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MATH 213: Géomeétrie Différentielle Exercices
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Séries 1 a 14 des exercices

La géométrie différentielle peut trés briévement se résumer dans l'idée d’appliquer des méthodes de calcul
différentiel et d’analyse & des problémes de géométrie, en particulier a 1’étude des courbes, des surfaces et d’objets
généralisant ces notions. Toutefois le géométrie différentielle ne se réduit pas au seul usage du calcul différentiel
mais fait intervenir d’autres techniques telles que celles de I’algébre linéaire, de la géométrie vectorielle, la théorie
des groupes, la topologie, ainsi que la géométrie euclidienne classique. Cette premiére série d’exercices propose
de revisiter le produit vectoriel d’'une part, et de construire une preuve de l'inégalité isopérimétrique dans le
plan d’autre part.

Exercice 1.1. On rappelle que le produit vectoriel de deux vecteurs de R?® définis dans une base
orthonormeée directe (i.e. d’orientation positive) par x = x1e; +x2e2+x3es et y = y1e1 + yo€2 + yses
est le vecteur
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Prouver que a x b € R3 est uniquement déterminé par les conditions géométriques suivantes
(a) (axb)La et (axb)Lb.

(b) ||a x b|| = aire(P(a,b)) (ou P(a,b) est le parallélogramme construit sur les vecteurs a et
b).

(c) Siaetb sont linéairement indépendants, alors {a,b,axb} est une base d’orientation positive
de R3.

Les exercices qui suivent visent & démontrer I'inégalité isopérimétrique dans le plan. Considérons un domaine
borné D contenu dans la plan R2. Son bord 9D est la réunion d’une ou plusieurs courbes et on appelle périmétre
de D la longueur totale de 9D (qui peut éventuellement étre infinie). Le quotient isopérimétrique de D est
défini par
(Longueur(dD))?

Aire(D)
L’inégalité isopérimétrique dans le plan affirme que le quotient isopérimétrique minimal parmi tous les domaines
du plan est atteint pour les disques, i.e. pour tout domaine borné D C R? on a

Isp(D) =

Isp(D) > Isp(B?),

ouB? = {x € R? | ||z|| < 1} est le disque unité du plan. De plus on a égalité si et seulement si D est un disque
(de rayon quelconque).

Avant de commencer les exercices qui suivent, prenez un moment pour réfléchir a cette inégalité; vous

9y )
pouvez en discuter entre vous. Comprenez-vous ce qu’elle signifie? Quel genre de raisonnement faut-il
faire pour établir une preuve de cette inégalité ?




Exercice 1.2. (a) Prouver que le quotient isopérimétrique est invariant par similitude (une similitude
du plan ou de 'espace euclidien est une bijection qui préserve les rapport de distances; c’est donc la
composition d’une homothétie et d’une isométrie).

(b) Calculer le quotient isopérimétrique d’un carré, d’un triangle équilatéral et d’un disque.

Le but des exercices 1.3 &4 1.9 est de conduire & une preuve de 'inégalité isopérimétrique dans le plan.
On utilisera uniquement des résultats de géométrie euclidienne de base et des propriétés intuitives
élémentaires des notions de longueur et d’aire.

Exercice 1.3. Prouver la proposition 32 du livre 1 des Eléments d’Euclide. Cette proposition dit que
la somme des angles de tout triangle est égale & deux angles droits.
Indication. Il faut utiliser le postulat des paralléle!.

Exercice 1.4. (a) Soit C' un point sur le cercle de diamétre [A, B] (supposé distinct de A et B).
Prouver que l'angle en O du triangle OCB est le double de I'angle en A du triangle AC'B:

<oCB =2<4CB

(on écrit aussi BOC = 2@)

2
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(b) Prouver ensuite le théoréme du demi-cercle de Thales : Le triangle ABC' est un triangle rectangle
en C' si et seulement le point C' est un point du cercle de diamétre [A, B] (rappelons que ABC' est un
triangle rectangle en C' si <cAB = 7/2).

Exercice 1.5. Prouver que parmi tous les triangles ABC' tels que z = d(A,C) et y = d(B, C), celui
qui maximise Iaire est le triangle rectangle en C.

Exercice 1.6. Rappelons qu’un domaine D C R" est convexe, si pour toute paire de points A, B € D,
le segment [A, B] est contenu dans D. Prouver que si D C R? n’est pas convexe, alors ce domaine
ne minimise pas le quotient isopérimétrique (i.e. on peut construire un autre domaine D’ tel que
Isp(D’) < Isp(D)).

Exercice 1.7. Supposons que D C R? est un domaine isopérimétrique optimal (en particulier D est
convexe), notons I' = 9D son bord. Soient A, B € T" deux points du bord de D qui partagent la courbe
I’ en deux parties d’égales longueurs. Montrer alors que la corde [A, B] partage D en deux régions
d’aires égales.

Le postulat des paralléle, aussi appelé 5éme postulat d’Euclide énonce que dans un plan, par tout point extérieure
& une droite il passe une unique paralléle & cette droite.



Exercice 1.8. Soit D C R? est un domaine isopérimétrique optimal et I, A, B comme dans I’exercice
précédent. Montrer alors que pour tout point P de T', différents de A et B, on a <pAB = 7/2.
Indication. Supposant par ’absurde que ¢a n’est pas le cas pour un certain point P, utiliser ’exercice
1.6 pour construire un domaine D" dont le périmétre est égal a celui de D mais Aire(D’) > Aire(D).

Exercice 1.9. A partir des exercices précédents, prouver 'inégalité isopérimétrique dans le plan :
pour tout domaine du plan on a Isp(D) > 4, avec égalité si et seulement si D est un disque (on admet
I'existence d’un domaine isopérimétrique optimal, il s’agit ici de prouver 'unicité)




Exercice 2.1. Prouver les formules suivantes concernant le produit vectoriel :

Pour tous a,b,c,d € R? on a

(i) (axb)xc=(a,c)b—(b,c)a (premicére dentité de Grassmann),
(iti) ax (b xc)=(a,c)b—(a,b)c (seconde identité de Grassmann).
(i) (ax b,c xd) = (a,c)(b,d) — (a,d) (b,c) (identité de Lagrange).

(iv) (ax b,c xd)={((axb)xc,d).

Indication. En choisissant une base orthonormée directe bien adaptée au probléeme, on peut simplifier
les calculs.

Exercice 2.2. Montrer que pour tous a,b,c € R3 on a
i) (axb)xc+(bxc)xa+(cxa)xb=0 (premiére identité de Jacobi)

iit) ax(bxc)+bx(cxa)+cx(axb)=0 (deuxiéme identité de Jacobi.)

Exercice 2.3. Le produit vectoriel dans E? est-il associatif ?

Exercice 2.4. (a) Rappeler ce qu’est une similitude d’un espace vectoriel euclidien.
Prouver que les similitudes d’un espace vectoriel euclidien E™ forment un groupe.

Prouver que les isométries forment un sous-groupe normal du groupe des similitudes.

Démontrer que les propriétés suivantes sont équivalentes pour application linéaire inversible f :
E* — E™ :

)
)

d) Expliquer pourquoi une similitude qui fixe l'origine 0 € E™ est une application linéaire.
)

(i) f est une similitude.
(ii) f préserve les angles, i.e. si a,b € E™ sont non nuls, alors 'angle entre f(a) et f(b) est égal
a l'angle entre a et b.
(iii) f préserve l'orthogonalité, i.e. si a L b alors f(a) L f(b).
(f) On peut identifier C au plan euclidien orienté R%. Montrer que f : C — C est une similitude

linéaire directe si et seulement si f est la multiplication par un nombre complexe non nul (i.e. on
a f(z) = az avec a € C*).

Exercice 2.5. Donner un exemple de courbe fermée simple qui est de classe C'!, mais pas de classe

Cc2.

Exercice 2.6. A quelle condition le graphe d’une fonction f représente-t-il une courbe biréguliére ?




