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Topologie 11 Corrigé de la série 4

Exercice 1. On montre dans cet exercice les versions pointées des résultats expliqués en cours. On
note €, pour indiquer I’ensemble de toutes les applications continues et pointées.

1. Soit f: (X, z9) — (Y, yo) une application pointée. Montrer que pour tout espace pointé (A, ag)
l'application induite par la composition f.: C.(A, X) — C,(A,Y) passe au quotient et définit
une application f.: [A, X]. — [A,Y]..

2. Soient f,g: (X,x9) — (Y,y0) deux applications pointées homotopes (dans le sens pointé).
Montrer que pour tout espace pointé (A, ag) les applications induites fi, g.: [A, X]. = [A,Y].
sont égales.

3. Soient (X, xo) et (Y,yo) deux espaces pointés homotopes. Montrer qu’on a une bijection
d’ensembles [A, X],. = [A, Y]. pour tout espace pointé (A, ay).
Solution 1.

1. La preuve est formellement identique au cas non pointé, a l’exception qu'une homotopie
f =~ g d’applications pointées X — Y prend maintenant la forme d’une application continue
h:X xI — Y. Lanotation X x Y avec un espace pointé (X, x) et un espace non pointé Y
désigne le collapse X xY = (X xY)/{z} x Y. Ceci assure que pour tout ¢ € I, 'application
h(-,t) : X — Y est une application pointée.

Siu~wv:A — X sont des applications pointées homotopes, une telle homotopie h fait

commuter le diagramme
Ax{o}l \J\

AxT M5 x

Ax{l}T //

de sorte que foh fournit une homotopie f,u ~ f,v. Il en résulte que f, induit une application
[A, X]. — [A, Y], sur les classes d’homotopie.

2. Le raisonnement est similaire : une homotopie h : f ~ g fait commuter le diagramme

A——— X
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AN]—>X>4[—>Y
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pour tout u : A — X, et fournit donc une homotopie f,u ~ g,u. En conséquence, les appli-
cations induites f,, g. : [A, X]|. = [A, Y], sont égales



3. Puisque (X, z9) ~ (Y, 4), on dispose d’applications pointées f : X — Y et g:Y — X et
d’homotopies f o g ~idy et go f ~idy. Par le point précédent, on voit que les applications
induites f,, g. sont inverses I'une de 'autre, et forment donc des bijections [A, X ], = [A, Y]..

Exercice 2. Montrer que les espaces suivants sont tous homotopes deux & deux : le cercle S!, le
ruban de Mobius, le plan privé d’un point R? \ {(0;0)}.

Solution 2.

On détaille le cas du ruban de Mobius que 1'on identifie au carré [—1,1] x [—1, 1] avec les identi-
fications (—1,t) ~ (1, —t) pour tout —1 < ¢ < 1. Alors I'application h : M x [ — M définie par
((t,');s) — (st,t') est une homotopie entre idy; et ¢ o p, ou p: M — S! est la projection sur le
cercle central (donnée par (¢,t') — (0,%')) et : S' — M T’inclusion de celui-ci. De plus pot = idg,
donc ces deux applications p et ¢ sont des équivalences d’homotopie.

Exercice 3. Soient f: A — X et g: X = Y.
(a) Montrer que f est homotope a une application constante si et seulement si on peut étendre f
a une application F': CA — X (telle que F(a,1) = f(a)).

b) Montrer qu’on peut étendre g a une application G: X Uy CA — Y si et seulement si g o f est
q p g Pp f g
homotope a une application constante.

Solution 3.

(a) On rappelle que le cone C'A est le quotient du cyclindre A x I dont on collapse un couvercle,
disons A x 0. Soit i: A — A x I l'inclusion de A dans I'autre couvercle, i.e. i(a) = (a;1).
La propriété universelle du quotient assure que les applications F': CA — X qui prolongent f,
c’est-a-dire que F o7 = f, sont en correspondance bijective avec les applications A x [ — X
qui sont constantes sur A x {0}, et égales a f sur A x {1}.
La donnée d’une application CA — X correspond ainsi précisément a la donnée d’une appli-
cation f: A — X et d’une homotopie f ~ const,,. Par conséquent f admet un prolongement
a C'A si et seulement si f est homotope a une application constante.

