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Exercice 1.

Dans les cas suivants, montrez que Q(«, 3) est le corps de décomposition d’un polynéme, puis
calculez G = Gal(Q(a, 8)/Q), et calculez le polynome minimal de o, + 3, - 3 et a~!. Pour
calculer les polyndémes minimaux, on calculera orbite de ces éléments par G.

L a=vV38=V7
2. a:e(”/?’),ﬁ:—l
3. a=el™/3) g =4
4. o= e/ g =i,

Solution. Throughout, we write K = Q(«, ).

In the following solutions, we use the same technique to find the minimal polynomials as in
Example 4.6.15. With Proposition 4.6.14, it holds that for an element z € Q(«, ), the minimal
polynomial is m, g = [[(x — #’), where 2’ is a Galois conjugate of z.

Z/

1. As in Exercise 3.4 of sheet 10, we see that G = Z /27 x Z/27Z. The elements in G are the
identity, o, with o(v/3) = v/3 and o(v/7) = —V/7, 7 with 7(v/3) = —v/3 and 7(v/7) = V7,
and 7o, with 70(v/3) = —V/3 and 70(/7) = —V/T7.

The elements {1,v/3,v/7,v/3v7} form a basis of Q(v/3,v/7) over Q. Now let z € Q(a, 3),
with z = a + b3 + evV/7 + dv/3V7. The conjugates of z are

z, a+bV/3—cVT—dV3VT, a—b3+ VT -dV3VT, a—bV3—cVT+dV3VT.
As noted above, the minimal polynomial is

Mg = (2-2) (0 (a+bVB—cVT-dv3VT)) (a—(a—bV/B+ ey T-dVBVT)) (2 (a-bv/3—cv/THaVBVT))

if all factors are different. Hence the minimal polynomials of the elements \/g, V3 +7 , V3.
VT,V3 " are

2
myso =" —3
Mg = (z— (V3+VT)(z+ (V3+VT)(x - (V3-VD))(z+ (V3-VT)) =
(2% — (10 + 2v/21)) (2% — (10 — 2v/21)) = 2* — 2022 + 16

m\/g.\/i(@ = (.ZC— \/g\ﬁ)<$+ \f3\ﬁ) 21‘2 - 21
— 2 1
m\/gfl#@—x —g

2. We note that since § = —1 € Q, it holds that K = Q(«,8) = Q(«). Now, « is a root of
the polynomial 23 + 1 = (z + 1)(2? — z + 1). Since o # —1, we deduce that « is a root of
f = x?> —x + 1. Note that this polynomial is irreducible (otherwise o € Q, which is not
correct). Since f has degree 2 and K has one root, it automatically has the other root of f
(in fact, this other root is @ = 1/a = e~**/3). Thus, it is indeed the splitting field of f over
Q. Since f is a separable polynomial, we know by Proposition 4.6.5.(4) that G has order 2
(hence G = Z/27Z). Since a non-trivial element in G has no other choice but to send «a to @
(the other root of f) and fix Q, we deduce that G = (), where 7(a) = @ (in fact, 7 is the



complex conjugation here). Indeed, if 7 defined as above was not a field automorphism, then
we would obtain that |G| < 2, a contradiction with our previous discussion.

Let us compute minimal polynomials. We will shortcut a bit compared to the previous
exercise, although one could have done the exact same computations! We already computed
the minimal polynomial of a: it is f = 22 — x + 1. Since 1/« is the other root of f, it also
has f as its minimal polynomial.

Since a® = —1, (—a)3 =1, so —a is a root of 23 — 1 = (x — 1)(z? + = + 1). As before, we
deduce that the minimal polynomial of —a is 2 4+ x + 1.

Finally, since a? = o — 1, we deduce that (o — 1)3 = 1. Thus, we conclude as above that the
minimal polynomial of a« — 1 is 22 + = + 1.