Exercice 2.7. Par définition, la longueur d’un arc de courbe « : [a,b] — R"™ est l'intégrale ¢(a) =
ff Vo (u)du ou Vi, (u) = [|a(u)|| est la vitesse de a.

Calculer la longueur des courbes suivantes :
(a) a(u) = (cos(u),sin(u),u). —-rwT<u<m (la courbe « est une hélice circulaire droite).
(b) B(u) = (e*, e™*, V2u). 0<u<t.

(u) = (uwcos(u),usin(u)). 0<u<Ar (la courbe 7 est une spirale d’Archimeéde).
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Exercice 2.8. La cycloide est la courbe décrite par un point sur le bord d’une roue qui roule, sans
glisser, en ligne droite.

(a) Dessiner une cycloide

(b) Donner un paramétrage de la cycloide (préciser d’abord le choix de la situation et du systéme de
coordonnées).

(c) Calculer la longueur d’une arche de la cycloide (en supposant que la roue engendrant la cycloide
est de longueur r)

Exercice 2.9. Discuter le paradoze de la roue d’Aristote.

On considére deux roues attachées solidairement ensemble et centrées sur un méme axe, 'une de rayon
2 et Pautre de rayon 1. On fait rouler ces roues (solidairement) sur une route pendant un tour de roue.
Le centre de la grande roue s’est alors déplacé d’une distance de 47 et celui de la petite roue d’une
distance de 27. Conclusion 47 = 27.



Dans cette série on on avance avec la théorie des courbes (abscisse curviligne, paramétrage naturel).
Enfin on approfondit quelques points subtils liés & la notion de longueur.

Exercice 3.1. Exprimer la longueur de I'ellipse ’g—z + g—; = 1 sous forme d’une intégrale (ne pas essayer
de calculer cette intégrale, qui ressort de la théorie des fonctions elliptiques).

Exercice 3.2. (a) Calculer I'abscisse curviligne de la courbe
A(t) = (cosh(t), sinh(t), 1),

depuis le points initial tg = 0.

(b) Trouver ensuite le paramétrage naturel avec le méme point initial.

Exercice 3.3. L’astroide est la courbe plane d’équation
2 2
2l + 1yl = 1,
(a) Dessiner I'astroide.

(b) Trouver une paramétrisation de I'astroide

c¢) Calculer la longueur d’un cycle de 'astroide.

)
)
()
(d) Chercher tous les points singuliers.
)
)

(e) Calculer I'abscisse curviligne avec avec point initial en (1,0).
(f

Trouver le paramétrage naturel avec le méme point initial.

Exercice 3.4. (a) Notons (x,%) les coordonnées cartésiennes de R?. Rappeler la définition précise des
cordonnées polaires (r,0), en précisant leur domaine de définition.

(b) Ecrire I’équation générale d’une droite en cordonnées polaires, puis I’équation d’un cercle de rayon
a et de centre ¢ = (19, 6p).

(c) Soit v(t) = (r(t),0(t)) une courbe de classe C! écrite en coordonnées polaires. Trouver et prouver
une formule donnant sa longueur dans ces coordonnées.

(d) La spirale logarithmique est la courbe plane d’équation polaire r = ¢?. Utiliser la formule précédente
pour calculer la longueur d’un cycle de cette spirale défini par 0 < 6 < 27. Donner ensuite le
paramétrage naturel avec le point (1,0) comme point initial.

Exercice 3.5. La conchoide de Nicomeéde est la courbe C dans le plan euclidien qui est définie de la
fagon suivante:

On considére un point O dans le plan et une droite D qui ne passe pas par O. Pour tout point p du
plan tel que p € D et p # O on note f(p) = d(p, q) ot ¢ est 'intersection de D avec la droite passant

par O et p (i.e. ¢ = (O +ROp)N D) :

C={peE|f(p) =10}



(a) Dessiner la courbe C. Est-elle connexe ?

(b) Donner une équation polaire de cette courbe (on supposera que la droite D est verticale et que le
point O est l'origine).

Exercice 3.6. Soit F': I — SO( ) C M,(R) = IR{"X" une courbe de classe C'! & valeurs dans le groupe
orthogonal. Prouver que F(t)~'F(t) et F (t)F(t)~! sont des matrices antisymétriques pour tout ¢ € 1.

Exercice 3.7. On rappelle que 'exponentielle exp(A) d’une matrice carrée A € M, (R) est définie par
la série :

exp(A Zk|Ak—I+A+ L2y

On admet que cette série converge. On admet aussi que si AB = BA, alors exp(A+B) = exp(A) exp(B)
(la preuve est la méme que pour le cas de l'exponentielle d’une somme de deux nombres réels).

(a) Montrer que si A € M, (R) est une matrice antisymétrique, alors exp(A) € SO(n).

(b) Calculer la matrice exp(tJ) ou J = < (1) _(1) >

Exercice 3.8. Prouver l'affirmation suivante ou trouver un contre-exemple : Si v, : [a,b] — R" est
une suite de courbes convergeant uniformément vers la courbe v : [a,b] — R™ (supposée de classe C*),
alors les longueurs convergent, i.e. £(y) = limy 00 £(Vn).

Exercice 3.9 (Distance intrinséque dans un domaine.). Le but est de cet exercice est de définir la
notion de distance intrinséque dans un domaine de R™ (par définition, un domaine de R™ est un
sous-ensemble ouvert et connexe).

Soit donc U C R" et p,q € U. On note Cpy 'ensemble des courbes 7 : [a,b] — U qui sont continues, de
classe C'! par morceaux et qui relient p & ¢. On défini alors la distance intrinséque dans U de p & g par

ou(p,q) = Inf{l(7) | v € Cpq}-

Prouver que Cp, # () pour tous p,q € U.

(a)
(b) Prouver que d7(p,q) > ||¢ — p|| pour tous p,q € U.
) Prouver que (U, dy) est un espace métrique.

)

A quelle condition sur le domaine U a-t-on 7 (p, q) = ||¢ — p|| pour tous p,q € U? (donner une
condition suffisante).

(e) Considérons le cas du domaine U = {(z,y) € R? | x < —1ouy # 0}. Quelle est la distance
intrinséque entre les points p = (0,1) et ¢ = (0,—1) ?
Est-ce qu’il existe une courbe de longueur minimale reliant p a ¢?

(On dit que 6y (p, q) est la distance intrinséque de p a q dans le domaine U et que d(p,q) = ||lq¢ — p||
est la distance euclidienne extrinséque).



A. Exercices standards.

Exercice 4.1. Sia et b sont des vecteurs de R? et a # 0, on dit que le vecteur ¢ € R? est la composante
normale de b € R? selon a € R3 si ¢ L a et il existe A € R tel que b = A\a + c. Montrer que cette
composante normal peut s’écrire
(axb)xa

lall?

Exercice 4.2. Démontrer que le vecteur (unitaire) tangent et le vecteur de courbure d’une courbe
réguliére de classe C? sont des notions géométriques, i.e. ces champs de vecteurs sont invariants par
reparamétrisation directe.

Exercice 4.3. Nous avons défini le vecteur normal principal N, et le vecteur de courbure K, d'une
courbe biréguliére o de classe C? par

G — (&, To)Ta 1
No = — - et Ko =+—Ts,.
® léd = (é, Ta) Tal el "
Prouver que K, = k4N, ot k4 = | K4|| est la courbure de .
Exercice 4.4. Prouver que la courbe v(t) = (cosh(t),sinh(t),t) est biréguliére, puis calculer son

vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Exercice 4.5. Prouver la formule suivante qui donne la courbure d'une courbe réguliére v : I — R3

de classe C? dans R3: () x ()|
A(u) x ¥(u
/ify(u) = T
¥

Exercice 4.6. La développée d’'une courbe biréguliére v : I — R™ est la courbe 8 : I — R"™ définie par

ol po(u) = Hal(u)

courbe est donc le lieu géométrique de ses centres de courbure (= centre du cercle osculateur).

est le rayon de courbure et N, est le vecteur normal principal. La développée d’une

Calculer les développées des courbes suivantes:
a) Un cercle dans R™.

