie entre f · g et g · f , en présentant S2 comme quotient d’un carré par son bord.

2. Montrer que le produit des groupes d’homotopie est commutatif pour n ≥ 2.

Solution 4.

1. La meilleure preuve est par l’illlustration suivante (tirée du livre de Hatcher, p.340) :

On part de f ·g. Puisque f et g envoient le bord du disque/rectangle sur le point base, on peut construire une
homotopie vers une fonction où le bord est épaissi, envoyant toute la partie bleue vers le point de base x0.

On peut alors construire une homotopie qui fait tourner les domaines de f et g l’un autour de l’autre de
manière à ce qu’ils ne s’intersectent pas. En agrandissant les domaines à nouveau on obtient g · f .

2. Plus formellement, si f et g sont deux applications dans πn(X,x0), on considère jg : In → In (resp. jd : In →
In) données par

jg(s1, . . . , sn) =

(
1

2
s1, s2, . . . , sn

)
(resp.

jd(s1, . . . , sn) =

(
1

2
(s1 + 1), s2, . . . , sn

)
.

On peut trouver deux homotopies ht : In → In et h̃t : In → In, t ∈ [0, 1], de sorte que h0 = h̃1 = jg,

h1 = h̃0 = jd et pour tout t ∈ [0, 1], ht et h̃t sont des plongements pour lesquels ht(In) et h̃t(In) ne
s’intersectent que en des points de leurs frontières.

Alors on peut définir pour tout t ∈ [0, 1] l’application kt : In → In par

kt(x) = f(h−1
t (x)) si x ∈ ht(In), kt(x) = g(h̃−1

t (x)) si x ∈ h̃t(In), et kt(x) = x0 dans tous les autres cas.

et k(x, t) = kt(x) définit une homotopie entre f · g et g · f .
Notez qu’il existe un autre argument équivalent, très intéressant car complètement algébrique, pour démontrer
ce fait, qui consiste à utiliser le théorème de Eckmann-Hilton.

Voir par exemple : https://idrissi.eu/post/eckmann-hilton.

Exercice 5*. Le groupe fondamental de la sphère. Montrons que π1S
2 = 1.

1. Montrer que tout lacet dans (R2, (a; b)) est homotope au lacet constant au point de base (a; b).

https://youtu.be/hSuUDPhJg6c
https://analysis-situs.math.cnrs.fr/-Introduction-a-l-Analysis-situs-par-les-surfaces-.html
https://analysis-situs.math.cnrs.fr/-Introduction-a-l-Analysis-situs-par-les-surfaces-.html
https://idrissi.eu/post/eckmann-hilton


2. Montrer que deux chemins qui ont les mêmes extrémités dans R2 sont homotopes via une homotopie qui fixe
les points de départ et d’arrivée.

3. Si f : S1 → S2 est un lacet non surjectif, montrer que f est homotope au lacet constant.

4. Si f est un lacet surjectif (c’est possible : voir “courbe remplissante” sur Wikipedia), choisir un recouvrement
de S2 par deux ouverts et montrer que f est homotope à une concaténation finie de chemins se trouvant soit
dans l’un des ouverts soit dans l’autre. Conclure qu’aussi ici f est homotope au lacet constant.

Solution 5*.

1. En effet R2 est homotope au point, donc en partiulier π1(R2, (a; b)) = 1 par invariance.

2. Soit γ, γ′ deux chemins dans R2 d’extrémités x et y. Alors H(t, s) = sγ(t) + (1 − s)γ′(t) est une homotopie
γ ≃ γ′ qui fixe les deux extrémités.

3. Soit x ∈ S2 un point qui n’est pas atteint par f . Alors f factorise par l’inclusion S2 \ {x} ⊆ S2. Or, par
projection stéréographique, S2 \ {x} ≈ R2 ≃ ∗ est contractile. On en déduit que f est homotope au lacet
constant.

4. Comme f est continue, on peut trouver un n ≥ 0 tel que |f(x) − f(y)| < 2 pour tous x, y ∈ S2 tels que
|x− y| ≤ 1

n . Pour 0 ≤ k < n notons fk la restriction de f à l’intervalle [ kn ,
k+1
n ] et xk = f( kn ). Alors f est la

concaténation f0⋆ · · ·⋆fn−1. Chaque fk est à valeurs dans {x ∈ S2 | |x−xk| < 2} ≈ S2\{−x} ≈ R2 ≃ ∗. Par la
question 2, fk est homotope au segment γk : t 7→ txk+(1− t)xk+1. Ainsi f est homotope à γ = γ0 ⋆ · · ·⋆γn−1.
Or γ est une concaténation finie de segments donc n’est pas surjective. Par la question précédente, on conclut
que f est homotope au lacet constant.