We get

Mag=(r—a)(z—a)=2>—z+1
ma+5@:x2—|—x+1
ma.@@:xQ—i—x—&—l

Ma-10 =22 —z+1

. Let o = e™/3) and f = i. Since o = cos(n/3) + isin(n/3) = 1+ 3iV/3, it follows that
a € Q»iv3), and Q(a) C Q(iv3). With iv/3 = 2a — 1, it follows that iv/3 € Q(a),
and Q(iv/3) C Q(«). With this, it follows that Q(a) = Q(iv/3). Furthermore, Q(o, 3) =
Q(iv3,4) = Q(v/3,i). As in Example 4.6.7 (c), we see that Gal(Q(v/3,4)/Q) contains 4 ele-
ments, the identity, o, 7 and o, where o(i) = i,0(v/3) = —v/3,7(i) = —i,7(v/3) = V3 and
o1(i) = —i,07(v/3) = —V/3, and that Gal(Q(v/3,1)/Q) = Z/27Z x 7./27. On the elements «
and [, those four elements act as follows:

o(a) =e 3 o(B) =B, T(a)=e " o(8)=-B, or(a)=a,07(8) =5

As for the first example, we remark that the elements {1,4,/3,iv/3} form a basis of Q(v/3,1)
over Q. Let z € Q(v/3,1) with z = a + bi + ¢/3 + dv/3i. Then, as stated above, the minimal
polynomial of z is of the following form, if all factors are different

Mg = (z - 2)(@ — 0(2))(@ - 7(2))(@ — o7(2))

= (z — 2)(x — (a+bi — V3 — dV3i))(x — (a — bi + V3 — dV3i))(z — (a — bi — cV/3 + dV/30)).
This leads for example that

Matp,Q = at — 223 + 527 — dx + 1.

Let us compute the other minimal polynomials in an easier way. We already computed
Ma,Q = M1 /a,Q = 22— 241 in the previous point. Note that o8 = ie’™/3, which is annihilated
by 2+ 1 = (22 + 1)(z* — 2 + 1). Since it is not killed by 22 + 1, we deduce that it is killed
by 2* — 22 + 1. Since the minimal polynomial of a3 has degree 4 (c.f. the expression above,
since a3, o(ap), T(af) and or(af) are all different), we deduce that its minimal polynomial
is actually z% — 22 + 1.

. Let o = €l™/%) and B = i. We first calculate G = Gal(Q(«, 3)/Q). We remark that § =
o, and hence Q(o, 3) = Q(«). Furthermore, « is a root of the polynomial x5 + 1, which
decomposes as 2% + 1 = (22 + 1)(z* — 22 + 1). The polynomial 2% + 1 has two complex
roots +4. The polynomial z* — 2% 4+ 1 has four complex roots a, ®, o, a''. Furthermore, this

polynomial is irreducible over Q.



Hence the minimal polynomial of o is mq,q = x* — 22 + 1. Since by adjoining « to Q, all roots
of mq, are adjoined as well, we remark that Q(«) is the splitting field of the polynomial
z* — 22 + 1 over Q. By Proposition 4.6.3 (4), we get that |G| = [Q(a) : Q] = degma g = 4.

The elements in G are the identity, 7, 0,7, where the root « gets sent to a root of z% — 2% +1

by every element of G. We let 7(a) = o®,0(a) = o, n(a) = a'l.

The minimal polynomials are calculated as stated above by observing the action of the ele-
ments id, 7,0, 7. It follows that
Ma,g = (& — )z = 7(a))(x — o(a))(z —n(a)) = (r — a)(z — ®)(z —a)(z —a'!) = 2" =2 +1
Mab6.0 = Matas g = (@ — (@ +0%)(@ — 7(a + a®)(@ — o(a +a®))(@ — (o +a*))
=(z— (a+ )z —(®+ ) (z—(a"+a”)(z - (e + ) =2 + 32+ 9
Ma-,Q = Mat,Q = M_ 54105130 = (z—a )(33 —7(a 4))(35 - 0(064))(37 - 77(044))
= (¢ —a')(z - M) e—a"Nz—a =2 + 2 +1
Ma-1,g =Mt g = (2 —a'l) (@ —7(a'))(@ —o(a™))(z —nla'))
=(z-aMz-aNz-aNz—-—a)=2'—22+1

Exercice 2. 1. Montrez que K = Q(4, v/2) est le corps de décomposition de z* — 2 € Q[z].
2. Montrez qu’il existe r, s € Gal(K/Q) tel que

(a) 7(v2) =iv?2 et r(i) =i,
(b) s(v2) = —v/2et s(i) = —i.