(a)

(b) Une droite dans R™.

(c) L’hélice circulaire droite a(u) = (acos(u), asin(u),bu) dans R? (on suppose a,b > 0).
(d) La cycloide (t) = (r(t — sint),r(1 — cost)) dans R

Prouver que la développée de I’hélice est de nouveau une hélice et que la développée de la cycloide est
aussi une cycloide.



Exercice 4.7. Sans faire aucun calcul, dessiner (approximativement) une ellipse et sa développée.
Expliquer votre raisonnement.

On appelle triangle sphérique la donnée de trois points A, B, C sur une sphére S, avec les arcs de
grand-cercles a (reliant B et C'), b (qui relie A et C') et ¢ (qui relie A et B). Ces arcs de grand-cercles
sont les cotés du triangle sphérique. On note a 'angle formé par les arcs b et ¢ au point A, de méme
on note B 'angle en B et v ’angle en C.

Rappelons qu’on appelle grand-cercle sur une spheére, un cercle formé par l'intersection de cette sphére avec
un plan passant par le centre de la sphére. Les autres cercles tracés sur la sphére sont les petit-cercles. Deux
points sur une sphére sont toujours reliés par deux arcs de grand-cercles; dans la détermination d’un triangle
sphérique, on ne considére que le plus petit de ces deux arcs.

Exercice 4.8. Par abus de notations, nous notons aussi par a, b, et ¢ les longueurs des cotés du
triangle sphérique. Démontrer la formule de trigonométrie sphérique suivante:

cos (£) = cos () cos (2) sin (£ sin ) osto).

ol r est le rayon de la sphére.

Exercice 4.9. La distance sphérique dg(A, B) entre deux points A et B sur une sphére S est par
définition la longueur de I'arc de grand cercle reliant ces deux points.

Montrer a partir de la trigonométrie sphérique que dg vérifie bien toutes les propriétés d’ une distance.

B. Exercice complémentaire (ne fera pas partie du champ de ’examen).

Exercice 4.10. Le but de cet exercice est de montrer qu’on peut (re)définir la longueur d’une courbe
de classe C! par un processus d*“approximations polygonales”.

Soit v : [a,b] — R™ une courbe de classe C!, et soit 0 = [to = a < t; < -+- < t,,, = b] une subdivision
de l'intervalle [a,b]. On note

m—1
L(v) = sup Z d(y(ti), v(ti+1)),
7 =0
ot le suprémum est pris sur toutes les subdivisions de [a, b] et d(p, q) = ||q¢ — p||-

(a) Faire un dessin et expliquer briévement la signification de cette formule.



(b) Montrer que pour tout courbe C* on a L(vy) < £(), ot £(v) est la longueur de ~ telle que définie
dans le cours.

(c) Prouver l'inégalité inverse ¢() < L(7).
(Indication : Utiliser que # est uniformément continue et montrer que pour tout £ > 0 on peut
trouver une subdivision suffisamment fine de [a, b] telle que £(y) < S d(y(t:), ¥(tir1)) + 2¢(b—

a)).

Remarque générale sur la longueur des courbes.

Les exercices précédents montrent que si v : [a,b] — R™ est une courbe de classe C*, alors L(vy) = £(7),
c’est-a-dire

m b
sup Y- (i) =t = [ (o).
i=0 a

Il est clair que cette formule est encore vraie pour une courbe de classe C! par morceaux. Henri
Lebesgue s’était posé la question suivante dans sa thése dont le titre est Intégrale, Longueur, Aire
(soutenue en 1902) : Pour quelle classe de courbes

v(t) = (z1(t), ..., zn(t)), (a <t<b)

la plus générale possible, a-t-on L(v) < oo et L(vy) = £(y) ¢

Et il a formulé les réponses suivantes :

(i) La courbe v est rectifiable (i.e. L(y) < 00) si et seulement si toutes les fonctions ¢ — x;(t) sont
a variation bornée.

(ii) On a l’égalité £(y) = L(y) < oo si et seulement si toutes les fonctions ¢ — z;(t) sont absolument
continues.

Les notions de fonctions a wvariation bornée et absolument continues sont définies dans les bons livres
d’analyse réelle (par exemple 'excellent livre de Kolmogorov-Fomin). Faisons juste les remarques
suivantes :

a) Toute fonction & variation bornée admet une dérivée presque partout.

(a)
(b) Toute fonction absolument continue est a variation bornée.

(c) Inversement il existe des fonctions a variation bornée qui ne sont pas absolument continues.
(d) Toute fonction lipschitzienne est absolument continue.

Soulignons pour finir qu’il existe des courbes rectifiables pour lesquelles ¢(7y) < L(y). Un exemple est
donné par le graphe de la fonction de Cantor-Vitalli (parfois appelé escalier du diable).
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Figure 1: Une approximation de la fonction de Cantor-Vitalli

Les objectifs pour cette série sont les suivants :

- Développer une intuition de la torsion et de la courbure et leur signification géométrique.

- Développer une certaine pratique et des bonnes stratégies pour les calculs géométriques liés aux
courbes, en particulier se familiariser avec le repére de Frenet, savoir utiliser les équations de
Serret-Frenet et comprendre les conséquences du théoréme fondamental.

A. Exercices standards.

Exercice 5.1. Prouver que la courbe ~(t) = (cosh(t),sinh(t),t) est biréguliére, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Exercice 5.2. Considérons la courbe
v(t) = (cos(t) + tsin(t),sin(t) — t cos(t), t?), (t € R).
(a) Trouver le ou les points singuliers de cette courbe.
(b) Calculer I'abscisse curviligne s = s(t) de cette courbe depuis le point initial «(0).

Pour les questions qui suivent on se restreint a t > 0.
Calculer le vecteur tangent T-(t) et le vecteur de courbure K, ().

Quels sont les points biréguliers de v ?

()
)
(e) Calculer la courbure £, (t) de cette courbe et le vecteur normal principal N (¢).
(f) Donner le vecteur binormal B (t) (aux points biréguliers).

)

Trouver la torsion de 7.
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Exercice 5.3. Soit v : I — R? une courbe biréguliére de classe C3. On appelle vecteur de Darboux
de «y le champ de vecteurs D, défini le long de ~ par

D, (u) := 7y (u) Ty (u) + £+ (u) By (u)

Montrer que pour tout champ de vecteurs A le long de v s’écrivant A (u) = aq(u)T(u) 4+ az(u)N(u) +
as3(u)B(u), on a
1 d 1

GA=7 (@ T +aN +d;B)+Dx A,

(C’est la Formule de Darboux).

Exercice 5.4. Calculer le vecteur de Darboux de I’hélice circulaire droite y(u) = (a cos(u), asin(u), bu).

Exercice 5.5. Considérons la courbe v : R — R? définie par
(1) = (7 + |t 0).

Montrer que cette courbe est réguliére au sens de Frenet mais elle n’est pas de classe C? (la définition
de la régularité de Frenet se trouve en page 32 du polycopié, édition 2024).

Calculer ensuite le repére de Frenet.

Exercice 5.6. Que peut-on dire d'une courbe (réguliére au sens de Frenet) dont la courbure et la
torsion sont constantes ?

Exercice 5.7. Montrer que la torsion d’une courbe 7 : I — R3 biréguliére de classe C® peut se calculer
par la formule suivante:

(u) = [(w), §(w), V()] [4,4, 7]
Iy (u) x 5@)[* #2(@)VP(u)

oll [x,y,2] = (x,y X z) représente le produit mixte de trois vecteurs de R3,

Exercice 5.8. Montrer qu'une courbe 7 : I — R3 (C® et biréguliére) est une hélice circulaire droite si
et seulement si son vecteur de Darboux est constant.

