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Exercice 1. (a) Soit R le rectangle I × I et ∼ la relation d’équivalence définie par (s, t) ∼ (s′, t′)
si et seulement si (s, t) = (s′, t′) ou s = 0, s′ = 1 et t = t′. Montrer que l’espace quotient est un
cylindre.
(b) Soit R le rectangle I× I et ∼ la relation d’équivalence définie par (s, t) ∼ (s′, t′) si et seulement
si (s, t) = (s′, t′) ou s = 0, s′ = 1 et t = 1−t′. Montrer que l’espace quotient est un ruban de Möbius.

Solution 1.
(a) On choisit la paramétrisation du cylindre C donnée par un angle α compris entre 0 et 2π
et une hauteur comprise entre 0 et 1. On définit une application f : R → C en envoyant (s, t)
sur (2πs, t), plus précisément sur le point (cos 2πs, sin 2πs, t) ∈ R3. Cette application est continue
et surjective. De plus elle est compatible avec la relation d’équivalence puisque cosinus et sinus
sont 2π−periodiques. Elle passe donc au quotient et induit une application f̄ : R/∼−→ C. Cette
application est une bijection d’un espace compact, car quotient d’un compact, vers un espace séparé,
c’est un homéomorphisme.
(b) Comme ci-dessus on choisit une paramétrisation du ruban de Möbius dans R3. Son âme (le
cercle central) se trouve sur un cercle de rayon 2 dans le plan Oxy, centré en l’origine. Un point
de ce cercle est donné par un angle α. Par chacun de ces points passe un segment de longueur 1,
le coupant en son milieu. Ce segment fait un angle β avec la verticale et on indique finalement la
position h sur ce segment orienté, comprise entre 0 et 1.
On définit une fonction sur R en associant les angles α(s, t) = 2πs, β(s, t) = πs et h(s, t) = t.
Cette fonction est surjective et passe au quotient puisque α(0, t) = 0 ≡ 2π = α(1, t). Les angles
β(0, t) = 0 et β(1, t) = π indiquent qu’en s = 0, le segment est vertical orienté de bas en haut, et
qu’en s = 1 il est vertical également mais orienté de haut en bas. Les points (0, t) et (1, 1− t) sont
donc envoyés sur le même point de R3. La fonction passe au quotient et on conclut comme en (a).

Exercice 2. Soit ∼ la relation d’équivalence définie sur R2 par x ∼ y si et seulement si x−y ∈ Z2.
Soit q : R2 → R2/∼ l’application quotient.

1. Montrer que q−1(q(0)) n’est pas compact.

2. Montrer que l’espace quotient R2/∼ est homéomorphe à un quotient de I × I.

3. Montrer que R2/∼ est homéomorphe au tore S1 × S1.

Solution 2.

1. Cette préimage est Z2, qui n’est pas compact.

2. On considère I × I comme un sous-espace de R2 et on constate que tout point (x, y) du plan
est équivalent à un point de ce carré, à savoir (x− ⌊x⌋, y − ⌊y⌋), où ⌊−⌋ est la partie entière
(inférieure). La même relation ∼ restreinte à I × I définit donc une application quotient
restreinte p : I × I → Y . Pour montrer que Y et R2/∼ sont homéomorphes, on utilise que
l’application (x, y) 7−→ (x − ⌊x⌋, y − ⌊y⌋) induit une bijection R2/ ∼−→ Y continue, dont
l’inverse est induite par l’inclusion I × I ↪→ R2, qui est continue.

