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Séries 1 à 14 des exercices

La géométrie différentielle peut très brièvement se résumer dans l’idée d’appliquer des méthodes de calcul
différentiel et d’analyse à des problèmes de géométrie, en particulier à l’étude des courbes, des surfaces et d’objets
généralisant ces notions. Toutefois le géométrie différentielle ne se réduit pas au seul usage du calcul différentiel
mais fait intervenir d’autres techniques telles que celles de l’algèbre linéaire, de la géométrie vectorielle, la théorie
des groupes, la topologie, ainsi que la géométrie euclidienne classique. Cette première série d’exercices propose
de revisiter le produit vectoriel d’une part, et de construire une preuve de l’inégalité isopérimétrique dans le
plan d’autre part.

Exercice 1.1. On rappelle que le produit vectoriel de deux vecteurs de R3 définis dans une base
orthonormée directe (i.e. d’orientation positive) par x = x1e1 +x2e2 +x3e3 et y = y1e1 +y2e2 +y3e3

est le vecteur

x× y =
3∑
i=1

3∑
j=1

xiyj ei × ej

= (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3

=

∣∣∣∣ x2 y2

x3 y3

∣∣∣∣ e1 −
∣∣∣∣ x1 y1

x3 y3

∣∣∣∣ e2 +

∣∣∣∣ x1 y1

x2 y2

∣∣∣∣ e3.

Prouver que a× b ∈ R3 est uniquement déterminé par les conditions géométriques suivantes :

(a) (a× b) ⊥ a et (a× b) ⊥ b.

(b) ‖a× b‖ = aire(P(a,b)) (où P(a,b) est le parallélogramme construit sur les vecteurs a et
b).

(c) Si a et b sont linéairement indépendants, alors {a,b,a×b} est une base d’orientation positive
de R3.

Les exercices qui suivent visent à démontrer l’inégalité isopérimétrique dans le plan. Considérons un domaine
borné D contenu dans la plan R2. Son bord ∂D est la réunion d’une ou plusieurs courbes et on appelle périmètre
de D la longueur totale de ∂D (qui peut éventuellement être infinie). Le quotient isopérimétrique de D est
défini par

Isp(D) =
(Longueur(∂D))

2

Aire(D)
.

L’inégalité isopérimétrique dans le plan affirme que le quotient isopérimétrique minimal parmi tous les domaines
du plan est atteint pour les disques, i.e. pour tout domaine borné D ⊂ R2 on a

Isp(D) ≥ Isp(B2),

où B2 = {x ∈ R2 | ‖x‖ < 1} est le disque unité du plan. De plus on a égalité si et seulement si D est un disque
(de rayon quelconque).

Avant de commencer les exercices qui suivent, prenez un moment pour réfléchir à cette inégalité; vous
pouvez en discuter entre vous. Comprenez-vous ce qu’elle signifie? Quel genre de raisonnement faut-il
faire pour établir une preuve de cette inégalité ?



Exercice 1.2. (a) Prouver que le quotient isopérimétrique est invariant par similitude (une similitude
du plan ou de l’espace euclidien est une bijection qui préserve les rapport de distances; c’est donc la
composition d’une homothétie et d’une isométrie).
(b) Calculer le quotient isopérimétrique d’un carré, d’un triangle équilatéral et d’un disque.

Le but des exercices 1.3 à 1.9 est de conduire à une preuve de l’inégalité isopérimétrique dans le plan.
On utilisera uniquement des résultats de géométrie euclidienne de base et des propriétés intuitives
élémentaires des notions de longueur et d’aire.

Exercice 1.3. Prouver la proposition 32 du livre 1 des Éléments d’Euclide. Cette proposition dit que
la somme des angles de tout triangle est égale à deux angles droits.
Indication. Il faut utiliser le postulat des parallèle1.

Exercice 1.4. (a) Soit C un point sur le cercle de diamètre [A,B] (supposé distinct de A et B).
Prouver que l’angle en O du triangle OCB est le double de l’angle en A du triangle ACB:

^OCB = 2^ACB

(on écrit aussi B̂OC = 2B̂AC).

O
BA

C

2αα

(b) Prouver ensuite le théorème du demi-cercle de Thales : Le triangle ABC est un triangle rectangle
en C si et seulement le point C est un point du cercle de diamètre [A,B] (rappelons que ABC est un
triangle rectangle en C si ^CAB = π/2).

Exercice 1.5. Prouver que parmi tous les triangles ABC tels que x = d(A,C) et y = d(B,C), celui
qui maximise l’aire est le triangle rectangle en C.

Exercice 1.6. Rappelons qu’un domaine D ⊂ Rn est convexe, si pour toute paire de points A,B ∈ D,
le segment [A,B] est contenu dans D. Prouver que si D ⊂ R2 n’est pas convexe, alors ce domaine
ne minimise pas le quotient isopérimétrique (i.e. on peut construire un autre domaine D′ tel que
Isp(D′) < Isp(D)).

Exercice 1.7. Supposons que D ⊂ R2 est un domaine isopérimétrique optimal (en particulier D est
convexe), notons Γ = ∂D son bord. Soient A,B ∈ Γ deux points du bord de D qui partagent la courbe
Γ en deux parties d’égales longueurs. Montrer alors que la corde [A,B] partage D en deux régions
d’aires égales.

1Le postulat des parallèle, aussi appelé 5ème postulat d’Euclide énonce que dans un plan, par tout point extérieure
à une droite il passe une unique parallèle à cette droite.

2



Exercice 1.8. Soit D ⊂ R2 est un domaine isopérimétrique optimal et Γ, A,B comme dans l’exercice
précédent. Montrer alors que pour tout point P de Γ, différents de A et B, on a ^PAB = π/2.
Indication. Supposant par l’absurde que ça n’est pas le cas pour un certain point P , utiliser l’exercice
1.6 pour construire un domaine D′ dont le périmètre est égal à celui de D mais Aire(D′) > Aire(D).

Exercice 1.9. A partir des exercices précédents, prouver l’inégalité isopérimétrique dans le plan :
pour tout domaine du plan on a Isp(D) ≥ 4π, avec égalité si et seulement si D est un disque (on admet
l’existence d’un domaine isopérimétrique optimal, il s’agit ici de prouver l’unicité)
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Exercice 2.1. Prouver les formules suivantes concernant le produit vectoriel :

Pour tous a,b, c,d ∈ R3 on a

(i) (a× b)× c = 〈a, c〉b− 〈b, c〉a (première dentité de Grassmann),

(ii) a× (b× c) = 〈a, c〉b− 〈a,b〉 c (seconde identité de Grassmann).

(iii) 〈a× b, c× d〉 = 〈a, c〉 〈b,d〉 − 〈a,d〉 〈b, c〉 (identité de Lagrange).

(iv) 〈a× b, c× d〉 = 〈(a× b)× c,d〉 .

Indication. En choisissant une base orthonormée directe bien adaptée au problème, on peut simplifier
les calculs.

Exercice 2.2. Montrer que pour tous a,b, c ∈ R3 on a

i) (a× b)× c + (b× c)× a + (c× a)× b = 0 (première identité de Jacobi)

ii) a× (b× c) + b× (c× a) + c× (a× b) = 0 (deuxième identité de Jacobi.)

Exercice 2.3. Le produit vectoriel dans E3 est-il associatif ?

Exercice 2.4. (a) Rappeler ce qu’est une similitude d’un espace vectoriel euclidien.

(b) Prouver que les similitudes d’un espace vectoriel euclidien En forment un groupe.

(c) Prouver que les isométries forment un sous-groupe normal du groupe des similitudes.

(d) Expliquer pourquoi une similitude qui fixe l’origine 0 ∈ En est une application linéaire.

(e) Démontrer que les propriétés suivantes sont équivalentes pour application linéaire inversible f :
En → En :

(i) f est une similitude.

(ii) f préserve les angles, i.e. si a,b ∈ En sont non nuls, alors l’angle entre f(a) et f(b) est égal
à l’angle entre a et b.

(iii) f préserve l’orthogonalité, i.e. si a ⊥ b alors f(a) ⊥ f(b).

(f) On peut identifier C au plan euclidien orienté R2. Montrer que f : C → C est une similitude
linéaire directe si et seulement si f est la multiplication par un nombre complexe non nul (i.e. on
a f(z) = az avec a ∈ C∗).

Exercice 2.5. Donner un exemple de courbe fermée simple qui est de classe C1, mais pas de classe
C2.