B. Exercice complémentaire

Exercice 5.9. On sait qu’a un déplacement pres, la géométrie d’une courbe est déterminée par sa courbure
et sa torsion. Ceci implique que toute propriété géométrique se traduit en une ou plusieurs équations sur T et
k. Le but de cet exercice est d’illustrer ceci dans le cas des courbes sphériques (i.e. les courbes tracées sur une

sphere).
(a) Soit v : I — R3 une courbe de classe C? biréguliére, de torsion non nulle et paramétrée normalement.
Supposons que ||v(s)|| = r = constante. Montrer que pour tout s on a

p(s)

v(s) + p(s)N(s) + @B(S) =0,

ou 7 est la courbure de 7 et p(s) = ﬁ est le rayon de courbure.
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En déduire que la fonction
2
1
2 .
s p(s)”+ | ——=p(s
oo+ (5709
est constante.
(b) Dans le sens réciproque : Soit v : I — R? une courbe de classe C? biréguliére paramétrée nor-
malement. On suppose que la courbure de « est strictement croissante et la torsion est non nulle.
Démontrer que 7y est une courbe sphérique (i.e. elle est tracée sur une sphére) si et seulement si

o(s)? + <T(18)p<s>)2

est constante.

Déterminer ensuite le centre et le rayon de la sphére .
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Objectifs pour cette série :

Dans cette série on étudie la courbure des courbures planes et sa signification géométrique.

On commence aussi une révision du calcul différentiel.

A. Exercices standards.

Exercice 6.1. (a) Soit v une courbe plane dont la courbure & est une fonction monotone de 'abscisse
curviligne. Cette courbe peut-elle étre une courbe C? fermée ?

(b) Considérons les courbes planes suivantes : un cercle, une ellipse, une parabole, que I'on paramétrise
naturellement. Pour chacune de ces courbes, représenter qualitativement le graphe de la fonction
s — k(s) (ce graphe s’appelle le diagramme de courbure de la courbe considérée).

Exercice 6.2. Que vaut l'intégrale / k ds pour la courbe suivante ?
v

Exercice 6.3. Le tracé d’'une route ou d’une voie de chemin de fer est habituellement constitué de
segments de droites, d’arcs de cercles et d’arcs de chlotoides.
Voir https://fr.wikipedia.org/wiki/Trac%C3%A9_en_plan_(route).

(a) Rappeler ce qu’est une chlotoide.

(b) Pour quelle raison, a votre avis, on utilise des arcs de chlotoides dans les tracés ferroviaires 7

Exercice 6.4. Un peu de calcul différentiel :

(a) Calculer la différentielle (au sens de Frechet) dpa(H) de application ¢ : My, (R) — M, (R) définie
par p(A) = A3, pour A, H € M,(R) quelconques. Que peut-on dire du cas particulier ot A et H
commutent ?

(b) On considére deux applications différentiables ¢, : My, (R) — M, (R). Montrer la version suivante
de la régle de Leibniz :

d(¢ - P)a(H) = dpa(H)y(A) + ¢(A)dipa(H),
ou (¢-9)(A) = ¢(A) - ¢¥(A) (produit matriciel).
(c) En utilisant le résultat précédent, montrer que si ¢ : GL,(R) — G L, (R) est définie par ¢p(A) = A~H

alors

dpa(H) = —A1HA™L.
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Exercice 6.5. Prouver que I'application : f : R? — R? données par

(y1,y2) = f(21,22) = (21 cos(w2), T2 — T172)

est un difféeomorphisme au voisinage de (0, 0).

Exercice 6.6. a.) Rappeler la définition de la notion de systéme de coordonnées curviligne.

b.) Prouver l'affirmation suivante ou donner un contre-exemple : Si {x1,z2} et {y1,y2} sont deux
systemes de coordonnées curvilignes sur un ouvert U de R? et siyo = 9, alors Bz = 6%2

Exercice 6.7. Soient p = (p1,p2) et ¢ = (q1, g2) deux points distincts de R2. Prouver que les fonctions
u(z,y) = d((z,y), (p1,p2)) et v(z,y) = d((x,y), (¢1,q2)) (o1 d(,-) est la distance euclidienne dans R?)
définissent un systéme de coordonnées curvilignes de classe C°° dans chacun des demi-plans limités
par la droite passant par p et g. Décrire les lignes de coordonnées.

B. Exercices complémentaires

Exercice 6.8. (a) Rappeler a quelle condition on peut définir le cercle osculateur d’une courbe
a: I — R™ en un point donné.

(b) Rappeler la définition du cercle osculateur.

(c) Comment trouve-t-on le centre et le rayon du cercle osculateur en un point donné de la courbe?
Préciser dans quel plan ce cercle est contenu.

(d) Prouver le résultat suivant : Soit o : I — R? une courbe plane C* dont la courbure est positive et
strictement croissante. Alors les cercles osculateurs C(s) a o sont emboités dans le sens suivant :
Si s1 < s2, alors C(s2) est contenu dans le disque bordé par C(s1).

Indications pour la question (d): Montrer d’abord que le rayon p(s) de C(s) est une fonction décroissante de s.
Puis montrer que la distance entre le centre de C(s1) et C(s2) est inférieure a la différence des rayons (pourquoi
cela répond-il a la question?). Pour justifier cette derniére affirmation il est utile de supposer la courbe «
paramétrée naturellement et de calculer la vitesse de s — ¢(s) (la dérivée du centre ¢(s) de C(s) se calcule
facilement dans le repére de Frenet).
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Exercice 6.9. (a) Soit v : [0,00) — R? une courbe plane de classe C® de longueur infinie dont la
courbure est une fonction positive et strictement croissante. Prouver que la trace de cette courbe est
bornée.

Pouvez vous donner une borne explicite (i.e. une constante C' qui dépend du minimum de la courbure
et telle que ||v(s) —v(0)|| < C pour tout s ?7)

(b) Montrer par un exemple que ’hypothése de monotonie de la courbure est nécessaire. Plus précisé-
ment, montrer qu’il existe une courbe dont la courbure vérifie k(s) > a > 0 pour tout s et qui n’est
pas bornée. (Il n’est pas nécessaire de produire une formule explicite, I'exemple peut simplement se
dessiner).

Indication pour la question (a) : penser a l'exercice 6.7(d).

Exercice 6.10. Notons par v(s) = (z(z),y(s)) € R? la chlotoide paramétrée naturellement.
Pensez-vous que la limite

Jim () €
existe ?
(Il s’agit de proposer un argument géométrique et non de calculer ou analyser les limites des intégrales
de Fresnel; la question 6.7(d) est utile pour cet exercice).
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A. Exercices standards.

Exercice 7.1. Le but de cet exercice est de prouver que la différentielle de I'application déterminant
det : M, (R) — R en A € M, (R) est Papplication linéaire ddety : M,(R) — M, (R) donnée par la
formule

ddet4(H) = Tr(Cof(A) " H),
ot Cof(A) est la matrice des cofacteurs de A.

On procéde en trois étapes:
(1) Dans un premier temps démontrer la formule pour le cas A = I
(2) Supposer ensuite que A € GL,(R), i.e. que A est inversible;

(3) Finalement, conclure en utilisant le fait que pour toute matrice A € M,,(R), la matrice A + ¢I est
inversible pour t suffisamment petit.

Exercice 7.2. Soit v : I — R? une courbe réguliére plane de classe C? et r > 0. On appelle courbe
paralléle & v & distance r la courbe ~,(t) = v(t) + rN4(¢) (ou N, = J(T,) est le champ de vecteurs
normal a ).

(a) Calculer la courbure k,(t) de la courbe paralléle 7, (en fonction de r et de t).

Ok
(b) Montrer que la fonction r — &, satisfait I’équation différentielle de Ricatti : o = K2

T

1
(c) Supposons que q¢ = %nﬁm > 0. Montrer que l'application f : (—¢,e) x I — R? définie par
el |k

f(r,t) = ~,(t) est une immersion pour tout ¢ < q.

(d) Expliciter le cas du cercle de rayon a centré en 0.

(e) Expliquer pourquoi 'affirmation du point (c) n’est pas correcte pour € > g.