3. On utilise le point précédent. Les points de l’intérieur du carré ne sont en relation qu’avec eux-
mêmes, alors que ceux du bord vérifient en plus (0, t) ∼ (1, t) et (s, 0) ∼ (s, 1). En particulier



(0, 0) ∼ (0, 1) ∼ (1, 1) ∼ (1, 0). Pour montrer que le quotient est un tore, nous utilisons le
fait que ce quotient peut être vu comme un quotient de quotient. On identifie d’abord les
segments verticaux du carré, comme dans l’Exercice 1 (a), et on obtient un cylindre, puis
il reste à identifier les segments verticaux du carré original, c’est-à -dire les cercles 0 × S1

et 1 × S1, bases de ce cylindre. L’homéomorphisme consiste à envoyer le cercle situé à la
hauteur s de ce cylindre sur le cercle de rayon 1 dans R3, centré en (2 cos(2πs), 2 sin(2πs), 0)
et se trouvant dans le plan vertical passant par l’origine. On choisit par exemple de faire
correspondre (s, 0) au point (cos 2πs, sin 2πs, 0) pour faire correspondre ce segment I × 0 à
l’équateur intérieur du tore et le segment I × {1

2
} à l’équateur extérieur du tore.

Exercice 3. Montrer que S3 est un groupe topologique en construisant un homéomorphisme vers
SU(2), le groupe des matrices unitaires 2× 2 de déterminant 1.

Solution 3. La sphère S3 est le sous espace de R4 formé des vecteurs (a, b, c, d) tels que a2 + b2 +
c2 + d2 = 1. Le groupe SU(2) est composé des matrices ( z w

w′ z′ ) avec z, z′, w, w′ ∈ C, w′ = −w,
z′ = z et zz′ − ww′ = 1. Il s’agit d’un groupe topologique, sa topologie étant induite par celle de
C4 ∼= M2×2(C) dont c’est un sous espace. La loi de groupe est la multiplication des matrices.

On définit une application R4 → M2×2(C) par la formule

(a, b, c, d) 7→
(

a+ ib c+ id
−c+ id a− ib

)
.

On vérifie que cette application est continue et que sa restriction à S3 ⊂ R4 est à valeurs dans
SU(2). On a donc bien défini une application S3 → SU(2). Elle admet un inverse donné par(

z w
w′ z′

)
7→

(z + z′

2
,
z − z′

2i
,
w − w′

2
,
w + w′

2i

)
.

Cet inverse est continu et donc un homéomorphisme SU(2) ≈ S3.

Exercice 4. Soit X = {−1, 0, 1} et on note Xd cet ensemble muni de la topologie discrète, Xg

ce même ensemble muni de la topologie grossière (les seuls ouverts sont ∅ et X) et Xq muni de la
topologie quotient de l’Exercice 4 de la Série 1.

1. Dire quels espaces sont séparés et déterminer les relations de finesse entre ces topologies.

2. Déterminer pour quelles paires (i, j) l’identité sur X détermine une application continue
Xi → Xj pour i, j ∈ {d, g, q}.

Solution 4.

1. La topologie grossière est moins fine que les autres puisque ∅ et X sont des ouverts par
définition dans toute topologie. La topologie discrète est plus fine que toutes les autres puisque
par définition tout sous-ensemble de X est ouvert dans Xd. La topologie de Xq est strictement
plus fine que Xg puisque {1} est ouvert dans Xq, mais strictement moins fine que Xd puisque
{0} n’est pas ouvert dans Xq.

2. On a des application continues d’une topologie plus fine vers une topologie moins fine, ainsi
Xd → Xq, ainsi que Xq → Xg et la composition sont continues. Toute autre application
donnée par x 7→ x n’est pas continue pour la raison décrite ci-dessus.



Exercice 5. Démontrer la proposition suivante du cours :
Proposition : Soit q : X → Y continue et surjective. Alors q est un quotient si et seulement si
pour tout ouvert saturé U ⊂ X, q(U) ⊂ Y est ouvert.

Solution 5. ”⇒”. Si q est un quotient et U un ouvert saturé de X, alors B = q(U) est tel que
q−1(B) = q−1(q(U)) = U car U est saturé, en particulier B est ouvert de la topologie quotient sur
Y .
”⇐”. Supposons que pour tout ouvert saturé U ⊂ X, q(U) ⊂ Y est ouvert. Prenons un sous-
ensemble A de Y tel que q−1(A) est ouvert. Montrons que A est ouvert. Puisque q(q−1(A)) = A,
grâce à l’hypothèse, il suffit de montrer que q−1(A) est saturé, et c’est le cas car q−1(q(q−1(A))) =
q−1(A).