Exercice 2.6. A quelle condition le graphe d’une fonction f représente-t-il une courbe birégulière ?
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Exercice 2.7. Par définition, la longueur d’un arc de courbe α : [a, b] → Rn est l’intégrale `(α) =∫ b
a Vα(u)du où Vα(u) = ‖α̇(u)‖ est la vitesse de α.

Calculer la longueur des courbes suivantes :

(a) α(u) = (cos(u), sin(u), u). −π ≤ u ≤ π (la courbe α est une hélice circulaire droite).

(b) β(u) = (eu , e−u ,
√

2u). 0 ≤ u ≤ t.

(c) γ(u) = (u cos(u), u sin(u)). 0 ≤ u ≤ 4π (la courbe γ est une spirale d’Archimède).

Exercice 2.8. La cycloïde est la courbe décrite par un point sur le bord d’une roue qui roule, sans
glisser, en ligne droite.

(a) Dessiner une cycloïde

(b) Donner un paramétrage de la cycloïde (préciser d’abord le choix de la situation et du système de
coordonnées).

(c) Calculer la longueur d’une arche de la cycloïde (en supposant que la roue engendrant la cycloïde
est de longueur r)

Exercice 2.9. Discuter le paradoxe de la roue d’Aristote.
On considère deux roues attachées solidairement ensemble et centrées sur un même axe, l’une de rayon
2 et l’autre de rayon 1. On fait rouler ces roues (solidairement) sur une route pendant un tour de roue.
Le centre de la grande roue s’est alors déplacé d’une distance de 4π et celui de la petite roue d’une
distance de 2π. Conclusion 4π = 2π.
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Dans cette série on on avance avec la théorie des courbes (abscisse curviligne, paramétrage naturel).
Enfin on approfondit quelques points subtils liés à la notion de longueur.

Exercice 3.1. Exprimer la longueur de l’ellipse x2

a2
+ y2

b2
= 1 sous forme d’une intégrale (ne pas essayer

de calculer cette intégrale, qui ressort de la théorie des fonctions elliptiques).

Exercice 3.2. (a) Calculer l’abscisse curviligne de la courbe

γ(t) = (cosh(t), sinh(t), t),

depuis le points initial t0 = 0.
(b) Trouver ensuite le paramétrage naturel avec le même point initial.

Exercice 3.3. L’astroïde est la courbe plane d’équation

|x|
2
3 + |y|

2
3 = 1.

(a) Dessiner l’astroïde.

(b) Trouver une paramétrisation de l’astroïde

(c) Calculer la longueur d’un cycle de l’astroïde.

(d) Chercher tous les points singuliers.

(e) Calculer l’abscisse curviligne avec avec point initial en (1, 0).

(f) Trouver le paramétrage naturel avec le même point initial.

Exercice 3.4. (a) Notons (x, y) les coordonnées cartésiennes de R2. Rappeler la définition précise des
cordonnées polaires (r, θ), en précisant leur domaine de définition.
(b) Écrire l’équation générale d’une droite en cordonnées polaires, puis l’équation d’un cercle de rayon
a et de centre c = (r0, θ0).
(c) Soit γ(t) = (r(t), θ(t)) une courbe de classe C1 écrite en coordonnées polaires. Trouver et prouver
une formule donnant sa longueur dans ces coordonnées.
(d) La spirale logarithmique est la courbe plane d’équation polaire r = eθ. Utiliser la formule précédente
pour calculer la longueur d’un cycle de cette spirale défini par 0 ≤ θ ≤ 2π. Donner ensuite le
paramétrage naturel avec le point (1, 0) comme point initial.

Exercice 3.5. La conchoïde de Nicomède est la courbe C dans le plan euclidien qui est définie de la
façon suivante:
On considère un point O dans le plan et une droite D qui ne passe pas par O. Pour tout point p du
plan tel que p 6∈ D et p 6= O on note f(p) = d(p, q) où q est l’intersection de D avec la droite passant
par O et p (i.e. q = (O + R

−→
Op) ∩D) :

C = {p ∈ E2 | f(p) = b}.
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(a) Dessiner la courbe C. Est-elle connexe ?

(b) Donner une équation polaire de cette courbe (on supposera que la droite D est verticale et que le
point O est l’origine).

Exercice 3.6. Soit F : I → SO(n) ⊂Mn(R) = Rn×n une courbe de classe C1 à valeurs dans le groupe
orthogonal. Prouver que F (t)−1Ḟ (t) et Ḟ (t)F (t)−1 sont des matrices antisymétriques pour tout t ∈ I.

Exercice 3.7. On rappelle que l’exponentielle exp(A) d’une matrice carrée A ∈Mn(R) est définie par
la série :

exp(A) =
∞∑
k=0

1

k!
Ak = I +A+

1

2!
A2 + · · ·

On admet que cette série converge. On admet aussi que si AB = BA, alors exp(A+B) = exp(A) exp(B)
(la preuve est la même que pour le cas de l’exponentielle d’une somme de deux nombres réels).

(a) Montrer que si A ∈Mn(R) est une matrice antisymétrique, alors exp(A) ∈ SO(n).

(b) Calculer la matrice exp(tJ) où J =

(
0 −1
1 0

)
.

Exercice 3.8. Prouver l’affirmation suivante ou trouver un contre-exemple : Si γn : [a, b] → Rn est
une suite de courbes convergeant uniformément vers la courbe γ : [a, b]→ Rn (supposée de classe C1),
alors les longueurs convergent, i.e. `(γ) = limn→∞ `(γn).

Exercice 3.9 (Distance intrinsèque dans un domaine.). Le but est de cet exercice est de définir la
notion de distance intrinsèque dans un domaine de Rn (par définition, un domaine de Rn est un
sous-ensemble ouvert et connexe).
Soit donc U ⊂ Rn et p, q ∈ U . On note Cpq l’ensemble des courbes γ : [a, b]→ U qui sont continues, de
classe C1 par morceaux et qui relient p à q. On défini alors la distance intrinsèque dans U de p à q par

δU (p, q) = inf{`(γ) | γ ∈ Cpq}.

(a) Prouver que Cpq 6= ∅ pour tous p, q ∈ U .

(b) Prouver que δU (p, q) ≥ ‖q − p‖ pour tous p, q ∈ U .

(c) Prouver que (U, δU ) est un espace métrique.

(d) A quelle condition sur le domaine U a-t-on δU (p, q) = ‖q − p‖ pour tous p, q ∈ U? (donner une
condition suffisante).

(e) Considérons le cas du domaine U = {(x, y) ∈ R2 | x < −1 ou y 6= 0}. Quelle est la distance
intrinsèque entre les points p = (0, 1) et q = (0,−1) ?
Est-ce qu’il existe une courbe de longueur minimale reliant p à q?

(On dit que δU (p, q) est la distance intrinsèque de p à q dans le domaine U et que d(p, q) = ‖q − p‖
est la distance euclidienne extrinsèque).
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A. Exercices standards.

Exercice 4.1. Si a et b sont des vecteurs de R3 et a 6= 0, on dit que le vecteur c ∈ R3 est la composante
normale de b ∈ R3 selon a ∈ R3 si c ⊥ a et il existe λ ∈ R tel que b = λa + c. Montrer que cette
composante normal peut s’écrire

c =
(a× b)× a

‖a‖2
.

Exercice 4.2. Démontrer que le vecteur (unitaire) tangent et le vecteur de courbure d’une courbe
régulière de classe C2 sont des notions géométriques, i.e. ces champs de vecteurs sont invariants par
reparamétrisation directe.

Exercice 4.3. Nous avons défini le vecteur normal principal Nα et le vecteur de courbure Kα d’une
courbe birégulière α de classe C2 par

Nα =
α̈− 〈α̈,Tα〉Tα

‖α̈− 〈α̈,Tα〉Tα‖
et Kα =

1

‖α̇‖
Ṫα.

Prouver que Kα = καNα, où κα = ‖Kα‖ est la courbure de α.

Exercice 4.4. Prouver que la courbe γ(t) = (cosh(t), sinh(t), t) est birégulière, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Exercice 4.5. Prouver la formule suivante qui donne la courbure d’une courbe régulière γ : I → R3

de classe C2 dans R3:
κγ(u) =

‖γ̇(u)× γ̈(u)‖
V 3
γ

.