Remarque. Cet exercice montre en particulier que localement, dans un voisinage de la courbe, on peut construire
un systéme de coordonnées curviligne dont I'une des coordonnées est I’abscisse curviligne de la courbe et I'autre
est la distance orientée & la courbe. Ces coordonnées s’appellent des coordonnées de Fermi.

Exercice 7.3. (Exercice sur les variétés de type quadrique)

(a) Rappeler ce qu’est une forme quadratique sur un espace vectoriel.

(b) Soit @ : R™ — R une forme quadratique sur R". Prouver que @ est différentiable. Que vaut sa
différentielle en un point x € R™ ?

(¢) Que dit le théoreme de Sylvester de 'algébre linéaire 7  Qu’est-ce que la signature d’une forme
quadratique 7 Que signifie la condition @) est non dégénéré pour une forme quadratique ?

(d) Prouver que si Q : R — R une forme quadratique non dégénérée, alors I’hypersurface Q1 (c) est
une sous-variété de R™ pour tout ¢ # 0. Quelle est sa dimension ?

(e) Est-ce que I'ensemble Sp(Q) = {x € R" | Q(z) = 0} C R™ est une sous-varié¢té ? L’ensemble
So(Q) s’appelle le cone isotrope de la forme quadratique Q
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(f) Les hypersurfaces

Si(Q) = {r €R"| Q@) = +1} ot S_(Q) = {z € R"|Q(x) = ~1}

s’appellent les indicatrices positives et négatives de la forme quadratique (). Montrer que @ est
entiérement déterminé par les deux indicatrices et le cone isotrope, i.e. si QQ1 et ()2 sont deux
formes quadratiques sur R™ telles que

So(@Q1) = So(Q2), S+(Q1) = S4+(Q2), S—(Q1) = S_(Q2),
alors Q1 = Q.

B. Exercices supplémentaires

Exercice 7.4. Cet exercice est a faire en groupe: Les images ci-dessous sont des créations des artistes
Maurits Cornelis Escher en 1953 (a gauche) et Victor Vasarely en 1968 (& droite).

Expliquer a votre fagon en quoi on peut interpréter ces images comme représentant des systémes de
coordonnées curvilignes dans un domaine du plan (discutez entre vous et rédigez un petit essai).

] s o

EEEO

Exercice 7.5. (*) On note R” l'ensemble R™ U {co}, ot {oo} est un point supplémentaire qui
n’appartient pas & R™. On définit sur cet ensemble une topologie pour laquelle R™ est un ouvert
de R" et la topologie induite est la topologie usuelle et les voisinages ouverts du point oo sont les
ensembles du type R™ \ K ou K est un compact de R".

On considére ensuite 'application f := R™ — R™ définie par

o0 six = p,
fl@)=<P si x = 00,
+ kP i g {p oo}
P —— = six ¢ {p,o0}.
|z — p|?

ol p est un point de R" et k est un réel strictement positif. Cette application s’appelle I’ inversion de
centre p € R™ et de module k > 0, c’est une application qui joue un réle important en géométrie et en
analyse.

Répondre aux questions suivantes :

18



(a) Décrire toutes les suites convergentes de R™ (on ne demande pas de donner une preuve rigoureuse
mais seulement d’expliquer quelles sont les suites convergentes).

(b) Décrire 'ensemble des points fixes de f, c’est-a-dire Pensemble {2z € R" | f(z) = z}.

(¢) Prouver que f est un homéomorphisme de R™, Quel est son inverse ?
Prouver aussi que f définit par restriction un difféomorphisme de R™ \ {p} dans lui-méme.

(d) Prouver que si n =2, f définit une application anti-holomorphe sur C\ {p}.
(e) Calculer la différentielle df,(h) en un point x € R™ \ {p}.

(f) Prouver que f est une application conforme sur R™ \ {p} (une application est dite conforme si elle
préserve les angles, concrétement il s’agit de prouver que df, est une similitude de R™).

(g) Quel est le rapport de similitude de dfz(h) ?

Cet exercice est important d’une part parce que l'inversion est une application importante en géométrie,
et d’autre part parce qu’il donne l'occasion de s’entrainer au calcul différentiel.
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A. Exercices standards.

Exercice 8.1. On considére les fonctions suivantes : f: R? — R et g : R® — R définies par
flz,y) =2%y+22°> —2zy —4dz+y et g(x,y, 2)=2ry— 3yz.

(a) Pour quelles valeurs de ¢ € R la courbe de niveau f~!(c) est-elle une sous-variété de R? ?

(b) Pour quelles valeurs de ¢ € R la surface de niveau g~!(c) est-elle une sous-variété de R3 ?

Exercice 8.2. (a) Soit p = (z0,¥0,20) € R3 un point régulier de la surface S surface définie par
I'équation f(x,y,z) = 0. Prouver que le plan vectoriel tangent 7},S est le plan orthogonal au gradient

V().

(b) Le plan affine tangent & une surface S en un point régulier p est ’ensemble des points de R? tels
que le vecteur ﬁ € T,S. Montrer que le plan affine tangent est donné par

A,S = {g € R3| (g—p, V f(p)) = 0}.

(c) En appliquant le résultat précédent, obtenir la formule donnant 'approximation du premier ordre
d’une fonction différentiable de deux variables z = ¢(z,y) au voininage d’un point (zg, o) (série de
Taylor a l'ordre 1).

2
Exercice 8.3. Montrer que 'ellipsoide Z—; + Z—Q + i—; = 1 est une surface réguliére (i.e. une sous-variété
de dimension 2) et calculer son plan affine tangent en un point p = (z, yo, 20)-

Exercice 8.4. On dit que deux sous-variétés différentiables M7 et Mo de R™ s’intersectent transver-
salement en un point p si p € MMM et en ce point les espaces tangents vérifient T), M + 1, Mo = R".

(a) Donner un exemple d’une surface et d'une courbes réguliéres R? qui s’intersectent en un point
unique, mais de fagon non transverse.

(b) Montrer que si S est une surface et C' une courbe de R? (toutes deux réguliéres), qui s’intersectent
transversalement en 0 € R3, alors on peut construire un systéme de coordonnées locales (u,v,t)
au voisinage de 0 telles que (u,v) sont des paramétres locaux de la surface S et ¢ un paramétre
local de la courbe C.

(c) Dans la méme situation que en (b), prouver que 0 est un point isolé de I'intersection SN C (i.e. il
existe un ouvert V C R3 tel que VN SNC = {0}).

Remarque : Dire quune courbe ou une surface est réguli¢re signifie qu’elle est une sous-variété de classe C*,
avec k > 1.

Exercice 8.5. La fenétre de Viviani est la courbe d’intersection d’une sphére avec un cylindre circulaire
droit qui passe par le centre de la sphére et dont le diamétre est le rayon de la sphére. Si le rayon de
la sphére est 1, on peut donc admettre (quitte & appliquer une isométrie) que la fenétre de Viviani est
définie par les équations:

2 2 2 1 2 2 1
4y +2=1 et T — = —i—y:Z.
On notera cet ensemble V.
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(a) Montrer par un argument géométrique qu’il existe un point g € V' tel que le complémentaire V'\ {¢}
est une sous-variété différentiable de R3. Quel sont les coordonnées de ¢ (on admettra un argument
heuristique) 7

(b) Prouver rigoureusement & partir des équations de V que V' \ {g} C R? est une sous-variété dif-
férentiable.

(c) Trouver une paramétrisation réguliére de cette courbe.

B. Exercices supplémentaires.

Exercice 8.6. On a vu a lexercice 7.3 que O(n) et SL,(r) sont des sous-variété de M, (R).

a) Décrire l'espace tangent T71SL,(R) a la sous-variété SL,(r) C M,(R) au point I (= la matrice
identité).

b) Décrire I'espace tangent T7O(n) a la sous-variété O(n) C M, (R) au point I.
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A. Exercices standards.

