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Avant-Propos

La géométrie différentielle étudie les courbes et les surfaces dans le plan et l’espace, et plus
généralement les variétés différentiables. Dans ce domaine, nous appliquons les techniques du
calcul différentiel et intégral à divers objets géométriques, nous permettant ainsi d’explorer leurs
propriétés par des méthodes analytiques.
Ce polycopié accompagne le cours de géométrie différentielle 1 du programme de 2ème année du
bachelor en mathématiques à l’EPFL. Tout au long de l’année, des exercices hebdomadaires vien-
dront compléter ce document. Ces exercices sont une partie intégrante du cours : ils constituent
une part fondamentale des compétences et connaissances que vous devrez maîtriser.
Votre participation active est essentielle ; je vous encourage vivement à partager vos remarques,
questions ou corrections éventuelles sur le forum dédié. Vos retours sont précieux pour améliorer
la qualité du polycopié et du cours en général. De plus, d’autres ressources et documents seront
mis à disposition sur le site Moodle du cours.
Je vous souhaite une enrichissante découverte de la géométrie différentielle.

Marc Troyanov,
septembre 2024

Voici quelques références récentes, parmi d’autres possibles, sur le sujet de ce cours. Il existe
aussi d’excellentes références plus classiques, à commencer par le traité en 3 volumes de Gaston-
Darboux publiés entre 1887 et 1896.

1. Kobayashi, Shoshichi Differential geometry of curves and surfaces. Springer Undergraduate
Mathematics Series. Springer, Singapore, 2021.

2. Needham, Tristan Visual differential geometry and forms, a mathematical drama in five
acts. Princeton University Press, Princeton, NJ, 2021.

3. Toponogov, Victor Andreevich Differential geometry of curves and surfaces. Birkhäuser
Boston, Inc., Boston, MA, 2006.

4. Umehara, Masaaki ; Yamada, Kotaro Differential geometry of curves and surfaces. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

5. Marc Troyanov Cours de Géométrie. Presses Polytechniques et Universitaires Romandes
(PPUR), 2009.
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Chapitre 1

Rappels sur les espaces vectoriels
euclidiens et pseudo-euclidiens

1.1 Définitions de bases

Définitions. (i) Un espace vectoriel euclidien est un espace vectoriel de dimension finie sur le
corps des réel muni d’un produit scalaire. On notera génériquement un tel espace par (En, 〈 , 〉),
où n ∈ N est la dimension de l’espace vectoriel et 〈 , 〉 est le produit scalaire. Rappelons qu’un
produit scalaire est une forme bilinéaire, symétrique et définie-positive sur l’espace vectoriel En.

En particulier, le produit scalaire standard sur Rn est défini par

〈x, y〉 = x1y1 + · · ·+ xnyn =
n∑
i=1

xiyi.

(ii) La norme d’un vecteur x ∈ En est le nombre réel défini par

‖x‖ =
√
〈x, x〉.

La norme est bien définie car 〈x, x〉 ≥ 0 pour tout x.
(iii) Une base {e1, . . . , en} de l’espace vectoriel euclidien x ∈ En est dite orthonormée si 〈ei, ej〉 =
δij (le symbole de Kronecker). Cela signifie que les vecteurs de cette base sont de norme 1 et
qu’ils sont deux à deux orthogonaux.
Il est facile de démontrer l’existence de bases orthonormées

Le produit scalaire peut se retrouver à partir de la norme en utilisant la formule de polarisation :

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Les deux identités suivantes sont également utiles :

〈x, y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
=

1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
.

Le résultat suivant est une propriété fondamentale des produits scalaires.

Proposition 1.1. (Inégalité de Cauchy-Schwartz.) Pour tous vecteurs x, y de l’espace euclidien
En on a

|〈x, y〉| ≤ ‖x‖‖y‖.
De plus on a égalité si et seulement si x et y sont colinéaires.
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CHAPITRE 1. RAPPELS SUR LES ESPACES EUCLIDIENS 3

Preuve. On pose a = 〈x, y〉, que l’on suppose non nul (sinon le résultat est trivial), et p(t) =
‖tax+ y‖2. On calcule en utilisant les propriétés du produit scalaire :

p(t) = ‖tax+ y‖2 = 〈tax+ y, tax+ y〉 = ‖x‖2a2t2 + 2a2t+ ‖y‖2,

Ainsi p(t) est un polynôme à coefficients réel du second degré qui est ≥ 0 pour tout t ∈ R.
Par conséquent le discriminant ∆ = 4|a|2

(
|a|2 − ‖x‖2‖y‖2

)
doit être négatif ou nul, c’est-à-dire

|a| ≤ ‖x‖‖y‖. De plus on a égalité si et seulement s’il existe t ∈ R tel que y = −tax.

Proposition 1.2. La norme vérifie les propriétés suivantes pour tous x, y ∈ En et λ ∈ R :
(a) ‖x‖ ≥ 0 et ‖x‖ = 0 si et seulement si x = 0.
(b) ‖λx‖ = |λ|‖x‖.
(c) ‖x± y‖ ≤ ‖x‖+ ‖y‖.

Preuve. Les deux premières propriétés suivent facilement des définitions. La troisième propriété
est une conséquence de l’inégalité de Cauchy-Schwartz :

‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

Comme les normes de x, y et x + y sont positives ou nulles, on peut prendre la racine carrée
dans l’inégalité ci-dessus, ce qui nous donne ‖x± y‖ ≤ ‖x‖+ ‖y‖.

Définitions. Dans un espace vectoriel euclidien :
(1.) La distance entre deux éléments x et y de En est définie par

d(x, y) = ‖y − x‖.

(2.) L’angle α ∈ [0, π] entre deux vecteurs non nuls x, y ∈ En est défini par

cos(α) =
〈x, y〉
‖x‖‖y‖

.

Cette notion est bien définie car d’une part ‖x‖‖y‖ 6= 0 lorsque x et y sont non nuls et d’autre part
on a

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ +1

par l’inégalité de Cauchy-Schwartz. Notons que le produit scalaire est parfois défini géométriquement
à partir de la notion d’angle via la formule

〈x, y〉 = ‖x‖‖y‖ cos(α),

mais du point de vue de l’algèbre linéaire, c’est le produit scalaire qui est la notion de base et l’angle
est une notion dérivée.

(3.) L’aire du parallélogramme P(x, y) construit sur les vecteurs x et y est définie par

Aire (P(x, y)) =

√
‖x‖2‖y‖2 − 〈x, y〉2.

A nouveau, l’inégalité de Cauchy-Schwartz justifie aussi que Aire (P(x, y)) est bien définie. On vérifie
d’autre part facilement que

Aire (P(x, y)) = ‖x‖‖y‖ sin(α),

ce qui correspond à la définition de l’aire d’un parallélogramme comme le produit de la “base” par
la “hauteur”.
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(4.) On dit que deux vecteurs x, y ∈ En sont orthogonaux, et on note x ⊥ y, si 〈x, y〉 = 0.

Proposition 1.3. Tout espace vectoriel euclidien En est un espace métrique pour la distance
définie ci-dessus.

Preuve. Nous devons vérifier que la distance d(x, y) = ‖y−x‖ vérifie les trois propriétés suivantes
pour tous x, y, z ∈ En :

(i.) d(x, y) ≥ 0 et d(x, y) = 0 si et sulement si x = y.

(ii.) d(x, y) = d(y, x).

(iii.) d(x, z) ≤ d(x, y) + d(y, z) (inégalité du triangle).

Ces propriétés se déduisent très facilement de la proposition 1.2. Vérifions par exemple l’inégalité
du triangle :

d(x, z) = ‖z − x‖ = ‖(z − y)− (y − x)‖ ≤ ‖(z − y)‖+ ‖(y − x)‖ = d(x, y) + d(y, z).

Proposition 1.4. Les conditions suivantes suivantes sont équivalentes pour deux vecteurs non
nuls x, y ∈ En :

(i) x ⊥ y, i.e. 〈x, y〉 = 0.

(ii) L’angle θ entre x et y est égal à
π

2
.

(iii) On a ‖x+ y‖ = ‖x− y‖.
(iv) On a ‖x+ y‖2 = ‖x‖2 + ‖y‖2 (théorème de Pythagore).

Preuve. L’équivalence entre (i) et (ii) vient de

θ =
π

2
⇔ cos(θ) = 0 ⇔ 〈x, y〉 = 0.