(b) Par la propriété universelle du pushout, ¢ s’étend en une application g : X Uy CA — Y si et
seulement s’il existe une application G : CA — Y telle que le diagramme

f

_r

<

commute, c¢’est-a-dire qu’on peut étendre g o f en une application G : CA — Y. Par la partie
(a), ceci est possible si et seulement si go f est null-homotope (i.e. homotope a une application
constante).

Exercice 4. Type d’homotopie d’un wedge.



1. Soient A et B deux espaces topologiques. Montrer que
71'0(14 V B) = ’/TO(A) V 7T0<B>

Soit X le sous-espace de R formé des points 0 et 1/n pour tout entier n > 1. On construit Yy
le wedge de (X, 0) avec (X,0) et Y7 le wedge de (X, 1) avec (X, 1) (le point de base change).

2. Calculer mp(X).
3. Montrer qu’il n’existe aucune bijection continue Yy — Y.

4. Montrer que Yy et Y] n’ont pas le méme type d’homotopie.

Solution 4.

Ici, on utilise que le 7y est un ensemble pointé (le point base étant la composante connexe par arc
du point base), de sorte que cela fait sens de considérer le wedge. On a pas besoin de la topologie
pour construire le wedge comme ensemble quotient. On peut donc traiter cette question de maniere
purement ensembliste. Sinon, on peut munir le 7y de la topologie discrete, ou encore, comme vous
allez le voir en cours, d’une topologie quotient. Cela étant dit, il n’y a pas d’utilité a munir le
d’une topologie et vous pouvez retenir que c’est un ensemble (pointé).

1. La seule chose a vérifier est qu’'un élément de A et un élément de B ne sont reliés par un
chemin que s’ils sont chacun dans la composante connexe du point d’attache (ou point base)
de leur espace. La topologie du wedge est construite a partir de celle de A et B, de leur
union disjointe et du quotient. Ainsi, I'image de A et de B dans le wedge est fermée et leur
complément est donc ouvert. Ainsi un chemin continu entre z € A et y € B tous les deux
distincts du point base dans AV B est tel que la préimage de A est un fermé de I contenant 0.
Il existe donc un maximum 7y dont I'image est nécessairement le point base. On le déduit en
faisant le méme raisonnement pour la préimage de B, qui est fermée et contient 1, puisqu’on
sait que la réunion des deux préimages est I, et leur intersection qui contient 7o ne peut étre
envoyée que sur le point base. On en déduit que x et y sont dans les composantes connexes
des points bases.

2. L’espace X \ {0} = {%|n > 0} ne contient que des points isolés. Pour chaque n > 0 on peut
trouver un € > 0 tel que |+ —e, 1 + [N X = {2} de sorte que tous les singletons {1} sont
des ouverts de X pour n > 0.

Par ailleurs, si v : I — X est un chemin tel que v(0) = 0, alors v(¢) = 0 pour tout ¢t € I.
Sinon, on aurait y(t) = % pour un n > 0 et t € I. Alors comme % est un point isolé de X on
1

a y(t) = = pour tout ¢ € I, ce qui est absurde. Ainsi {0} est une composante connexe par

arcs de X.

Finalement, X est totalement discontinu (on a une bijection mo(X) = X) et on trouve
0 (X) =N.

3. On note les points de Yj et Y; comme suit :

Vo={1-X|n>0tU{1}U{l+L|n>0}CR
Vi={0}u{|n>0uf{2-Lin>0tUu{2} CR



Supposons qu’il existe une telle bijection continue f : Yy — Yi. Alors f doit préserver les
points d’accumulation. En effet, si x € Y est un point d’accumulation, on peut trouver une
suite {z, }neny d’éléments de Yj tels que z,, — = quand n — oo et x,, # x pour tout n. Alors
f(z,) — f(x) car f est continue et f(z,) # f(x) pour tout n car f est bijective. Donc f(z)
est un point d’accumulation de Y.

Dans Yj le point 1 est d’accumulation, alors que dans Y; les points 0 et 2 sont d’accumulation.
On a alors f(1) = 0 ou 2. Traitons le cas f(1) = 0. Notons y l'unique point de Yj tel que
f(y) = 2 et soit W un voisinage de y. Comme f est continue, on peut trouver un voisinage V'
de 2 dans Y; tel que f~1(V) € W. Comme 2 est un point d’accumulation dans Y;, V' contient
une infinité de points. Puisque f est bijective, f~'(V) C W contient aussi une infinité de
points. Or W est quelconque, et on trouve donc que tout voisinage de y dans Yy contient une
infinité de points. Ainsi, on doit avoir y = 1, ce qui est absurde car f(1) = 0 par hypothese.

