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Exercice 1. Soit X un espace et ¢: X — Y une surjection. Pour montrer que les ouverts de la
topologie quotient forment bien une topologie, on vérifie simplement les axiomes. D’abord I’ensemble
vide et Y sont ouverts puisque les préimages sont respectivement () et X qui sont ouverts dans X.
Pour 'axiome d’intersection finie il suffit de considérer deux ouverts U et V de Y, les autres cas se
montrent par récurrence. Comme ¢~ (UNV) = ¢ {(U)Ng (V) est un ouvert de X, UNV est un
ouvert de la topologie quotient de Y.

Enfin si U, est une famille quelconque d’ouverts de Y pour o € A, on a ¢~ (UU,) = Ug~}(U,) et
on conclut par le fait que les ouverts de X vérifient I’axiome de 1'union.

Exercice 2. Soit H la figure huit dans le plan donnée par deux cercles tangents, en coordonnées
H={(r,y) eR* | (1 =1’ +y* =1} U{(z,y) €R® | (z +1)° +3* =1}

On définit une fonction ¢: [—1,1] — H en posant

; —1 4 e si —1<t<0
alt) = 14 e2mit=1/2) ¢ <t <1
On peut utiliser les coordonnées polaires dans R? pour montrer que ¢ est surjective.
Pour montrer que g est continue, on doit considérer deux types d’ouverts, des bases de voisinages
d’un point différent de (0,0) et ceux de l'origine. Pour un point x différent de l'origine, il existe
une base de voisinages donnée par des boules B(x,€) de R? dont I'intersection avec H est telle que
la préimage par ¢ est un intervalle ouvert de [—1,1].
Pour l'origine 'intersection B(0,¢)N H forme une figure de X dont la préimage par ¢ est constituée
de [-1,=1+6)U(—=6,0) U (1 —4,1], qui est bien un ouvert de 'intervalle (pour la topologie induite
de R).
Il faut encore montrer que ¢ est un quotient, c¢’est-a-dire que la topologie métrique de H est la plus
fine rendant ¢ continue. Comme ci-dessus le cas des voisinages d'un point différent de 1'origine est
facile, concentrons-nous en (0,0). Soit U un ouvert de la topologie quotient contenant (0,0). Alors
¢ Y(U) contient —1, 0 et 1, et comme c’est un ouvert de [—1,1] il contient aussi un ouvert de la
forme [—1,—1+6) U (=4,0) U (1 —6,1]. Ainsi U contient ¢(¢~'(U)) qui est une figure en forme de
X ouverte dans la topologie métrique. Ceci montre que la topologie métrique est plus fine que la
topologie, donc qu’elles coincident.
Par contre ¢ n’est pas une application ouverte puisque l'ouvert (—1/2,1/2) a pour image par ¢ un
sous-ensemble de H qui n’est pas ouvert, ne contenant aucun voisinage de (0,0) dans H.
On aurait pu faire des calculs explicites et c¢’est un bon exercice de le faire une fois si les arguments
ci-dessus vous paraissent trop peu rigoureux.

Exercice 3. Soit X = [0,1] et ~ une relation d’équivalence. On demande de décrire ou méme
seulement de dessiner 'espace quotient dans les cas suivants :

1. x ~ ysietseulement si x = y ou {z,y} C {0, 1}. On identifie seulement les extrémités de [0, 1]
et on obtient un cercle. L’application exponentielle permettrait de le vérifier explicitement.

2. x ~ y si et seulement si x =y ou {x,y} C {0,1/2}. On obtient b.



3. x ~ y si et seulement si x = y ou {z,y} C {0,1/2,1}. On obtient la figure huit de 'exercice
ci-dessus.

4. On obtient un point.

Exercice 4. On définit sur R la relation d’équivalence ~ par x ~ y si et seulement si x =y =0
ou zy > 0.

L’espace quotient Y ne contient alors que trois points : la classe 0, celle des nombres positifs 1
puisque 1 ~ z pour tout > 0 par définition et celle des nombres négatifs —1. Les singletons {1} et
{—1} sont des ouverts par définition de la topologie quotient car les préimages sont respectivement
R% et R*. Par contre tout voisinage ouvert de 0 contient & la fois 1 et —1 car la préimage doit
contenir un nombre positif et un nombre négatif. La liste complete des ouverts est donc

0,{1},{-1},{1,-1},Y

Cet espace n’est pas séparé car on ne peut séparer 0 des autres points par des ouverts. Par contre
il est compact, étant I'image de [—1, 1], un compact, par une application continue.

