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Exercice 1. Soit X un espace et q : X → Y une surjection. Pour montrer que les ouverts de la
topologie quotient forment bien une topologie, on vérifie simplement les axiomes. D’abord l’ensemble
vide et Y sont ouverts puisque les préimages sont respectivement ∅ et X qui sont ouverts dans X.
Pour l’axiome d’intersection finie il suffit de considérer deux ouverts U et V de Y , les autres cas se
montrent par récurrence. Comme q−1(U ∩ V ) = q−1(U)∩ q−1(V ) est un ouvert de X, U ∩ V est un
ouvert de la topologie quotient de Y .
Enfin si Uα est une famille quelconque d’ouverts de Y pour α ∈ A, on a q−1(∪Uα) = ∪q−1(Uα) et
on conclut par le fait que les ouverts de X vérifient l’axiome de l’union.

Exercice 2. Soit H la figure huit dans le plan donnée par deux cercles tangents, en coordonnées

H = {(x, y) ∈ R2 | (x− 1)2 + y2 = 1} ∪ {(x, y) ∈ R2 | (x+ 1)2 + y2 = 1}

On définit une fonction q : [−1, 1] → H en posant

q(t) =

{
−1 + e2πit si − 1 ≤ t ≤ 0

1 + e2πi(t−1/2) si 0 < t ≤ 1

On peut utiliser les coordonnées polaires dans R2 pour montrer que q est surjective.
Pour montrer que q est continue, on doit considérer deux types d’ouverts, des bases de voisinages
d’un point différent de (0, 0) et ceux de l’origine. Pour un point x différent de l’origine, il existe
une base de voisinages donnée par des boules B(x, ϵ) de R2 dont l’intersection avec H est telle que
la préimage par q est un intervalle ouvert de [−1, 1].
Pour l’origine l’intersection B(0, ϵ)∩H forme une figure de X dont la préimage par q est constituée
de [−1,−1+ δ)∪ (−δ, δ)∪ (1− δ, 1], qui est bien un ouvert de l’intervalle (pour la topologie induite
de R).
Il faut encore montrer que q est un quotient, c’est-à-dire que la topologie métrique de H est la plus
fine rendant q continue. Comme ci-dessus le cas des voisinages d’un point différent de l’origine est
facile, concentrons-nous en (0, 0). Soit U un ouvert de la topologie quotient contenant (0, 0). Alors
q−1(U) contient −1, 0 et 1, et comme c’est un ouvert de [−1, 1] il contient aussi un ouvert de la
forme [−1,−1 + δ) ∪ (−δ, δ) ∪ (1− δ, 1]. Ainsi U contient q(q−1(U)) qui est une figure en forme de
X ouverte dans la topologie métrique. Ceci montre que la topologie métrique est plus fine que la
topologie, donc qu’elles cöıncident.
Par contre q n’est pas une application ouverte puisque l’ouvert (−1/2, 1/2) a pour image par q un
sous-ensemble de H qui n’est pas ouvert, ne contenant aucun voisinage de (0, 0) dans H.
On aurait pu faire des calculs explicites et c’est un bon exercice de le faire une fois si les arguments
ci-dessus vous paraissent trop peu rigoureux.

Exercice 3. Soit X = [0, 1] et ∼ une relation d’équivalence. On demande de décrire ou même
seulement de dessiner l’espace quotient dans les cas suivants :

1. x ∼ y si et seulement si x = y ou {x, y} ⊂ {0, 1}. On identifie seulement les extrémités de [0, 1]
et on obtient un cercle. L’application exponentielle permettrait de le vérifier explicitement.

2. x ∼ y si et seulement si x = y ou {x, y} ⊂ {0, 1/2}. On obtient ♭.



3. x ∼ y si et seulement si x = y ou {x, y} ⊂ {0, 1/2, 1}. On obtient la figure huit de l’exercice
ci-dessus.

4. On obtient un point.

Exercice 4. On définit sur R la relation d’équivalence ∼ par x ∼ y si et seulement si x = y = 0
ou xy > 0.
L’espace quotient Y ne contient alors que trois points : la classe 0̄, celle des nombres positifs 1̄
puisque 1 ∼ x pour tout x > 0 par définition et celle des nombres négatifs −1. Les singletons {1̄} et
{−1} sont des ouverts par définition de la topologie quotient car les préimages sont respectivement
R∗

+ et R∗
−. Par contre tout voisinage ouvert de 0̄ contient à la fois 1̄ et −1 car la préimage doit

contenir un nombre positif et un nombre négatif. La liste complète des ouverts est donc

∅, {1̄}, {−1}, {1̄,−1}, Y

Cet espace n’est pas séparé car on ne peut séparer 0̄ des autres points par des ouverts. Par contre
il est compact, étant l’image de [−1, 1], un compact, par une application continue.

Exercice 5. a) On commence par le cas de D1 = [−1, 1] ⊂ R avec le sous-espace A = [−1
2
, 1
2
]. On

définit f : D1 → D1 par la formule

t 7→


2t− 1 si t ≥ 1/2

0 si − 1/2 ≤ t ≤ 1/2

2t+ 1 si t ≤ −1/2

On définit ainsi une application continue (facilement vérifié) qui envoie le sous-espace A sur le
point 0 ∈ D1 : on a f(t) = 0 pour tout t ∈ A. Par la propriété universelle du quotient f induit
une application continue f̄ : D1/A → D1. On vérifie facilement que f̄ est bijective. Par ailleurs,
puisque D1 est un espace compact, le quotient D1/A l’est également et en particulier un espace
séparé. Donc f̄ est un homéomorphisme D1/A ∼= D1.