L’équivalence entre (i) et (iii) vient de

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2.

et celle entre (i) et (iv) de

2〈x, y〉 = ‖x+ y‖2 − (‖x‖2 + ‖y‖2).

1.2 Orientation d’un espace vectoriel réel de dimension finie

Dans ce bref paragraphe nous définissons la notion d’orientation d’un espace vectoriel de dimen-
sion finie sur le corps des réels. Rappelons que si {u1, . . . , un} et {v1, . . . , vn} sont deux bases
d’un espace vectoriel V , alors on appelle matrice de changement de base de la base {ui} vers la
base {vj} la matrice P = (pij) définie par

vj =
n∑
i=1

pijui
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Définition. On dit que deux bases {u1, . . . , un} et {v1, . . . , vn} d’un espace vectoriel réel ont la
même orientation si le déterminant de la matrice de changement de base P est positif. Sinon on
dit que les bases ont des orientations opposées.

Il n’est pas difficile de vérifier que “avoir la même orientation” est une relation d’équivalence sur
l’ensemble des bases de V . De plus il existe exactement deux classes d’équivalences.

Définition. On appelle orientation de V le choix d’une classe d’équivalence pour cette relation.
Un espace vectoriel réel orienté est un espace vectoriel muni du choix d’une orientation.

Une orientation de V est donc définie dès qu’on a choisi une base B = {v1, . . . , vn} et qu’on l’a
déclarée d’orientation positive. Toute autre base est dite d’orientation positive si elle a la même
orientation que B ; on dit aussi que c’est une base directe. Une base est dite d’orientation négative
si elle a l’orientation opposée à la base B.
Finalement, on dit qu’une application linéaire f : V → V préserve l’orientation si son détermi-
nant est positif et qu’elle inverse l’orientation si son déterminant est négatif. Cette notion est
indépendante du choix d’une orientation sur V . On note

GL+(V ) = {f ∈ GL(V ) | det(f) > 0},

c’est un sous-groupe du groupe linéaire général de V .

1.3 Similitudes et isométries d’un espace vectoriel euclidien.

Définition. Un similitude de rapport λ > 0 d’un espace vectoriel euclidien En est une application
bijective f : En → En telle que

d(f(x), f(y))) = λd(x, y), ∀x, y ∈ En.

Une isométrie de En est une similitude de rapport 1. C’est donc une bijection qui respecte les
distances.

Il est facile de vérifier à partir de cette définition que les similitudes de En forment un groupe
et que les isométries forment un sous-groupe normal de ce groupe. Pour décrire le groupe des
isométries, nous commençons par décrire les isométries qui fixent l’origine.

Lemme 1.5. Toute isométrie g : E → E d’un espace euclidien En qui fixe l’origine vérifie

(a) g préserve le produit scalaire, i.e. 〈g(x), g(y)〉 = 〈x, y〉 pour tous x, y ∈ En.
(b) L’application g est linéaire.

Preuve. (a) Puisque g est une isométrie, on a ‖g(y) − g(x)‖ = ‖y − x‖ pour tous x, y ∈ En.
Notons aussi que ‖g(x)‖ = ‖x‖ pour tout x car

‖g(x)‖ = ‖g(x)− 0‖ = ‖g(x)− g(0)‖ = ‖x− 0‖ = ‖x‖,

puisque g(0) = 0. On a donc

〈g(x), g(y)〉 =
1

2

(
‖g(y)‖2 + ‖g(x)‖2 − ‖g(y)− g(x)‖2

)
=

1

2

(
‖y‖2 + ‖x‖2 − ‖y − x‖2

)
= 〈x, y〉.
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(b) Nous pouvons maintenant montrer la linéarité de g. Soient x ∈ E un vecteur quelconque et
α ∈ R, alors

‖g(αx)− αg(x)‖2 = ‖g(αx)‖2 − 2〈g(αx), αg(x)〉+ α2‖g(x)‖2

= ‖g(αx)‖2 − 2α〈g(αx), g(x)〉+ α2‖g(x)‖2

= ‖αx‖2 − 2α〈αx, x〉+ α2‖x‖2

= 0,

ce qui prouve que g(αx) = αg(x).
D’autre part, si x, y ∈ E sont deux vecteurs, alors

‖g(x) + g(y)− g(x+ y)‖2 = 〈g(x) + g(y)− g(x+ y), g(x) + g(y)− g(x+ y)〉
= ‖g(x)‖2 + ‖g(y)‖2 + ‖g(x+ y)‖2 + 2〈g(x), g(y)〉 − 2〈g(x), g(x+ y)〉 − 2〈g(x+ y), g(y)〉
= ‖x‖2 + ‖y‖2 + ‖x+ y‖2 + 2〈x, y〉 − 2〈x, x+ y〉 − 2〈x+ y, y〉
= 〈x+ y − (x+ y), x+ y − (x+ y)〉 = 0,

ce qui prouve que g(x + y) = g(x) + g(y). On a donc démontré qu’une isométrie de E qui fixe
l’origine est une application linéaire.

Théorème 1.6. L’application f : E → E est une similitude de rapport λ si et seulement s’il
existe un vecteur b ∈ En et une isométrie linéaire g : En → En tels que f(x) = λg(x) + b pour
tout x ∈ En.

On dit que λg est la partie linéaire de l’isométrie f et b est le vecteur de translation de f .
Remarquons que ce vecteur est donné par b = f(0).

Preuve. On définit une application g : E → E par g(x) = 1
λ (f(x)− f(0)). Alors il est clair que

g(0) = 0 et g est une isométrie car

d(g(x), g(y)) = ‖g(x)− g(y)‖

= ‖ 1

λ
(f(x)− f(0))− 1

λ
(f(y)− f(0)) ‖

=
1

λ
‖f(x)− f(y)‖

= ‖x− y‖.

Par le lemme précédent, g est linéaire. On a donc montré que l’application f s’écrit f(x) =
λg(x) + b. où b = f(0) ∈ E est un vecteur constant et g est une isométrie linéaire.

Corollaire 1.7. Une application f : Rn → Rn est une isométrie pour le produit scalaire standard
de Rn si et seulement si on a

f(x) = Ax+ b,

où b = f(0) ∈ Rn et A ∈ GLn(R) est une matrice vérifiant A>A = In.

Preuve. Par définition du produit scalaire standard de Rn, on a

〈ei, ej〉 = δij ,

où {e1, . . . , en} est la base canonique de Rn (cette relation exprime que la base canonique est
une base orthonormée).



CHAPITRE 1. RAPPELS SUR LES ESPACES EUCLIDIENS 7

D’autre part on a Aer =
∑n

i=1 airei et Aes =
∑n

j=1 ajsej , par conséquent :

δrs = 〈er, es〉 = 〈Aer, Aes〉 = 〈
n∑
i=1

airei,
n∑
j=1

ajsej〉 =
n∑
i=1

n∑
j=1

airajsδij =
n∑
i=1

airais =
(
A>A

)
rs
,

ce qui prouve que A>A = In.

1.4 Le groupe orthogonal

Le résultat précédent justifie la définition importante suivante :

Définition 1.8. Une matrice A ∈ Mn(R) est orthogonale si A>A = In. L’ensemble des n × n
matrices orthogonales se note

O(n) = {A ∈Mn(R) | A>A = In}

Proposition 1.9. Pour toute matrice A ∈Mn(R) les propriétés suivantes sont équivalentes :
(i) A ∈ O(n), c’est-à-dire A>A = In.
(ii) A est inversible et A−1 = A>.
(iii) ‖Ax‖ = ‖x‖ pour tout x ∈ Rn.
(iv) 〈Ax,Ay〉 = 〈x, y〉 pour tous x, y ∈ Rn.
(v) Les colonnes de A forment une base orthonormée de Rn.
(vi) Les lignes de A forment une base orthonormée de Rn.
(vii) Pour tout vecteur b ∈ Rn, l’application affine f : Rn → Rn définie par f(x) = Ax + b est

une isométrie.
De plus O(n) est un sous-groupe de GLn(R) et pour tout A ∈ O(n) on a det(A) = ±1.

Dans cette proposition, le produit scalaire est le produit scalaire standard de Rn et la norme et
la distance sont associées à ce produit scalaire. Nous laissons la preuve de cette proposition en
exercice.

