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Comme rappelé lors de la session d’exercice, dans ce cours, toutes les applications sont supposées
continues.

Exercice 1. Montrer qu’un espace topologique est séparé si et seulement si la diagonale ∆ est
fermé dans X ×X.
Solution 1.
⇒. Supposons que X est un espace séparé (=Hausdorff). Montrons que le complémentaire de la
diagonale ∆ est ouvert. Pour cela, prenons un point (x, y) ∈ X \ ∆ et montrons qu’il existe un
voisinage ouvert de ce point contenu dans X \∆. Par définition, x ̸= y et comme X est séparé, il
existe des ouverts Ux et Vx disjoints contenant x et y. L’ensemble Ux × Uy est ouvert dans X ×X
pour la topologie produit. Il contient (x, y) et n’intersecte pas la diagonale car Ux et Vx sont dis-
joints. On peut donc conclure que X \∆ est ouvert et ∆ fermé.

⇐. Supposons que ∆ est fermé. Soient x, y ∈ X tels que x ̸= y. Comme X \∆ est ouvert il existe
un voisinage ouvert U de (x, y) dans X × X qui n’intersecte pas la diagonale. Comme une base
de la topologie produit est donné par les produits U × V d’ouverts de X, il existe deux ouverts
Ux et Vy tels que Ux × Vy ⊆ U . Ainsi, Ux contient x, Vy contient y et ils sont disjoints puisque U
n’intersecte pas la diagonale. On peut donc conclure que X est séparé.

Exercice 2. Démontrer la Proposition 2.5 du cours : montrer qu’une application (continue) bijective
d’un espace compact vers un espace séparé est un homéomorphisme.
Solution 2.
Soit f : K → X une telle application. Il suffit de montrer que la bijection réciproque f−1 : X → K
est continue. Cela équivaut à demander que f soit fermée. Soit F un fermé de K. Comme K est
compact, F est compact. Or f est continue, donc envoie les compacts sur des compacts. De plus,
f(F ) étant compact dans un espace séparé, f(F ) est fermé.

Exercice 3. Montrer que si X est un espace séparé qui contient deux compacts K1 et K2 tels que
K1 ∩K2 = ∅ alors il existe des ouverts U1 et U2 tels que U1 ∩ U2 = ∅ et Ki ⊆ Ui pour i = 1, 2.
Solution 3.
Prenons x ∈ K1. Par séparation, pour tout y ∈ K2 il existe des ouverts U1

x,y et U2
x,y disjoints

contenant x ety respectivement. L’ensemble des {U2
x,y | y ∈ K2} forme un recouvrement ouvert de

K2, il existe donc un sous-recouvrement fini donné par {U2
x,y | y = y1, . . . , yn ∈ K2}. Notons Ux

l’union de ces ouverts. On considère alors l’intersection finie Vx = ∩n
i=1U

1
x,yi

. C’est un voisinage de
x, disjoint de Ux. En répétant l’opération pour tout x de K1, on obtient un recouvrement ouvert
de K1. Il suffit alors de prendre un sous-recouvrement finie indexé par x1, . . . , xk et considérer U2

comme étant l’intersection finie des Uxi
. Elle contient K2 et est disjointe de tous les Vxi

et donc de
leur union U1. On a donc trouvé U1 et U2 comme dans l’énoncé.

Exercice 4*. Si A est un sous-espace d’un espace topologique X, il existe au maximum 14 sous-
espaces de X que l’ont peut obtenir à partir de A avec les opérations “prendre le complémentaire”
et “prendre l’adhérence”. Vous pouvez (au choix) :

1. Essayer de trouver un exemple maximal (ou presque) d’un tel sous-espace A, au sens il existe
14 (ou presque) sous-ensembles distincts que l’on peut obtenir avec le complémentaire et



l’adhérence.

2. Essayer de démontrer ce résultat. Pour cela, vous pouvez considérer les opérations obtenues
à partir des deux opérations “adhérence” (noté a) et “complémentaire” (noté c) comme des
mots avec les lettres a et c. Par exemple, on écrit cac pour signifier l’opération “prendre le
complémentaire de l’adhérence du complémentaire”. Ensuite, considérez les relations, comme
en théorie des groupes. Par exemple, notez que ccA = A. Il pourra être utile de considérer
l’opération i “intérieur”, en notant que cacA = iA.

Remarque (modifiée) : ces deux opérations ne commutent pas et n’engendrent pas un groupe, mais
un monöıde, puisque l’opération d’adhérence est idempotente (c’est à dire a2 = a) et ne peut pas
posséder d’inverse.

Solution 4. Il s’agit du Théorème de fermeture/complémentaire de Kuratowski. On renvoie à sa
page Wikipedia, qui contient un exemple maximal ainsi que la relation qui permet de prouver que
14 est maximal. Notez que l’opération a est notée k.


