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Exercice 1. Soit G un groupe topologique.

1. Supposons G séparé. SoitH un sous-groupe de G. Montrer que G/H est séparé si et seulement
si H est fermé dans G.

Indication. Définir f : G × G → G par f(x, y) = x−1y et identifier la préimage de H comme
le graphe de la relation définie par le passage au quotient par H.

2. Soit H un sous-groupe normal de G. Montrer que G/H est un groupe topologique.

Solution 1.

1. On note π : G→ G/H l’application quotient. Notons π(g) = gH.

⇒. Supposons G/H séparé. Soit g ∈ G tel que g /∈ H. On peut trouver des ouverts disjoints
U, V ⊂ G/H contenant respectivement gH et eGH. Alors π−1(U) est un voisinage de g dans
G qui ne rencontre pas H. On en déduit que H ⊂ G est fermé.

⇐. SupposonsH ⊂ G fermé. L’application quotient π : G→ G/H est ouverte comme expliqué
en cours (Proposition 4.11). Le graphe Γ de la relation des classes à droite pour H est par
définition l’ensemble des paires de la forme (g, gh), i.e. la préimage par f de H. Ce graphe
est donc fermé par continuité de f .

Considérons alors deux classes distinctes gH ̸= g′H, ce qui veut dire que (g, g′) ̸∈ Γ. Ce
graphe étant fermé et G séparé il existe des voisinages ouverts disjoints U ∋ g et U ′ ∋ g′ tels
que U ×U ′ ne rencontre pas Γ. Comme π est ouverte les images π(U) et π(U ′) sont alors des
voisinages ouverts de gH et g′H qui sont disjoints.

Remarque suite à une question de certains d’entre vous : on ne peut pas supposer en général
que l’application quotient est fermée. La preuve que l’application quotient est ouverte utilise
qu’une union infinie d’ouverts est ouverte, et ne fonctionne pas pour les fermés. Par exemple,
le quotient vu en cours de R par Z est S1 et l’image du fermé

√
2 + Z est dense mais pas

égale à S1, elle n’est donc pas fermée.

2. Comme vu en théorie des groupes, H est normal implique que G/H est un groupe pour la
multiplication m(gH, g′H) = gg′H. Il faut montrer que celle ci est continue et que son inverse
ι l’est aussi. Notons mG et ιG la multiplication et l’inverse de G. On a un carré commutatif :

G×G G

G/H ×G/H G/H

mG

π×π π

m

Soit U un ouvert de G/H. Montrons que m−1(U) est ouvert. Comme (π × π)−1(m−1(U)) =
m−1

G (π−1(U)), et π ◦mG est continue, (π × π)−1(m−1(U)) est ouvert. Comme π est ouverte,
le produit π × π l’est aussi donc m−1(U) est ouvert.

Pour l’inverse, le même argument fonctionne avec le carré suivant :



G G

G/H G/H.

ιG

π π

ι

Exercice 2.

1. Montrer que le cône CA et la suspension ΣA sont séparés si A est séparé.

2. Montrer que le cône CA et la suspension ΣA sont compacts si A est compact.

3. Montrer que ΣSn ≈ Sn+1 et déduire ΣnS0 ≈ Sn.

Solution 2.

1. Si (x, t) ̸= (x′, t′) sont des points distincts de CA, alors comme A × I est séparé, on peut
trouver des ouverts U, V ⊂ A × I qui séparent (x, t) et (x′, t′). Lorsque t et t′ sont non nuls
on peut s’arranger pour que ces voisinages ne rencontrent pas l’extrémité A× {0} de A× I.
Ils sont alors saturés, leurs images dans le cône sont donc ouvertes et séparent bien les deux
points.

Si l’un des deux points, disons le deuxième, est (x′, 0), alors le premier est comme ci-dessus
(i.e. t ̸= 0). On choisit alors comme voisinage de (x′, 0) l’ouvert saturé A× [0, ε[ avec ε assez
petit pour ne pas rencontrer U . On conclut comme dans le point précédent par saturation.

On raisonne de même pour ΣA.

2. Les flèches suivantes sont des quotients A× I → CA→ ΣA. Puisque A et I sont compacts,
il en est de même de A× I et donc CA et ΣA sont compacts également.

3. On remarque que I = [0, 1] est homéomorphe à l’intervalle [−1, 1] et on travaille avec ce
dernier, et donc un cylindre de hauteur 2 dès maintenant.