Remarquons que l’application déterminant définit un homomorphisme de groupes

det : O(n)→ {±1},

le noyau de cet homomorphisme est le groupe spécial orthogonal :

SO(n) = O(n) ∩ SLn(R) = {A ∈Mn(R) | A>A = In et det(A) = +1}.

La proposition suivante décrit les matrices orthogonales de taille 2× 2.

Proposition 1.10. Pour toute matrice A ∈ O(2), il existe θ ∈ R tel que

A = Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, si det(A) = +1,

et

A = Sθ/2 =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
, si det(A) = −1.

La matrice Rθ représente une rotation d’angle θ et Sθ/2 représente la réflexion à travers la droite
vectorielle formant un angle θ/2 avec le premier vecteur e1 de la base canonique.
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Preuve. Les colonnes d’une matrice orthogonale A ∈ O(2) doivent former une base orthonormée

de R2. Il existe donc θ ∈ (−π, π] tel que la première colonne s’écrive
(

cos(θ)
sin(θ)

)
.

La deuxième colonne de A doit être un vecteur de norme 1 orthogonal à la première colonne, par

conséquent ±
(
− sin(θ)

cos(θ)

)
. Ceci démontre que ou bien A = Rθ ou bien A = Sθ/2.

Pour voir que Rθ est une matrice de rotation, on peut vérifier que l’angle orienté entre tout
vecteur non nul x et Rθ(x) est égal à θ.

Finalement, Sθ/2 est une symétrie car cette matrice possède deux vecteurs propres orthogonaux
de valeurs propre +1 et −1 respectivement. Ces vecteurs propres sont (au signe près)(

cos(θ/2)
sin(θ/2)

)
et

(
− sin(θ/2)

cos(θ/2)

)
.

Nous laissons la vérification de ces deux dernières affirmations en exercice.

1.5 Un théorème d’Euler

Le théorème d’Euler décrit les isométries directes fixant un point dans l’espace à trois dimensions.

Théorème 1.11 (Théorème d’Euler). Toute isométrie directe f : E3→E3 fixant un point est ou
bien l’identité ou bien une rotation autour d’un axe passant par ce point.

Preuve. On peut supposer que f fixe l’origine O. Alors f est une transformation linéaire. On
a f(x) = Ax. On sait également que A ∈ SO(3) (c’est-à-dire A>A = I et det(A)= +1). Pour
montrer qu’il existe un axe, il suffit de montrer qu’il existe un vecteur propre de valeur propre
λ = 1. En effet, s’il existe un vecteur non nul a tel que Aa = a, alors la droite Ra est fixe pour
la transformation f (c’est donc un axe pour f) car

f(ta) =A(ta) = tA(a) = ta

pour tout t ∈ R. Pour montrer que 1 est une valeur propre de A, il faut montrer que

det(A− I) =0.

On a

det(A− I) = det(A>)︸ ︷︷ ︸
=1

det(A− I) = det(A>(A− I))

= det(A>A−At) = det(I−A>) = det(I−A).

Or, comme (A− I) est une matrice 3× 3 , on a det(A− I) = −det(I−A), donc

det(I−A) = −det(I−A).

Il en résulte que det(I−A) = 0.
Il faut encore prouver que f est bien une rotation autour de l’axe Ra ; considérons pour cela un
vecteur u1 de longueur 1 et perpendiculaire à a et notons u2 := a × u1. Observons que Au1 et
Au2 sont aussi orthogonaux à l’axe car

〈Aui,a〉 = 〈Aui, Aa〉 = 〈ui,a〉 = 0.
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Ceci implique que les vecteurs Au1 et Au2 sont des combinaisons linéaires de u1 et u2, et comme
ces vecteurs sont aussi de longueur 1 et orthogonaux, on a

Au1 = cos(θ)u1 + sin(θ)u2,

Au2 = − sin(θ)u1 + cos(θ)u2

où θ est l’angle entre u1 et Au1.

La matrice de la transformation linéaire A dans la base orthonormée u1,u2,a est donc la matrice cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


et il s’agit bien d’une rotation autour de l’axe Ra.

Rappelons que la trace d’une matrice est la somme de ses éléments diagonaux. On prouve dans
le cours d’algèbre linéaire que deux matrices semblables ont la même trace. Donc la trace de A
dans la base originale coïncide avec la trace de A dans la base u1,u2,a. Cette trace vaut donc
1 + 2 cos(θ) ; on a prouvé le résultat suivant.

Proposition 1.12. L’angle θ d’une rotation A ∈ SO(3) est donné par l’équation

Trace(A) = 1 + 2 cos(θ).

Certaines matrices de rotation sont très simples. Par exemple la rotation d’angle θ autour de
l’axe Ox est donnée par la matrice

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


et la rotation d’angle θ autour de l’axe Oy est donnée par la matrice

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


(observer la place du signe − dans cette matrice !).
Finalement, la rotation d’angle θ autour de l’axe Oz est donnée par la matrice

Rz(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


Si on effectue une rotation d’angle ϕ autour de l’axe Oz, puis une rotation d’angle θ autour de
l’axe Oy et enfin une rotation d’angle ψ de nouveau autour de l’axe Oz, on obtient une matrice

A = Rz(ψ) ◦Ry(θ) ◦Rz(ϕ) =(
cos (ψ) cos (θ) cos (φ)− sin (ψ) sin (φ) − cos (ψ) cos (θ) sin (φ)− sin (ψ) cos (φ) cos (ψ) sin (θ)
sin (ψ) cos (θ) cos (φ) + cos (ψ) sin (φ) − sin (ψ) cos (θ) sin (φ) + cos (ψ) cos (φ) sin (ψ) sin (θ)

− sin (θ) cos (φ) sin (θ) sin (φ) cos (θ)

)
Toute matrice de rotation dans R3 s’obtient de cette manière (avec 0 ≤ ψ < 2π, 0 ≤ θ < π et
0 ≤ ϕ < 2π). Les angles ψ, θ, ϕ s’appellent les angles d’Euler de la rotation A.
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1.6 Géométrie vectorielle dans l’espace euclidien orienté E3

Soit E3 un espace vectoriel euclidien orienté de dimension 3. On appelle produit vectoriel de deux
vecteurs x,y ∈ E3 le vecteur x× y ∈ E3. vérifiant les conditions géométriques suivantes :

(i) (x× y) ⊥ x et (x× y) ⊥ y.

(ii) ‖x× y‖ = aire(P(x,y)), où P(x,y) est le parallélogramme construit sur les vecteurs x
et y.

(iii) Si x et y sont linéairement indépendants, alors {x,y,x× y} est une base directe de E3.

La proposition suivante justifie cette définition :

Proposition 1.13. Le produit vectoriel est uniquement défini par les trois conditions ci-dessus.
De plus, si {e1, e2, e3} est une base orthonormée directe de E3, alors le produit vectoriel de
x = x1e1 + x2e2 + x3e3 et y = y1e1 + y2e2 + y3e3 se calcule par la formule suivante :

x× y = (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3. (1.1)

Preuve. Si x et y sont linéairement dépendants, alors aire(P(x,y)) = 0, par conséquent x× y
doit être le vecteur nul, et on vérifie facilement que dans ce cas le membre de droite de (1.1) est
en effet nul. Lorsque x et y sont linéairement indépendants, l’ensemble des vecteurs qui sont à la
fois orthogonaux à x et à y est un sous-espace vectoriel de dimension 1. Ce sous-espace contient
exactement deux vecteurs dont la norme est égale à aire(P(x,y)), et pour un seul de ces deux
vecteurs, que l’on notera x× y, la base {x,y,x× y} est d’orientation positive.

Nous devons maintenant prouver que le produit vectoriel est donné par la formule (1.1). Cela
demande un peu de calcul. Notons

z = (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3,

et observons pour commencer que

〈z,x〉 = (x2y3 − x3y2)x1 + (x3y1 − x1y3)x2 + (x1y2 − x2y1)x3 = det

x1 y1 x1

x2 y2 x2

x3 y3 x3

 = 0.