Exercice 4.6. La développée d’une courbe birégulière α : I → Rn est la courbe β : I → Rn définie par

β(u) = α(u) +
1

κα(u)
Nαu

où ρα(u) = 1
κα(u) est le rayon de courbure et Nαu est le vecteur normal principal. La développée d’une

courbe est donc le lieu géométrique de ses centres de courbure (= centre du cercle osculateur).

Calculer les développées des courbes suivantes:

(a) Un cercle dans Rn.

(b) Une droite dans Rn.

(c) L’hélice circulaire droite α(u) = (a cos(u), a sin(u), b u) dans R3 (on suppose a, b > 0).

(d) La cycloïde γ(t) = (r(t− sin t), r(1− cos t)) dans R2.

Prouver que la développée de l’hélice est de nouveau une hélice et que la développée de la cycloïde est
aussi une cycloïde.
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Exercice 4.7. Sans faire aucun calcul, dessiner (approximativement) une ellipse et sa développée.
Expliquer votre raisonnement.

On appelle triangle sphérique la donnée de trois points A,B,C sur une sphère S, avec les arcs de
grand-cercles a (reliant B et C), b (qui relie A et C) et c (qui relie A et B). Ces arcs de grand-cercles
sont les côtés du triangle sphérique. On note α l’angle formé par les arcs b et c au point A, de même
on note β l’angle en B et γ l’angle en C.

Rappelons qu’on appelle grand-cercle sur une sphère, un cercle formé par l’intersection de cette sphère avec
un plan passant par le centre de la sphère. Les autres cercles tracés sur la sphère sont les petit-cercles. Deux
points sur une sphère sont toujours reliés par deux arcs de grand-cercles; dans la détermination d’un triangle
sphérique, on ne considère que le plus petit de ces deux arcs.

Exercice 4.8. Par abus de notations, nous notons aussi par a, b, et c les longueurs des côtés du
triangle sphérique. Démontrer la formule de trigonométrie sphérique suivante:

cos
( c
r

)
= cos

(a
r

)
cos

(
b

r

)
+ sin

(a
r

)
sin

(
b

r

)
cos(γ),

où r est le rayon de la sphère.

Exercice 4.9. La distance sphérique dS(A,B) entre deux points A et B sur une sphère S est par
définition la longueur de l’arc de grand cercle reliant ces deux points.

Montrer à partir de la trigonométrie sphérique que dS vérifie bien toutes les propriétés d’une distance.

B. Exercice complémentaire (ne fera pas partie du champ de l’examen).

Exercice 4.10. Le but de cet exercice est de montrer qu’on peut (re)définir la longueur d’une courbe
de classe C1 par un processus d’“approximations polygonales”.
Soit γ : [a, b]→ Rn une courbe de classe C1, et soit σ = [t0 = a < t1 < · · · < tm = b] une subdivision
de l’intervalle [a, b]. On note

L(γ) = sup
σ

m−1∑
i=0

d(γ(ti), γ(ti+1)),

où le suprémum est pris sur toutes les subdivisions de [a, b] et d(p, q) = ‖q − p‖.

(a) Faire un dessin et expliquer brièvement la signification de cette formule.
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(b) Montrer que pour tout courbe C1 on a L(γ) ≤ `(γ), où `(γ) est la longueur de γ telle que définie
dans le cours.

(c) Prouver l’inégalité inverse `(γ) ≤ L(γ).
(Indication : Utiliser que γ̇ est uniformément continue et montrer que pour tout ε > 0 on peut
trouver une subdivision suffisamment fine de [a, b] telle que `(γ) ≤

∑m−1
i=1 d(γ(ti), γ(ti+1)) + 2ε(b−

a)).

Remarque générale sur la longueur des courbes.

Les exercices précédents montrent que si γ : [a, b]→ Rn est une courbe de classe C1, alors L(γ) = `(γ),
c’est-à-dire

sup
σ

m∑
i=0

‖γ(ti+1)− γ(ti)‖ =

∫ b

a
‖γ̇(t)‖dt.

Il est clair que cette formule est encore vraie pour une courbe de classe C1 par morceaux. Henri
Lebesgue s’était posé la question suivante dans sa thèse dont le titre est Intégrale, Longueur, Aire
(soutenue en 1902) : Pour quelle classe de courbes

γ(t) = (x1(t), . . . , xn(t)), (a ≤ t ≤ b)

la plus générale possible, a-t-on L(γ) <∞ et L(γ) = `(γ) ?
Et il a formulé les réponses suivantes :

(i) La courbe γ est rectifiable (i.e. L(γ) < ∞) si et seulement si toutes les fonctions t 7→ xi(t) sont
à variation bornée.

(ii) On a l’égalité `(γ) = L(γ) <∞ si et seulement si toutes les fonctions t 7→ xi(t) sont absolument
continues.

Les notions de fonctions à variation bornée et absolument continues sont définies dans les bons livres
d’analyse réelle (par exemple l’excellent livre de Kolmogorov-Fomin). Faisons juste les remarques
suivantes :

(a) Toute fonction à variation bornée admet une dérivée presque partout.

(b) Toute fonction absolument continue est à variation bornée.

(c) Inversement il existe des fonctions à variation bornée qui ne sont pas absolument continues.

(d) Toute fonction lipschitzienne est absolument continue.

Soulignons pour finir qu’il existe des courbes rectifiables pour lesquelles `(γ) < L(γ). Un exemple est
donné par le graphe de la fonction de Cantor-Vitalli (parfois appelé escalier du diable).
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Figure 1: Une approximation de la fonction de Cantor-Vitalli

Les objectifs pour cette série sont les suivants :

- Développer une intuition de la torsion et de la courbure et leur signification géométrique.

- Développer une certaine pratique et des bonnes stratégies pour les calculs géométriques liés aux
courbes, en particulier se familiariser avec le repère de Frenet, savoir utiliser les équations de
Serret-Frenet et comprendre les conséquences du théorème fondamental.

A. Exercices standards.

Exercice 5.1. Prouver que la courbe γ(t) = (cosh(t), sinh(t), t) est birégulière, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Exercice 5.2. Considérons la courbe

γ(t) = (cos(t) + t sin(t), sin(t)− t cos(t), t2), (t ∈ R).

(a) Trouver le ou les points singuliers de cette courbe.

(b) Calculer l’abscisse curviligne s = s(t) de cette courbe depuis le point initial γ(0).

Pour les questions qui suivent on se restreint à t > 0.

(c) Calculer le vecteur tangent Tγ(t) et le vecteur de courbure Kγ(t).

(d) Quels sont les points biréguliers de γ ?

(e) Calculer la courbure κγ(t) de cette courbe et le vecteur normal principal Nγ(t).

(f) Donner le vecteur binormal Bγ(t) (aux points biréguliers).

(g) Trouver la torsion de γ.
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Exercice 5.3. Soit γ : I → R3 une courbe birégulière de classe C3. On appelle vecteur de Darboux
de γ le champ de vecteurs Dγ défini le long de γ par

Dγ(u) := τγ(u)Tγ(u) + κγ(u)Bγ(u)

Montrer que pour tout champ de vecteurs A le long de γ s’écrivant A(u) = a1(u)T(u) + a2(u)N(u) +
a3(u)B(u), on a

1

V

d

du
A =

1

V
(ȧ1 T + ȧ2 N + ȧ3 B) + D×A.

(C’est la Formule de Darboux ).

Exercice 5.4. Calculer le vecteur de Darboux de l’hélice circulaire droite γ(u) = (a cos(u), a sin(u), bu).

Exercice 5.5. Considérons la courbe γ : R→ R3 définie par

γ(t) = (t, t2 + |t|3, 0).

Montrer que cette courbe est régulière au sens de Frenet mais elle n’est pas de classe C3 (la définition
de la régularité de Frenet se trouve en page 32 du polycopié, édition 2024).
Calculer ensuite le repère de Frenet.

Exercice 5.6. Que peut-on dire d’une courbe (régulière au sens de Frenet) dont la courbure et la
torsion sont constantes ?

Exercice 5.7. Montrer que la torsion d’une courbe γ : I → R3 birégulière de classe C3 peut se calculer
par la formule suivante:

τ(u) =
[γ̇(u), γ̈(u),

...
γ (u)]

‖γ̇(u)× γ̈(u)‖2
=

[γ̇, γ̈,
...
γ ]

κ2(u)V 6
γ (u)

où [x,y, z] = 〈x,y × z〉 représente le produit mixte de trois vecteurs de R3.

