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Exercice 1.
Trouver les revêtements universels des espaces suivants.

1. Le cercle S1

2. Le bouquet de deux cercles S1 ∨ S1

3. Le tore S1 × S1

4. Les espaces projectifs réels RPn

Solution 1.

1. On connait le revêtement R → S1 donné par l’exponentielle, et R est simplement connexe.

2. Il s’agit du graphe de Cayley, un graphe 2−orienté infini et simplement connexe.

3. On a vu que R2/Z2 ≃ T , l’application quotient R2 → T est un revêtement, et R2 est simple-
ment connexe.

4. De même pour n ≥ 2, l’application quotient par action d’antipodie Sn → RPn est le
revêtement universel, puisque Sn est simplement connexe. Pour n = 1, on a RP1 ≃ S1,
donc le revêtement universel est R par 1.

Exercice 2.
Soient X, Y, Z des espaces topologiques.

1. Supposons qu’on a des applications X → Y → Z telles que Y → Z et X → Z sont des
revêtements. Montrer que si Z est localement connexe par arcs, X → Y est un revêtement.

2. Pour deux sous-groupes H1 ≤ H2 ≤ π1(X), montrer qu’on a un revêtement XH1 → XH2 .

Solution 2.

1. Montrons d’abord que pour chaque y ∈ Y il existe un voisinage ouvert Uy ⊂ Y tel que

p−1(Uy) =
⊔
α∈A

Vα,

où les Vα sont des feuillets sur Uy, et chaque restriction

p|Vα : Vα
∼−→ Uy

est un homéomorphisme.



Choisissons un point y ∈ Y et un voisinage connexe trivialisant W ⊂ Z de q(y) tel que

q−1(W ) =
⊔
β∈B

Uβ, (q ◦ p)−1(W ) =
⊔
γ∈C

Vγ,

et pour chaque β, γ les applications

q|Uβ
: Uβ → W et (q ◦ p)|Vγ : Vγ → W

sont des homéomorphismes. Soit β0 l’unique indice tel que y ∈ Uβ0 , et posons

Uy := Uβ0 .

Alors
p−1(Uy) ⊂ (q ◦ p)−1(W ) =

⊔
γ∈C

Vγ.

Nous voulons montrer que

p−1(Uy) =
⊔
γ∈C′

Vγ pour un certain C ′ ⊂ C.

Comme W est connexe, chaque Vγ est connexe et ne peut rencontrer deux fibres distinctes
p−1(Uβ) sans contredire la connexité.

Les Vγ sont par définition les composantes connexes de (q ◦ p)−1(W ). Si un Vγ rencontrait
deux fibres, alors il se décomposerait en deux ouverts disjoints non-vides, contradiction.

Par conséquent chaque Vγ est entièrement contenu dans un unique p−1(Uβ), et l’on peut écrire

p−1(Uy) =
⊔

γ∈C(β0)

Vγ.

Enfin, comme
(q ◦ p)|Vγ = q|Uy ◦ p|Vγ est un homéomorphisme,

on voit que p|Vγ est lui-même un homéomorphisme de Vγ sur Uy.

Ainsi p satisfait la définition d’un revêtement.

2. Notons que [γ] ∼H1 [γ′] ⇒ [γ] ∼H2 [γ′]. Ainsi, la relation ∼H2 est bien définie sur XH1 ,
donc l’application XH1 → X se factorise par l’application quotient XH1 → XH2 , donnant une
composition XH1 → XH2 → X avec X localement connexe par arcs et tel que XH2 → X et
XH1 → X sont des revêtements. Par la question 1, l’application quotient XH1 → XH2 est un
revêtement.

Exercice 3. Trouver tous les revêtements connexes à 2 et 3 feuillets de S1 ∨ S1, à isomorphismes
(non pointés) de revêtements près.