3. Déduire que si l’on nomme les sommets d’un carré selon les racines de 2% —2 comme ci-dessous

-2 iv/2

—iV2 V2

le groupe Gal(K, Q) est isomorphe au groupe Dg des symétries du carreé.
4. Donner un élément o € K avec Q(a) = K.

5. Pour tous les éléments suivants de K
34V2, i+V2, 14+ V2 1+4iv2, V2(1+i) V201 -1)
déterminer,

(a) orbite de ces éléments par Gal(K/Q),
(b) leur polynéme minimal,

(c) le stabilisateur de ces éléments dans Gal(K/Q)[]

Solution.

1. Les racines de 2* — 2 sont +v/2 et +iv/2, et extension de Q générée par ces éléments est bel
et bien K.

*C’est & dire si « est un tel élément, Gal(K/Q(«)).




2. Montrons d’abord que [K : Q] = 8. Comme z* — 2 est irréductible sur Z[z] par Eisenstein et

primitif, il est aussi irréductible sur Q[x] par les lemmes de Gauss. Ainsi, [Q(v/2) : Q] = 4.
Comme i ¢ Q(v/2), on en déduit que le polynéme minimal de i sur Q(v/2) est 2% +1, et donc
[Q(4, v2) : Q(v/2)] = 2. On en déduit donc que [Q(7, v2) : Q] = 8 par multiplicativité des
degrés.
Vu que 8 = [K : Q] = [K : Q(i)][Q(4) : Q], on en déduit que [K : Q(i)] = 4. Ainsi, 2* — 2 est
nécessairement le polynome minimal de v/2 sur Q(i) (sinon cette extension serait de degré
< 4). Par la proposition 4.6.5.(3), le groupe de Galois de K/Q(7) agit transitivement sur les
racines de x4 — 2, donc on obtient I'existence de r comme dans (a).

Montrons maintenant I’existence de s. Notez que r?(v/2) = —v/2 et r2(i) = i. Ainsi, si
'on considére s comme la composée de r2 et de la conjugaison complexe habituelle, alors

5(v/2) = —v2 et s(i) = —i.

3. Par le point précédent, cette extension est un corps de décomposition. Vu qu’elle est sépara-
ble (Q est parfait, car de caractéristique zéro), on en déduit par la Proposition 4.6.5 que
| Gal(K/Q)| = 8. Montrons que (r,s) = Gal(K/Q). Vu que r est d’ordre 4 et que s n’est pas
une puissance de r (tout ceci de vérifie a la main), on obtient que (r,s) contient au moins 5
éléments. Comme son ordre doit diviser 8, on en déduit que

(r,s) = Gal(K/Q).
Nous allons conclure de deux maniéres différentes:

(a) Par la géométrie: notez que r et s agissent par isométries sur le carré de la donneée (r
est une rotation d’un quart de tour dans le sens anti-horaire, et s est la symmétrie d’axe
d’en bas & gauche vers en haut & droite). Cette action est nécessairement fidéle, car ces
quatre sommets générent K sur Q.

Ainsi, (r,s) agit fidélement par isométries sur ce carré. Comme le groupe d’isométries

du carré est Dg (donc d’ordre 8), on a une injection (r,s) < Dg est un isomorphisme.
Comme Gal(K/Q) = (r, s) est d’ordre 8, on conclut que Gal(K/Q) = Ds.

(b) Par la théorie des groupes: on calcule & la main que r* = id, s> = id et (rs)? = id.
Comme Dg a comme présentation (o,7|c* = 172 = 1 (o7)?> = 1), on obtient par
deéfinition 'existence d’un morphisme surjectif Dg — (r, s, ) = Gal(K/Q) envoyant o sur
r et 7 sur s. Comme ces deux groupes sont d’ordre 8, on conclut que notre morphisme
est un isomorphisme.

4. Comme on ’a vu au point précédent, on a que Gal(K/Q) = (r,s) = {1,r,72,r3, s, sr, 572, s73}.

Prenons a = v/2+i. Vu qu’une Q-base de K est donnée par {1,4, v'2,v/2, (v/2),iv/2,iv/2,i(v/2)?},
un calcul direct montre que cet élément n’est fixé par aucun g # id de Gal(K/Q), donc c’est
bien un élément primitif.

5. e 3+ +/2: Comme 3 est forcément fixé et que v/2 ne peut étre qu’envoyé sur /2 (les
racines de 22 — 2 € Q[z]), on déduit que I'orbite de 3 + v/2 est incluse dans {3 £ /2}.
Vu que 7(34+/2) = 3 — /2, on conclut que 'orbite de 3 + /2 est bien {3 +/2,3 — \/ﬁ}
Par la proposition 4.6.14, on a que son polyndme minimal est

(z—(B+V2)(z—(3-V2)=1a®—6x+T.
On voit par un calcul direct que 72 et s fixent 3 + /2, donc Gal(K/Q(3 4 +/2)) contient
{id,r?,s,sr?}. Vu que |Gal(K : Q)/ Gal(K : Q(3 + /2))| est égale 4 la taille de I'orbite
de 3 + /2 (qui vaut 2), on déduit que Gal(K/Q(3 + v/2)) a taille 4, donc

Gal(K/Q(3 +V?2)) = {id, r?, s, sr?}.



e i+ /2 : Nous avons déja vu par le passé que Q(i + v2) = Q(4,v/2), donc il géneére
une extension d’ordre 4. L’orbite de i + v/2 est donc de taille 4 par la proposition 4.6.5.
Comme 7 est forcément envoyé sur 4i et v/2 sur +v/2, on a au plus 4 éléments dans
Porbite : £v/2 4.

Comme on en a exactement 4, on en déduit que l'orbite est exactement ces quatre
éléments ci-dessus. Comme vu en cours, le polynéme minimal est alors

(2—(i+V2) (z+(i+V2)) (2 —(i—V2)) (2+(i—V2)) = (22— (1+2iV2)) (22— (1-2iV2)) = 2* 227 +9.

Le méme argument montre que le stabilisateur est d’ordre 2. Comme 72 stabilise cet
élément, on en déduit que le stabilisateur est exactement {id, r?}.

e On a que Q(1 + v2) = Q(v/2) est un extension de degré 4 sur Q, donc I'orbite est de
taille 4. Comme lorbite de 14 v/2 par (r) est {1+ v/2,1+iv/2,1 —v/2,1—iv/2}, on a
trouvé notre orbite.

Notez de (x—1)*—2 annule cet élément. Vu que ce polynome est de degré 4 = [Q(1++/2) :
QJ, c’est forcément le polynéme minimal.
Finalement, on sait comme avant que le stabilisateur est d’ordre 2. Comme sr? stabilise
cet élément, on en déduit que le stabilisateur est exactement {1, sr2}.

e Remarquez que 1 + iv/2 est dans l'orbite de 1 + v/2, donc ces éléments ont la méme
orbite, et donc le méme polynéme minimal

Quant au stabilisateur, celui-ci sera conjugué, précisément par un élément du groupe de
Galois qui envoie 1+ v/2 sur 14iv/2 — r est un tel élément. On déduit que le stabilisateur
est {id,s}. Cela se voyait aussi directement comme s fixait 1 4 iv/2.

e L'orbite de v/2(1 + 1) par (r) est exactement
{(V2(1414),ivV2(1 4 1), =V2(1 +14), —ivV2(1 +14)}.

Vu que la taille de lorbite divise la taille du groupe de Galois (i.e. 8), on aurait que si
lorbite était plus grande que ’ensemble ci-dessus, alors le stabilisateur serait trivial. Or,
sr® est dans ce stabilisateur, et donc l'orbite est exactement de taille 4 (et est donnée
ci-dessus), et le stabilisateur est exactement {id, sr3}.