Exercice 9.1. (Courbe comme intersection de deux surfaces). Notons C C 2 I’ensemble des points
de Q tels que

f(x,y,2) =g(z,y,2) =0,
oil © est un domaine de R? et f, g € C*(Q2) avec k > 1. Supposons que pour un point (zg,yo, 20) € C

la matrice
of of of
dr Oy 0z
dg 0g g
dr Oy 0z

est de rang 2.

(a) Expliquer pourquoi on peut paramétriser I’ensemble C dans un voisinage de (zg, yo,20) comme
courbe réguliére v : I — Q de classe C*.

(b) Que peut-on dire du vecteur tangent 5/(¢t) ?

Exercice 9.2. Rappelons que par définition une application f : M — N entre deux sous-variétés
différentiables est un difféomorphisme si elle est bijective et f ainsi que f~! sont différentiables.

(a) Prouver que pour tout p € M, la différentielle dfy, : T,M — TN est un isomorphisme d’espaces
vectoriels.

(b) En déduire qu’il n’existe aucun difféomorphisme entre deux variétés non vides qui n’ont pas la
méme dimension.

(¢c) Montrer par un exemple qu’une application différentiable bijective f : M — N entre deux sous-
variétés différentiables n’est pas toujours un difféomorphisme (ont peut supposer dim(M) = 1).

Exercice 9.3. (a) On a vu a précédemment que O(n) est une sous-variété de M, (R). Décrire I'espace
tangent T7O(n) de cette variété au point I (= la matrice identité).

(b) Prouver que SL,(R) est une sous-variété de M, (R). Quelle est sa dimension ?

(c) Décrire l'espace tangent 775 L, (R).

Exercice 9.4. Une surface est dite réglée si c’est une réunion de droites. De fagon plus précise, soit
v : I — R3 une courbe C! et b : I — R3 un champ de vecteurs de classe C! le long de 7. La surface
réglée associée est définie par la paramétrisation:

P(u,v) = y(u) + vb(u).
(a) Donner les conditions nécessaires et suffisantes pour qu’une surface réglée ainsi définie soit en effet
une surface réguliére localement (c’est-a-dire pour que 'application 1 soit une immersion).

(b) Soit C une courbe de R3. On appelle cone de sommet ¢ € R? et de base C la réunion des droites
passant par g et un point de C. Donner des conditions nécessaires et suffisantes pour qu’un cone soit
une surface réguliére au voisinage de sa base. Puis expliciter une paramétrisation de ce cone.

(c¢) Expliquer ce qu’est un ruban de Mébius et donner une paramétrisation de cette surface comme
surface réglée dans R3.
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Exercice 9.5. Montrer que ’hyperboloide H & une nappe 22 +%2 — 22 = 1 est une surface doublement
réglée (i.e. réglée de deux maniéres différentes), puis donner une paramétrisation réguliére de cette
surface basée sur 'un de ces réglages.

Indication : Ecrire I’équation sous la forme x? —1 = 22 — 2 et factoriser. En déduire algébriquement I’équation

d’une droite contenue dans H, puis la paramétrer et la faire tourner autour de l'aze Oz.

B. Exercice supplémentaire.

Exercice 9.6. Dans cet exercice nous construisons un exemple d’immersion injective qui n’est pas un
plongement.
La lemniscate de Gerono est la courbe plane définie par I'équation 4x? — 4y? — z* = 0, c’est-a-dire
I’ensemble

C={(z,y) € R? | 42 — 4° — 2* = 0}.

(a) Montrer que C n’est pas une sous-variété différentiable de R2.
(b) La restriction de cette courbe a R?\ {(0,0)} est-elle une sous-variété différentiable ?

T 37

(c) Vérifier quey : (=%, 3F) — R? définie par y(t) = (2cos(t), sin(2t)) est une paramétrisation réguliére
de C.

De fagon précise, démontrer que
(i) ~ est une immersion de l'intervalle ouvert (—g, 37”) dans le plan.

(ii) v est injective.

(iv) Expliquer ce qu’il se passe sur v lorsque t — —% et t — —}—37”.

(v) Prouver que 7 n’est pas un plongement de 'intervalle (—E 3—”) dans le plan. (c’est-a-dire que

)
)
(iii) ~ défini une bijection entre I'intervalle ouvert (—%,2F) et la courbe C.
)
) 272

¢a n’est pas un homéomorphisme sur son image).
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Objectifs pour cette semaine : Le premier exercice relie le volume d’un parallélépipéde a la matrice
de Gram. Les autres exercices portent sur des notions de géométrie intrinséque des surfaces.

Exercice 10.1. Expliquer pourquoi le volume du parallélépipéde P C R" construit sur les vecteurs

by,..., b, € R™ vérifie
Vol(P) = /det(G),

ol G, est la matrice de Gram de by, . . ., by, (c’est-a-dire la matrice dont les coefficients sont les produits
scalaires g;; = (b;, bj)).

Exercice 10.2. (a) Donner un domaine ouvert maximal sur lequel les coordonnées polaires définissent
un difféomorphisme ¢ : (r,0) — (x,y).

(b) Calculer le tenseur métrique associé.

(¢) En déduire la formule pour calculer I'aire d’un domaine en coordonnées polaires.

Exercice 10.3. Considérons I'hélicoide définie par
S = {(z,yz) € R®| zsin(z) —ycos(z) = 0}
(a) Prouver que I’hélicoide est une surface réglée et décrire la géométrie de cette surface.

(b) Montrer que 'application
Y(u,v) = (veos(u),vsin(u), u)

défini un diféomorphisme (global) entre R? et S.

(c) Calculer ensuite le tenseur métrique associé & ce paramétrage.

Exercice 10.4. Prouver que l'aire d’une surface paramétrée réguliére ¢ : Q@ — S C R3 de classe C*

peut se calculer par la formule
Aire(S) = // 122 % 92 dudy
Q

Exercice 10.5. Soit f : [a,b] — R une fonction de classe C'! que I'on suppose strictement positive.
Notons S la surface de révolution dans R? obtenue par rotation du graphe de f autour de 'axe Ozx.
Prouver soigneusement que

b
Aire(S) = 271/ V1+(f(2)?|f(x)| de.

Exercice 10.6. La chainette est le graphe du cosinus hyperbolique, c’est-a-dire la courbe «(t) =
(t,cosh(t)).

(a) Expliquer pourquoi cette courbe s’appelle ainsi (une petite recherche sur internet n’est pas inter-
dite).
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(b) Montrer que la courbure de o est donnée par x(t) = 1/ cosh(t)2.
(c) Calculer la développée de a.

(d) Calculer 'abscisse curviligne de la chainette depuis le point initial a(0) = (0, 1), puis donner la
paramétrisation naturelle de .

(e) La surface de révolution de la chainette autour de 'axe Ox s’appelle une caténoide. Calculer le
tenseur métrique de la caténoide (en préférant la paramétrisation naturelle de la chainette).

Exercice 10.7. Soit S, C R? la sphére de rayon a > 0 centrée en l'origine. On appelle projection
stéréographique 1’application

7:8,\{(0,0,a)} — R?

qui envoie un point p = (x,y,2) € S, (p # (0,0,a)) sur 'unique point ¢ du plan R? tel que les trois
points (0,0,a), p et ¢ sont alignés (on regarde R? comme un plan dans R3.)

Notons v : R? — S, 'application inverse de la projection stéréographique.

Trouver une formule explicite pour ¢ et montrer que v est un paramétrage régulier de S,\{(0,0,a)}.
Calculer le tenseur métrique associé a cette paramétrisation.

Cette paramétrisation est-elle conforme 7

Prouver que la projection stéréographique définit un homéomorphisme entre la sphére et le com-
pactifié d’Alexandrov de R2.

(Le compactifié¢ d’Alevandrov de R? est ’ensemble R2 — R? U{oo} muni de la topologie pour laque-
lle tout voisinage d’un point ¢ de R? est aussi un voisinage de ¢ dans R2 et les complémentaires
des parties compactes de R? forment une base de voisinage du point 00).

