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Exercice 1. On montre dans cet exercice les versions pointées des résultats expliqués en cours. On
note C∗ pour indiquer l’ensemble de toutes les applications continues et pointées.

1. Soit f : (X, x0) → (Y, y0) une application pointée. Montrer que pour tout espace pointé (A, a0)
l’application induite par la composition f∗ : C∗(A,X) → C∗(A, Y ) passe au quotient et définit
une application f∗ : [A,X]∗ → [A, Y ]∗.

2. Soient f, g : (X, x0) → (Y, y0) deux applications pointées homotopes (dans le sens pointé).
Montrer que pour tout espace pointé (A, a0) les applications induites f∗, g∗ : [A,X]∗ → [A, Y ]∗
sont égales.

3. Soient (X, x0) et (Y, y0) deux espaces pointés homotopes. Montrer qu’on a une bijection
d’ensembles [A,X]∗ ∼= [A, Y ]∗ pour tout espace pointé (A, a0).

Solution 1.

1. La preuve est formellement identique au cas non pointé, à l’exception qu’une homotopie
f ≃ g d’applications pointées X → Y prend maintenant la forme d’une application continue
h : X ⋊ I → Y . La notation X ⋊ Y avec un espace pointé (X, x) et un espace non pointé Y
désigne le collapse X ⋊ Y = (X × Y )/{x}× Y . Ceci assure que pour tout t ∈ I, l’application
h(·, t) : X → Y est une application pointée.

Si u ≃ v : A → X sont des applications pointées homotopes, une telle homotopie h fait
commuter le diagramme
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de sorte que f ◦h fournit une homotopie f∗u ≃ f∗v. Il en résulte que f∗ induit une application
[A,X]∗ → [A, Y ]∗ sur les classes d’homotopie.

2. Le raisonnement est similaire : une homotopie h : f ≃ g fait commuter le diagramme
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pour tout u : A → X, et fournit donc une homotopie f∗u ≃ g∗u. En conséquence, les appli-
cations induites f∗, g∗ : [A,X]∗ → [A, Y ]∗ sont égales



3. Puisque (X, x0) ≃ (Y, y0), on dispose d’applications pointées f : X → Y et g : Y → X et
d’homotopies f ◦ g ≃ idY et g ◦ f ≃ idX . Par le point précédent, on voit que les applications
induites f∗, g∗ sont inverses l’une de l’autre, et forment donc des bijections [A,X]∗ ∼= [A, Y ]∗.

Exercice 2. Montrer que les espaces suivants sont tous homotopes deux à deux : le cercle S1, le
ruban de Möbius, le plan privé d’un point R2 \ {(0; 0)}.

Solution 2.

On détaille le cas du ruban de Möbius que l’on identifie au carré [−1, 1]× [−1, 1] avec les identi-
fications (−1, t) ∼ (1,−t) pour tout −1 ≤ t ≤ 1. Alors l’application h : M × I → M définie par
((t, t′); s) 7→ (st, t′) est une homotopie entre idM et ι ◦ p, où p : M → S1 est la projection sur le
cercle central (donnée par (t, t′) 7→ (0, t′)) et ι : S1 → M l’inclusion de celui-ci. De plus p◦ι = idS1 ,
donc ces deux applications p et ι sont des équivalences d’homotopie.

Exercice 3. Soient f : A → X et g : X → Y .

(a) Montrer que f est homotope à une application constante si et seulement si on peut étendre f
à une application F : CA → X (telle que F (a, 1) = f(a)).

(b) Montrer qu’on peut étendre g à une application G : X ∪f CA → Y si et seulement si g ◦ f est
homotope à une application constante.

Solution 3.

(a) On rappelle que le cône CA est le quotient du cyclindre A × I dont on collapse un couvercle,
disons A× 0. Soit i : A → A× I l’inclusion de A dans l’autre couvercle, i.e. i(a) = (a; 1).

La propriété universelle du quotient assure que les applications F : CA → X qui prolongent f ,
c’est-à-dire que F ◦ i = f , sont en correspondance bijective avec les applications A × I → X
qui sont constantes sur A× {0}, et égales à f sur A× {1}.
La donnée d’une application CA → X correspond ainsi précisément à la donnée d’une appli-
cation f : A → X et d’une homotopie f ≃ constx0 . Par conséquent f admet un prolongement
à CA si et seulement si f est homotope à une application constante.

(b) Par la propriété universelle du pushout, g s’étend en une application g : X ∪f CA → Y si et
seulement s’il existe une application G : CA → Y telle que le diagramme
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commute, c’est-à-dire qu’on peut étendre g ◦ f en une application G : CA → Y . Par la partie
(a), ceci est possible si et seulement si g ◦ f est null-homotope (i.e. homotope à une application
constante).