On définit une application Sn × [−1, 1]→ Sn+1 par la formule suivante :

(x0, · · · , xn; t) 7→ (x0

√
1− t2 , · · · , xn

√
1− t2, t)

On vérifie que cette application passe au quotient puisque la formule donne (0, . . . , 0, t) lorsque
t = ±1. Elle induit alors une application ΣSn → Sn+1. Son inverse est induit par l’application
Sn+1 → Sn × I donnée par

(y0, · · · , yn+1) 7→
(

y0√
1− y2n+1

, · · · , yn√
1− y2n+1

; yn+1

)
.

On peut également remarquer que l’application identité In× I → In+1 induit une application
In/∂In ∧ I/∂I → In+1/∂In+1 qui est un homéomorphisme.

Exercice 3.

1. Montrer qu’on peut obtenir l’espace Sn à partir de S0 en attachant successivement deux
cellules de chaque dimension entre 1 et n.

2. Montrer que RPn possède une structure cellulaire avec une seule cellule dans chaque dimension
entre 0 et n.

Solution 3.



1. On procède par récurrence. Montrons que Sn ≃ Dn ∪Sn−1 Dn où on recolle selon l’inclusion
du bord Sn−1 ↪→ Dn. Pour cela construit deux application continue f1, f2 : Dn → Sn

correspondant aux deux hémisphères. On considère la paramétrisation classique de Sn dans
Rn+1 et Dn dans Rn.

f1 : Dn −→ Sn

x = (x1, . . . , xn) 7−→ (x1, . . . , xn,−
√

1− x2
1 + · · ·+ x2

n)

De même, on définit :
f2 : Dn −→ Sn

x = (x1, . . . , xn) 7−→ (x1, . . . , xn,
√

1− x2
1 + · · ·+ x2

n).

Ces deux applications coincident sur le bord Sn−1, puisque les vecteurs de norme 1 sont
envoyés sur (x, 0). On a donc construit une application continue Dn ∪Sn−1 Dn → Sn. Elle est
clairement injective (vu sa restriction aux n premières coordonnées). Elle est aussi surjective :
on envoie

(y1, . . . , yn+1) 7−→ (y1, . . . , yn)

dans l’une des deux boules, selon que yn+1 est positif ou négatif. Si yn+1 = 0, peu importe car
les deux boules sont recollées le long du bord.

2. Les espaces projectifs réels RPn peuvent être construits comme quotient de Sn par l’action
antipodale. On observe que l’action antipodale échange les deux cellules dans chaque dimen-
sion.

Exercice 4. Soit X un espace et Sym2(X) le produit symétrique, défini comme étant le quotient
de X ×X sous l’action de Z/2Z qui échange les facteurs.

1. Identifier Sym2(I) où I = [0, 1] à homéomorphisme près.

2. Montrer que Sym2(S1) est homéomorphe à un ruban de Möbius.

Solution 4.

1. On a Sym2(I) = I × I/Z/2Z. On identifie (a, b) avec (b, a) pour tous a, b ∈ I. Le quotient
est un triangle de sommets (0, 0), (1, 0) et (1, 1) dans R2.



2. On reprend la preuve de 3Blue1Brown.

Puisque S1 est homéomorphe à I/{0, 1}, on a S1×S1 ≈ I × I/R où R est la relation produit
(a, b)R(c, d) si et seulement si a ∼ c et b ∼ d. Le quotient de ce quotient Sym2(S1) =
S1 × S1/Z/2Z est donc homéomorphe au quotient de Sym2(I) par la relation R induite par
R.

Explicitement il s’agit du quotient du triangle T de la partie (1), de sommets (0, 0), (1, 0) et
(1, 1), quotienté par (x, 0)R(1, x) pour tout 0 ≤ x ≤ 1.

On considère maintenant le carré C = {(x, y) ∈ R2 | 1 − x ≤ y ≤ x et x − 1 ≤ y ≤ 2 − x}.
Il a été obtenu en gardant la moitié du triangle précédent (justement la partie du triangle
intersectant C, à gauche de la droite x = 1) en déplaçant l’autre moitié du triangle à droite
de la droite x = 1. C’est la partie “Dissect-Split-Flip” de l’illustration ci-dessus :

La formule de cette transformation f : T → C est donnée par

(x, y) 7→

{
(x, y) si y ≥ 1− x

(y + 1, x) si y < 1− x

Attention, cette application n’est pas continue !

Soit S la relation d’équivalence définie sur C par (x, 1 − x)S(2 − x, x) pour 1/2 ≤ x ≤ 1
et q : C → C/S = M l’application quotient. Alors q ◦ f est continue. La justification de la
continuité se fait en analysant les préimages des ouverts et seuls les voisinages de points qui
se trouvent sur les traits bleus ou les traitillés noirs posent problème. En fait la préimage d’un
petit disque ouvert de C centré sur la droite x = 1 est la réunion disjointe de deux demi-
disques ouverts centrés sur le bord du triangle T , c’est un ouvert. Enfin un petit voisinage
ouvert d’un point sur le traitillé correspond via q−1 à deux demi-disques ouverts centrés sur
les deux traitillés (image “Join”) dont la préimage par f est un disque ouvert centré sur la
hauteur du triangle T .