De même 〈z,y〉 = 0, ce qui montre que z est orthogonal à x et y. Pour montrer la propriété (ii),
on calcule le carré de la norme 1 de z, et on en réorganise les termes :

‖z‖2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)3

=
∑
i 6=j

x2
i y

2
j − 2

∑
i<j

xixjyiyj

=
∑
i,j

x2
i y

2
j −

∑
i

x2
i y

2
i + 2

∑
i<j

xiyixjyj


=

(∑
i

x2
i

)∑
j

y2
j

−(∑
i

xiyi

)2

= ‖x‖2‖x‖2 − 〈x,y〉2

= aire(P(x,y))2.

1. Il est souvent plus commode de calculer le carré d’une norme que la norme elle-même.
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Finalement, pour prouver (iii) on remarque que si x et y sont linéairement indépendants, alors
z est non nul et donc

det

x1 y1 z1

x2 y2 z2

x3 y3 z3

 = (x2y3 − x3y2)z1 + (x3y1 − x1y3)z2 + (x1y2 − x2y1)z3

= z2
1 + z2

2 + z2
3 = ‖z‖2 > 0,

ce qui implique que {x,y, z = x× y} est une base directe.

Remarque. Le produit vectoriel peut aussi s’écrire

x× y =

∣∣∣∣ x2 y2

x3 y3

∣∣∣∣ e1 −
∣∣∣∣ x1 y1

x3 y3

∣∣∣∣ e2 +

∣∣∣∣ x1 y1

x2 y2

∣∣∣∣ e3,

que l’on écrit aussi parfois sous la forme d’un “déterminant formel”

x× y =

∣∣∣∣∣∣
x1 y1 e1

x2 y2 e2

x3 y3 e3

∣∣∣∣∣∣ .
Observons aussi que le produit vectoriel définit une application bilinéaire antisymétrique
× : E3 × E3 → E3.

Définition. On appelle produit mixte de trois vecteurs x,y,w ∈ E3, le produit scalaire

[x,y,w] = 〈x× y,w〉.

Il est clair à partir de la formule (1.1) que dans une base orthonormée directe, la produit mixte
est donné par le déterminant suivant :

[x,y,w] =

∣∣∣∣∣∣
x1 y1 w1

x2 y2 w2

x3 y3 w3

∣∣∣∣∣∣ .
Cette quantité représente le volume orienté du parallélépipède P(x,y,w) construit sur les trois
vecteurs.

1.7 Géométrie vectorielle dans le plan euclidien orienté E2

Dans ce paragraphe et le suivant nous travaillons dans un espace vectoriel euclidien E2 muni d’une
orientation ; on se donne également une base orthonormée directe (i.e. d’orientation positive)
{e1e2}.

Par définition les vecteurs a = a1e1+a2e2 et b = b1e1+b2e2 forment une autre base directe de E2

si et seulement si a1b2− a2b1 > 0. Ils forment une base d’orientation négative si a1b2− a2b1 < 0.

L’opérateur J

On note J : E2 → E2 l’application linéaire qui est donnée dans une base orthonormée directe par
J(v1e1 + v2e2) = −v2e1 + v1e2. Sa matrice dans une telle base est donc

J =

(
0 −1
1 0

)
.

L’opérateur J est caractérisée par les propriétés géométriques suivantes :
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(i) ‖Jv‖ = ‖v‖ (en particulier J(0) = 0),

(ii) Jv ⊥ v,

(iii) Si v 6= 0, alors {v,Jv} est une base d’orientation positive.

En particulier, J ne dépend pas de la base orthonormée directe choisie (mais cet opérateur dépend
de l’orientation de E2.)
Géométriquement, l’opérateur J est la rotation qui fait tourner le vecteur v d’un quart de tour
dans le sens positif.

v
Jv

e1

e2

Définition. Le produit extérieur de deux vecteurs a,b ∈ E2 est le scalaire a ∧ b ∈ R défini par

a ∧ b = 〈J(a),b〉 = −〈a,J(b)〉.

Dans une base orthonormée directe {e1, e2}, le produit extérieur de a = a1e1 + a2e2 et b =
b1e1 + b2e2 est donné par

a ∧ b = 〈−a2e1 + a1e2, b1e1 + b2e2〉 = a1b2 − a2b1,

c’est-à-dire :

a ∧ b = det

(
a1 b1
a2 b2

)
.

Noter aussi que
(a ∧ b)2 = (a2

1 + a2
2)(b21 + b22)− (a1b1 + a2b2)2

Les propriétés suivantes découlent immédiatement de ces formules :

Proposition 1.14. Le produit extérieur vérifie les propriétés suivantes :

(i) Le produit extérieur est bilinéaire et antisymétrique.

(ii) a ∧ b = 0 si et seulement si a et b sont colinéaires.

(iii) |a ∧ b| = aire(P(a,b)).

(iv) |a ∧ b| ≤ ‖a‖‖b‖ et on a égalité si et seulement si a ⊥ b

(v) a ∧ b > 0 si et seulement si {a,b} est une base directe de E2.

On définit alors l’angle orienté θor ∈ (−π, π] entre deux vecteurs non nuls {a1,b2} de E2 par

θor =

{
∠ (a1b2) , si a ∧ b ≥ 0,

−∠ (a1b2) , si a ∧ b < 0.

où ∠ (a1b2) ∈ [0, π] est l’angle non orienté. Ainsi l’angle orienté entre a1 et b2 est négatif si et
seulement si ces deux vecteurs forment une base d’orientation négative (et dans ce cas le signe du
sinus de l’angle orienté est négatif). L’angle orienté est complètement déterminé par les formules :

cos (θor) =
〈a,b〉
‖a‖‖b‖

, sin (θor) =
a ∧ b

‖a‖‖b‖
.
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De la même manière, on définit l’aire orientée du parallélogramme construit sur les vecteurs
{a1,b2} ∈ E2 par

aireor(P(a,b) =

{
aire(P(a,b), si a ∧ b ≥ 0,

−aire(P(a,b), si a ∧ b < 0.

On voit donc que
aireor(P(a,b) = ‖a‖‖b‖ sin (θor) = a ∧ b.



Chapitre 2

Courbes dans l’espace et le plan
euclidien

2.1 Qu’est ce qu’une courbe ?

La notion mathématique de courbe ou de ligne formalise l’idée intuitive d’un objet du plan ou
de l’espace qui est continu et n’a qu’une dimension. Euclide en donne la définition suivante dans
le livre I des Eléments : une ligne est une longueur sans largeur. Les droites, les cercles et les
ellipses sont des exemples familiers de courbes. Dans la vie courante, un fil de fer ou la trajectoire
d’un projectile sont des exemples concrets de courbes.
La formalisation de la notion de courbe conduit à plusieurs concepts qu’il faudra distinguer.
Le premier est celui de « lieu géométrique » des points satisfaisant certaines propriétés : cette
idée nous conduit à la notion implicite d’une courbe comme ensemble des points satisfaisant une
équation (dans le plan) ou deux équations (dans l’espace de dimension 3). Le second concept
est celui de courbe comme « trajectoire » : on ne conçoit plus la courbe comme un ensemble
de points, mais comme un « point mobile », c’est-à-dire une fonction d’un paramètre à valeurs
dans le plan ou dans l’espace : c’est le point de vue paramétrique ou cinématique en théorie des
courbes. L’acte de tracer une courbe au crayon noir sur une feuille blanche se décrit par le point
de vue paramétrique, le résultat de cette action, la courbe qu’on a tracée, correspond au point
de vue implicite. Dans ce chapitre, nous privilégions le point de vue paramétrique.

2.2 Notions fondamentales

Dans ce chapitre, on suppose que l’espace est muni d’un système de coordonnées fixe. On
l’identifie donc à Rn et on admet que n est un entier quelconque. On supposera, sauf men-
tion du contraire, que le système de coordonnées est orthonormé. La norme d’un vecteur v =
(v1, v2, ..., vn) est alors donnée par

‖v‖ =
√
v2

1 + v2
2 + · · ·+ v2

n,

et si w = (w1, w2, ..., wn) est un second vecteur alors leur produit scalaire est donné par

〈v,w〉 =

n∑
i=1

viwi.

Définitions. Une courbe paramétrée dans Rn est une application continue α : I → Rn :

α : u 7→ (α1(u), α2(u), ..., αn(u)) ∈ Rn, u ∈ I

14



CHAPITRE 2. COURBES DANS L’ESPACE ET LE PLAN EUCLIDIEN 15

où I ⊂ R est un intervalle appelé l’intervalle de paramétrisation de la courbe.