Exercice 4. Type d’homotopie d’un wedge.



1. Soient A et B deux espaces topologiques. Montrer que

π0(A ∨B) = π0(A) ∨ π0(B)

Soit X le sous-espace de R formé des points 0 et 1/n pour tout entier n ≥ 1. On construit Y0

le wedge de (X, 0) avec (X, 0) et Y1 le wedge de (X, 1) avec (X, 1) (le point de base change).

2. Calculer π0(X).

3. Montrer qu’il n’existe aucune bijection continue Y0 → Y1.

4. Montrer que Y0 et Y1 n’ont pas le même type d’homotopie.

Solution 4.
Ici, on utilise que le π0 est un ensemble pointé (le point base étant la composante connexe par arc
du point base), de sorte que cela fait sens de considérer le wedge. On a pas besoin de la topologie
pour construire le wedge comme ensemble quotient. On peut donc traiter cette question de manière
purement ensembliste. Sinon, on peut munir le π0 de la topologie discrète, ou encore, comme vous
allez le voir en cours, d’une topologie quotient. Cela étant dit, il n’y a pas d’utilité à munir le π0

d’une topologie et vous pouvez retenir que c’est un ensemble (pointé).

1. La seule chose à vérifier est qu’un élément de A et un élément de B ne sont reliés par un
chemin que s’ils sont chacun dans la composante connexe du point d’attache (ou point base)
de leur espace. La topologie du wedge est construite à partir de celle de A et B, de leur
union disjointe et du quotient. Ainsi, l’image de A et de B dans le wedge est fermée et leur
complément est donc ouvert. Ainsi un chemin continu entre x ∈ A et y ∈ B tous les deux
distincts du point base dans A∨B est tel que la préimage de A est un fermé de I contenant 0.
Il existe donc un maximum i0 dont l’image est nécessairement le point base. On le déduit en
faisant le même raisonnement pour la préimage de B, qui est fermée et contient 1, puisqu’on
sait que la réunion des deux préimages est I, et leur intersection qui contient i0 ne peut être
envoyée que sur le point base. On en déduit que x et y sont dans les composantes connexes
des points bases.

2. L’espace X \ {0} = { 1
n
| n > 0} ne contient que des points isolés. Pour chaque n > 0 on peut

trouver un ε > 0 tel que ] 1
n
− ε, 1

n
+ ε[ ∩X = { 1

n
} de sorte que tous les singletons { 1

n
} sont

des ouverts de X pour n > 0.

Par ailleurs, si γ : I → X est un chemin tel que γ(0) = 0, alors γ(t) = 0 pour tout t ∈ I.
Sinon, on aurait γ(t) = 1

n
pour un n > 0 et t ∈ I. Alors comme 1

n
est un point isolé de X on

a γ(t) = 1
n
pour tout t ∈ I, ce qui est absurde. Ainsi {0} est une composante connexe par

arcs de X.

Finalement, X est totalement discontinu (on a une bijection π0(X) ∼= X) et on trouve
π0(X) = N.

3. On note les points de Y0 et Y1 comme suit :

Y0 = {1− 1
n
| n > 0} ∪ {1} ∪ {1 + 1

n
| n > 0} ⊂ R

Y1 = {0} ∪ { 1
n
| n > 0} ∪ {2− 1

n
| n > 0} ∪ {2} ⊂ R



Supposons qu’il existe une telle bijection continue f : Y0 → Y1. Alors f doit préserver les
points d’accumulation. En effet, si x ∈ Y0 est un point d’accumulation, on peut trouver une
suite {xn}n∈N d’éléments de Y0 tels que xn → x quand n → ∞ et xn ̸= x pour tout n. Alors
f(xn) → f(x) car f est continue et f(xn) ̸= f(x) pour tout n car f est bijective. Donc f(x)
est un point d’accumulation de Y1.

Dans Y0 le point 1 est d’accumulation, alors que dans Y1 les points 0 et 2 sont d’accumulation.
On a alors f(1) = 0 ou 2. Traitons le cas f(1) = 0. Notons y l’unique point de Y0 tel que
f(y) = 2 et soit W un voisinage de y. Comme f est continue, on peut trouver un voisinage V
de 2 dans Y1 tel que f

−1(V ) ⊂ W . Comme 2 est un point d’accumulation dans Y1, V contient
une infinité de points. Puisque f est bijective, f−1(V ) ⊂ W contient aussi une infinité de
points. Or W est quelconque, et on trouve donc que tout voisinage de y dans Y0 contient une
infinité de points. Ainsi, on doit avoir y = 1, ce qui est absurde car f(1) = 0 par hypothèse.

Remarque : En fait on a montré qu’une bijection continue f : X → Y préserve et crée les
points d’accumulation, c’est-à-dire que x est un point d’accumulation de X si et seulement si
f(x) est un point d’accumulation de Y .

