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Exercice 1.
On rappelle qu’un espace topologique X est localement simplement connexe si il admet une base
de voisinages simplement connexes. De plus X est semi-localement simplement connexe si chaque
point x ∈ X admet un voisinage V tel que l’application induite de l’inclusion π1(V ) → π1(X) est
triviale.

1. Montrer que la boucle d’oreille hawäıenne comme sous-espace de R2 n’est pas semi-localement
simplement connexe.

2. Montrer que le cône de la boucle d’oreille hawäıenne est semi-localement simplement connexe,
mais qu’il n’est pas localement simplement connexe.

Notons qu’un cône est toujours contractile, en particulier simplement connexe.

Solution 1.

1. Soit U un ouvert contenant le point base 0. On a déjà vu que U contient nécessairement un
cercle de rayon 1

n
pour n suffisamment grand. Le lacet [γ] ∈ π1(U) associé est envoyé sur

i∗[γ] ∈ π1(X), qui ne peut pas être homotopiquement trivial puisqu’il n’y a pas de 2−cellule
recollée le long de γ dans X.

2. Le cône est simplement connexe, donc semi-localement simplement connexe puisque tout ho-
momorphisme vers π1(X) est trivial. Cependant il n’est pas localement simplement connexe :
au point base (x0, 0), il existe un ouvert qui se rétracte par déformation sur la boucle d’oreille
hawaienne, et le point base de la boucle d’oreille hawaienne n’admet pas de base de voisinage
simplement connexe.

Exercice 2.
Soit X le sous-espace de R2 consistant en l’union du bord du carré ∂([0, 1]× [0, 1]) avec les segments
verticaux x = 1/2, 1/3, 1/4, . . . dans le carré. Montrer que pour tout revêtement P → X il existe
un voisinage du côté gauche du carré qui se relève de manière homéomorphe dans P . Déduire que
X n’admet pas de revêtement simplement connexe.

Solution 2. Supposons que p : X̃ → X est un revêtement. Il existe une collection d’ouverts
adaptés/trivialisants {Uα} recouvrant X.
Chaque Uα est une union d’ensembles de la forme R ∩ X où R est un rectangle ouvert dans R2.
Cela vient de la définition de la topologie de sous-ensemble sur X induite par R2 et de la définition
de la topologie produit sur X. Sans perte de généralité, on peut supposer que tous les Uα sont de
la forme R ∩X, où R est un rectangle ouvert.
Comme le côté gauche de X est compact, il est recouvert par un nombre fini de ces Uα.



En réordonnant les Uα (et en supprimant éventuellement certains), on trouve que le côté gauche de
X est recouvert par des ouverts trivialisants de la forme :

U1 = ([0, ϵ1)× [0, b1)) ∩X

U2 = ([0, ϵ2)× (a2, b2)) ∩X

...

UN = ([0, ϵN)× (aN , 1]) ∩X

où
0 < a2 < b1 < a3 < b2 < · · · < aN < bN−1 < 1

On veut construire un relèvement d’un voisinage du côté gauche de X, où le voisinage est de la
forme ([0, ϵ)× [0, 1]) ∩X pour un certain ϵ > 0. Décrivons un procédé en N étapes.
Étape 1. Écrivons p−1(U1) = ∩iŨ1,i où chaque Ũ1,i est envoyé homéomorphiquement sur U1 par p.

Choisissons un Ũ1,i. On peut construire un relèvement f1 de U1 vers X̃ en utilisant l’homéomorphisme

(p|Ũ1,i
)−1 : U1 → X̃.

Ainsi, on a construit une application f1 qui relève ([0, c1)× [0, b1)) ∩X de manière homéomorphe

dans X̃, où c1 = ϵ1.
Étape 2. Écrivons p−1(U2) =

∐
i Ũ2,i, où chaque Ũ2,i est envoyé homéomorphiquement sur U2 par p.

Choisissons un t ∈ (a2, b1). L’un de ces Ũ2,i contient l’image du point (0, t) sous f1. Ce Ũ2,i contient
donc aussi l’image de ([0, c2)×{t})∩X sous f1 pour un certain 0 < c2 ≤ min(c1, ϵ2), puisque f1 est
continue. Puisque ([0, c2) × (a2, b2)) ∩X est une union de segments connexes, où chaque segment

de droite connexe contient un point de ([0, c2)×{t})∩X, on conclut que Ũ2,i contient aussi l’image
de ([0, c2)× (a2, b1)) ∩X sous f1.