Remarque : En fait on a montré qu'une bijection continue f : X — Y préserve et crée les
points d’accumulation, c¢’est-a-dire que x est un point d’accumulation de X si et seulement si
f(z) est un point d’accumulation de Y.

4. Par les points 1 et 2, on trouve que Yj et Y] sont totalement discontinus (on a des bijections
mo(Y;) 2 Y; ). Une équivalence d’homotopie f : Yy — Y] induit en particulier une bijection
mo(f) : mo(Yo) = mo(Yr). Puisque ces espaces sont totalements discontinus, f coincide avec
mo(f) de sorte que f est une bijection continue Yy — Y;. Par le point 3, une telle bijection ne
peut exister. Ainsi, Y et Y] n’ont pas le méme type d’homotopie.

Exercice 5x. Soit w = e*™/3 une racine troisieme de I'unité. On définit une action du groupe

cyclique a trois éléments Cj sur la sphere S* = {(a;b) € C* | |a|* + [b]* = 1} en faisant agir le
générateur par (a;b) — (wa;w?b). Lespace quotient S®/C3 est un espace lenticulaire, noté L(3,2).
On considere trois points €J = (1;0), ¢! = (w;0) et €3 = (w?;0) et on définit pour 0 < r < 2:

el = {(e"0) | 27r/3 <0 < 2n(r +1)/3}
e2 = {(pe?;\/1—p2e¥™3) | 0<h<2m0<p<1}
&2 ={(pe?; /1 —p2?) | 0<0<2m0< p<1;27r/3 <6 <2n(r+1)/3}

1. Montrer que L(3,2) est compact.

2. Montrer que €™ est homéomorphe & un disque D™ dont le bord est constitué de cellules e
avec 1 < m.

3. Montrer que 'action de C3 permute transitivement ces cellules.

4. Conclure que L(3,2) admet une structure cellulaire e U e! U e? U ¢ avec exactement une
cellule de dimension m pour tout 0 < m < 3.

Solution 5x.
1. L(3,2) = S3/C5 est compact car c’est un quotient de S® qui est compact.

2. Les 2-cellules sont décrites via une paramétrisation par un angle 0 < # < 27 et un module
0 < p < 1. On voit donc que €2 est de fait 'image d'un rectangle [0, 2] x [0, 1]. Analysons



cette image plus en détail puisqu’elle n’est pas homéomorphe au rectangle. En effet le seg-
ment [0, 2] x 0 est envoyé constamment sur (0, e2™/3) et comme la formule donnée coincide
en 6 =0 et § = 27, la prétendue 2-cellule est I'image du collapse de ce rectangle par un coté
et dont on identifie deux autres cotés opposés. Ce quotient est homéomorphe a un disque
(dont le bord provient de [0,27] x 1 et le centre est I'image du segment p = 0). On vérifie
ensuite que sur ce quotient la formule (pe®, /1 — p2e?™/3) définit un homéomorphisme avec
e2,

De méme, et sans entrer trop dans les détails, les €2 sont des images de cubes [0,27] x
0,1] x [277/3,27(r 4+ 1)/3]. Les identifications qui sont faites, si on pense au nouveau pa-
rametre 6/ comme étant vertical, sont les suivantes : la face verticale p = 0 est contractée
horizontalement en un segment vertical (qui va devenir I'ame du cylindre que je décris dans
ma phrase suivante). Les deux faces verticales adjacentes § = 0 et § = 27 sont identifiées si
bien qu’on peut penser a ce stade a un cylindre vertical dont les bases horizontales viennent
des faces horizontales du cube, 6’ = 27r/3 et ' = 27(r 4+ 1)/3. Le bord vertical est encore
contracté verticalement en un cercle et c’est ce quotient qui est homéomorphe a €.

. Le générateur g de C3 agit sur les e par g.e;' = e;', ;. On en déduit que I'action de C's permute
transitivement les e/’ pour chaque n.

. Les e définissent une structure cellulaire sur S® donnée par S = Ui:o Uf:o er. On a
trois n-cellules pour chaque n = 0,1,2,3 (12 cellules en tout). Cette structure est com-
patible avec I'action de Cj3. Elle passe donc au quotient et définit une structure cellulaire
L(3,2) = e Ue! Ue? Ue® comportant une seule n-cellule pour chaque n = 0,1,2, 3, donnée

par e = [e]'].