Remarque. Parfois on définit la projection stéréographique en projetant sur un autre plan que le plan
de l’équateur, en particulier on projette souvent sur la plan tangent au “pdle sud” (0,0, —a).
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A. Exercices standards.

Exercice 11.1. Soit 7(s) € R? (a < s < b) une courbe réguliére au sens de Frenet et € > 0 une (petite)
constante. La réunion des cercles de rayons ¢ centré en ~y(s) et contenus dans le plan orthogonal a 4(s)
est une surface. On l'appelle un e-tube autour de 7 (ainsi un cylindre ou un tore sont des exemples
simples de tubes.)

a) En supposant que 7 est paramétrisée naturellement et biréguliére, donner un paramétrage ¢ (s, 6)
du e-tube (on utilisera le repére de Frenet).

b) Calculer le tenseur métrique de ce paramétrage.

¢) Montrer que 'aire de ce tube est donnée par
A =2mel
ou L est la longueur de ~.

d) Observer que cette formule est surprenante : I'aire du tube ne dépend que de € et de la longueur
de la courbe v au centre du tube. Donner néanmoins une explication intuitive de ce phénoméne.

Exercice 11.2. Soit v : I — S? une courbe simple de classe C! tracée sur la sphére unité, on suppose
~ paramétrée naturellement. On considére le cone C de centre 0 engendré par cette courbe, c’est a dire
I’ensemble des demi-droites d’origine 0 et passant par un point de ~.

(a) Donner une paramétrisation de C comme surface réglée et montrer que C \ {0} est une sous-variété
de R3.

(b) Calculer le tenseur métrique pour cette paramétrisation.

(c) Montrer que C \ {0} est localement isométrique au plan euclidien.

Exercice 11.3. Une courbe v : I — S de classe C? tracée sur une surface S C R? est une géodésique
de cette surface si son accélération est normale & la surface pour tout ¢ (c’est a dire 4(t) L TS pour
tout t € 1.)

Démontrer les affirmations suivantes :
(a) La vitesse de toute géodésique est constante.

(b) Les géodésiques (non constante) d’une sphére sont les grand cercles de cette sphére paramétrés a
vitesse constante.

(c¢) Si~y est un méridien d’une surface de révolution S et « est parcourue a vitesse constante, alors -y
est une géodésique.

(d) A quelle condition un paralléle d’une surface de révolution est-elle une géodésique ?

Indication pour (b) : Soit y(t) une géodésique d’une sphére de centre c. Vérifier que le vecteur m :=
(7(t) — ¢) x 4 est constant, puis considérer le produit scalaire (y(t) — ¢, m).
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Exercice 11.4. (a) On note H C R3 I'hélicoide d’équation zsin(z) = ycos(z) et C C R? le cylindre
circulaire droit d’équation z? 4+ y?> = 1. Montrer que l'intersection de ces deux surfaces est la réunion
disjointe des images des deux hélices v4 : R — R3 suivantes :

Yo () = (cos(t),sin(),£), 7 (t) = (—cos(t), —sin(t), ),
C’est-a-dire
HAC =74 (R) U7 (R) et 74 (R) Ny (R) =0,
(en particulier I'intersection H N C posséde deux composantes connexes).
(b) v+ (t) est-elle une géodésique du cylindre ?

(c) v+ (t) est-elle une géodésique de 1'hélicoide ?

Exercice 11.5. Calculer explicitement I’application de Gauss v : £ — S? de ellipsoide donné sous
forme implicite par
2 2 2
E={@y)e® | 5+ +5=1}.
Il s’agit donc de donner une formule pour v = v(z,y, z) pour chaque point (z,y,2) € £ (on suppose

a, b, ¢ non nuls).

Que remarque-t-on dans le cas ot a = b= c =1 (i.e. lorsque &£ est la sphére unité).

Exercice 11.6. Soit v : I — S une courbe réguliére de classe C? tracée sur une surface réguliére
co-orientée S C R3. On appelle repére de Darbouz le long de ~ relatif a la surface S le repére
mobile orthonormé {v(t), T,(t), u(t)} ou T,(t) = %"y(t) est le vecteur tangent unitaire a v, v(t)
est I'application de Gauss de S évaluée en y(t) et u(t) = v(t) x T, (1).

On note K, (t) le vecteur de courbure de 7. On rappelle que la courbure normale et la courbure
géodésique de - sont les fonctions du paramétre ¢ définies respectivement par

kn(t) = (K (8),v(1)) et ky(t) = (Ky(t), u(?))-
(a) Montrer que r(t)% = ky(t)% + ky(t)?, olt & est la courbure de 7 (en tant que courbe de R3).

(b) Prouver que 7 est géodésique si et seulement si sa vitesse est constante et sa courbure géodésique
est nulle.

(c) Calculer le repére de Darboux, la courbure géodésique et la courbure normale du petit cercle sur
la sphére unité S? défini par les équations 22 +y? + 22 =1let z =c (ot =1 < c < 1).

Exercice 11.7. On continue avec la situation et les notations de ’exercice précédent, et on définit la
torsion géodésique de ~y par
1 .
79(t) = v (P (1), u(t)).
(¢) Calculer la torsion géodésique du petit cercle sur S? défini {z = c}.

(d) Prouver que le repére de Darboux vérifie les équations différentielles suivantes :

%T = kg + kpv,
s =k, T+ 1yp,
%[L = —k,T — 14v,
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B. Exercice supplémentaire

Exercice 11.8. Lire les chapitres 3 et 4 du livre La Science et I’Hypothése (de Henri Poincaré, 1902).
Disponible ici en version électronique :
https://www.ebooksgratuits.com/pdf/poincare_science_hypothese.pdf
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C. Illustrations

Figure 2: e-tube autour d’une courbe.

Figure 3: Cone généralisé.

Figure 4: Intersection d’une demi-hélicoide et d’un cylindre circulaire droit
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Figure 6: Cette représentation par M.C. Escher du plan hyperbolique —appelée Circle Limit IT1I- date de 1959;
lartiste avait fait la connaissance du mathématicien H.C. Coxeter, qui lui avait envoyé un article contenant une
figure de pavage hyperbolique.

Objectifs. Cette série a pour but d’explorer la courbure des surfaces et les différentes notions qui
apparaissent dans cette théorie; et comprendre comment calculer ces courbures.

A. Exercices standards.

Exercice 12.1. Prouver que si v est une courbe biréguliére de classe C? qui est géodésique d’une
surface coorientée S, alors la torsion de v (en tant que courbe dans R?) coincide au signe prés avec la
torsion géodésique de cette courbe (ce résultat explique la terminologie de torsion géodésique).

La réciproque de cet énoncé est-elle valable (i.e. est-ce qu’une courbe sur une surface telle que la
torsion géodésique est égale a la torsion est toujours une géodésique de cette surface) ?

Indication. Dans cet exercice il est utile de comparer les équations de Darboux et de Serret-Frenet pour la
courbe 7.

Exercice 12.2. Calculer la courbure moyenne et la courbure de Gauss du cylindre circulaire droit
C C R? défini par I’équation 22 + y? = a?. (Peut-on prédire ces valeurs sans faire de calculs ?).

Exercice 12.3. (a) Calculer le tenseur métrique, la deuxiéme forme fondamentale et 'application de
Weingarten de ’hélicoide
Y(u,v) = (veos(u),vsin(u), u).
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Figure 7: Cette sculpture est 'ocuvre du sculpteur A. Duarte et date de 1973. On peut 'admirer au bout de
la jetée a Ouchy. Elle est constituées de plusieurs surfaces réglées, ce qui semblait étre un théme a la mode a
cette époque..