Exercice 5.8. Montrer qu’une courbe γ : I → R3 (C3 et birégulière) est une hélice circulaire droite si
et seulement si son vecteur de Darboux est constant.

B. Exercice complémentaire

Exercice 5.9. On sait qu’à un déplacement près, la géométrie d’une courbe est déterminée par sa courbure
et sa torsion. Ceci implique que toute propriété géométrique se traduit en une ou plusieurs équations sur τ et
κ. Le but de cet exercice est d’illustrer ceci dans le cas des courbes sphériques (i.e. les courbes tracées sur une
sphère).

(a) Soit γ : I → R3 une courbe de classe C3 birégulière, de torsion non nulle et paramétrée normalement.
Supposons que ‖γ(s)‖ = r = constante. Montrer que pour tout s on a

γ(s) + ρ(s)N(s) +
ρ̇(s)

τ(s)
B(s) = 0,

où τ est la courbure de γ et ρ(s) = 1
κ(s) est le rayon de courbure.
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En déduire que la fonction

s 7→ ρ(s)2 +

(
1

τ(s)
ρ̇(s)

)2

est constante.

(b) Dans le sens réciproque : Soit γ : I → R3 une courbe de classe C3 birégulière paramétrée nor-
malement. On suppose que la courbure de γ est strictement croissante et la torsion est non nulle.
Démontrer que γ est une courbe sphérique (i.e. elle est tracée sur une sphère) si et seulement si

ρ(s)2 +

(
1

τ(s)
ρ̇(s)

)2

est constante.
Déterminer ensuite le centre et le rayon de la sphère .
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Objectifs pour cette série :

Dans cette série on étudie la courbure des courbures planes et sa signification géométrique.
On commence aussi une révision du calcul différentiel.

A. Exercices standards.

Exercice 6.1. (a) Soit γ une courbe plane dont la courbure k est une fonction monotone de l’abscisse
curviligne. Cette courbe peut-elle être une courbe C2 fermée ?

(b) Considérons les courbes planes suivantes : un cercle, une ellipse, une parabole, que l’on paramétrise
naturellement. Pour chacune de ces courbes, représenter qualitativement le graphe de la fonction
s→ k(s) (ce graphe s’appelle le diagramme de courbure de la courbe considérée).

Exercice 6.2. Que vaut l’intégrale
∫
γ
κ ds pour la courbe suivante ?

Exercice 6.3. Le tracé d’une route ou d’une voie de chemin de fer est habituellement constitué de
segments de droites, d’arcs de cercles et d’arcs de chlotoïdes.
Voir https://fr.wikipedia.org/wiki/Trac%C3%A9_en_plan_(route).

(a) Rappeler ce qu’est une chlotoïde.

(b) Pour quelle raison, à votre avis, on utilise des arcs de chlotoïdes dans les tracés ferroviaires ?

Exercice 6.4. Un peu de calcul différentiel :
(a) Calculer la différentielle (au sens de Frechet) dϕA(H) de l’application ϕ : Mn(R)→Mn(R) définie
par ϕ(A) = A3, pour A,H ∈ Mn(R) quelconques. Que peut-on dire du cas particulier où A et H
commutent ?
(b) On considère deux applications différentiables φ, ψ : Mn(R)→Mn(R). Montrer la version suivante
de la règle de Leibniz :

d(φ · ψ)A(H) = dφA(H)ψ(A) + φ(A)dψA(H),

où (φ · ψ)(A) = φ(A) · ψ(A) (produit matriciel).

(c) En utilisant le résultat précédent, montrer que si φ : GLn(R)→ GLn(R) est définie par φ(A) = A−1,
alors

dφA(H) = −A−1HA−1.
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Exercice 6.5. Prouver que l’application : f : R2 → R2 données par

(y1, y2) = f(x1, x2) = (x1 cos(x2), x2 − x1x2)

est un difféomorphisme au voisinage de (0, 0).

Exercice 6.6. a.) Rappeler la définition de la notion de système de coordonnées curviligne.

b.) Prouver l’affirmation suivante ou donner un contre-exemple : Si {x1, x2} et {y1, y2} sont deux
systèmes de coordonnées curvilignes sur un ouvert U de R2 et si y2 = x2, alors ∂

∂y2
= ∂

∂x2
.

Exercice 6.7. Soient p = (p1, p2) et q = (q1, q2) deux points distincts de R2. Prouver que les fonctions
u(x, y) = d((x, y), (p1, p2)) et v(x, y) = d((x, y), (q1, q2)) (où d(·, ·) est la distance euclidienne dans R2)
définissent un système de coordonnées curvilignes de classe C∞ dans chacun des demi-plans limités
par la droite passant par p et q. Décrire les lignes de coordonnées.

B. Exercices complémentaires

Exercice 6.8. (a) Rappeler à quelle condition on peut définir le cercle osculateur d’une courbe
α : I → Rn en un point donné.

(b) Rappeler la définition du cercle osculateur.

(c) Comment trouve-t-on le centre et le rayon du cercle osculateur en un point donné de la courbe?
Préciser dans quel plan ce cercle est contenu.

(d) Prouver le résultat suivant : Soit α : I → R2 une courbe plane C3 dont la courbure est positive et
strictement croissante. Alors les cercles osculateurs C(s) à α sont emboîtés dans le sens suivant :
Si s1 < s2, alors C(s2) est contenu dans le disque bordé par C(s1).

Indications pour la question (d): Montrer d’abord que le rayon ρ(s) de C(s) est une fonction décroissante de s.
Puis montrer que la distance entre le centre de C(s1) et C(s2) est inférieure à la différence des rayons (pourquoi
cela répond-il à la question?). Pour justifier cette dernière affirmation il est utile de supposer la courbe α
paramétrée naturellement et de calculer la vitesse de s 7→ c(s) (la dérivée du centre c(s) de C(s) se calcule
facilement dans le repère de Frenet).
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Exercice 6.9. (a) Soit γ : [0,∞) → R2 une courbe plane de classe C3 de longueur infinie dont la
courbure est une fonction positive et strictement croissante. Prouver que la trace de cette courbe est
bornée.
Pouvez vous donner une borne explicite (i.e. une constante C qui dépend du minimum de la courbure
et telle que ‖γ(s)− γ(0)‖ ≤ C pour tout s ?)

(b) Montrer par un exemple que l’hypothèse de monotonie de la courbure est nécessaire. Plus précisé-
ment, montrer qu’il existe une courbe dont la courbure vérifie k(s) ≥ a > 0 pour tout s et qui n’est
pas bornée. (Il n’est pas nécessaire de produire une formule explicite, l’exemple peut simplement se
dessiner).
Indication pour la question (a) : penser à l’exercice 6.7(d).

Exercice 6.10. Notons par γ(s) = (x(x), y(s)) ∈ R2 la chlotoïde paramétrée naturellement.
Pensez-vous que la limite

lim
s→∞

γ(s) ∈ R2

existe ?

(Il s’agit de proposer un argument géométrique et non de calculer ou analyser les limites des intégrales
de Fresnel; la question 6.7(d) est utile pour cet exercice).
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A. Exercices standards.

Exercice 7.1. Le but de cet exercice est de prouver que la différentielle de l’application déterminant
det : Mn(R) −→ R en A ∈ Mn(R) est l’application linéaire ddetA : Mn(R) → Mn(R) donnée par la
formule

ddetA(H) = Tr(Cof(A)>H),

où Cof(A) est la matrice des cofacteurs de A.

On procède en trois étapes:

(1) Dans un premier temps démontrer la formule pour le cas A = I;

(2) Supposer ensuite que A ∈ GLn(R), i.e. que A est inversible;

(3) Finalement, conclure en utilisant le fait que pour toute matrice A ∈Mn(R), la matrice A+ tI est
inversible pour t suffisamment petit.

Exercice 7.2. Soit γ : I → R2 une courbe régulière plane de classe C2 et r ≥ 0. On appelle courbe
parallèle à γ à distance r la courbe γr(t) = γ(t) + rNγ(t) (où Nγ = J(Tγ) est le champ de vecteurs
normal à γ).

(a) Calculer la courbure κr(t) de la courbe parallèle γr (en fonction de r et de t).

(b) Montrer que la fonction r 7→ κr satisfait l’équation différentielle de Ricatti :
∂κ

∂r
= κ2.

(c) Supposons que q = inf
t∈I

1

|κ(t)|
> 0. Montrer que l’application f : (−ε, ε) × I → R2 définie par

f(r, t) = γr(t) est une immersion pour tout ε ≤ q.