La variable u parcourant l’intervalle I s’appelle le paramètre (elle est aussi parfois notée par les
lettres s, t, ϕ ou θ) et l’ensemble

α(I) = {α(u) | u ∈ I} ⊂ Rn

s’appelle la trace ou le support de la courbe paramétrée α.

On dit que la courbe α est différentiable en u0 ∈ I si la limite

dα

du
(u0) := lim

u→u0

α(u)− α(u0)

u− u0

existe. Cette limite s’appelle alors le vecteur vitesse de la courbe α en u0 et on le note α̇(u0) ou
α′(u0).
Remarquons que la direction du vecteur vitesse est tangente à la courbe en α(u0) car cette di-
rection est la limite des directions prises par une suite de cordes reliant le point p = α(u0) à un
point de la courbe se rapprochant du point p.

.

La vitesse de α en u0 est la norme du vecteur vitesse, on la note

Vα(u0) = ‖α̇(u0)‖.

Lemme 2.1. La courbe α(u) = (α1(u), ..., αn(u)) est différentiable en u0 si et seulement si les
fonctions αi(u) sont dérivables en u0. De plus,

α̇(u0) =

(
dα1

du
(u0), ...,

dαn
du

(u0)

)
.

Si le système de coordonnées est orthonormé, alors on a aussi :

Vα(u0) =

√(
dα1

du
(u0)

)2

+ · · ·+
(
dαn
du

(u0)

)2

.

Nous laissons la vérification de ce lemme en exercice.

Définitions. Voyons quelques définitions supplémentaires.

(a) La courbe α : I → Rn est dite de classe C1 si elle est différentiable en tout point de I et si
les dérivées

α̇j =
dαj
du

sont continues sur l’intervalle I pour tout j = 1, 2, . . . , n.
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(b) La courbe est dite de classe Ck (où k est un entier) si les dérivées d’ordre m

dmαj
dum

(u)

existent et sont continues pour tout j = 1, 2, . . . , n et tout m = 1, 2, . . . , k.

Si une courbe est de classe Ck pour tout entier k, on dit qu’elle est de classe C∞. Si la
courbe est simplement continue, on dit qu’elle est de classe C0.

(c) Si α : I → Rn est une courbe de classe C2, alors son accélération est le vecteur défini par

α̈(u) =
d2α

du2
(u) .

(d) Soit α une courbe de classe C1 et u0 une valeur du paramètre. On dit que le point p = α(u0)
est singulier si α̇(u0) = 0 (de façon équivalente, p est singulier si et seulement si Vα(u0) = 0).
Le point p = α(u0) est régulier s’il n’est pas singulier.
Une courbe est régulière si elle est de classe C1 et si tous ses points sont réguliers.

(e) Le point p = α(u0) sur une courbe de classe C2 est birégulier si α̇(u0) et α̈(u0) sont
linéairement indépendants.
Une courbe est birégulière si elle est de classe C2 et si tous ses points sont biréguliers.

(f) Le plan osculateur à la courbe α au point p = α(u0) est le plan passant par p et qui est
parallèle aux vecteurs α̇(u0) et α̈(u0). Ce plan n’est défini que si p est un point birégulier.

(g) Un point p sur une courbe α : I → Rn est un point double s’il existe deux valeurs distinctes
du paramètre (u1, u2 ∈ I , u1 6= u2) telles que

p = α(u1) = α(u2) .

(h) Si α : I → Rn est une courbe et si J ⊂ I est un intervalle, alors on dit que la restriction de
α à J est un arc de la courbe α (un arc de courbe n’est donc rien d’autre qu’un « morceau
de courbe »).

(i) On dit qu’un arc de courbe est simple s’il ne contient pas de point double.
(j) La droite tangente à la courbe γ au point régulier γ(u0) est la droite Tu0γ parcourue à

vitesse constante, passant par γ(u0) dans la direction du vecteur vitesse γ̇(u0) :

Tu0γ : λ 7→ γ(u0) + λγ̇(u0), λ ∈ R

Premiers exemples

1) La cubique dans R3 est la courbe α : R→ R3 définie par

α(u) = (au, bu2, cu3),

où a, b, c sont des constantes non nulles. Cette courbe est de classe C∞, son vecteur vitesse est

α̇(u) = (a, 2bu, 3cu2)

et son accélération est
α̈(u) = (0, 2b, 6cu).

La cubique est donc birégulière et sa vitesse est

Vα(u) = ‖α̇(u)‖ =
√
a2 + 4b2u2 + 9c2u4.
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2) La courbe β : R→ Rn définie par

β(u) = (u2, u3, . . . , un+1)

est de classe C∞. Son vecteur vitesse est

β̇(u) = (2u, 3u2, . . . , (n+ 1)un),

et sa vitesse est Vβ(u) =
∥∥∥β̇(u)

∥∥∥ =
√

4u2 + · · ·+ ((n+ 1)un)2. Cette courbe a un unique point
singulier en β(0) = (0, 0, . . . , 0).

3) La droite passant par les points distincts p = (p1, p2, ..., pn) et q = (q1, q2, ..., qn) admet la
paramétrisation affine δ : R→ Rn suivante :

δ(t) = p+ t−→pq = (p1 + t(q1 − p1), p2 + t(q2 − p2), ..., pn + t(qn − pn)).

En posant w = −→pq = (w1, w2, . . . , wn), on a δ(t) = (p1 + tw1, ..., pn + twn) . Le vecteur vitesse et
la vitesse sont donnés pour tout t par

δ̇(t) = w et Vδ(t) = ‖w‖ ,

et l’accélération est nulle. La courbe est donc régulière, de classe C∞ et sa vitesse est constante.
Son accélération est nulle et la droite n’est donc pas birégulière.

4) La même droite admet de nombreux autres paramétrisations, par exemple :

ε(t) = p+ t3w = (p1 + t3w1, ..., pn + t3wn) (t ∈ R).

Dans ce cas,
ε̇(t) = 3t2w et Vε(t) = 3t2 ‖w‖ .

Cette courbe est de classe C∞ et elle possède un unique point singulier en ε(0) = p.

5) Ou encore
η(t) = p+

3
√
tw = (p1 +

3
√
tw1, ..., pn +

3
√
t wn) (t ∈ R).

Cette courbe n’est pas de classe C1, elle n’est en effet pas différentiable en t = 0. Nous avons
pour t 6= 0 :

η̇(t) =
1

3
t−2/3w et Vη(t) =

1

3
t−2/3 ‖w‖ ,

et donc Vη(t)→∞ lorsque t→ 0.

6) Le cercle de centre p et rayon r dans le plan Π ⊂ Rn admet la paramétrisation

c(t) = p+ r cos(ω t)b1 + r sin(ω t)b2 (0 ≤ t ≤ 2π

ω
)

où p,b1,b2 est un repère orthonormé dans le plan Π et ω > 0 est une constante appelée la vitesse
angulaire (on vérifie en effet facilement que ‖c(t)− p‖ = r). La vitesse de cette courbe est

ċ(t) = −ω r sin(ω t)b1 + ω r cos(ω t)b2 et Vc(t) = ωr.

Son accélération est
c̈(t) = −ω2 r cos(ω t)b1 − ω2 r sin(ω t)b2.

Cette courbe est birégulière, elle est de classe C∞, et sa vitesse est constante. Elle admet un
point double puisque c(0) = c(2π

ω ).
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7) Le graphe d’une fonction f : I → R de classe C1 est la courbe γf : I → R2 définie par

γf (x) = (x, f(x)).

Remarquons que dans cet exemple. la variable x est à la fois une coordonnée du plan et le
paramètre de la courbe. Si f est continûment dérivable, alors la courbe est de classe C1 et on a

γ̇f (x) = (1, f ′(x)) et Vγ(x) =
√

1 + (f ′(x))2.

Cette courbe est toujours régulière puisqu’en tout point Vγ(x) ≥ 1.

8) L’hélice circulaire est la courbe γ : R→ R3 définie par

γ(u) = (a cos(u), a sin(u), b u),

où a et b sont des réels non nuls. Son vecteur vitesse et son accélération sont donnés par

γ̇(u) = (−a sin(u), a cos(u), b)

γ̈(u) = a(− cos(u),− sin(u), 0) .

L’hélice circulaire est donc une courbe birégulière et la vitesse est constante :

‖ γ̇ ‖=
√
a2 + b2.