4. Par les points 1 et 2, on trouve que Y0 et Y1 sont totalement discontinus (on a des bijections
π0(Yi) ∼= Yi ). Une équivalence d’homotopie f : Y0 → Y1 induit en particulier une bijection
π0(f) : π0(Y0) ∼= π0(Y1). Puisque ces espaces sont totalements discontinus, f coincide avec
π0(f) de sorte que f est une bijection continue Y0 → Y1. Par le point 3, une telle bijection ne
peut exister. Ainsi, Y0 et Y1 n’ont pas le même type d’homotopie.

Exercice 5⋆. Soit ω = e2πi/3 une racine troisième de l’unité. On définit une action du groupe
cyclique à trois éléments C3 sur la sphère S3 = {(a; b) ∈ C2 | |a|2 + |b|2 = 1} en faisant agir le
générateur par (a; b) 7→ (ωa;ω2b). L’espace quotient S3/C3 est un espace lenticulaire, noté L(3, 2).
On considère trois points e00 = (1; 0), e01 = (ω; 0) et e02 = (ω2; 0) et on définit pour 0 ≤ r ≤ 2 :

e1r = {(eiθ; 0) | 2πr/3 ≤ θ ≤ 2π(r + 1)/3}
e2r = {(ρeiθ;

√
1− ρ2e2πir/3) | 0 ≤ θ < 2π; 0 ≤ ρ ≤ 1}

e3r = {(ρeiθ;
√

1− ρ2eiθ
′
) | 0 ≤ θ < 2π; 0 ≤ ρ ≤ 1; 2πr/3 ≤ θ′ ≤ 2π(r + 1)/3}

1. Montrer que L(3, 2) est compact.

2. Montrer que emr est homéomorphe à un disque Dm dont le bord est constitué de cellules eir
avec i < m.

3. Montrer que l’action de C3 permute transitivement ces cellules.

4. Conclure que L(3, 2) admet une structure cellulaire e0 ∪ e1 ∪ e2 ∪ e3 avec exactement une
cellule de dimension m pour tout 0 ≤ m ≤ 3.

Solution 5⋆.

1. L(3, 2) = S3/C3 est compact car c’est un quotient de S3 qui est compact.

2. Les 2-cellules sont décrites via une paramétrisation par un angle 0 ≤ θ ≤ 2π et un module
0 ≤ ρ ≤ 1. On voit donc que e2r est de fait l’image d’un rectangle [0, 2π] × [0, 1]. Analysons



cette image plus en détail puisqu’elle n’est pas homéomorphe au rectangle. En effet le seg-
ment [0, 2π]× 0 est envoyé constamment sur (0, e2πr/3) et comme la formule donnée cöıncide
en θ = 0 et θ = 2π, la prétendue 2-cellule est l’image du collapse de ce rectangle par un côté
et dont on identifie deux autres côtés opposés. Ce quotient est homéomorphe à un disque
(dont le bord provient de [0, 2π] × 1 et le centre est l’image du segment ρ = 0). On vérifie
ensuite que sur ce quotient la formule (ρeiθ,

√
1− ρ2e2πr/3) définit un homéomorphisme avec

e2r.

De même, et sans entrer trop dans les détails, les e3r sont des images de cubes [0, 2π] ×
[0, 1] × [2πr/3, 2π(r + 1)/3]. Les identifications qui sont faites, si on pense au nouveau pa-
ramètre θ′ comme étant vertical, sont les suivantes : la face verticale ρ = 0 est contractée
horizontalement en un segment vertical (qui va devenir l’âme du cylindre que je décris dans
ma phrase suivante). Les deux faces verticales adjacentes θ = 0 et θ = 2π sont identifiées si
bien qu’on peut penser à ce stade à un cylindre vertical dont les bases horizontales viennent
des faces horizontales du cube, θ′ = 2πr/3 et θ′ = 2π(r + 1)/3. Le bord vertical est encore
contracté verticalement en un cercle et c’est ce quotient qui est homéomorphe à e3r.

3. Le générateur g de C3 agit sur les e
n
r par g.enr = enr+1. On en déduit que l’action de C3 permute

transitivement les enr pour chaque n.

4. Les enr définissent une structure cellulaire sur S3 donnée par S3 =
⋃3

n=0

⋃2
r=0 e

n
r . On a

trois n-cellules pour chaque n = 0, 1, 2, 3 (12 cellules en tout). Cette structure est com-
patible avec l’action de C3. Elle passe donc au quotient et définit une structure cellulaire
L(3, 2) = e0 ∪ e1 ∪ e2 ∪ e3 comportant une seule n-cellule pour chaque n = 0, 1, 2, 3, donnée
par en = [enr ].