On peut construire un relèvement g de U2 dans X̃ en utilisant l’homéomorphisme (p|Ũ2,i
)−1 : U2 →

Ũ2,i. La restriction de g à ([0, c2) × (a2, b2)) ∩ X et la restriction de f1 à ([0, c2) × [0, b1)) ∩ X
cöıncident sur leur domaine d’intersection. D’après le paragraphe précédent, les deux relèvements
envoient ([0, c2) × (a2, b1)) ∩ X dans Ũ2,i. Ainsi, ils se recollent continûment, nous donnant un

relèvement f2 de ([0, c2)× (0, b2)) ∩X dans X̃.

· · ·

En continuant de cette manière pour N étapes, on obtient un relèvement fN sur ([0, cN)× [0, 1])∩X

pour un certain cN > 0, qui envoie ce voisinage de façon homéomorphe dans X̃.
Enfin, pour montrer que X̃ n’est pas simplement connexe, il suffit de choisir un entier k tel que
1
k
< cN .

Considérons le lacet γ dans X qui est le rectangle

(0, 0) →
(
1

k
, 0

)
→

(
1

k
, 1

)
→ (0, 1) → (0, 0)

On peut relever γ en un lacet γ̃ dans X̃ en utilisant le relèvement fN . Puisque l’image de γ̃ sous
p est γ, qui est un élément non trivial du groupe fondamental de X, γ̃ doit être un élément non
trivial du groupe fondamental de X̃. Cela montre que X̃ n’est pas simplement connexe.



Exercice 3. Soit Y le quasi-cercle ci-dessous, un sous-espace fermé de R2 consistant en une portion
du graphe y = sin( 1

x
), le segment [−1, 1] de l’axe des ordonnées et un arc connectant les deux.

On peut former un quotient f : Y → S1 avec S1 ≈ Y/A, où A = [−1, 1].
Montrer que f ne se relève pas au revêtement R → S1, même si π1(Y ) = 0.
Cela montre la nécessité de l’hypothèse de local connexité par arcs pour le critère de relèvement.

Solution 3. Sans perte de généralité, supposons que l’application quotient f envoie le segment
[−1, 1] vers le point base de S1. Supposons qu’il existe un relèvement f̃

R

Y S1

p

f

f̃

alors f̃ doit envoyer le segment vers un point de Z. Ainsi f̃ passe au quotient, cela donne une
application g : S1 → R telle que f̃ = g ◦ f , donc

f = p ◦ f̃ = p ◦ g ◦ f.

Encore une fois, par la propriété universelle de l’espace quotient (il n’existe qu’une seule telle
application), on a p ◦ g = id, ce qui est une contradiction puisque g ne peut pas être injective.

Exercice 4. Montrer que si un espace X localement connexe par arcs, connexe par arcs tel que
π1(X) est fini, alors tout application X → S1 est homotope à une application constante (i.e.
null-homotope).
Indication : utiliser le revêtement R → S1.

Solution 4. Montrons d’abord qu’une telle f induirait une application nulle sur le groupe fon-
damental. Supposons que n = |π1(X)|. Prenons un élément ω ∈ π1(X). On a ωn = 1. Alors
f∗(ω

n) = n · f∗(ω) = 0 ∈ π1(S
1) = Z. Donc f∗(ω) = 0, f∗ est l’application triviale.

Par le critère de relèvement, il existe un relèvement f̃ : X → R tel que :

R

X S1

pf̃

f



Comme R est contractile, f̃ est homotope à une application constante. Il existe donc une homotopie
F : X × I → R telle que :

F (x, 0) = f(x), F (x, 1) = constante.

En composant avec le revêtement p : R → S1, on obtient une homotopie :

G := p ◦ F : X × I → S1

entre f et une application constante. Ainsi, f est homotope à une application constante.

Exercice 5. Soient a et b les générateurs canoniques de π1(S
1 ∨ S1) (c’est à dire correspondant à

chacune des copies de S1.

1. Dessiner un revêtement de S1 ∨ S1 correspondant au sous-groupe normal engendré par
a2, b2, (ab)4.

2. Le démontrer.

Solution 5.

1.

2. (idée) On a utilisé la construction du revêtement universel expliquée en cours, qui donne le
graphe de Cayley ici. On a identifié les points [a] ∼ [a−1], [b] ∼ [b−1] et [(ab)2] ∼ [(ab)−2]
puis utilisé que les changements de point base correspondent à la conjugaison pour répliquer
ces identifications à partir des autres sommets du graphe. On conseille fortement de regarder
la page 58 du livre de Hatcher https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf pour
voir d’autres exemples. De plus, l’étude ultérieure de la classification des revêtements vous
permettra de comprendre le rôle particulier des revêtements correspondant à des sous-groupes
normaux. Ce sont les plus symétriques, ils ont un groupe d’automorphismes donné par le
groupe quotient, ici D8.

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf

