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Anneaux et Corps Exercices

Solutions 11

Exercice 1.

Dans les cas suivants, montrez que Q(α, β) est le corps de décomposition d'un polynôme, puis

calculez G = Gal(Q(α, β)/Q), et calculez le polynôme minimal de α, α + β, α · β et α−1. Pour
calculer les polynômes minimaux, on calculera l'orbite de ces éléments par G.

1. α =
√
3, β =

√
7

2. α = e(iπ/3), β = −1

3. α = e(iπ/3), β = i

4. α = e(iπ/6), β = i.

Solution. Throughout, we write K = Q(α, β).
In the following solutions, we use the same technique to �nd the minimal polynomials as in

Example 4.6.15. With Proposition 4.6.14, it holds that for an element z ∈ Q(α, β), the minimal

polynomial is mz,Q =
∏
z′
(x− z′), where z′ is a Galois conjugate of z.

1. As in Exercise 3.4 of sheet 10, we see that G ∼= Z/2Z × Z/2Z. The elements in G are the

identity, σ, with σ(
√
3) =

√
3 and σ(

√
7) = −

√
7, τ with τ(

√
3) = −

√
3 and τ(

√
7) =

√
7,

and τσ, with τσ(
√
3) = −

√
3 and τσ(

√
7) = −

√
7.

The elements {1,
√
3,
√
7,
√
3
√
7} form a basis of Q(

√
3,
√
7) over Q. Now let z ∈ Q(α, β),

with z = a+ b
√
3 + c

√
7 + d

√
3
√
7. The conjugates of z are

z, a+ b
√
3− c

√
7− d

√
3
√
7, a− b

√
3 + c

√
7− d

√
3
√
7, a− b

√
3− c

√
7 + d

√
3
√
7.

As noted above, the minimal polynomial is

mz,Q = (x−z)(x−(a+b
√
3−c

√
7−d

√
3
√
7))(x−(a−b

√
3+c

√
7−d

√
3
√
7))(x−(a−b

√
3−c

√
7+d

√
3
√
7)),

if all factors are di�erent. Hence the minimal polynomials of the elements
√
3,
√
3 +

√
7,
√
3 ·√

7,
√
3
−1

are

m√
3,Q = x2 − 3

m√
3+

√
7,Q = (x− (

√
3 +

√
7)(x+ (

√
3 +

√
7))(x− (

√
3−

√
7))(x+ (

√
3−

√
7)) =

(x2 − (10 + 2
√
21))(x2 − (10− 2

√
21)) = x4 − 20x2 + 16

m√
3·
√
7,Q = (x−

√
3
√
7)(x+

√
3
√
7) = x2 − 21

m√
3
−1

,Q = x2 − 1

3
.

2. We note that since β = −1 ∈ Q, it holds that K = Q(α, β) = Q(α). Now, α is a root of

the polynomial x3 + 1 = (x + 1)(x2 − x + 1). Since α ̸= −1, we deduce that α is a root of

f = x2 − x + 1. Note that this polynomial is irreducible (otherwise α ∈ Q, which is not

correct). Since f has degree 2 and K has one root, it automatically has the other root of f
(in fact, this other root is α = 1/α = e−iπ/3). Thus, it is indeed the splitting �eld of f over

Q. Since f is a separable polynomial, we know by Proposition 4.6.5.(4) that G has order 2
(hence G ∼= Z/2Z). Since a non-trivial element in G has no other choice but to send α to α
(the other root of f) and �x Q, we deduce that G = ⟨τ⟩, where τ(α) = α (in fact, τ is the



complex conjugation here). Indeed, if τ de�ned as above was not a �eld automorphism, then

we would obtain that |G| < 2, a contradiction with our previous discussion.

Let us compute minimal polynomials. We will shortcut a bit compared to the previous

exercise, although one could have done the exact same computations! We already computed

the minimal polynomial of α: it is f = x2 − x + 1. Since 1/α is the other root of f , it also
has f as its minimal polynomial.

Since α3 = −1, (−α)3 = 1, so −α is a root of x3 − 1 = (x − 1)(x2 + x + 1). As before, we

deduce that the minimal polynomial of −α is x2 + x+ 1.

Finally, since α2 = α− 1, we deduce that (α− 1)3 = 1. Thus, we conclude as above that the
minimal polynomial of α− 1 is x2 + x+ 1.

We get

mα,Q = (x− α)(x− α) = x2 − x+ 1

mα+β,Q = x2 + x+ 1

mα·β,Q = x2 + x+ 1

mα−1,Q = x2 − x+ 1

3. Let α = e(πi/3) and β = i. Since α = cos(π/3) + i sin(π/3) = 1
2 + 1

2 i
√
3, it follows that

α ∈ Q(i
√
3), and Q(α) ⊆ Q(i

√
3). With i

√
3 = 2α − 1, it follows that i

√
3 ∈ Q(α),

and Q(i
√
3) ⊆ Q(α). With this, it follows that Q(α) = Q(i

√
3). Furthermore, Q(α, β) =

Q(i
√
3, i) = Q(

√
3, i). As in Example 4.6.7 (c), we see that Gal(Q(

√
3, i)/Q) contains 4 ele-

ments, the identity, σ, τ and στ, where σ(i) = i, σ(
√
3) = −

√
3, τ(i) = −i, τ(

√
3) =

√
3 and

στ(i) = −i, στ(
√
3) = −

√
3, and that Gal(Q(

√
3, i)/Q) ∼= Z/2Z × Z/2Z. On the elements α

and β, those four elements act as follows:

σ(α) = e−(iπ/3), σ(β) = β, τ(α) = e−(iπ/3), σ(β) = −β, στ(α) = α, στ(β) = −β.

As for the �rst example, we remark that the elements {1, i,
√
3, i

√
3} form a basis of Q(

√
3, i)

over Q. Let z ∈ Q(
√
3, i) with z = a+ bi+ c

√
3 + d

√
3i. Then, as stated above, the minimal

polynomial of z is of the following form, if all factors are di�erent

mz,Q = (x− z)(x− σ(z))(x− τ(z))(x− στ(z))

= (x− z)(x− (a+ bi− c
√
3− d

√
3i))(x− (a− bi+ c

√
3− d

√
3i))(x− (a− bi− c

√
3 + d

√
3i)).

This leads for example that

mα+β,Q = x4 − 2x3 + 5x2 − 4x+ 1.

Let us compute the other minimal polynomials in an easier way. We already computed

mα,Q = m1/α,Q = x2−x+1 in the previous point. Note that αβ = ieiπ/3, which is annihilated

by x6 + 1 = (x2 + 1)(x4 − x2 + 1). Since it is not killed by x2 + 1, we deduce that it is killed
by x4 − x2 + 1. Since the minimal polynomial of αβ has degree 4 (c.f. the expression above,

since αβ, σ(αβ), τ(αβ) and στ(αβ) are all di�erent), we deduce that its minimal polynomial

is actually x4 − x2 + 1.

4. Let α = e(iπ/6) and β = i. We �rst calculate G = Gal(Q(α, β)/Q). We remark that β =
α3, and hence Q(α, β) = Q(α). Furthermore, α is a root of the polynomial x6 + 1, which
decomposes as x6 + 1 = (x2 + 1)(x4 − x2 + 1). The polynomial x2 + 1 has two complex

roots ±i. The polynomial x4−x2+1 has four complex roots α, α5, α7, α11. Furthermore, this

polynomial is irreducible over Q.



Hence the minimal polynomial of α is mα,Q = x4−x2+1. Since by adjoining α to Q, all roots
of mα,Q are adjoined as well, we remark that Q(α) is the splitting �eld of the polynomial

x4 − x2 + 1 over Q. By Proposition 4.6.3 (4), we get that |G| = [Q(α) : Q] = degmα,Q = 4.
The elements in G are the identity, τ, σ, η, where the root α gets sent to a root of x4 − x2 +1
by every element of G. We let τ(α) = α5, σ(α) = α7, η(α) = α11.

The minimal polynomials are calculated as stated above by observing the action of the ele-

ments id, τ, σ, η. It follows that

mα,Q = (x− α)(x− τ(α))(x− σ(α))(x− η(α)) = (x− α)(x− α5)(x− α7)(x− α11) = x4 − x2 + 1

mα+β,Q = mα+α3,Q = (x− (α+ α3))(x− τ(α+ α3))(x− σ(α+ α3))(x− η(α+ α3))

= (x− (α+ α3))(x− (α5 + α3))(x− (α7 + α9))(x− (α11 + α9)) = x4 + 3x2 + 9

mα·β,Q = mα4,Q = m−0.5+0.5i
√
3,Q = (x− α4)(x− τ(α4))(x− σ(α4))(x− η(α4))

= (x− α4)(x− α8)�����
(x− α4)�����

(x− α8) = x2 + x+ 1

mα−1,Q = mα11,Q = (x− α11)(x− τ(α11))(x− σ(α11))(x− η(α11))

= (x− α11)(x− α7)(x− α7)(x− α) = x4 − x2 + 1

Exercice 2. 1. Montrez que K = Q(i, 4
√
2) est le corps de décomposition de x4 − 2 ∈ Q[x].

2. Montrez qu'il existe r, s ∈ Gal(K/Q) tel que

(a) r( 4
√
2) = i 4

√
2 et r(i) = i,

(b) s( 4
√
2) = − 4

√
2 et s(i) = −i.

3. Déduire que si l'on nomme les sommets d'un carré selon les racines de x4−2 comme ci-dessous

−i 4
√
2

− 4
√
2

4
√
2

i 4
√
2

le groupe Gal(K,Q) est isomorphe au groupe D8 des symétries du carré.

4. Donner un élément α ∈ K avec Q(α) = K.

5. Pour tous les éléments suivants de K

3 +
√
2, i+

√
2, 1 +

4
√
2 1 + i

4
√
2,

4
√
2(1 + i)

4
√
2(1− i)

déterminer,

(a) l'orbite de ces éléments par Gal(K/Q),

(b) leur polynôme minimal,

(c) le stabilisateur de ces éléments dans Gal(K/Q).*

Solution.

1. Les racines de x4− 2 sont ± 4
√
2 et ±i 4

√
2, et l'extension de Q générée par ces éléments est bel

et bien K.

*C'est à dire si α est un tel élément, Gal(K/Q(α)).



2. Montrons d'abord que [K : Q] = 8. Comme x4 − 2 est irréductible sur Z[x] par Eisenstein et

primitif, il est aussi irréductible sur Q[x] par les lemmes de Gauss. Ainsi, [Q( 4
√
2) : Q] = 4.

Comme i /∈ Q( 4
√
2), on en déduit que le polynôme minimal de i sur Q( 4

√
2) est x2+1, et donc

[Q(i, 4
√
2) : Q( 4

√
2)] = 2. On en déduit donc que [Q(i, 4

√
2) : Q] = 8 par multiplicativité des

degrés.

Vu que 8 = [K : Q] = [K : Q(i)][Q(i) : Q], on en déduit que [K : Q(i)] = 4. Ainsi, x4 − 2 est

nécessairement le polynôme minimal de 4
√
2 sur Q(i) (sinon cette extension serait de degré

< 4). Par la proposition 4.6.5.(3), le groupe de Galois de K/Q(i) agit transitivement sur les

racines de x4 − 2, donc on obtient l'existence de r comme dans (a).

Montrons maintenant l'existence de s. Notez que r2( 4
√
2) = − 4

√
2 et r2(i) = i. Ainsi, si

l'on considère s comme la composée de r2 et de la conjugaison complexe habituelle, alors

s( 4
√
2) = − 4

√
2 et s(i) = −i.

3. Par le point précédent, cette extension est un corps de décomposition. Vu qu'elle est sépara-

ble (Q est parfait, car de caractéristique zéro), on en déduit par la Proposition 4.6.5 que

|Gal(K/Q)| = 8. Montrons que ⟨r, s⟩ = Gal(K/Q). Vu que r est d'ordre 4 et que s n'est pas
une puissance de r (tout ceci de véri�e à la main), on obtient que ⟨r, s⟩ contient au moins 5
éléments. Comme son ordre doit diviser 8, on en déduit que

⟨r, s⟩ = Gal(K/Q).

Nous allons conclure de deux manières di�érentes:

(a) Par la géométrie: notez que r et s agissent par isométries sur le carré de la donnée (r
est une rotation d'un quart de tour dans le sens anti-horaire, et s est la symmétrie d'axe

d'en bas à gauche vers en haut à droite). Cette action est nécessairement �dèle, car ces

quatre sommets génèrent K sur Q.
Ainsi, ⟨r, s⟩ agit �dèlement par isométries sur ce carré. Comme le groupe d'isométries

du carré est D8 (donc d'ordre 8), on a une injection ⟨r, s⟩ ↪→ D8 est un isomorphisme.

Comme Gal(K/Q) = ⟨r, s⟩ est d'ordre 8, on conclut que Gal(K/Q) ∼= D8.

(b) Par la théorie des groupes: on calcule à la main que r4 = id, s2 = id et (rs)2 = id.
Comme D8 a comme présentation ⟨σ, τ |σ4 = 1 τ2 = 1 (στ)2 = 1⟩, on obtient par

dé�nition l'existence d'un morphisme surjectif D8 → ⟨r, s, ⟩ = Gal(K/Q) envoyant σ sur

r et τ sur s. Comme ces deux groupes sont d'ordre 8, on conclut que notre morphisme

est un isomorphisme.

4. Comme on l'a vu au point précédent, on a queGal(K/Q) = ⟨r, s⟩ = {1, r, r2, r3, s, sr, sr2, sr3}.
Prenons α = 4

√
2+i. Vu qu'uneQ-base deK est donnée par {1, i, 4

√
2,
√
2, ( 4

√
2)3, i 4

√
2, i

√
2, i( 4

√
2)3},

un calcul direct montre que cet élément n'est �xé par aucun g ̸= id de Gal(K/Q), donc c'est
bien un élément primitif.

5. � 3 +
√
2: Comme 3 est forcément �xé et que

√
2 ne peut être qu'envoyé sur ±

√
2 (les

racines de x2 − 2 ∈ Q[x]), on déduit que l'orbite de 3 +
√
2 est incluse dans {3 ±

√
2}.

Vu que r(3+
√
2) = 3−

√
2, on conclut que l'orbite de 3+

√
2 est bien {3+

√
2, 3−

√
2}.

Par la proposition 4.6.14, on a que son polynôme minimal est

(x− (3 +
√
2))(x− (3−

√
2)) = x2 − 6x+ 7.

On voit par un calcul direct que r2 et s �xent 3+
√
2, donc Gal(K/Q(3+

√
2)) contient

{id, r2, s, sr2}. Vu que |Gal(K : Q)/Gal(K : Q(3+
√
2))| est égale à la taille de l'orbite

de 3 +
√
2 (qui vaut 2), on déduit que Gal(K/Q(3 +

√
2)) a taille 4, donc

Gal(K/Q(3 +
√
2)) = {id, r2, s, sr2}.



� i +
√
2 : Nous avons déjà vu par le passé que Q(i +

√
2) = Q(i,

√
2), donc il génère

une extension d'ordre 4. L'orbite de i+
√
2 est donc de taille 4 par la proposition 4.6.5.

Comme i est forcément envoyé sur ±i et
√
2 sur ±

√
2, on a au plus 4 éléments dans

l'orbite : ±
√
2± i.

Comme on en a exactement 4, on en déduit que l'orbite est exactement ces quatre

éléments ci-dessus. Comme vu en cours, le polynôme minimal est alors

(x−(i+
√
2))(x+(i+

√
2))(x−(i−

√
2))(x+(i−

√
2)) = (x2−(1+2i

√
2))(x2−(1−2i

√
2)) = x4−2x2+9.

Le même argument montre que le stabilisateur est d'ordre 2. Comme r2 stabilise cet

élément, on en déduit que le stabilisateur est exactement {id, r2}.
� On a que Q(1 + 4

√
2) = Q( 4

√
2) est un extension de degré 4 sur Q, donc l'orbite est de

taille 4. Comme l'orbite de 1 + 4
√
2 par ⟨r⟩ est {1 + 4

√
2, 1 + i 4

√
2, 1− 4

√
2, 1− i 4

√
2}, on a

trouvé notre orbite.

Notez de (x−1)4−2 annule cet élément. Vu que ce polynôme est de degré 4 = [Q(1+ 4
√
2) :

Q], c'est forcément le polynôme minimal.

Finalement, on sait comme avant que le stabilisateur est d'ordre 2. Comme sr2 stabilise
cet élément, on en déduit que le stabilisateur est exactement {1, sr2}.

� Remarquez que 1 + i 4
√
2 est dans l'orbite de 1 + 4

√
2, donc ces éléments ont la même

orbite, et donc le même polynôme minimal

Quant au stabilisateur, celui-ci sera conjugué, précisément par un élément du groupe de

Galois qui envoie 1+ 4
√
2 sur 1+i 4

√
2 � r est un tel élément. On déduit que le stabilisateur

est {id, s}. Cela se voyait aussi directement comme s �xait 1 + i 4
√
2.

� L'orbite de 4
√
2(1 + i) par ⟨r⟩ est exactement

{ 4
√
2(1 + i), i

4
√
2(1 + i),− 4

√
2(1 + i),−i

4
√
2(1 + i)}.

Vu que la taille de l'orbite divise la taille du groupe de Galois (i.e. 8), on aurait que si

l'orbite était plus grande que l'ensemble ci-dessus, alors le stabilisateur serait trivial. Or,

sr3 est dans ce stabilisateur, et donc l'orbite est exactement de taille 4 (et est donnée

ci-dessus), et le stabilisateur est exactement {id, sr3}.
On pourrait trouver le polyôme minimal en faisant un calcul fastidieux, mais trouvons-le

plutôt à la main. on a que

(
4
√
2(1 + i))4 = 2(1 + i)4 = −8,

donc c'est une racine de x4 + 8. Vu que l'extension générée est de degré 4, c'est donc le
polynôme minimal.

� Comme 4
√
2(1− i) = −i 4

√
2(1 + i) est dans l'orbite de 4

√
2(1 + i), on conclut qu'ils ont la

même orbite, et donc le même polynôme minimal.

Quant au stabilisateur, il est conjugé au précédent et donc c'est {id, sr}.

Exercice 3.

Soit f = x3 + ax+ 1 ∈ Q[x] avec a > 0, a ∈ Z.

1. Montrer que f est irréductible sur Q.

2. Montrer que f a une racine réelle, mais pas trois.

3. Soit K = Q[x]/(f). Montrer que K/Q est une extension de degré 3 qui n'est pas Galoisienne.

4. Soit L le corps de décomposition de f sur Q. Montrer que Gal(L/Q) ∼= S3.

Solution.



1. As deg f = 3 one just has to verify that f does not have a root over Q. So, we need to show

that if b and c are non-zero relatively prime integers, then

(b/c)3 + (ab/c) + 1 ̸= 0,

or equivalently

b3 + abc2 + c3 ̸= 0.