(d) Expliciter le cas du cercle de rayon a centré en 0.

(e) Expliquer pourquoi l’affirmation du point (c) n’est pas correcte pour ε > q.

Remarque. Cet exercice montre en particulier que localement, dans un voisinage de la courbe, on peut construire
un système de coordonnées curviligne dont l’une des coordonnées est l’abscisse curviligne de la courbe et l’autre
est la distance orientée à la courbe. Ces coordonnées s’appellent des coordonnées de Fermi.

Exercice 7.3. (Exercice sur les variétés de type quadrique)

(a) Rappeler ce qu’est une forme quadratique sur un espace vectoriel.

(b) Soit Q : Rn → R une forme quadratique sur Rn. Prouver que Q est différentiable. Que vaut sa
différentielle en un point x ∈ Rn ?

(c) Que dit le théorème de Sylvester de l’algèbre linéaire ? Qu’est-ce que la signature d’une forme
quadratique ? Que signifie la condition Q est non dégénéré pour une forme quadratique ?

(d) Prouver que si Q : Rn → R une forme quadratique non dégénérée, alors l’hypersurface Q−1(c) est
une sous-variété de Rn pour tout c 6= 0. Quelle est sa dimension ?

(e) Est-ce que l’ensemble S0(Q) = {x ∈ Rn | Q(x) = 0} ⊂ Rn est une sous-variété ? L’ensemble
S0(Q) s’appelle le cône isotrope de la forme quadratique Q
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(f) Les hypersurfaces

S+(Q) = {x ∈ Rn | Q(x) = +1} et S−(Q) = {x ∈ Rn | Q(x) = −1}

s’appellent les indicatrices positives et négatives de la forme quadratique Q. Montrer que Q est
entièrement déterminé par les deux indicatrices et le cône isotrope, i.e. si Q1 et Q2 sont deux
formes quadratiques sur Rn telles que

S0(Q1) = S0(Q2), S+(Q1) = S+(Q2), S−(Q1) = S−(Q2),

alors Q1 = Q2.

B. Exercices supplémentaires

Exercice 7.4. Cet exercice est à faire en groupe: Les images ci-dessous sont des créations des artistes
Maurits Cornelis Escher en 1953 (à gauche) et Victor Vasarely en 1968 (à droite).
Expliquer à votre façon en quoi on peut interpréter ces images comme représentant des systèmes de
coordonnées curvilignes dans un domaine du plan (discutez entre vous et rédigez un petit essai).

Exercice 7.5. (*) On note R̂n l’ensemble Rn ∪ {∞}, où {∞} est un point supplémentaire qui
n’appartient pas à Rn. On définit sur cet ensemble une topologie pour laquelle Rn est un ouvert
de R̂n et la topologie induite est la topologie usuelle et les voisinages ouverts du point ∞ sont les
ensembles du type Rn \K où K est un compact de Rn.

On considère ensuite l’application f := R̂n → R̂n définie par

f(x) =


∞ si x = p,

p si x =∞,
p+ k

x− p
‖x− p‖2

si x /∈ {p,∞}.

où p est un point de Rn et k est un réel strictement positif. Cette application s’appelle l’ inversion de
centre p ∈ Rn et de module k > 0, c’est une application qui joue un rôle important en géométrie et en
analyse.

Répondre aux questions suivantes :
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(a) Décrire toutes les suites convergentes de R̂n (on ne demande pas de donner une preuve rigoureuse
mais seulement d’expliquer quelles sont les suites convergentes).

(b) Décrire l’ensemble des points fixes de f , c’est-à-dire l’ensemble {x ∈ R̂n | f(x) = x}.

(c) Prouver que f est un homéomorphisme de R̂n. Quel est son inverse ?
Prouver aussi que f définit par restriction un difféomorphisme de Rn \ {p} dans lui-même.

(d) Prouver que si n = 2, f définit une application anti-holomorphe sur C \ {p}.

(e) Calculer la différentielle dfx(h) en un point x ∈ Rn \ {p}.

(f) Prouver que f est une application conforme sur Rn \ {p} (une application est dite conforme si elle
préserve les angles, concrètement il s’agit de prouver que dfx est une similitude de Rn).

(g) Quel est le rapport de similitude de dfx(h) ?

Cet exercice est important d’une part parce que l’inversion est une application importante en géométrie,
et d’autre part parce qu’il donne l’occasion de s’entraîner au calcul différentiel.
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A. Exercices standards.

Exercice 8.1. On considère les fonctions suivantes : f : R2 → R et g : R3 → R définies par

f(x, y) = x2y + 2x2 − 2xy − 4x+ y et g(x, y, z) = 2xy − 3yz.

(a) Pour quelles valeurs de c ∈ R la courbe de niveau f−1(c) est-elle une sous-variété de R2 ?

(b) Pour quelles valeurs de c ∈ R la surface de niveau g−1(c) est-elle une sous-variété de R3 ?

Exercice 8.2. (a) Soit p = (x0, y0, z0) ∈ R3 un point régulier de la surface S surface définie par
l’équation f(x, y, z) = 0. Prouver que le plan vectoriel tangent TpS est le plan orthogonal au gradient
−→
∇f(p).
(b) Le plan affine tangent à une surface S en un point régulier p est l’ensemble des points de R3 tels
que le vecteur −→pq ∈ TpS. Montrer que le plan affine tangent est donné par

ApS = {q ∈ R3 | 〈q − p,
−→
∇f(p)〉 = 0}.

(c) En appliquant le résultat précédent, obtenir la formule donnant l’approximation du premier ordre
d’une fonction différentiable de deux variables z = ϕ(x, y) au voininage d’un point (x0, y0) (série de
Taylor à l’ordre 1).

Exercice 8.3. Montrer que l’ellipsoïde x2

a2
+ y2

b2
+ z2

c2
= 1 est une surface régulière (i.e. une sous-variété

de dimension 2) et calculer son plan affine tangent en un point p = (x0, y0, z0).

Exercice 8.4. On dit que deux sous-variétés différentiables M1 et M2 de Rn s’intersectent transver-
salement en un point p si p ∈M1∩M2 et en ce point les espaces tangents vérifient TpM1 +TpM2 = Rn.

(a) Donner un exemple d’une surface et d’une courbes régulières R3 qui s’intersectent en un point
unique, mais de façon non transverse.

(b) Montrer que si S est une surface et C une courbe de R3 (toutes deux régulières), qui s’intersectent
transversalement en 0 ∈ R3, alors on peut construire un système de coordonnées locales (u, v, t)
au voisinage de 0 telles que (u, v) sont des paramètres locaux de la surface S et t un paramètre
local de la courbe C.

(c) Dans la même situation que en (b), prouver que 0 est un point isolé de l’intersection S ∩C (i.e. il
existe un ouvert V ⊂ R3 tel que V ∩ S ∩ C = {0}).

Remarque : Dire qu’une courbe ou une surface est régulière signifie qu’elle est une sous-variété de classe Ck,
avec k ≥ 1.

Exercice 8.5. La fenêtre de Viviani est la courbe d’intersection d’une sphère avec un cylindre circulaire
droit qui passe par le centre de la sphère et dont le diamètre est le rayon de la sphère. Si le rayon de
la sphère est 1, on peut donc admettre (quitte à appliquer une isométrie) que la fenêtre de Viviani est
définie par les équations:

x2 + y2 + z2 = 1 et
(
x− 1

2

)2

+ y2 =
1

4
.

On notera cet ensemble V .
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(a) Montrer par un argument géométrique qu’il existe un point q ∈ V tel que le complémentaire V \{q}
est une sous-variété différentiable de R3. Quel sont les coordonnées de q (on admettra un argument
heuristique) ?

(b) Prouver rigoureusement à partir des équations de V que V \ {q} ⊂ R3 est une sous-variété dif-
férentiable.

(c) Trouver une paramétrisation régulière de cette courbe.

B. Exercices supplémentaires.

Exercice 8.6. On a vu à l’exercice 7.3 que O(n) et SLn(r) sont des sous-variété de Mn(R).

a) Décrire l’espace tangent TISLn(R) à la sous-variété SLn(r) ⊂ Mn(R) au point I (= la matrice
identité).

b) Décrire l’espace tangent TIO(n) à la sous-variété O(n) ⊂Mn(R) au point I.
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A. Exercices standards.

Exercice 9.1. (Courbe comme intersection de deux surfaces). Notons C ⊂ Ω l’ensemble des points
de Ω tels que

f(x, y, z) = g(x, y, z) = 0,

où Ω est un domaine de R3 et f, g ∈ Ck(Ω) avec k ≥ 1. Supposons que pour un point (x0, y0, z0) ∈ C
la matrice 

∂f

∂x

∂f

∂y

∂f

∂z

∂g

∂x

∂g

∂y

∂g

∂z


est de rang 2.

(a) Expliquer pourquoi on peut paramétriser l’ensemble C dans un voisinage de (x0, y0, z0) comme
courbe régulière γ : I → Ω de classe Ck.

(b) Que peut-on dire du vecteur tangent γ̇(t) ?

Exercice 9.2. Rappelons que par définition une application f : M → N entre deux sous-variétés
différentiables est un difféomorphisme si elle est bijective et f ainsi que f−1 sont différentiables.

(a) Prouver que pour tout p ∈M , la différentielle dfp : TpM → Tf(p)N est un isomorphisme d’espaces
vectoriels.

(b) En déduire qu’il n’existe aucun difféomorphisme entre deux variétés non vides qui n’ont pas la
même dimension.

(c) Montrer par un exemple qu’une application différentiable bijective f : M → N entre deux sous-
variétés différentiables n’est pas toujours un difféomorphisme (ont peut supposer dim(M) = 1).

Exercice 9.3. (a) On a vu à précédemment que O(n) est une sous-variété de Mn(R). Décrire l’espace
tangent TIO(n) de cette variété au point I (= la matrice identité).
(b) Prouver que SLn(R) est une sous-variété de Mn(R). Quelle est sa dimension ?
(c) Décrire l’espace tangent TISLn(R).

Exercice 9.4. Une surface est dite réglée si c’est une réunion de droites. De façon plus précise, soit
γ : I → R3 une courbe C1 et b : I → R3 un champ de vecteurs de classe C1 le long de γ. La surface
réglée associée est définie par la paramétrisation:

ψ(u, v) = γ(u) + vb(u).

(a) Donner les conditions nécessaires et suffisantes pour qu’une surface réglée ainsi définie soit en effet
une surface régulière localement (c’est-à-dire pour que l’application ψ soit une immersion).

(b) Soit C une courbe de R3. On appelle cône de sommet q ∈ R3 et de base C la réunion des droites
passant par q et un point de C. Donner des conditions nécessaires et suffisantes pour qu’un cône soit
une surface régulière au voisinage de sa base. Puis expliciter une paramétrisation de ce cône.

(c) Expliquer ce qu’est un ruban de Möbius et donner une paramétrisation de cette surface comme
surface réglée dans R3.
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Exercice 9.5. Montrer que l’hyperboloïde H à une nappe x2 +y2−z2 = 1 est une surface doublement
réglée (i.e. réglée de deux manières différentes), puis donner une paramétrisation régulière de cette
surface basée sur l’un de ces réglages.

Indication : Ecrire l’équation sous la forme x2−1 = z2−y2 et factoriser. En déduire algébriquement l’équation
d’une droite contenue dans H, puis la paramétrer et la faire tourner autour de l’axe Oz.

B. Exercice supplémentaire.

Exercice 9.6. Dans cet exercice nous construisons un exemple d’immersion injective qui n’est pas un
plongement.
La lemniscate de Gerono est la courbe plane définie par l’équation 4x2 − 4y2 − x4 = 0, c’est-à-dire
l’ensemble

C = {(x, y) ∈ R2 | 4x2 − 4y2 − x4 = 0}.

(a) Montrer que C n’est pas une sous-variété différentiable de R2.

(b) La restriction de cette courbe à R2 \ {(0, 0)} est-elle une sous-variété différentiable ?

(c) Vérifier que γ :
(
−π

2 ,
3π
2

)
→ R2 définie par γ(t) = (2 cos(t), sin(2t)) est une paramétrisation régulière

de C.

De façon précise, démontrer que

(i) γ est une immersion de l’intervalle ouvert
(
−π

2 ,
3π
2

)
dans le plan.

(ii) γ est injective.

(iii) γ défini une bijection entre l’intervalle ouvert
(
−π

2 ,
3π
2

)
et la courbe C.

(iv) Expliquer ce qu’il se passe sur γ lorsque t→ −π
2 et t→ +3π

2 .

(v) Prouver que γ n’est pas un plongement de l’intervalle
(
−π

2 ,
3π
2

)
dans le plan. (c’est-à-dire que

ça n’est pas un homéomorphisme sur son image).
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Objectifs pour cette semaine : Le premier exercice relie le volume d’un parallélépipède à la matrice
de Gram. Les autres exercices portent sur des notions de géométrie intrinsèque des surfaces.

Exercice 10.1. Expliquer pourquoi le volume du parallélépipède P ⊂ Rm construit sur les vecteurs
b1, . . . ,bm ∈ Rm vérifie

Vol(P) =
√

det(G),

oùG, est la matrice de Gram de b1, . . . ,bm (c’est-à-dire la matrice dont les coefficients sont les produits
scalaires gij = 〈bi,bj〉).

Exercice 10.2. (a) Donner un domaine ouvert maximal sur lequel les coordonnées polaires définissent
un difféomorphisme ψ : (r, θ)→ (x, y).

(b) Calculer le tenseur métrique associé.

(c) En déduire la formule pour calculer l’aire d’un domaine en coordonnées polaires.

Exercice 10.3. Considérons l’hélicoïde définie par

S = {(x, yz) ∈ R3 | x sin(z)− y cos(z) = 0}

(a) Prouver que l’hélicoïde est une surface réglée et décrire la géométrie de cette surface.

(b) Montrer que l’application
ψ(u, v) = (v cos(u), v sin(u), u)

défini un diféomorphisme (global) entre R2 et S.

(c) Calculer ensuite le tenseur métrique associé à ce paramétrage.

Exercice 10.4. Prouver que l’aire d’une surface paramétrée régulière ψ : Ω → S ⊂ R3 de classe C1

peut se calculer par la formule

Aire(S) =

∫∫
Ω
‖ ~∂ψ∂u ×

~∂ψ
∂v ‖dudv

Exercice 10.5. Soit f : [a, b] → R une fonction de classe C1 que l’on suppose strictement positive.
Notons S la surface de révolution dans R3 obtenue par rotation du graphe de f autour de l’axe Ox.
Prouver soigneusement que

Aire(S) = 2π

∫ b

a

√
1 + (f ′(x))2 · |f(x)| dx.

Exercice 10.6. La chaînette est le graphe du cosinus hyperbolique, c’est-à-dire la courbe α(t) =
(t, cosh(t)).

(a) Expliquer pourquoi cette courbe s’appelle ainsi (une petite recherche sur internet n’est pas inter-
dite).
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(b) Montrer que la courbure de α est donnée par κ(t) = 1/ cosh(t)2.

(c) Calculer la développée de α.

(d) Calculer l’abscisse curviligne de la chaînette depuis le point initial α(0) = (0, 1), puis donner la
paramétrisation naturelle de α.

(e) La surface de révolution de la chaînette autour de l’axe Ox s’appelle une caténoïde. Calculer le
tenseur métrique de la caténoïde (en préférant la paramétrisation naturelle de la chaînette).

Exercice 10.7. Soit Sa ⊂ R3 la sphère de rayon a > 0 centrée en l’origine. On appelle projection
stéréographique l’application

π : Sa \ {(0, 0, a)} → R2

qui envoie un point p = (x, y, z) ∈ Sa (p 6= (0, 0, a)) sur l’unique point q du plan R2 tel que les trois
points (0, 0, a), p et q sont alignés (on regarde R2 comme un plan dans R3.)

Notons ψ : R2 → Sa l’application inverse de la projection stéréographique.

(a) Trouver une formule explicite pour ψ et montrer que ψ est un paramétrage régulier de Sa\{(0, 0, a)}.

(b) Calculer le tenseur métrique associé à cette paramétrisation.

(c) Cette paramétrisation est-elle conforme ?

(d) Prouver que la projection stéréographique définit un homéomorphisme entre la sphère et le com-
pactifié d’Alexandrov de R2.
(Le compactifié d’Alexandrov de R2 est l’ensemble R̂2 = R2∪{∞} muni de la topologie pour laque-
lle tout voisinage d’un point q de R2 est aussi un voisinage de q dans R̂2 et les complémentaires
des parties compactes de R2 forment une base de voisinage du point ∞).