Hélice circulaire

2.3 Champs de vecteurs le long d’une courbe

Définition. Un champ de vecteurs le long d’une courbe γ : I → Rn est la donnée d’un vecteur

W(u) = w1(u)e1 + w2(u)e2 + · · ·+ wn(u)en

pour toute valeur du paramètre u ∈ I. Le vecteur W(u) est en général considéré comme un
vecteur fixe d’origine γ(u), mais on peut aussi le voir comme un vecteur libre.

Champ de vecteurs le long d’une courbe.

Le champ de vecteurs W(u) est dit de classe Ck si les dérivées de w1, w2, . . . wn existent et sont
continues jusqu’à l’ordre k.
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Exemples de champs de vecteurs

(1) Si γ est de classe C1, alors son vecteur vitesse définit un champ u 7→ γ̇(u).

(2) Si γ est de classe C2, alors son accélération définit un champ u 7→ γ̈(u).

(3) SiW(u) et Z(u) sont deux champs de vecteurs le long de la courbe γ : I → Rn et f, g : I → R
sont deux fonctions, alors

u 7→ f(u)W(u) + g(u)Z(u)

est un nouveau champ de vecteurs le long de la courbe.

(4) Si W(u) est un champ de vecteurs de classe Ck, alors sa dérivée Ẇ(u) est un champ de
vecteurs de classe Ck−1 et Ẅ(u) est un champ de classe Ck−2.

(5) En dimension 3, un autre champ est donné par u→W(u)× Z(u).

(6) Si γ, β : I 7→ Rn sont deux courbes ayant même intervalle de paramétrisation , alors on peut
définir un champ de vecteurs le long de γ par

W(u) = β(u)− γ(u).

Ce champ s’appelle le champ de poursuite de la courbe β depuis la courbe γ.

(7) Un champ important est le vecteur tangent d’une courbe régulière γ : I → Rn de classe C1.
C’est le champ de vecteurs le long de la courbe obtenu en normalisant le vecteur vitesse :

Tγ(u) :=
γ̇(u)

‖γ̇(u)‖
=

γ̇(u)

Vγ(u)
.

(8) Le vecteur normal principal d’une courbe birégulière γ de classe C2 est le champ de vecteurs
le long de la courbe défini par

Nγ(u) :=
γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)

‖γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)‖
.

Exercice. Vérifier que, en chaque point d’une courbe birégulière, les vecteurs Tγ(u) et Nγ(u)
forment un repère orthonormé du plan osculateur.

Lemme 2.2 (Règle de Leibniz). Soient W(u) et Z(u) deux champs de vecteurs de classe C1 le
long de la courbe γ : I → Rn, alors

d

du

〈
W(u),Z(u)

〉
=
〈
Ẇ(u),Z(u)

〉
+
〈
W(u), Ż(u)

〉
.

Si n = 3, alors on a de même

d

du
(W(u)× Z(u)) = Ẇ(u)× Z(u) + W(u)× Ż(u),

et si n = 2,
d

du
(W(u) ∧ Z(u)) = Ẇ(u) ∧ Z(u) + W(u) ∧ Ż(u).

Preuve. Démontrons la première formule. Pour simplifier on écrit

W(u) · Z(u) = 〈W(u),Z(u)〉.
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On a alors par bilinéarité

W(u+ ε) · Z(u+ ε)−W(u) · Z(u)

=
(
W(u+ ε) · Z(u+ ε)−W(u) · Z(u+ ε)

)
+
(
W(u) · Z(u+ ε)−W(u) · Z(u)

)
=
(
W(u+ ε)−W(u)

)
· Z(u+ ε) + W(u) ·

(
Z(u+ ε)− Z(u)

)
.

Il suffit de diviser cette identité par ε et faire tendre ε vers 0 pour obtenir le lemme. Les autres
formules se vérifient de la même manière.

Le corollaire suivant est important et sera fréquemment utilisé dans la suite :
Corollaire 2.1 (a) Si W1(u) et W2(u) sont deux champs de vecteurs de classe C1 le long de
γ tel que 〈W1(u),W2(u)〉 est constant, alors on a

〈W1(u),Ẇ2(u)〉 = −〈Ẇ1(u),W2(u)〉

pour tout u ∈ I.
(b) Si W(u) est un champ de vecteurs de classe C1 le long de γ tel que ‖W‖ est constant, alors
Ẇ(u) est orthogonal à W(u) pour tout u ∈ I.

Preuve. L’affirmation (a) est une conséquence immédiate de la règle de Leibniz et (b) découle
de (a).

2.4 Longueur et abscisse curviligne

Définition. La longueur d’un arc de courbe γ : [a, b] → Rn de classe C1 par morceaux est
l’intégrale de sa vitesse :

`(γ) =

∫ b

a
Vγ(t) dt, où Vγ = ‖γ̇(t)‖.

Exemple 2.3. 1) Il est clair que si la vitesse est constante : Vγ(t) ≡ v, alors on a

`(γ) = v · (b− a).

Ainsi, la longueur d’un chemin parcouru à vitesse constante est égale à la vitesse multipliée par
le temps de parcours :

longueur = vitesse × temps.

2) Comme cas particulier, nous avons le segment [p, q] paramétré par

δ(t) = (p1 + t(q1 − p1), . . . , pn + t(qn − pn)),

avec t ∈ [0,M ]. On a vu que Vδ(t) = ‖−→pq‖ = ‖q − p‖, et donc

`(δ) = M ‖q − p‖ .

3) L’arc de cercle de centre p et rayon r dans R2 est paramétré par

c(θ) = (p1 + r cos(θ), p2 + r sin(θ)),
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où θ varie de θ0 à θ1. La vitesse de cette courbe est constante : Vc(θ) = r, et donc

`(c) =

∫ θ1

θ0

Vc dθ = r (θ1 − θ0) .

On a donc montré que la longueur d’un arc de cercle est égale au produit du rayon par l’angle
qui sous-tend l’arc.

4) La longueur du graphe γf : [a, b]→ R2 de la fonction f : [a, b]→ R est donnée par

`(γf ) =

∫ b

a
Vγ(x) dx =

∫ b

a

√
1 + (f ′(x))2 dx.

Voyons à présent quelques propriétés importantes de la longueur.

Proposition 2.4. Si g : Rn → Rn est une similitude de rapport λ > 0 et γ : [a, b]→ Rn est un
arc de courbe de classe C1, alors γ̃ := g ◦ γ : [a, b]→ Rn est aussi de classe C1 et

`(γ̃) = λ`(γ).

En particulier la longueur d’une courbe est invariante par isométrie.

Preuve. On sait que toute similitude g est de la forme g(x) = λAx+ b, où b est un vecteur
et A une matrice orthogonale. On a donc γ̃(u) = λAγ(u) + b, et, par la règle de Leibniz,

.
γ̃(u) = λȦγ(u) + λAγ̇(u) + ḃ = λAγ̇(u)

puisque A et b sont constantes. Comme A est une matrice orthogonale, on a

Vγ̃(u) = ‖
.
γ̃(u)‖ = ‖λAγ̇(u)‖ = λ ‖γ̇(u)‖ = λVγ(u),

et donc

`(γ̃) =

∫ b

a
Vγ̃(u)du = λ

∫ b

a
Vγ(u)du = λ`(γ).

Proposition 2.5 (additivité de la longueur). Soit α : [a, b] → Rn une courbe de classe C1 et
c ∈ [a, b]. Notons β := α|[a,c] : [a, c] → Rn et γ := α|[c,b] : [c, b] → Rn les restrictions de α aux
intervalles [a, c] et [c, b]. Alors

`(α) = `(β) + `(γ).

Preuve. Cette proposition découle de la propriété correspondante de l’intégrale, nous laissons
le·la lecteur·ice compléter les détails.

Proposition 2.6. Pour tout arc de courbe α : [a, b]→ Rn de classe C1 on a

d(α(a), α(b)) ≤ `(α).
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Cette proposition dit que le plus court chemin reliant deux points est le segment de droite reliant
ces deux points.