Solution 3. Le bouquet de deux cercles X = S1 ∨ S1 est connexem localement connexe par arcs
et localement contractile (donc SLSC), de groupe fondamental F2, le groupe libre de générateurs
a, b. Par le théorème de classification des revêtements, l’ensemble des des classes d’isomorphismes
de revêtements connexes à n feuillets est en bijection avec l’ensemble des classes de conjugaison de



sous-groupes d’indice n de F2. Pour n = 2, rappelons que tout sous-groupe d’indice 2 est normal.
Les sous-groupes normaux d’indice n de F2 sont les noyaux des morphismes surjectifs vers les groups
d’ordre n. Par la propriété universelle des groupes libres, si G est un groupe, g1, g2 des éléments de
G, il existe un unique morphisme de groupe f : F2 → G tel que f(a) = g1 et f(b) = g2. De plus f
est surjective si et seulement si {g1, g2} engendre G. Il existe en particulier Card(G)2 morphismes
de F2 vers G si G est fini. A isomorphisme près, le seul groupe d’ordre 2 est Z/2Z et le seul groupe
d’ordre 3 est Z/3Z. Une partie finie de l’un de ces deux groupes l’engendre si et seulement si elle
n’est pas réduite à l’élément neutre. Deux morphismes non nuls distincts dans Z/2Z ont des noyaux
distincts, et deux morphismes non nuls dans Z/3Z si et seulement si f(b) = 2f(a). Donc il y a
exactement 22 − 1 = 3 classes d’isomorphismes à deux feuillets de X (les dessiner) et 32−1

2
= 4

classes d’isomorphismes de revêtement connexes à 3 feuillets de X correspondant à un sous-groupe
normal.
Calculons maintenant le nombre de revêtements non galoisiens (= ne correspondant pas à un sous-
groupe normal) de X. Tout revêtement de X est un graphe 2−orienté. Soit p : Y → X un tel
revêtement. Si x est le point base de X, par relèvement des chemins, tout cercle orienté c de X
définit une permutation σc de F = p−1(x).
Réciproquement, la donnée pour a et b d’une permutation σa et σb de F définit un graphe X,
d’ensemble de sommets F , en recollant une arête orientée d’origine y et d’extremité σc(y) pour
tout y ∈ F et c = a, b. Ce graphe est naturellement 2−orienté, donc un revêtement de X. Tout
isomorphisme de revêtements induit une bijection σ de F . Comme il préserve les relèvements
de chemins, cet isomorphisme de revêtements induit donc une conjugaison sur les permutations
σc 7→ σσcσ

−1.
Comme il existe un unique homéomorphisme à homotopie près de l’intervalle [0, 1] dans lui même
fixant 0 et 1, on en déduit que l’ensemble des classes d’isomorphismes de revêtments à n feuillets
du bouquet de 2 cercles (pas forcément connexe) est en bijection avec

Sn × Sn/Sn

où on quotiente par l’action diagonale de Sn par conjugaison sur chacun des facteurs. Pour n = 3,
modulo conjugaison, il existe 3 permutations : id, (12), (123). Si le revêtement est non galoisien, alors
le relèvement d’un des deux cercles orientés de X correspond à une transposition. Si le revêtement
est connexe, alors le relèvement de l’autre cercle deX correspond à une transposition ou un 3−cycle.
On a alors 3 classes d’isomorphismes de revêtements non galoisiens connexes à 3 feuillets de X.
Voici une illustrations des 7 revêtements à 3 feuillets (tirée du cours de Frédéric Paulin, ”Topologie
algébrique élémentaire”) :



Exercice 4.
Soit p : X̃ → X un revêtement simplement connexe de X et A ⊂ X un sous-espace connexe par
arcs, localement connexe par arcs avec Ã ⊂ X̃ une composante connexe de p−1(A) Montrer que
p : Ã → A est un revêtement correspondant au noyau de π1(A) → π1(X).