On pourrait trouver le polydéme minimal en faisant un calcul fastidieux, mais trouvons-le
plutét & la main. on a que

(V2(1+i)* = 2(1 4 i)* = =8,

donc c’est une racine de z* 4+ 8. Vu que l’extension générée est de degré 4, c’est donc le
polynéme minimal.

e Comme v/2(1 —1i) = —iv/2(1+1i) est dans I'orbite de v/2(1 +1), on conclut qu'ils ont la
méme orbite, et donc le méme polynéme minimal.

uant au stabilisateur, 11 est conjuge au preceadent € onc c'es a, STy,
t au stabilisateur, il est conjugé au précédent et d est {id

Exercice 3.
Soit f = 2% +ar+1 € Q[x] avec a > 0, a € Z.

1. Montrer que f est irréductible sur Q.

2. Montrer que f a une racine réelle, mais pas trois.

3. Soit K = Qlz]/(f). Montrer que K/Q est une extension de degré 3 qui n’est pas Galoisienne.
4. Soit L le corps de décomposition de f sur Q. Montrer que Gal(L/Q) = Ss.

Solution.



1. As deg f = 3 one just has to verify that f does not have a root over Q. So, we need to show
that if b and c are non-zero relatively prime integers, then

(b/c)® + (ab/c) +1 #0,

or equivalently
b3 + abc® + ¢ # 0.

Suppose the contrary. Then c divides b® and b divides c3. Using the relative prime assumption
we obtain both b and ¢ are plus-minus 1, so that a root has to be 1 or —1 but one sees as
a > 0 that

1+4a4+1#0 and —-1—a+1z#0.

2. Since f(x) tends to —oo as x goes to —oo and goes to +00 as x goes to 00, we deduce by
the mean value theorem that f has at least one real root. Now, let a;, 8 and v be the three
roots of f in its splitting field, and assume that they are all real. Then we have

f=@—a)(z—-pB)(z—-7)

and hence

at+B+v=0

and

af +ay+py=a

From the first equation we have v = —a — 8. Plugging this into the left side of the second
equation yields

1 CM2 52
af+a(—a=pf)+p(-a-p)=—-a"-F —af=—(a+ )’ -5 -5 <0

However, we assumed that a > 0. This is a contradiction.

Once we know that not all roots are real, here is a slick way to deduce that f must have a real
root. As deg f =3, and complex roots of a real polynomial come in complex conjugate pairs,
f has to have a real root.

3. Let « denote the unique real root. Then, Q C Q(«) is a degree 3 extension and additionally
Q(a) € R. Hence, the other two roots of f, say  and 7, cannot be contained in Q(«). So,
every element g € Gal(Q(«)/Q) can send « only to a. However, as a generated Q(«) this
means that g = id.

4. Let a, 8 and « be as in the previous point. Then both 8 and - are roots of h = ﬁ € Q(a)[x].
As this polynomial has degree 2, and 8 and ~ are not in Q[z], h = mgg(a) = My, S0,
Q(a, B,7) has degree 2 over Q(«). So, by the multiplicativity of the degrees of field extensions,
L = Q(a, B,7) has degree 6 over Q. Let G be the Galois group of L over Q. Then, G acts
faithfully on «, 8 and ~y, which yields an embedding G < S3. As both have 6 elements, this
is in fact an isomorphism.

Exercice 4.
Soit K un corps de caractéristique p > 0, et @« # 0 € K tel que le polynome f(z) = 2P —z+a € K|z]
n’a pas de racines dans K. Soit L le corps de decomposition de f, et G = Gal(L/K).



1. Montrez que G = Z/pZ. Indication: Si B est une racine de f, alors  + v Uest aussi, pour
tout v € I).

2. Montrez que le polynome f est irréductible sur K.

3. Considérons K = F,(t). Montrez que le pélynome f(z) = 2P —z+t € K[z] n’a pas de racines
dans K.

4. Soit K et f comme dans le point précédent. Donnez le corps de décomposition de f sur K.
Solution.

1. Let 8 be a root of f. It holds that B — 8 + a = 0. Let v € F, € K. Then, using Fermat’s
little theorem, which states that v =« modulo p, it holds that over a field of characteristic
p, we have

BN =B+ +ta=pF+7"-B-y+a=p"'+7-B-v+a=p"-F+a=0.