Suppose the contrary. Then c divides b3 and b divides c3. Using the relative prime assumption

we obtain both b and c are plus-minus 1, so that a root has to be 1 or −1 but one sees as

a > 0 that

1 + a+ 1 ̸= 0 and − 1− a+ 1 ̸= 0.

2. Since f(x) tends to −∞ as x goes to −∞ and goes to +∞ as x goes to +∞, we deduce by

the mean value theorem that f has at least one real root. Now, let α, β and γ be the three

roots of f in its splitting �eld, and assume that they are all real. Then we have

f = (x− α)(x− β)(x− γ)

and hence

α+ β + γ = 0

and

αβ + αγ + βγ = a

From the �rst equation we have γ = −α − β. Plugging this into the left side of the second

equation yields

αβ + α(−α− β) + β(−α− β) = −α2 − β2 − αβ = −1

2
(α+ β)2 − α2

2
− β2

2
≤ 0

However, we assumed that a > 0. This is a contradiction.

Once we know that not all roots are real, here is a slick way to deduce that f must have a real

root. As deg f = 3, and complex roots of a real polynomial come in complex conjugate pairs,

f has to have a real root.

3. Let α denote the unique real root. Then, Q ⊆ Q(α) is a degree 3 extension and additionally

Q(α) ⊆ R. Hence, the other two roots of f , say β and γ, cannot be contained in Q(α). So,
every element g ∈ Gal(Q(α)/Q) can send α only to α. However, as α generated Q(α) this
means that g = id.

4. Let α, β and γ be as in the previous point. Then both β and γ are roots of h = f
x−α ∈ Q(α)[x].

As this polynomial has degree 2, and β and γ are not in Q[x], h = mβ,Q(α) = mγ,Q(α). So,

Q(α, β, γ) has degree 2 over Q(α). So, by the multiplicativity of the degrees of �eld extensions,
L = Q(α, β, γ) has degree 6 over Q. Let G be the Galois group of L over Q. Then, G acts

faithfully on α, β and γ, which yields an embedding G ↪→ S3. As both have 6 elements, this

is in fact an isomorphism.

Exercice 4.

SoitK un corps de caractéristique p > 0, et α ̸= 0 ∈ K tel que le pôlynome f(x) = xp−x+α ∈ K[x]
n'a pas de racines dans K. Soit L le corps de decomposition de f, et G = Gal(L/K).



1. Montrez que G ∼= Z/pZ. Indication: Si β est une racine de f, alors β + γ l'est aussi, pour

tout γ ∈ Fp.

2. Montrez que le pôlynome f est irréductible sur K.

3. Considérons K = Fp(t). Montrez que le pôlynome f(x) = xp−x+ t ∈ K[x] n'a pas de racines
dans K.

4. Soit K et f comme dans le point précédent. Donnez le corps de décomposition de f sur K.

Solution.

1. Let β be a root of f. It holds that βp − β + α = 0. Let γ ∈ Fp ⊆ K. Then, using Fermat's

little theorem, which states that γp = γ modulo p, it holds that over a �eld of characteristic

p, we have

(β + γ)p − (β + γ) + α = βp + γp − β − γ + α = βp + γ − β − γ + α = βp − β + α = 0.

Hence all β + γ, where γ ∈ Fp are roots of f. We get p distinct roots, and as Fp ⊆ K, by
adjoining β to K, all roots are contained in K(β) and hence L = K(β).

Moreover, we have thatmβ,K = f . Letmβ,K =
∏

γ∈I(x−(β+γ) in L[x] with I ⊂ Fp[x]. Then

the coe�cients in front of x|I|−1 are exactly −
∑

γ∈I(β+γ) = |I|β +
∑

γ∈I γ. If we suppose

that |I| < p, one contradicts the fact that β /∈ K. Therefore mβ,K = f .