(b) Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Exercice 12.4. Montrer que la matrice de la seconde forme fondamentale du graphe de la fonction
©:Q — R, de classe C? (ou Q est un domaine de R?) est

' 1 <som sowy>
1+ 02+ \Pay Puy

Exercice 12.5. Est-ce que la matrice de 'application de Weingarten d’une surface est toujours une
matrice symétrique 7

Exercice 12.6. Soit p un point non ombilique d’une surface réguliére de classe C2. On note v et vy
les vecteurs unités de 73,5 dans les direction principales. Prouver la formule d’Euler, qui dit que la
courbure normale du vecteur vy = cos(0)vy + sin(f)vy € T),S est donnée par

kn(ve) = ki cos(0)? + kg sin(6)?,

ou k1, ko sont les courbures principales de S en p.

En déduire que k1 et k3 sont les valeurs minimale et maximale de la courbure normale de S au point
P.

(On rappelle qu'un point de la surface S est dit ombilique si les deux courbures principales en ce point
coincident : ki = ko).
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B. Exercice supplémentaire (sur les géodésiques des surfaces de révolution).

Exercice 12.7. Le but est de cet exercice est de déterminer toutes les géodésiques des surfaces de
révolution. On considére la surface de révolution 1 : Q = [0,27] x I — S C R3 donnée par

¥(0,s) = (r(s)cos(d),r(s)sin(), z(s))

(a) On considére une courbe y(t) (¢ € J), de classe C? tracée sur la surface S. Montrer que pour tout
tecJona

Op, _d ¢ 5
0,2 = 4 (i)
G, ) = o ()
ou le point signifie la dérivée par rapport au paramétre t.

(b) Montrer que si y(t) est une géodésique, alors les quantités
00t et (r(0)0()? + () + A(t)?

sont constantes (indépendante de t).

(c) Montrer que la fonction ¢ — 1/r(t) est bornée pour toute géodésique qui n’est pas un méridien de
la surface de révolution.

(d) Montrer que la hauteur de toute géodésique dans la pseudo-sphére qui n’est pas un méridien est
une courbe bornée dans R3.

Indication pour (c). On peut calculer la vitesse et l'accélération de vy en coordonnées cylindriques.
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Objectifs. Dans cette série, on continue ’étude des courbes sur les surfaces et les différentes notions
de courbure. Il s’agit en particulier de se familiariser avec les méthodes de calculs, tout en faisant le
lien avec la géométrie des surfaces.

A. Exercices standards.

Exercice 13.1. Calculer le tenseur métrique, la deuxiéme forme fondamentale et I'application de
Weingarten de la caténoide i.e. la surface de révolution de la chainette «a(t) = (¢, cosh(t)).

On rappelle que cette surface peut se paramétriser ainsi (comme surface de révolution autour de l'axe

Ox) :

(s, 0) = <log(s +V1+52), 1+ s2cos(d), V1 + s2 sin(0)> .

Que valent la courbure moyenne et la courbure de Gauss de cette surface ?

Exercice 13.2. Soit S C R3 une surface de classe C? dont on note H et K les courbures moyenne et
de Gauss respectivement. Montrer que les courbures principales sont données par

ki, ke = H+/H? — K.

Exercice 13.3. Montrer que la courbure de Gauss et la courbure moyenne peuvent s’écrire en fonction
des coefficients (g;5) et (hs;) des deux formes fondamentales par

_ hi1hag — h3, ot I — gi1haa — 2 g12hi2 + g22h11

K
g11922 — 9%2 2(911922 - 9%2)

Exercice 13.4. Soit ¢ : Q@ — S C R3 une surface réguliére de classe C? et A > 0. On note
Py = My  — AS C R3 la surface obtenue en appliquant une homothétie de rapport A. Quelle est
la relation entre la courbure de Gauss K1 (u,v) en un point p = ¢ (u,v) de S et la courbure de Gauss
Ks(u,v) en un point ¢ = A\p = ¢2(u,v) de AS 7

Exercice 13.5. Soit v : I — R? une courbe de classe C? biréguliére. Prouver que si ||| est constante,
alors 7y est une géodésique de la surface réglée S de paramétrisation ¢ (u,v) = y(u)+vB,(u), ot B, (u)
est le vecteur binormal de ~.

Exercice 13.6. Une courbe réguliére v de classe C? sur une surface S est une ligne de courbure si sa
courbure normale est en tout point une courbure principale.
Montrer que 7y est une ligne de courbure si et seulement si sa torsion géodésique est nulle.

Exercice 13.7. Prouver que la courbure de Gauss d’une surface réglée S est <0 (pas besoin de faire
de calculs).

Exercice 13.8. Prouver que la caténoide et [’hélicoide sont localement isométriques.
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Remarque. Le fait que la caténoide et ’hélicoide sont localement isométriques impliquent que ces
deux surfaces ont la méme courbure de Gauss, & cause du théoréme egregium, ce que confirment les
calculs.

Voici deux vidéos intéressantes illustrant ’isométrie entre la caténoide et ’hélicoide :
https://www.youtube.com/watch?v=VRY42CogWOI

et ici : https://www.youtube. com/shorts/RYHxW8GTQgQ

B. Exercice supplémentaire

Exercice 13.9. Montrer que la pseudo-sphére de Beltrami est intrinséquement isométrique au demi-
plan de Poincaré. Puis calculer son aire

A noter : Sur Moodle, dans la rubrique "vidéos" il y a un lien vers une vidéo de K. Crane présentant
un panorama assez complet de la courbure des courbes et des surfaces. Cette vidéo est de grande
qualité mais aussi trés dense, a regarder en petites tranches. Les premiére 55-60 minutes recouvrent
des thémes vus au cours, ensuite la vidéo illustre d’autres thémes.

La vidéo se trouve aussi ici : https://www.youtube.com/watch?v=e-erMrqBdlw
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Le premier exercice étudie une classe de courbes sur les surfaces et dans le second, on calcule l’intégrale
de la courbure gaussienne du tore de révolution. On finit avec un exercice de révision sur la courbure
des courbes planes.

Exercice 14.1. Une courbe réguliére v : I — S tracée sur une surface réguliére coorientée S C R?
de classe C? s’appelle une ligne asymptotique? si elle est de classe C? et son vecteur de courbure est
tangent a la surface pour tout t € I.

Prouver que les affirmations suivantes sont équivalentes:

a) La courbe « est une ligne asymptotique de S.

(
(b
(c

(d) En tout point de la courbe, le vecteur binormal de 7 est égale, au signe prés, au vecteur de
coorientation de la surface.

)
) La courbure normale &, de 7 est identiquement nulle.

) h(¥(t),%(t)) = 0 pour tout ¢t € I, ou h est la seconde forme fondamentale de S.

)

(e) Le plan osculateur a v coincide avec le plan affine tangent en S en chaque point de +.

(Pour les points (d) et (e) on suppose que la courbe est réguliére au sens de Frenet).

Exercice 14.2. On note 7 C R? le tore obtenu en faisant tourner le cercle de rayon 1 et de centre
(a,0,0) du plan Ozz autour de l’axe Oz (on suppose que a > 1).

a) Donner une paramétrisation du tore 7 et calculer le tenseur métrique associé.

b) Calculer I'aire de la surface 7.

c¢) Calculer la courbure de Gauss K de 7 (on exprimera K comme fonction des parameétres de la
paramétrisation donnée en (a)).

d) Calculer l'intégrale / KdA.
T

Exercice de révision :

2La terminologie est justifiée par le fait que le vecteur vitesse d’une ligne de courbure est en direction d’une asymptote
de lindicatrice de Dupin, qui est l'ensemble des vecteurs v € T,S tels que |h(v,v)] = 1 (mais ceci n’influence pas
lexercice).
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Exercice 14.3. (a) Soit 7 : [a,b] — R? une courbe fermée de classe C? dans le plan orienté. On
suppose que sa courbure orientée, que 1’on note k, vérifie 0 < k(t) < C pour tout ¢ € [a, b].

Démontrer que la longueur ¢ de v vérifie £ > 27 /C.

(b) Est-ce que cette borne peut-étre atteinte, i.e. existe-t-il une courbe fermée ~ de classe C? dans R?
vérifiant k(t) = 2w /¢(y) pour tout ¢ ?
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