Hence all 8 + v, where v € T, are roots of f. We get p distinct roots, and as F, C K, by
adjoining /5 to K, all roots are contained in K () and hence L = K ().

Moreover, we have that mg i = f. Let mg x = [[,¢;(—(8+~) in L[z] with I C Fp[z]. Then

the coefficients in front of z//I=1 are exactly — dover(piy) = HIB+ 2 er7- I we suppose
that |I| < p, one contradicts the fact that 5 ¢ K. Therefore mg g = f.

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(f), there is at most one element in G that sends the root 8 to the root § + =, for
v € Fp. Therefore, |G| < p. There are indeed p elements in G, which are of the form o, with
o,(B) =+~ for all k € F,. We get p automorphisms, and hence G = Z/pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L : K], where L = K(3) is the splitting field of f. By the previous point, |G| = p, and hence
[K(B) : K] = degmg g = p. Since 3 is a root of f, and since its minimal polynomial is of
degree p, it follows that f ~ mg i, and hence, f is irreducible over K.

3. Let { € Fy(t) a root of 2P — x +t. Then, g,h € F[t],h # 0 and it holds that

9N _ (9 — P _ gpP1 P _
(h) (h)+t—0<:>g gh?™" +th? = 0.
Denote the degree of g by d,, and the degree of h by dj. Then, the degree of the following
polynomials are

deg(g?) = pdy, deg(gh?™') =dy+ (p—1)dp, deg(th’) =1+ pdp,.

In order for the sum gP — ghP~! 4 thP to be zero, the degrees of each of the summands needs
to be canceled out.

If dj, > dg, then the degree of th”, being 1+ pdy, is strictly bigger than pd, and dy+ (p—1)dy,
and hence th? can’t be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if d4 > dj,, then nothing can cancel out g”, which one sees by a degree
comparison, and hence the sum ¢g? — gh?~! 4 th? can only be zero if ¢ = 0 and h = 0, which
is a contradiction.

4. Let u be aroot of f:uw —u+t =0« v’ —u = —t, and hence F(t) C Fp(u). With u
being transcendental over F,, it follows that the splitting field is F,(u). We remark that by
the second part of the exercise, all roots are of the form u + 7, where v € ), and hence all
roots are contained in Fp(u).



Exercice 5.
Soit K C L C FE une extension algébrique tel que K C L et L C FE sont Galois. Montrer que
K C FE n’est pas forcément Galois.

Indication. Envisager les extensions Q C Q(v/2) € Q(v1+v/2) ou Q € Q(v2) C Q(v/2).

Solution. We have the following extension tower:

Q CQ(vV2) CQ(V1+V2).

The extension Q C Q(+/2) is Galois, as Q is a perfect field and Q(v/2) is the decomposition
field of the polynomial 22 — 2 € Q[z], see Theorem 4.6.15. Similarly, the extension Q(v/2) C

Q(V1++v/2) is Galois, as Q(v/2) is perfect and Q(v/1+ /2) is the decomposition field of the
polynomial 22 — 1 — /2 € Q(v/2)[z].

We now consider the extension Q C Q(v/1+ /2). We note that this extension is of degree 4.
We also note by develloping

(2% = (1+V2)(2® - (1 - v2))

- 14 9.2 A 9.2
that v/1 + v/2 is a root of the polynomial z* — 222 —1 € Q[xz], hence mm7Q(x) x*—2x°—1by
the degree because [Q(v/1 +v/2) : Q] = 4. Moreover, the other roots of 2* — 222 — 1 are —/1 + /2

and £1/1 — /2. Now, we remark that Q(v/1 + v/2) C R, therefore £1/1 —v/2 ¢ Q(v/1 + V/2).

It follows that the extension is not Galois: indeed in a Galois extension L/K for o € L the
polynominal m, g has all its roots in L, these roots being the orbit of the element o by the Galois

group. But this was just shown no to be the case for /1 4+ v/2.
A similar arqument works also for

Q C Q(V2) Cc Q(V2).



