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Comme rappelé lors de la session d’exercice, dans ce cours, toutes les applications sont supposées
continues.

Exercice 1. Montrer qu’'un espace topologique est séparé si et seulement si la diagonale A est
fermé dans X x X.

Solution 1.

=. Supposons que X est un espace séparé (=Hausdorff). Montrons que le complémentaire de la
diagonale A est ouvert. Pour cela, prenons un point (z,y) € X \ A et montrons qu’il existe un
voisinage ouvert de ce point contenu dans X \ A. Par définition, = # y et comme X est séparé, il
existe des ouverts U, et V, disjoints contenant = et y. L’ensemble U, x U, est ouvert dans X x X
pour la topologie produit. Il contient (x,y) et n’intersecte pas la diagonale car U, et V, sont dis-
joints. On peut donc conclure que X \ A est ouvert et A fermé.

<. Supposons que A est fermé. Soient z,y € X tels que x # y. Comme X \ A est ouvert il existe
un voisinage ouvert U de (z,y) dans X x X qui n’intersecte pas la diagonale. Comme une base
de la topologie produit est donné par les produits U x V d’ouverts de X, il existe deux ouverts
U, et V, tels que U, x V,, C U. Ainsi, U, contient z, V, contient y et ils sont disjoints puisque U
n’intersecte pas la diagonale. On peut donc conclure que X est séparé.

Exercice 2. Démontrer la Proposition 2.5 du cours : montrer qu’'une application (continue) bijective
d’un espace compact vers un espace séparé est un homéomorphisme.

Solution 2.

Soit f : K — X une telle application. Il suffit de montrer que la bijection réciproque f~! : X — K
est continue. Cela équivaut a demander que f soit fermée. Soit F' un fermé de K. Comme K est
compact, F' est compact. Or f est continue, donc envoie les compacts sur des compacts. De plus,
f(F) étant compact dans un espace séparé, f(F') est fermé.

Exercice 3. Montrer que si X est un espace séparé qui contient deux compacts K; et K, tels que
K, N Ky = ( alors il existe des ouverts U; et Us tels que Uy NUy = 0 et K; C U; pour i = 1, 2.
Solution 3.

Prenons x € K. Par séparation, pour tout y € K, il existe des ouverts Uiy et Uf’y disjoints
contenant x ety respectivement. L'ensemble des {U7,, | y € K3} forme un recouvrement ouvert de
K5, il existe donc un sous-recouvrement fini donné par {Uiy | v = v1,...,yn € Ks}. Notons U,
I'union de ces ouverts. On considere alors l'intersection finie V, = ﬂ?le;yi. C’est un voisinage de
x, disjoint de U,. En répétant l'opération pour tout x de K, on obtient un recouvrement ouvert
de K. Il suffit alors de prendre un sous-recouvrement finie indexé par z1, ..., x; et considérer U,
comme ¢étant 'intersection finie des U,,. Elle contient K et est disjointe de tous les V,, et donc de
leur union U;. On a donc trouvé U; et Uy comme dans I'énoncé.

Exercice 4*. Si A est un sous-espace d’un espace topologique X, il existe au maximum 14 sous-
espaces de X que 'ont peut obtenir a partir de A avec les opérations “prendre le complémentaire”
et “prendre 'adhérence”. Vous pouvez (au choix) :

1. Essayer de trouver un exemple maximal (ou presque) d’un tel sous-espace A, au sens il existe
14 (ou presque) sous-ensembles distincts que l'on peut obtenir avec le complémentaire et



Padhérence.

2. Essayer de démontrer ce résultat. Pour cela, vous pouvez considérer les opérations obtenues
a partir des deux opérations “adhérence” (noté a) et “complémentaire” (noté ¢) comme des
mots avec les lettres a et ¢. Par exemple, on écrit cac pour signifier 'opération “prendre le
complémentaire de I'adhérence du complémentaire”. Ensuite, considérez les relations, comme
en théorie des groupes. Par exemple, notez que ccA = A. Il pourra étre utile de considérer
I’opération ¢ “intérieur”, en notant que cacA = iA.

Remarque (modifiée) : ces deux opérations ne commutent pas et n’engendrent pas un groupe, mais
un monoide, puisque I'opération d’adhérence est idempotente (c’est & dire a®> = a) et ne peut pas
posséder d’inverse.

Solution 4. 11 s’agit du Théoréeme de fermeture/complémentaire de Kuratowski. On renvoie a sa
page Wikipedia, qui contient un exemple maximal ainsi que la relation qui permet de prouver que
14 est maximal. Notez que 'opération a est notée k.