Preuve. Quitte à composer α par une isométrie, on peut supposer que α(a) = 0 = (0, 0, . . . , 0)
et α(b) = de1 = (d, 0, . . . , 0), où d = d(α(a), α(b)). Écrivons α(t) = (x1(t), x2(t), . . . , xn(t)) dans
un système de coordonnées orthonormé, alors

`(α) =

∫ b

a
‖α̇(t)‖dt =

∫ b

a

(
n∑
i=1

ẋ2
i (t)

)1/2

dt ≥
∫ b

a
|ẋ1(t)|dt ≥

∫ b

a
ẋ1(t)dt = x1(b)− x1(a) = d.

Définition 2.7. Soit α : I → Rn une courbe paramétrée de classe C1 et u0 ∈ I une valeur
du paramètre. L’abscisse curviligne (aussi appelé le paramètre naturel) sur α correspondant au
point initial p0 = α(u0) est la fonction sα : I → R définie par

sα(u) =

∫ u

uo

Vα(τ)dτ.

L’abscisse curviligne mesure donc la longueur du chemin parcouru sur la courbe depuis le point
initial, elle est négative avant le point initial et positive après :

sα(u) =

{
`(α|[u0,u]) si u ≥ u0

−`(α|[u0,u]) si u ≤ u0.

Lorsqu’il n’y a pas de risque de confusion, nous noterons l’abscisse curviligne par s(u) au lieu de
sα(u).

2.5 Changement de paramétrisation d’une courbe

La notion de courbe que nous avons introduite plus haut est une notion cinématique 1, i.e. fondée
sur la notion de paramétrisation. Il est naturel, d’un point de vue géométrique, d’admettre qu’une
« même » courbe puisse avoir plusieurs paramétrisations distincts.

Définition. Soit α(t) (t ∈ I) une courbe paramétrée. On dit qu’une courbe β(u) (u ∈ J) est
une reparamétrisation directe de α s’il existe une bijection

h : I → J

transformant le paramètre t en u = h(t) et telle que
a) h est continûment différentiable ;
b) h′(t) > 0 quel que soit t ∈ I ;
c) α = β ◦ h.
Le diagramme triangulaire suivant représente ls situation schématiquement :

I J

Rn

h

α β

1. Le mot cinématique vient du grec κίνησις, qui signifie « mouvement ».
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Observons que les deux courbes ont alors la même trace, i.e. α(I) = β(J). Les vecteurs vitesses
sont reliés par

dα

dt
=
dβ

du

du

dt
= h′(t)

dβ

du
(2.1)

En particulier, comme h′(t) 6= 0, on voit que les courbes α et β ont les mêmes points singuliers.

Les formules ci-dessus montrent en particulier que lorsqu’on reparamétrise une courbe, celle-ci
ne change pas de sens de parcours (car les vecteurs vitesses des deux courbes ont même direction
et même sens). On peut toutefois inverser le sens de parcours d’une courbe par une procédure
similaire à une reparamétrisation.

Définition. On dit qu’une courbe β(u) (u ∈ J) est une reparamétrisation indirecte, ou une
inversion de la courbe α(t) (t ∈ I) s’il existe une bijection

h : I → J

transformant le paramètre t en u = h(t) et telle que

a) h est continûment différentiable ;

b) h′(t) < 0 quel que soit t ∈ I ;
c) α = β ◦ h.
Si β(u) est une reparamétrisation directe ou indirecte de la courbe α(t), alors les vitesses de ces
deux courbes sont reliées par

Vα(t) = |h′(t)|Vβ(u). (2.2)

Voici un exemple simple : considérons les courbes du plan R2

α(θ) = (cos(θ), sin(θ)) (0 < θ < π)

et
γ(x) = (x,

√
1− x2) , (−1 < x < 1).

Ces deux courbes ont la même trace, qui est le demi-cercle unité :{
(x, y)

∣∣x2 + y2 = 1, y > 0
}
.

La fonction h : (0, π) → (−1, 1) définie par h(θ) = x = cos(θ) fait le lien entre les deux
paramétrisations car

γ(h(θ)) = (x,
√

1− x2) = (cos(θ), sin(θ)) = α(θ).

Comme h′(θ) =
dx

dθ
= − sin(θ) < 0, on voit que la courbe α est une inversion de γ.

Remarque. Observons que si θ = 0 ou θ = π, alors h′(θ) = 0. Le reperamétrage h cesse d’être
admissible aux extrémités de l’intervalle. Cela correspond au fait que la vitesse de γ

Vγ(x) =

∥∥∥∥dγdx
∥∥∥∥ =

1√
1− x2

tend vers l’infini lorsque x→ ±1.
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2.6 Quantités géométriques et quantités cinématiques

Définition. Une quantité ou une notion attachée à une courbe est dite géométrique si elle est
invariante par rapport aux changements de paramètres, et elle est dite cinématique dans le cas
contraire.

Par exemple, la vitesse et l’accélération sont des notions cinématiques alors que la notion de
point singulier, de point régulier et de direction tangente sont des notions géométriques.

Lemme 2.8. Le vecteur tangent Tα(t) est une quantité géométrique.

Cette affirmation est géométriquement évidente, puisque T est le champ de vecteurs unitaire
indiquant la direction de la courbe. Voyons tout de même une preuve formelle :
Preuve. Soit β(u) (u ∈ J) une reparamétrisation directe de la courbe α(t). Il existe alors une
fonction h : I → J telle que h′(t) > 0 et α(t) = β(h(t)). On sait que Vα(t) = Vβ(u)h′(t), par
conséquent

Tα(t) =
1

Vα(t)

dα

dt
=

1

Vα(t)

dβ(h(t))

dt

=
h′(t)

Vα(t)

dβ(u)

du

=
1

Vβ(u)

dβ(u)

du

= Tβ(u).

Remarque. Si β(u) est une reparamétrisation indirecte de α(t), alors on a Tα(t) = −Tβ(u).

La longueur d’une courbe est également une quantité géométrique ; plus généralement, nous avons
la proposition suivante.

Proposition 2.2 Soient α et β deux courbes de classe C1. Si β est une reparamétrisation de
α, alors `(β) = `(α).

Preuve. Considérons d’abord le cas où β(u) (a′ ≤ u ≤ b′) est une reparamétrisation directe de
la courbe α(t) (a ≤ t ≤ b). En utilisant la formule de changement de variables dans les intégrales,
on a

`(β) =

∫ b′

a′
Vβ(u) du =

∫ b

a
Vβ(u)

du

dt
dt

=

∫ b

a
Vα(t) dt

= `(α) .

Dans le cas où β(u) est une reparamétrisation indirecte de α(t), alors
du

dt
< 0 et on a

`(β) =

∫ b′

a′
Vβ(u) du =

∫ a

b
Vβ(u)

du

dt
dt

= −
∫ a

b
Vα(t) dt

=

∫ b

a
Vα(t) dt

= `(α) .
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Considérons par exemple l’arc du cercle unité dans le plan R2, reliant les points (1, 0) et (x0, y0)
et contenu dans le demi-plan y > 0. La longueur de cet arc est donnée par

` = θ = Arcos(x0) .

Si cette courbe est paramétrée comme un graphe, i.e. par γ(x) = (x,
√

1− x2), (x0 < x < 1),

alors la vitesse est Vγ(x) =
1√

1− x2
et la longueur est donc donnée par

` =

∫ 1

x0

du√
1− u2

.

La proposition 2.2 nous permet de déduire du résultat précédent l’identité analytique :∫ 1

x0

du√
1− u2

= Arcos(x0) ,

que nous avons obtenue (presque) sans aucun calcul, mais par un raisonnement purement géo-
métrique.

2.7 Paramétrisation naturelle d’une courbe régulière

Théorème 2.9. Soit α : I → Rn une courbe régulière de classe C1 et t0 ∈ I une valeur du
paramètre. Alors il existe un unique reparamétrisation directe h : I → J , telle que 0 ∈ J ,
h(t0) = 0 et β := α ◦ h−1 : J → Rn est de vitesse 1, i.e. Vβ(s) = 1.

Preuve. Montrons d’abord l’unicité de cette reparamétrisation. On a vu plus haut (p. 23) que

Vα(t) = h′(t)Vβ(s).

Comme Vβ(s) = 1 et h′ > 0, on a donc h′(t) = Vα(t) et comme h(t0) = 0, on doit avoir

s = h(t) =

∫ t

t0

Vα(τ)dτ.

