

Week 14 - Review session

Topology I - point set topology

December 18, 2024

Problem 1. Give an example of each of the following.

- (a) A topological space (X, τ) such that every subset $A \subset X$ is both open and closed.
- (b) A topological space (X, τ) and a subset $A \subset X$ which is neither open nor closed.
- (c) An open map $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$, which is not continuous.
- (d) A continuous bijection between two topological spaces, which is not a homeomorphism.
- (e) A simply connected topological space (X, τ) and connected subsets $U, V \in \tau$ such that $U \cup V$ is connected but not $U \cap V$.
- (f) A complete metric space (M, d) which is not compact (w.r.t. the metric topology).
- (g) A metric space (M, d) and a subset $A \subset M$ which is both dense and meagre.
- (h) A topological space (X, τ) which is not metrizable.
- (i) A metric space (M, d) which is not a Baire space.

Solution. In general, there are many possible answers here. I don't remember the examples we discussed during the review session.

- (a) Any set X endowed with the discrete topology. By definition, any subset is open. Hence, any subset must also be closed.
- (b) Take any set X with two elements endowed with the indiscrete topology, then any singleton is neither open nor closed.
- (c) Take any set $X = Y$ with at least two elements, let τ_X be the indiscrete topology, let τ_Y be the discrete topology and let f be the identity.
- (d) Take any set $X = Y$ with at least two elements, let τ_X be the discrete topology, let τ_Y be the indiscrete topology and let $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ be the identity.
- (e) Try drawing an example where X, U and V are subsets of \mathbb{R}^2 .
- (f) The space $C[0, 1]$ of continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ with the sup metric.
- (g) The standard example is $\mathbb{Q} \subset \mathbb{R}$ (usual metric).

- (h) Any space that is not Hausdorff. An example that I like is the Zariski topology.
- (i) \mathbb{Q} with the Euclidean metric.

Problem 2. Let X be a set with at least two elements and endow it with the indiscrete topology. Pick two distinct points $p, q \in X$ and consider a sequence (x_n) in X given by $x_n = p$ if n is even, and $x_n = q$ otherwise. Does this sequence converge?

Solution. Yes. Any sequence converges in the indiscrete topology (on a set with more than one element). It converges to any point in the space.

Problem 3. True or false?

- (a) If (X, τ) is a topological space which is connected, then we can always find a proper subset $\emptyset \neq A \subsetneq X$ with an empty boundary.
- (b) Let (X, τ) be a topological space, $A \subset X$ and denote by τ_A the corresponding subspace topology. Then there exists $U \subset A$ such that $U \in \tau$ but $U \notin \tau_A$.
- (c) If (X, τ) is path connected, then every continuous function $f : (X, \tau) \rightarrow (\{0, 1\}, \tau_{disc})$ is constant.
- (d) Any set endowed with the discrete metric is complete.
- (e) Any set endowed with the cofinite topology is compact.
- (f) If (M, d) and (N, d') are two metric space such that (M, τ^d) and $(M, \tau^{d'})$ are homeomorphic, then M is complete if and only if N is complete.
- (g) If (M, d) is a metric space and $\emptyset \neq A \subset M$ is nowhere dense, then $A \notin \tau^d$.

Solution.

- (a) False. If we can find such A , then $\emptyset = \partial(A) = \text{cl}(A) \setminus \text{int}(A)$. Thus, A is both open and closed. In a connected space, this cannot happen for proper subsets.
- (b) False. If $U \subset A$, then $U \cap A = U$. Thus, $U \in \tau \Rightarrow U \in \tau_A$.
- (c) True. If (X, τ) is path-connected, it is connected. See Lecture 5.
- (d) True. All Cauchy-sequences are eventually constant; hence, they converge.
- (e) True. Take a finite cover $\bigcup U$ of your space X . Pick an open U of this cover. Then U covers all but finitely many points of X . Now, pick finitely many elements of the cover to cover these finitely many points.
- (f) False. Take $M = \mathbb{R}$ and $N = \text{any open interval}$ and the usual metrics.

(g) *False. Note that if $A \in \tau^d$, then $\text{int}(A) \neq \emptyset$. But then $\emptyset \neq \text{int}(A) \subset \text{int}(\text{cl}(A))$, which contradicts the fact that A is nowhere dense.*

Problem 4. Define the following concepts.

- (a) Metric topology. [Lecture 2](#)
- (b) Product topology. [Lecture 4](#)
- (c) Connected topological space. [Lecture 5](#)
- (d) Compact topological space. [Lecture 8](#)
- (e) Hausdorff topological space. [Worksheet 4](#)
- (f) Normal topological space. [Lecture 13](#)
- (g) First-countable topological space. [Lecture 3](#)
- (h) The fundamental group of a path-connected topological space. [Lecture 7](#)