EPFL - Semestre de Printemps 2024-2025
Topologie 11 Corrigé 5

Exercice 1.
1. Montrer que X A/(A x {1/2}) est homotope au wedge XAV X A.

2. Rappeler la définition de 1'opération de concaténation et de l'opération produit via le pinch
pour n = 1.

*, - 771<X, .1'0) X 7T1(X, 513'0) — 7T1(X, .1'0)
et montrer que ces deux opérations coincident.
Solution 1.

1. On exhibe en fait un homéomorphisme X A/(A x {1/2}) ~ YAV X A. Les points du wedge
YAV XA sont notés (a,t); avec a € A, t € [0,1] etle sous-exposant indique que le point
appartient a la i—eme copie, ¢ = 1,2. On a les identifications (a,1); = (a’,0)2, (a,t); = (d’,1);
pour a,a’ € A, t=0,1eti=1,2.

On définit une application f: XA — XAV XA par

(a,2t), si0
flat) = { (a,2t — 1)y s' 3

On vérifie que f passe au quotient car f((a,3)) = f((d’,1)) pour tous a,a’ € A. Elle induit
donc une application ¢ : YA/(A x {1/2}) - XAV XA. De plus, ¢ est bijective car (a,t); —
(a,%), (a,t)2 — (a,*F)en fournit un inverse. Finalement ¢ fournit un homéomorphisme

SA/(Ax {1/2}) ~ SAV DA.

2. Soient v, 7' deux lacets basés en xy. Montrons que v * v = v -+,
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Ici, on utilise I'identification S' = I/ ~ et pour simplifier la notation, on écrit encore ¢ pour
I'image de t dans S*.

Ainsi, en utilisant le point 1, si 0 <t < %, p(t) = (2t)1, le point est dans la premiere copie de
St v St et on applique v & p(t). Ainsi, v -7/(t) = V((7(2t))1) = v(2t) = v * +/(¢).

De méme, si 5 <t <1, p(t) (2t = 1)2, le point est dans la. deuxieme copie de S* Vv St et on
applique 7 a p( ). A1ns1 ~y(t (2t — 1)) "2t — 1) = v +/(¢).

o

Tllustration : Page Wikipedia sur le Groupe fondamental

Exercice 2.
Démontrer I'associativité de 'opération produit - pour n = 1.
Indication : on dit qu’un diagramme

A—— B
Ji f
c—-"+D



commute & homotopie pres si f o g ~ hoi. On pourra utiliser le diagramme vu en cours et montrer qu’il commute
a homotopie pres.

Solution 2. Etant donné «, 8, v, on a (a-f) -y~ «- (8- 7) si le diagramme

st —LF 5 §tvst
lp lide
Sty gt 21, g1y gty gt
commute & homotopie prés. On a :
(2t), si0<t< %
(idVp)op(t) =q (4 —2) si é <t<3
(4t—3)3 siz<t<l

ott on écrit encore t pour I'image de ¢ dans S*, et on utilise le sous-exposant i € {1,2,3} pour indiquer que 1’élément
appartient & la i—eme copie de S' dans le wedge. De méme, on calcule :

(4t)y sio<t< i
(pVid)op(t) =< (4t —1)y silgtgﬂ%
(2t — 1)3 siggtgl

On construit finalement une homotopie H : S' x I — St v St v St de (p Vid) o p vers (id V p) o p.

(55 si0 <t < s
H(t,s) =14 (dt—1—s5)y siits << s
(A2, si 248 <t <1

Il faut vérifier que cette homotopie est bien définie (c’est & dire que I'image de (113,5) par exemple est unique) et
continue.

Exercice 3. Le tore a deux trous

En topologie, une surface est un espace topologique séparé dont chaque point admet un voisinage homéomorphe au
disque ouvert D?\ 9D?. Etant donné deux surfaces on définit leur somme connexe & homéomorphisme pres, comme
la surface obtenue en retirant un ouvert homéomorphe a un disque a chacune des surfaces, et en identifiant les bords.
On note S1#S2. On appelle tore & g trous (ou tore de genre g), la somme connexe T4...#T de g tores T = S x St

1. Donner une description du tore a deux trous comme quotient d’un octogone, & la maniere dont le tore est
obtenu comme quotient du carré.

2. Identifier une structure cellulaire de ce tore & deux trous. On demande en particulier de calculer le nombre
de O-cellules, de 1-cellules et de 2-cellules, puis de décrire les applications d’attachement.

3. (optionnel) Généraliser au tore & 3 puis & g trous.
Solution 3.

1. On etiquette les différentes arétes du bord de l'octogone O comme suit : aba='b~'edc™'d~'. Son quotient
O/ ~ par la relation d’équivalence engendrée par les identifications des arétes a,b, ¢, d est homéomorphe &
T+#T, le tore a 2 trous. Pour s’en convaincre, on peut visionner les animations suivantes : https://youtu.be/

1XM1CatvwqY$ et https://youtu.be/I83K-ond4X5A, venant du site https://analysis-situs.math.cnrs.
fr/l

2. Le bord 90 du polygdne P est tel que son image dans le quotient O/ ~ est un bouquet de 4 cercles, donc 4
cellules de dimension 1 et une cellule de dimension 0. Le tore & 2 trous est obtenu a partir de ce bouquet en
recollant une 2-cellule : TH#T =2 \/411 St Uy e?. L’application d’attachement f: S' — \/411 ST est donnée par la
composée

~

St —E2400 5025 V{StcOo/~



https://youtu.be/1XM1CatvwqY$
https://youtu.be/1XM1CatvwqY$
https://youtu.be/I83K-on4X5A
https://analysis-situs.math.cnrs.fr/
https://analysis-situs.math.cnrs.fr/

3. On considere un polygone P régulier a 4g cotés dans le plan R? dont on étiquete les différentes arétes du bord
comme suit a;bja; *byt. ..agbga b . Son quotient P/ ~ par la relation d’équivalence engendrée par les
identifications des arétes ai,bq,...,aq,by est homéomorphe & T'# ... #7T, le tore a g trous. Voici une derniere
animation pour la route, avec le tore a trois trous : https://youtu.be/hSuUDPhJg6c.