Exercice 5. a) On commence par le cas de D! = [—~1,1] C R avec le sous-espace A = [—
définit f : D' — D! par la formule

,%] On

1
2

2% —1sit>1/2
tQ0si —1/2<t<1/2
U+1sit<—1/2

On définit ainsi une application continue (facilement vérifié) qui envoie le sous-espace A sur le
point 0 € D' : on a f(t) = 0 pour tout ¢ € A. Par la propriété universelle du quotient f induit
une application continue f : D'/A — D'. On vérifie facilement que f est bijective. Par ailleurs,
puisque D! est un espace compact, le quotient D'/A Test également et en particulier un espace
séparé. Donc f est un homéomorphisme D'/A = D',

On raisonne de méme pour le disque D? = {(z,y)|z* + y* = 1} avec A = {(z,y)|z* + y* = 1/4}.
On peut représenter les éléments de D? \ (0,0) en coordonnées polaires (r,0) avec 0 < r < 1. On
définit une fonction continue f : D? — D? par la formule

(r,0) — (max(0;2r — 1),0).

Comme précedemment f(A) = (0,0) donc f passe au quotient et induit f : D?/A — D?. f est
bijective et puisque D? et D?/A sont compacts, ¢’est un homéomorphisme D?/A = D2,

(b) On choisit par exemple le sous-espace C' de R? formé des points (s - cost;s - sint;s), pour
0<s<1let0<t<2r (Il sagit d'une paramétrisation du cone de révolution d’axe Oz d’un
segment d’extrémités (0;0;0) et (0;1;1)).

On définit maintenant une application f: S' x I — C par f(cost;sint;s) = (s-cost;s-sint;s). On
observe que cette application passe au quotient et définit f: C'S* — C puisque tous les points du
“couvercle” S' x 0 ont la méme image par f. Une vérification facile montre que f est une bijection
(continue). Comme la source est le quotient d'un espace compact, donc compact, vers un espace de
Hausdorff C', ¢’est un homéomorphisme.



Pour identifier C' avec D?, on choisit de projeter C' sur le plan Oxy via g: C — D?, ol
g(s-cost;s-sint;s) = (s-cost;s-sint).

C’est & nouveau une application bijective d’un espace compact (C' est fermé et borné dans R?) vers
I’espace Hausdorff D?, donc un homéomorphisme.

Exercice 6. Soit X = \/°S! le wedge d'un nombre dénombrable de copies de cercles et Y les
anneaux Hawalens :

Y =@y eR? | (z—1/n) +y* =1/n%}

1. L’espace Y est compact, étant fermé et borné dans R2 Par contre X n’est pas compact.
Appelons * le point de base commun a tous les cercles. On peut par exemple exhiber un
recouvrement ouvert dont on ne peut extraire un sous-recouvrement fini. Il suffit pour cela
de choisir Uy comme étant un (petit) voisinage de * (pour étre plus explicite disons qu’il est
constitué de la réunion de demi-cercles ouverts centrés en leur point de base) et pour tout
n > 1 on définit U, comme étant le n-eme cercle privé de son point de base. Ce sont des
ouverts de la topologie quotient puisque les préimages dans la réunion disjointe sont ouvertes.

Attention. Un seul demi-cercle contenant le point de base n’est pas ouvert dans le wedge
puisque la préimage dans la réunion disjointe est constituée d’un demi-cercle ouvert dans un
seul des cercles, et également de tous les points de base dans les autres cercles. Ce n’est pas
un ouvert.

On peut aussi voir que Y est la compactification d’une réunion disjointe dénombrable d’in-
tervalles ouverts...

2. Une base d’ouverts de X est donnée par tous les arcs de cercles ouverts ne contenant pas
contenus dans un seul des cercles, ainsi que des réunions UU,, ou U,, est un arc de cercle ouvert
du n-eme cercle contenant . Pour Y la situation est la méme pour les ouverts ne contenant
pas (0,0), mais la base de voisinage de 1'origine est constituée des intersections de Y avec les
boules B(0, ¢), il s’agit donc d'une réunion |J;_, U; finie d’arcs de cercles ouverts U; centrés
en (0,0) et contenus dans le cercle de rayon 1/i, a laquelle on ajoute tous les autres cercles
de rayon < 1/n.

3. Clairement X et Y ne sont pas homéomorphes, I'un étant compact et I'autre pas. Il existe
cependant une application continue X — Y qui est bijective. Pour cela on définit d’abord une
application continue de I'union disjointe des cercles vers Y qui envoie le n—ieme cercle sur le
cercle de rayon 1/n, en envoyant le point base sur (0,0). Comme le wedge est un quotient, et
que I'image de tous les points bases est un unique point, cette application passe au quotient
et donne une bijection continue X — Y.

Remarque. Comme le wedge infini de cercles n’est pas compact, il est impossible de le représenter
comme un sous-espace borné et fermé de R™. Par contre il existe une représentation comme sous-
espace borné, mais non fermé, de R3 : on place une infinité de cercles de rayon un dont les centres
se trouve dans Ozy a distance un de l'origine. Le n® cercle du wedge se trouve dans le plan vertical
contenant la droite horizontale y = nx dans Oxy si bien que le cercle limite se trouvant dans le
plan Oyz ne fait pas partie de cet espace.