Solution 4. Notons d’abord que comme A est connexe par arcs, une composante connexe Ã ⊂
p−1(A) se surjecte sur A par p. De plus on vérifie facilement que la restriction donne un revêtement
pour la topologie de sous-espace. Maintenant, si on a un lacet dans Ã, ce lacet est null-homotope
dans X̃ (càd homotope au lacet constant), car X̃ est simplement connexe. Ainsi, l’image de ce lacet
par p est null-homotope dans X (il suffit de composer l’homotopie avec p). D’autre part, on peut
considérer l’image de ce lacet de Ã par p dans A, et par ce qui précède son image par i∗ est nulle.
Ainsi, p∗(π1(Ã)) ⊂ ker i∗. Réciproquement, si un lacet est dans ker i∗, on peut relever ce lacet en
un lacet dans X̃ (puisqu’on peut relever l’homotopie avec le lacet constant dans X), et sans perte
de généralité on peut supposer qu’il est contenu dans Ã. En composant avec p, on conclut que ce
lacet est dans p∗(π1(Ã)).

Exercice 5. On rappelle que la caractéristique d’Euler d’un graphe connexe G est χ(G) =
#sommets−#arêtes.

1. Montrer que tout revêtement M à fibre finies d’un graphe fini connexe G est encore un graphe
fini, tel que χ(M) = kχ(G)

2. Soit L un groupe libre à n ≥ 1 générateurs et H un sous-groupe d’indice k de L. Montrer que
H est encore un sous-groupe libre, dont on donnera le nombre de générateurs.

3. Soit n ≥ 3. Montrer que le groupe libre à 2 générateurs admet un sous-groupe isomorphe au
sous-groupe libre à n générateurs. Spécifier des générateurs pour n = 3.

Solution 5.

1. Soit p : G′ → G un revêtement d’un graphe G. Notons S ′ l’image réciproque dans G′ de
l’ensemble de sommets S et A′ le sous-ensemble des éléments (u, v) ∈ S ′ × S ′ tel que a =
(p(u), p(v)) ∈ A est le relèvement du chemin γa : [0, 1] → [0, 1]× {a} qui part de u arrive en
v dans G′. Alors G′ est exactement le graphe de sommets S ′ et d’arêtes A′.



De plus, si k est le nombre de feuillets, alors G′ a k fois le nombre d’arêtes et de sommets de
G, donc χ(M) = kχ(G).

2. Notons qu’un graphe connexe est homotope à un bouquet de n cercles où χ(G) = 1− n. Le
groupe fondamental d’un graphe est donc un groupe libre à n générateurs. Soit G un graphe
de groupe fondamental L. Un sous-groupe K ⊆ L détermine un revêtement fini M → G à k
feuillets, qui est donc un graphe dont le groupe fondamental est K, qui est donc aussi libre.
On a χ(M) = kχ(G), donc K a 1− kχ(G) générateurs.

3. Considérons un bouquet de deux cercles. Pour tout n ≥ 2, il admet un revêtement pn d’espace
total En contenant l’union des cercles de R2 centrés en (k, 0) pour k = 0, . . . , n − 1, et de
rayon 1/2. Ce revêtement a le même type d’homotopie qu’un bouquet de n cercles, donc un
groupe fondamental Fn, libre à n générateurs. Son image via pn∗ dans π1(S

1 ∨ S1) donne un
sous-groupe de F2 isomorphe à Fn (par injectivité de pn∗).

En particulier, pour n = 3, on peut projeter trois générateurs libres de π1(E3) dans π1(S
1∨S1).

Si F2 est librement engendré par a, b, alors a, b2, bab−1 engendrent un sous-groupe libre de rang
3 dans F2.

+ petite question : dans la feuille de la semaine dernière, on donnait un exemple d’espace n’ad-
mettant pas de revêtement simplement connexe. Avez-vous compris pourquoi le théorème 5.7 ne
s’applique pas à cet espace ?
Le problème vient du fait que cet espace n’est pas localement connexe par arcs.