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(β), there is at most one element in G that sends the root β to the root β + γ, for
γ ∈ Fp. Therefore, |G| ≤ p. There are indeed p elements in G, which are of the form σγ , with
σγ(β) = β + γ for all k ∈ Fp. We get p automorphisms, and hence G ∼= Z/pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L : K], where L = K(β) is the splitting �eld of f. By the previous point, |G| = p, and hence

[K(β) : K] = degmβ,K = p. Since β is a root of f, and since its minimal polynomial is of

degree p, it follows that f ∼ mβ,K , and hence, f is irreducible over K.

3. Let g
h ∈ Fp(t) a root of xp − x+ t. Then, g, h ∈ Fp[t], h ̸= 0 and it holds that(g

h

)p
−
(g
h

)
+ t = 0 ⇔ gp − ghp−1 + thp = 0.

Denote the degree of g by dg, and the degree of h by dh. Then, the degree of the following

polynomials are

deg(gp) = pdg, deg(ghp−1) = dg + (p− 1)dh, deg(thp) = 1 + pdh.

In order for the sum gp − ghp−1 + thp to be zero, the degrees of each of the summands needs

to be canceled out.

If dh ≥ dg, then the degree of thp, being 1+pdh, is strictly bigger than pdg and dg+(p−1)dh
and hence thp can't be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if dg > dh, then nothing can cancel out gp, which one sees by a degree

comparison, and hence the sum gp − ghp−1 + thp can only be zero if g = 0 and h = 0, which
is a contradiction.

4. Let u be a root of f : up − u + t = 0 ⇐ up − u = −t, and hence F(t) ⊆ Fp(u). With u
being transcendental over Fp, it follows that the splitting �eld is Fp(u). We remark that by

the second part of the exercise, all roots are of the form u + γ, where γ ∈ Fp, and hence all

roots are contained in Fp(u).



Exercice 5.

Soit K ⊆ L ⊆ E une extension algébrique tel que K ⊆ L et L ⊆ E sont Galois. Montrer que

K ⊆ E n'est pas forcément Galois.

Indication. Envisager les extensions Q ⊆ Q(
√
2) ⊆ Q(

√
1 +

√
2) ou Q ⊂ Q(

√
2) ⊂ Q( 4

√
2).

Solution. We have the following extension tower:

Q ⊆ Q(
√
2) ⊆ Q(

√
1 +

√
2).

The extension Q ⊆ Q(
√
2) is Galois, as Q is a perfect �eld and Q(

√
2) is the decomposition

�eld of the polynomial x2 − 2 ∈ Q[x], see Theorem 4.6.15. Similarly, the extension Q(
√
2) ⊆

Q(
√
1 +

√
2) is Galois, as Q(

√
2) is perfect and Q(

√
1 +

√
2) is the decomposition �eld of the

polynomial x2 − 1−
√
2 ∈ Q(

√
2)[x].

We now consider the extension Q ⊆ Q(
√
1 +

√
2). We note that this extension is of degree 4.

We also note by develloping

(x2 − (1 +
√
2))(x2 − (1−

√
2))

that
√

1 +
√
2 is a root of the polynomial x4−2x2−1 ∈ Q[x], hence m√

1+
√
2,Q

(x) = x4−2x2−1 by

the degree because [Q(
√

1 +
√
2) : Q] = 4. Moreover, the other roots of x4−2x2−1 are −

√
1 +

√
2

and ±
√

1−
√
2. Now, we remark that Q(

√
1 +

√
2) ⊆ R, therefore ±

√
1−

√
2 /∈ Q(

√
1 +

√
2).

It follows that the extension is not Galois: indeed in a Galois extension L/K for α ∈ L the

polynominal mα,K has all its roots in L, these roots being the orbit of the element α by the Galois

group. But this was just shown no to be the case for
√
1 +

√
2.

A similar argument works also for

Q ⊂ Q(
√
2) ⊂ Q(

4
√
2).