Comme q ◦ f est compatible avec la relation R, elle passe au quotient pour induire une
application f̄ : Sym2(S1) → C/S. Cette application est un homéomorphisme et on conclut
par le fait que le quotient du carré est homéomorphe au ruban de Möbius, voir Série 2.



Exercice 5*. On rappelle que CP n est le quotient de S2n+1, la sphère unité de Cn+1 par la relation
d’équivalence Rn définie par l’action du groupe S1 par multiplication sur les coordonnées. On note
qn : S

2n+1 → CP n l’application quotient. On note encore ιn : S
2n−1 ↪→ S2n+1 l’inclusion donnée par

(z1, . . . , zn) 7→ (z1, . . . , zn, 0).

1. Soit D2n la boule unité dans Cn. Montrer que la formule

f(z1, . . . , zn) = (z1, . . . , zn,
√

1− |z1|2 − · · · − |zn|2)

définit une application f : D2n → S2n+1.

2. Montrer que qn ◦ f est surjective.

3. On définit une relation d’équivalence sur D2n en posant z ∼ z′ si et seulement z = z′ ou
zRn−1z

′ pour des éléments z, z′ ∈ S2n−1. Montrer que qn ◦ f passe au quotient (et induit une
application g).

4. Montrer que g est un homéomorphisme et que la restriction de qn ◦ f à l’intérieur de D2n est
un homéomorphisme.

5. Montrer que la restriction de f au bord S2n−1 est l’inclusion ιn et qu’elle induit une application
injective CP n−1 ↪→ CP n.

6. Conclure que CP n = CP n−1 ∪qn−1 D
2n.

Solution 5*.

1. On calcule la norme |z1|2 − · · · − |zn|2 + (1− |z1|2 − · · · − |zn|2) = 1.

2. Un point [z] de CP n a pour préimage par qn dans S2n+1 une orbite pour S1. Prenons une
préimage (z1, . . . , zn+1) ∈ S2n+1 ⊂ Cn+1 de [z] par qn.

Les éléments de la forme (z1, . . . , zn,
√
1− |z1|2 − · · · − |zn|2) de S2n+1 sont tous ceux dont la

dernière coordonnée est réelle, positive ou nulle.

Si zn+1 ̸= 0, il existe un unique b ∈ S1 tel que bzn+1 est réel et positif, à savoir b = z̄n+1/|zn+1|.
Ainsi, [z] = (qn ◦ f)(bz1, . . . , bzn). Si zn+1 = 0, alors [z] = [(qn ◦ f)(az1, . . . , azn)] pour tout
a ∈ S1. Ainsi qn ◦ f est surjective.

3. On vérifie simplement pour z′ = a · z avec a ∈ S1 et z ∈ S2n−1 que

(qn ◦ f)(z′) = qn(az1, . . . , azn,
√

1− |az1|2 − · · · − |azn|2) = qn(az1, . . . , azn, 0)

= qn(z1, . . . , zn, 0) = (qn ◦ f)(z)

Ainsi qn ◦ f passe au quotient et induit une application g : D2n/∼ −→ CP n.

4. Au point 2, on avait un unique antécédent de qn ◦f si zn+1 est non nul. Si zn+1 est nul, toutes
ses préimages sont de la forme az1, . . . , azn pour a dans S1 donc [z] est l’image d’une unique
classe de D2n/∼. Comme g est une bijection de source compacte vers un but séparé, c’est un
homéomorphisme.

5. Le bord de D2n est la sphère S2n−1 dont les éléments sont des n-uplets de nombres complexes
(z1, . . . zn) avec |z1|2+ · · ·+ |zn|2 = 1. Alors f(z1, . . . , zn) = (z1, . . . , zn, 0). C’est ιn. Comme vu
ci-dessus la restriction aussi passe au quotient et induit une application injective CP n−1 ↪→
CP n.



6. En résumé nous avons une inclusion CP n−1 ↪→ CP n et le complément CP n \ CP n−1 est
l’image homéomorphique par g de l’intérieur de la boule D2n, dont le bord S2n−1 est envoyé
par l’application quotient qn−1 sur CP n−1. Autrement dit, le push-out du diagramme suivant

CP n−1 ← S2n−1 ↪→ D2n

est précisément CP n = CP n−1 ∪qn−1 D
2n.