. "”"\
4

[ ,-

—
Ilustration des identifications pour le tore, le tore a deux trous et le tore a trois trous. Tirée de https://
analysis-situs.math.cnrs.fr/-Introduction-a-1l-Analysis-situs-par-les-surfaces-.html

Exercice 4.

1. Montrer que le produit des groupes d’homotopie est commutatif pour n = 2. On pourra utiliser une représentation
graphique d’une homotopie entre f - g et g - f, en présentant S? comme quotient d'un carré par son bord.

2. Montrer que le produit des groupes d’homotopie est commutatif pour n > 2.

Solution 4.

1. La meilleure preuve est par l'illlustration suivante (tirée du livre de Hatcher, p.340) :

alr

It
|
4]

It

On part de f-g. Puisque f et g envoient le bord du disque/rectangle sur le point base, on peut construire une
homotopie vers une fonction ou le bord est épaissi, envoyant toute la partie bleue vers le point de base x.

On peut alors construire une homotopie qui fait tourner les domaines de f et g I'un autour de l'autre de
manieére & ce qu’ils ne s’intersectent pas. En agrandissant les domaines & nouveau on obtient g - f.

2. Plus formellement, si f et g sont deux applications dans 7, (X, z), on considere j, : I, = I,, (vesp. jq : I, —
I,,) données par

) 1
]g(slv'--vsn): 551a527~'~75n

(resp.

. 1
Ja(s1, ..., 8n) = <2(31 + 1),52,...,sn> .

On peut trouver deux homotopies h; : I, — I, et iLt 2 In = I, t € [0,1], de sorte que hy = le = Jg,
hi = ho = jq et pour tout ¢ € [0,1], ht et h sont des plongements pour lesquels hi(I,) et ﬁt(In) ne
s’intersectent que en des points de leurs frontieres.

Alors on peut définir pour tout ¢ € [0, 1] Papplication k; : I,, — I, par

ki(z) = f(hy Y (@) siz € ho(I,), ke(z) =g(h (x)) siz € hye(I,), et k() = o dans tous les autres cas.

et k(x,t) = k() définit une homotopie entre f -g et g- f.

Notez qu’il existe un autre argument équivalent, tres intéressant car completement algébrique, pour démontrer
ce fait, qui consiste & utiliser le théoreme de Eckmann-Hilton.

Voir par exemple : https://idrissi.eu/post/eckmann-hilton.

Exercice 5*. Le groupe fondamental de la sphére. Montrons que 752 = 1.

1. Montrer que tout lacet dans (R?, (a;b)) est homotope au lacet constant au point de base (a;b).


https://youtu.be/hSuUDPhJg6c
https://analysis-situs.math.cnrs.fr/-Introduction-a-l-Analysis-situs-par-les-surfaces-.html
https://analysis-situs.math.cnrs.fr/-Introduction-a-l-Analysis-situs-par-les-surfaces-.html
https://idrissi.eu/post/eckmann-hilton

2.

3.
4.

Montrer que deux chemins qui ont les mémes extrémités dans R? sont homotopes via une homotopie qui fixe
les points de départ et d’arrivée.

Si f: S' — S? est un lacet non surjectif, montrer que f est homotope au lacet constant.

Si f est un lacet surjectif (c’est possible : voir “courbe remplissante” sur Wikipedia), choisir un recouvrement
de S2 par deux ouverts et montrer que f est homotope & une concaténation finie de chemins se trouvant soit
dans I'un des ouverts soit dans ’autre. Conclure qu’aussi ici f est homotope au lacet constant.

Solution 5%*.

1.
2.

En effet R? est homotope au point, donc en partiulier 71 (R2, (a;b)) = 1 par invariance.

Soit 7v,v" deux chemins dans R? d’extrémités = et y. Alors H(t,s) = svy(t) + (1 — s)7y/(t) est une homotopie
~v =~ ~" qui fixe les deux extrémités.

. Soit # € S? un point qui n’est pas atteint par f. Alors f factorise par l'inclusion S%\ {z} C S2. Or, par

projection stéréographique, S? \ {z} ~ R? ~ x est contractile. On en déduit que f est homotope au lacet
constant.

Comme f est continue, on peut trouver un n > 0 tel que |f(z) — f(y)| < 2 pour tous x,y € S? tels que
|z —y| < L. Pour 0 < k < n notons fy la restriction de f a I'intervalle [£, 2] et 2) = f(£). Alors f est la
concaténation fox---* f,—1. Chaque fy est a valeurs dans {z € S?||z— x| < 2} ~ S?\{—2} ~ R? ~ . Par la
question 2, f est homotope au segment 7y, : t — txy + (1 —t)xg4+1. Ainsi f est homotope & v = Yo+ *xYp—1.
Or v est une concaténation finie de segments donc n’est pas surjective. Par la question précédente, on conclut

que f est homotope au lacet constant.