Remarque. Parfois on définit la projection stéréographique en projetant sur un autre plan que le plan
de l’équateur, en particulier on projette souvent sur la plan tangent au “pôle sud” (0, 0,−a).
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A. Exercices standards.

Exercice 11.1. Soit γ(s) ∈ R3 (a ≤ s ≤ b) une courbe régulière au sens de Frenet et ε > 0 une (petite)
constante. La réunion des cercles de rayons ε centré en γ(s) et contenus dans le plan orthogonal à γ̇(s)
est une surface. On l’appelle un ε-tube autour de γ (ainsi un cylindre ou un tore sont des exemples
simples de tubes.)

a) En supposant que γ est paramétrisée naturellement et birégulière, donner un paramétrage ψ(s, θ)
du ε-tube (on utilisera le repère de Frenet).

b) Calculer le tenseur métrique de ce paramétrage.

c) Montrer que l’aire de ce tube est donnée par

A = 2πεL

où L est la longueur de γ.

d) Observer que cette formule est surprenante : l’aire du tube ne dépend que de ε et de la longueur
de la courbe γ au centre du tube. Donner néanmoins une explication intuitive de ce phénomène.

Exercice 11.2. Soit γ : I → S2 une courbe simple de classe C1 tracée sur la sphère unité, on suppose
γ paramétrée naturellement. On considère le cône C de centre 0 engendré par cette courbe, c’est à dire
l’ensemble des demi-droites d’origine 0 et passant par un point de γ.

(a) Donner une paramétrisation de C comme surface réglée et montrer que C \ {0} est une sous-variété
de R3.
(b) Calculer le tenseur métrique pour cette paramétrisation.

(c) Montrer que C \ {0} est localement isométrique au plan euclidien.

Exercice 11.3. Une courbe γ : I → S de classe C2 tracée sur une surface S ⊂ R3 est une géodésique
de cette surface si son accélération est normale à la surface pour tout t (c’est à dire γ̈(t) ⊥ Tγ(t)S pour
tout t ∈ I.)

Démontrer les affirmations suivantes :

(a) La vitesse de toute géodésique est constante.

(b) Les géodésiques (non constante) d’une sphère sont les grand cercles de cette sphère paramétrés à
vitesse constante.

(c) Si γ est un méridien d’une surface de révolution S et γ est parcourue à vitesse constante, alors γ
est une géodésique.

(d) A quelle condition un parallèle d’une surface de révolution est-elle une géodésique ?

Indication pour (b) : Soit γ(t) une géodésique d’une sphère de centre c. Vérifier que le vecteur m :=
(γ(t)− c)× γ̇ est constant, puis considérer le produit scalaire 〈γ(t)− c,m〉.
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Exercice 11.4. (a) On note H ⊂ R3 l’hélicoïde d’équation x sin(z) = y cos(z) et C ⊂ R3 le cylindre
circulaire droit d’équation x2 + y2 = 1. Montrer que l’intersection de ces deux surfaces est la réunion
disjointe des images des deux hélices γ± : R→ R3 suivantes :

γ+(t) = (cos(t), sin(t), t), γ−(t) = (− cos(t),− sin(t), t),

C’est-à-dire
H ∩ C = γ+(R) ∪ γ−(R) et γ+(R) ∩ γ−(R) = ∅.

(en particulier l’intersection H ∩ C possède deux composantes connexes).
(b) γ±(t) est-elle une géodésique du cylindre ?

(c) γ±(t) est-elle une géodésique de l’hélicoïde ?

Exercice 11.5. Calculer explicitement l’application de Gauss ν : E → S2 de l’ellipsoïde donné sous
forme implicite par

E =
{

(x, y, z) ∈ R3 | x2
a2

+ y2

b2
+ z2

c2
= 1
}
.

Il s’agit donc de donner une formule pour ν = ν(x, y, z) pour chaque point (x, y, z) ∈ E (on suppose
a, b, c non nuls).

Que remarque-t-on dans le cas où a = b = c = 1 (i.e. lorsque E est la sphère unité).

Exercice 11.6. Soit γ : I → S une courbe régulière de classe C2 tracée sur une surface régulière
co-orientée S ⊂ R3. On appelle repère de Darboux le long de γ relatif à la surface S le repère
mobile orthonormé {ν(t),Tγ(t),µ(t)} où Tγ(t) = 1

Vγ(t) γ̇(t) est le vecteur tangent unitaire à γ, ν(t)

est l’application de Gauss de S évaluée en γ(t) et µ(t) = ν(t)×Tγ(t).

On note Kγ(t) le vecteur de courbure de γ. On rappelle que la courbure normale et la courbure
géodésique de γ sont les fonctions du paramètre t définies respectivement par

kn(t) = 〈Kγ(t),ν(t)〉 et kg(t) = 〈Kγ(t),µ(t)〉.

(a) Montrer que κ(t)2 = kn(t)2 + kg(t)
2, où κ est la courbure de γ (en tant que courbe de R3).

(b) Prouver que γ est géodésique si et seulement si sa vitesse est constante et sa courbure géodésique
est nulle.

(c) Calculer le repère de Darboux, la courbure géodésique et la courbure normale du petit cercle sur
la sphère unité S2 défini par les équations x2 + y2 + z2 = 1 et z = c (où −1 < c < 1).

Exercice 11.7. On continue avec la situation et les notations de l’exercice précédent, et on définit la
torsion géodésique de γ par

τg(t) = 1
Vγ(t)〈ν̇(t),µ(t)〉.

(c) Calculer la torsion géodésique du petit cercle sur S2 défini {z = c}.

(d) Prouver que le repère de Darboux vérifie les équations différentielles suivantes :
1
V Ṫ = kgµ + knν,
1
V ν̇ = −knT + τgµ,
1
V µ̇ = −kgT− τgν,
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B. Exercice supplémentaire

Exercice 11.8. Lire les chapitres 3 et 4 du livre La Science et l’Hypothèse (de Henri Poincaré, 1902).
Disponible ici en version électronique :
https://www.ebooksgratuits.com/pdf/poincare_science_hypothese.pdf
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C. Illustrations

Figure 2: ε-tube autour d’une courbe.

Figure 3: Cône généralisé.

Figure 4: Intersection d’une demi-hélicoïde et d’un cylindre circulaire droit
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Figure 5: Pavage hyperbolique du disque de Poincaré. Tous les triangles ont la même aire.

Figure 6: Cette représentation par M.C. Escher du plan hyperbolique –appelée Circle Limit III– date de 1959;
l’artiste avait fait la connaissance du mathématicien H.C. Coxeter, qui lui avait envoyé un article contenant une
figure de pavage hyperbolique.

Objectifs. Cette série a pour but d’explorer la courbure des surfaces et les différentes notions qui
apparaissent dans cette théorie; et comprendre comment calculer ces courbures.

A. Exercices standards.

Exercice 12.1. Prouver que si γ est une courbe birégulière de classe C2 qui est géodésique d’une
surface coorientée S, alors la torsion de γ (en tant que courbe dans R3) coïncide au signe près avec la
torsion géodésique de cette courbe (ce résultat explique la terminologie de torsion géodésique).

La réciproque de cet énoncé est-elle valable (i.e. est-ce qu’une courbe sur une surface telle que la
torsion géodésique est égale à la torsion est toujours une géodésique de cette surface) ?

Indication. Dans cet exercice il est utile de comparer les équations de Darboux et de Serret-Frenet pour la
courbe γ.

Exercice 12.2. Calculer la courbure moyenne et la courbure de Gauss du cylindre circulaire droit
C ⊂ R3 défini par l’équation x2 + y2 = a2. (Peut-on prédire ces valeurs sans faire de calculs ?).

Exercice 12.3. (a) Calculer le tenseur métrique, la deuxième forme fondamentale et l’application de
Weingarten de l’hélicoïde

ψ(u, v) = (v cos(u), v sin(u), u).
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Figure 7: Cette sculpture est l’œuvre du sculpteur A. Duarte et date de 1973. On peut l’admirer au bout de
la jetée à Ouchy. Elle est constituées de plusieurs surfaces réglées, ce qui semblait être un thème à la mode à
cette époque..

(b) Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Exercice 12.4. Montrer que la matrice de la seconde forme fondamentale du graphe de la fonction
ϕ : Ω→ R, de classe C2 (où Ω est un domaine de R2) est

H =
1√

1 + ϕ2
x + ϕ2

y

(
ϕxx ϕxy
ϕxy ϕyy

)

Exercice 12.5. Est-ce que la matrice de l’application de Weingarten d’une surface est toujours une
matrice symétrique ?