Exercice 6*.
Soit S3 ⊂ C2 et CP 1 le quotient sous l’action de S1 ⊂ C. On identifie donc (z, z′) ∈ S3 avec (az, az′)
pour tout nombre complexe de norme 1, où z, z′ sont les coordonnées complexes d’un point de S3.
Soit q : S3 → CP 1 l’application quotient.

1. Montrer que la préimage de tout point de CP 1 est un cercle dans S3.

2. Montrer que l’application (z, z′) 7→ (|z|2−|z′|2, 2zz̄′) de C2 dans R×C définit une application
η : S3 → S2.

3. Montrer que η est surjective et que la préimage de chaque point est un cercle.

4. Montrer que la préimage de l’équateur 0× S1 ⊂ S2 est un tore.

5. Montrer que CP 1 est homéomorphe à la sphère S2.

Solution 6*.

1. Fixons (z, z′) dans S3. L’application S1 → S3 définie par multiplication par a 7→ (az, az′) est
injective et continue, c’est l’inclusion de la préimage de la classe [z, z′] ∈ CP 1 dans S3.

2. La norme, l’élévation au carré, la différence, la conjugaison complexe et la multplication
sont toutes continues, si bien que cette application est continue. Prenons (z, z′) dans S3 et
calculons :

(|z|2 − |z′|2)2 + 2zz̄′ · 2zz̄′ = |z|4 − 2|z|2|z′|2 + |z′|4 + 4|z|2|z′|2 = (|z|2 + |z′|2)2 = 1

Ceci définit donc bien une application η : S3 → S2.

3. Soit (x, ω) un point de S2, i.e. x2 + ωω̄ = 1, ou encore |ω|2 = 1 − x2. On peut donc écrire
ω =

√
1− x2eiφ. On cherche à résoudre le système d’équations, pour (z, z′) ∈ S3, donné par

|z|2 − |z′|2 = x et 2zz̄′ = ω

Alors |z|2 =
1 + x

2
= r et |z′|2 =

1− x

2
= s, si bien que z =

√
reiα et z′ =

√
seiβ. Enfin

2zz̄′ = 2
√
rsei(α−β) doit être égal à ω dont la norme vaut bien 2

√
rs =

√
1− x2 si bien que

le système est compatible. Ainsi les solutions sont toutes de la forme suivante, où a est un
nombre complexe de norme 1 :

z =

(
1 + x

2

)1/2

· aeiφ, z′ =

(
1− x

2

)1/2

a



Ceci définit clairement un espace homéomorphe à un cercle, il en fait même isométrique à

un cercle. On peut en effet multiplier par la matrice unitaire

(
e−iφ 0
0 1

)
pour transformer

isométriquement la préimage décrite ci-dessus en l’ensemble de tous les points de la forme
(
√
r · a,

√
s · a) avec a = eit un nombre complexe de module 1. Ces points se trouvent sur la

sphère unité S3 ⊂ C2 et sur le plan d’équation
√
s · z =

√
r · z′. L’intersection d’une sphère

avec un plan passant par l’origine est un cercle de rayon 1.

4. Lorsque la première coordonnée de η(z, z′) est nulle, |z| = |z′| et la préimage correspond aux
points de S3 de la forme (z, z′) avec |z| =

√
2/2 = |z′|. C’est un tore, i.e. homéomorphe à

S1 × S1 (l’équateur forme une copie de S1 et chaque préimage est un cercle de rayon
√
2/2).

5. L’application η passe au quotient car la norme ne change pas lorsqu’on multiplie un nombre
complexe par un nombre complexe a de norme 1 et de même az · az′ = aā · zz̄′ = 1 · zz̄′ = zz̄′.
On obtient ainsi une application η̄ : CP 1 → S2 d’un compact vers un espace séparé. Il suffit
donc de voir que c’est une bijection pour conclure.

La surjectivité est claire par surjectivité de η, voir le point 3. L’injectivité suit de l’identifica-
tion des cercles préimages dans ce même point.