On raisonne de même pour le disque D2 = {(x, y)|x2 + y2 = 1} avec A = {(x, y)|x2 + y2 = 1/4}.
On peut représenter les éléments de D2 \ (0, 0) en coordonnées polaires (r, θ) avec 0 < r ≤ 1. On
définit une fonction continue f : D2 → D2 par la formule

(r, θ) 7→ (max(0; 2r − 1), θ).

Comme précedemment f(A) = (0, 0) donc f passe au quotient et induit f̄ : D2/A → D2. f̄ est
bijective et puisque D2 et D2/A sont compacts, c’est un homéomorphisme D2/A ∼= D2.

(b) On choisit par exemple le sous-espace C de R3 formé des points (s · cos t; s · sin t; s), pour
0 ≤ s ≤ 1 et 0 ≤ t ≤ 2π (Il s’agit d’une paramétrisation du cône de révolution d’axe Oz d’un
segment d’extrêmités (0; 0; 0) et (0; 1; 1)).

On définit maintenant une application f : S1× I → C par f(cos t; sin t; s) = (s · cos t; s · sin t; s). On
observe que cette application passe au quotient et définit f̄ : CS1 → C puisque tous les points du
“couvercle” S1 × 0 ont la même image par f . Une vérification facile montre que f̄ est une bijection
(continue). Comme la source est le quotient d’un espace compact, donc compact, vers un espace de
Hausdorff C, c’est un homéomorphisme.



Pour identifier C avec D2, on choisit de projeter C sur le plan Oxy via g : C → D2, où

g(s · cos t; s · sin t; s) = (s · cos t; s · sin t).

C’est à nouveau une application bijective d’un espace compact (C est fermé et borné dans R3) vers
l’espace Hausdorff D2, donc un homéomorphisme.

Exercice 6. Soit X =
∨∞

1 S1 le wedge d’un nombre dénombrable de copies de cercles et Y les
anneaux Hawäıens :

Y =
∞⋃
n=1

{(x, y) ∈ R2 | (x− 1/n)2 + y2 = 1/n2}

1. L’espace Y est compact, étant fermé et borné dans R2. Par contre X n’est pas compact.
Appelons ∗ le point de base commun à tous les cercles. On peut par exemple exhiber un
recouvrement ouvert dont on ne peut extraire un sous-recouvrement fini. Il suffit pour cela
de choisir U0 comme étant un (petit) voisinage de ∗ (pour être plus explicite disons qu’il est
constitué de la réunion de demi-cercles ouverts centrés en leur point de base) et pour tout
n ≥ 1 on définit Un comme étant le n-ème cercle privé de son point de base. Ce sont des
ouverts de la topologie quotient puisque les préimages dans la réunion disjointe sont ouvertes.

Attention. Un seul demi-cercle contenant le point de base n’est pas ouvert dans le wedge
puisque la préimage dans la réunion disjointe est constituée d’un demi-cercle ouvert dans un
seul des cercles, et également de tous les points de base dans les autres cercles. Ce n’est pas
un ouvert.

On peut aussi voir que Y est la compactification d’une réunion disjointe dénombrable d’in-
tervalles ouverts...

2. Une base d’ouverts de X est donnée par tous les arcs de cercles ouverts ne contenant pas ∗
contenus dans un seul des cercles, ainsi que des réunions ∪Un où Un est un arc de cercle ouvert
du n-ème cercle contenant ∗. Pour Y la situation est la même pour les ouverts ne contenant
pas (0, 0), mais la base de voisinage de l’origine est constituée des intersections de Y avec les
boules B(0, ϵ), il s’agit donc d’une réunion

⋃n
i=1 Ui finie d’arcs de cercles ouverts Ui centrés

en (0, 0) et contenus dans le cercle de rayon 1/i, à laquelle on ajoute tous les autres cercles
de rayon < 1/n.

3. Clairement X et Y ne sont pas homéomorphes, l’un étant compact et l’autre pas. Il existe
cependant une application continue X → Y qui est bijective. Pour cela on définit d’abord une
application continue de l’union disjointe des cercles vers Y qui envoie le n−ième cercle sur le
cercle de rayon 1/n, en envoyant le point base sur (0, 0). Comme le wedge est un quotient, et
que l’image de tous les points bases est un unique point, cette application passe au quotient
et donne une bijection continue X → Y .

Remarque. Comme le wedge infini de cercles n’est pas compact, il est impossible de le représenter
comme un sous-espace borné et fermé de Rn. Par contre il existe une représentation comme sous-
espace borné, mais non fermé, de R3 : on place une infinité de cercles de rayon un dont les centres
se trouve dans Oxy à distance un de l’origine. Le ne cercle du wedge se trouve dans le plan vertical
contenant la droite horizontale y = nx dans Oxy si bien que le cercle limite se trouvant dans le
plan Oyz ne fait pas partie de cet espace.