Exercice 12.6. Soit p un point non ombilique d’une surface régulière de classe C2. On note v1 et v2

les vecteurs unités de TpS dans les direction principales. Prouver la formule d’Euler, qui dit que la
courbure normale du vecteur vθ = cos(θ)v1 + sin(θ)v2 ∈ TpS est donnée par

kn(vθ) = k1 cos(θ)2 + k2 sin(θ)2,

où k1, k2 sont les courbures principales de S en p.
En déduire que k1 et k2 sont les valeurs minimale et maximale de la courbure normale de S au point
p.
(On rappelle qu’un point de la surface S est dit ombilique si les deux courbures principales en ce point
coïncident : k1 = k2).

31



B. Exercice supplémentaire (sur les géodésiques des surfaces de révolution).

Exercice 12.7. Le but est de cet exercice est de déterminer toutes les géodésiques des surfaces de
révolution. On considère la surface de révolution ψ : Ω = [0, 2π]× I → S ⊂ R3 donnée par

ψ(θ, s) = (r(s) cos(θ), r(s) sin(θ), z(s))

(a) On considère une courbe γ(t) (t ∈ J), de classe C2 tracée sur la surface S. Montrer que pour tout
t ∈ J on a

〈γ̈(t),
∂ψ

∂θ
〉 =

d

dt

(
r2θ̇(t)

)
,

où le point signifie la dérivée par rapport au paramètre t.
(b) Montrer que si γ(t) est une géodésique, alors les quantités

r2(t)θ̇(t) et (r(t)θ̇(t))2 + ṙ(t)2 + ż(t)2

sont constantes (indépendante de t).
(c) Montrer que la fonction t 7→ 1/r(t) est bornée pour toute géodésique qui n’est pas un méridien de
la surface de révolution.
(d) Montrer que la hauteur de toute géodésique dans la pseudo-sphère qui n’est pas un méridien est
une courbe bornée dans R3.

Indication pour (c). On peut calculer la vitesse et l’accélération de γ en coordonnées cylindriques.
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Objectifs. Dans cette série, on continue l’étude des courbes sur les surfaces et les différentes notions
de courbure. Il s’agit en particulier de se familiariser avec les méthodes de calculs, tout en faisant le
lien avec la géométrie des surfaces.

A. Exercices standards.

Exercice 13.1. Calculer le tenseur métrique, la deuxième forme fondamentale et l’application de
Weingarten de la caténoïde i.e. la surface de révolution de la chainette α(t) = (t, cosh(t)).
On rappelle que cette surface peut se paramétriser ainsi (comme surface de révolution autour de l’axe
Ox) :

ψ(s, θ) =
(

log(s+
√

1 + s2),
√

1 + s2 cos(θ),
√

1 + s2 sin(θ)
)
.

Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Exercice 13.2. Soit S ⊂ R3 une surface de classe C2 dont on note H et K les courbures moyenne et
de Gauss respectivement. Montrer que les courbures principales sont données par

k1, k2 = H ±
√
H2 −K.

Exercice 13.3. Montrer que la courbure de Gauss et la courbure moyenne peuvent s’écrire en fonction
des coefficients (gij) et (hij) des deux formes fondamentales par

K =
h11h22 − h2

12

g11g22 − g2
12

et H =
g11h22 − 2 g12h12 + g22h11

2(g11g22 − g2
12)

.

Exercice 13.4. Soit ψ1 : Ω → S ⊂ R3 une surface régulière de classe C2 et λ > 0. On note
ψ2 = λψ1 : Ω → λS ⊂ R3 la surface obtenue en appliquant une homothétie de rapport λ. Quelle est
la relation entre la courbure de Gauss K1(u, v) en un point p = ψ1(u, v) de S et la courbure de Gauss
K2(u, v) en un point q = λp = ψ2(u, v) de λS ?

Exercice 13.5. Soit γ : I → R3 une courbe de classe C3 birégulière. Prouver que si ‖γ̇‖ est constante,
alors γ est une géodésique de la surface réglée S de paramétrisation ψ(u, v) = γ(u)+vBγ(u), où Bγ(u)
est le vecteur binormal de γ.

Exercice 13.6. Une courbe régulière γ de classe C2 sur une surface S est une ligne de courbure si sa
courbure normale est en tout point une courbure principale.
Montrer que γ est une ligne de courbure si et seulement si sa torsion géodésique est nulle.

Exercice 13.7. Prouver que la courbure de Gauss d’une surface réglée S est ≤ 0 (pas besoin de faire
de calculs).

Exercice 13.8. Prouver que la caténoïde et l”hélicoïde sont localement isométriques.
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Remarque. Le fait que la caténoïde et l’hélicoïde sont localement isométriques impliquent que ces
deux surfaces ont la même courbure de Gauss, à cause du théorème egregium, ce que confirment les
calculs.

Voici deux vidéos intéressantes illustrant l’isométrie entre la caténoïde et l’hélicoïde :
https://www.youtube.com/watch?v=VRY42CogW0I

et ici : https://www.youtube.com/shorts/RYHxW8GTQgQ

B. Exercice supplémentaire

Exercice 13.9. Montrer que la pseudo-sphère de Beltrami est intrinsèquement isométrique au demi-
plan de Poincaré. Puis calculer son aire

A noter : Sur Moodle, dans la rubrique "vidéos" il y a un lien vers une vidéo de K. Crane présentant
un panorama assez complet de la courbure des courbes et des surfaces. Cette vidéo est de grande
qualité mais aussi très dense, à regarder en petites tranches. Les première 55-60 minutes recouvrent
des thèmes vus au cours, ensuite la vidéo illustre d’autres thèmes.
La vidéo se trouve aussi ici : https://www.youtube.com/watch?v=e-erMrqBd1w
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Le premier exercice étudie une classe de courbes sur les surfaces et dans le second, on calcule l’intégrale
de la courbure gaussienne du tore de révolution. On finit avec un exercice de révision sur la courbure
des courbes planes.

Exercice 14.1. Une courbe régulière γ : I → S tracée sur une surface régulière coorientée S ⊂ R3

de classe C2 s’appelle une ligne asymptotique2 si elle est de classe C2 et son vecteur de courbure est
tangent à la surface pour tout t ∈ I.

Prouver que les affirmations suivantes sont équivalentes:

(a) La courbe γ est une ligne asymptotique de S.

(b) La courbure normale kn de γ est identiquement nulle.

(c) h(γ̇(t), γ̇(t)) = 0 pour tout t ∈ I, où h est la seconde forme fondamentale de S.

(d) En tout point de la courbe, le vecteur binormal de γ est égale, au signe près, au vecteur de
coorientation de la surface.

(e) Le plan osculateur à γ coïncide avec le plan affine tangent en S en chaque point de γ.

(Pour les points (d) et (e) on suppose que la courbe est régulière au sens de Frenet).

Exercice 14.2. On note T ⊂ R3 le tore obtenu en faisant tourner le cercle de rayon 1 et de centre
(a, 0, 0) du plan Oxz autour de l’axe Oz (on suppose que a > 1).

a) Donner une paramétrisation du tore T et calculer le tenseur métrique associé.

b) Calculer l’aire de la surface T .

c) Calculer la courbure de Gauss K de T (on exprimera K comme fonction des paramètres de la
paramétrisation donnée en (a)).

d) Calculer l’intégrale
∫∫
T
KdA.

Exercice de révision :

2La terminologie est justifiée par le fait que le vecteur vitesse d’une ligne de courbure est en direction d’une asymptote
de l’indicatrice de Dupin, qui est l’ensemble des vecteurs v ∈ TpS tels que |h(v, v)| = 1 (mais ceci n’influence pas
l’exercice).
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Exercice 14.3. (a) Soit γ : [a, b] → R2 une courbe fermée de classe C2 dans le plan orienté. On
suppose que sa courbure orientée, que l’on note k, vérifie 0 ≤ k(t) ≤ C pour tout t ∈ [a, b].

Démontrer que la longueur ` de γ vérifie ` ≥ 2π/C.

(b) Est-ce que cette borne peut-être atteinte, i.e. existe-t-il une courbe fermée γ de classe C2 dans R2

vérifiant k(t) = 2π/`(γ) pour tout t ?
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