Ainsi la fonction h(t) coïncide avec l’abscisse curviligne s(t).
Pour montrer l’existence de cette reparamétrisation, on définit à présent h par h(t) = s(t) =∫ t
t0
Vα(τ)dτ et l’intervalle J par J = h(I). Alors h(t0) = 0 et h′(t) = Vα(t). En utilisant la formule

(2.1) de la page 23, on voit que la courbe β := α ◦ h−1 : J → Rn vérifie

Vβ(s) = Vα(t)
1

h′(t)
= 1.

Définition 2.10. On dit qu’une courbe régulière γ est paramétrée naturellement si
∥∥γ̇(s)

∥∥ = 1
pour tout s, i.e. si sa vitesse vaut 1. Le théorème précédent nous dit que toute courbe régulière
de classe C1 peut être reparamétrée naturellement.

Dès qu’un point initial et un sens de parcours ont été choisis sur la courbe, la paramétrisation
naturelle est unique et elle est donné par l’abscisse curviligne.

Méthode Pour trouver la paramétrisation naturelle d’une courbe α, il faut effectuer les opéra-
tions suivantes :
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(1) Identifier ou choisir le point initial u0.

(2) Calculer la vitesse Vα(u) = ‖α̇(u)‖ .
(3) Intégrer Vα pour obtenir l’abscisse curviligne s : s(u) =

∫ u
u0
Vα(τ)dτ.

(4) Inverser la relation s = s(u) (i.e. exprimer u en fonction
de s : u = u(s)).

(5) On obtient alorsla paramétrisation naturel β(s) = α(u(s)).

Dans la pratique, les points qui peuvent être délicats sont les étapes (3) et (4).

Exemple 2.11. La chaînette 2 est la courbe plane paramétrée par α(u) = (u, coshu). Le vecteur
vitesse est α̇(u) = (1, sinh(u)), et donc

Vα(u) = ‖α̇(u)‖ =

√
1 + sinh2(u) = cosh(u) .

L’abscisse curviligne depuis le point initial α(0) = (0, 1) est donnée par l’intégrale

s(u) =

∫ u

0
Vα(t)dt =

∫ u

0
cosh(t)dt = sinh(u),

et on a donc
u(s) = argsh(s) = log(s+

√
1 + s2).

Remarquons que cosh(u) =
√

1 + sinh2(u) =
√

1 + s2. En substituant cette relation dans la
paramétrisation de α, on obtient la paramétrisation naturelle de la chaînette :

β(s) = α(u(s)) = (u(s), coshu(s)) = (argsh(s),
√

1 + s2).

On vérifie facilement que ‖β̇(s)‖ = 1.

Les courbes pour lesquelles on peut effectivement calculer la paramétrisation naturelle sont plutôt
rares ; mais cette notion joue un rôle théorique fondamental. Il faut en particulier se souvenir des
relations suivantes qui relient le paramètre naturel s au paramètre donné u.

ds = V (u) · du et
d

ds
=

1

V (u)

d

du
. (2.3)

Remarque. L’abscisse curviligne joue un rôle fondamental en théorie des courbes, car c’est dans la
paramétrisation naturelle que les relations fondamentales entre les différentes quantités géométriques
liées à une courbe sont le plus clairement mises en évidence. Pour cette raison, les livres traitant de
courbes choisissent souvent d’écrire les formules relativement à la seule abscisse curviligne. Nous n’avons
pas fait ce choix et avons préféré écrire les formules par rapport à un paramètre général en raison de
la difficulté pratique de calculer la paramétrisation naturelle pour la plupart des courbes. Nous invitons
toutefois le·la lecteur·ice à récrire elle·lui-même les formules des prochains paragraphes dans le cas spécial
d’une courbe paramétrée naturellement ; on constatera ainsi combien les formules et les calculs théoriques
se simplifient.

2. La chaînette est ainsi appelée car elle modélise la forme que prend naturellement une chaîne ou un câble
suspendu entre deux points fixes sous l’effet de la gravité
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2.8 Courbure d’une courbe de Rn

Définition. Le vecteur de courbure d’une courbe régulière α : I → Rn de classe C2 est le champ
de vecteurs le long de cette courbe défini par

Kα(t) :=
1

Vα(t)

d

dt
Tα(t),

où Tα(t) = 1
Vα(t) α̇(t) est le vecteur tangent à la courbe.

Remarque. Le corollaire 2.1 entraîne que le vecteur de courbure est toujours orthogonal au
vecteur tangent :

Kα(t) ⊥ Tα(t).

On définit aussi la courbure de la courbe α. C’est par définition la norme du vecteur de courbure :

κα(u) := ‖Kα(u)‖ .

Il est facile de voir que la courbure d’une droite est nulle, voici un autre exemple simple.

Exemple 2.12. Une paramétrisation d’un cercle de centre p et rayon r est donnée par

c(θ) = p+ r cos(θ)u1 + r sin(θ)u2,

où p,u1,u2 est un repère orthonormé du plan contenant le cercle. On a

ċ(θ) = −r sin(θ)u1 + r cos(θ)u2,

donc Vc(θ) = r et T(c, θ) = − sin(θ)u1 + cos(θ)u2.
En dérivant le vecteur tangent, on a Ṫ(c, θ) = − cos(θ)u1 − sin(θ)u2, donc

K(c, θ) =
1

Vc(θ)
Ṫ(c, θ) = −1

r
(cos(θ)u1 + sin(θ)u2)

et finalement :
κ(c, θ) = ‖K(c, θ)‖ =

1

r
.

La courbure d’un cercle est donc l’inverse de son rayon.

Remarquons aussi qu’on a la relation suivante exprimant le centre du cercle en fonction d’un
point sur le cercle et de la courbure :

c(θ) + r2K(c, θ) = p. (2.4)

Proposition 2.13. Le vecteur de courbure Kα(t) et la courbure κα(t) = ‖Kα(t)‖ sont des
quantités géométriques.

Nous laissons la preuve en exercice.

Proposition 2.14 (Formule de l’accélération). Le vecteur accélération d’une courbe régulière
γ : I → Rn vérifie

γ̈(u) = (Vγ(u))2 Kγ(u) + V̇γ(u)Tγ(u). (2.5)
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Preuve. Écrivons le vecteur vitesse sous la forme γ̇(u) = Vγ(u)Tγ(u) et dérivons ce vecteur :

γ̈(u) =
d

du
(Vγ(u)Tγ(u)) = Vγ(u)Ṫγ(u) + V̇γ(u)Tγ(u)

= (Vγ(u))2 Kγ(u) + V̇γ(u)Tγ(u).

On dit que V̇γ(u)Tα(u) est l’accélération tangentielle et (Vγ(u))2 Kα(u) est l’accélération normale
de γ.
En mécanique, cette formule signifie que la force subie par une particule en mouvement est
fonction de l’accélération tangentielle V̇γ et du carré de la vitesse multiplié par la courbure.

Corollaire 2.15. Si α est paramétrée naturellement, i.e. si Vα ≡ 1, alors

α̈(s) = K(α, s).

Preuve. Puisque Vα ≡ 1, on a V̇α = 0 et le corollaire se déduit immédiatement de la formule
de l’accélération.

Proposition 2.16. Une courbe α : [a, b]→ Rn est de courbure nulle si et seulement si c’est une
droite ou un segment de droite (qui peut être paramétrée arbitrairement).

Preuve. On peut supposer grâce au théorème 2.9 que α est paramétrée naturellement. Le
corollaire précédent entraîne alors que α̈(s) = K(α, s) et comme κ(α, s) = ‖K(α, s)‖ = 0, on a
donc α̈(s) = 0. Le vecteur v := α̇ est alors constant et on obtient donc en intégrant

α(s) = p+ sv

où p = α(0).

Lemme 2.3 Le vecteur de courbure d’une courbe de classe C2 en un point est un multiple du
vecteur normal principal en ce point :

Kγ(u) = κγ(u)Nγ(u).

Preuve. Nous laissons la preuve en exercice. Rappelons que le vecteur normal principal est
défini par

Nγ(u) =
γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)

‖γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)‖
.

Proposition 2.4 La courbure d’une courbe de classe C2 est la variation angulaire de la direction
de cette courbe par rapport au paramètre naturel.

La signification exacte de cette proposition sera précisée dans la preuve.

Preuve. Soit γ : I → R3 une courbe de classe C2 paramétrée naturellement et notons

ϕ(s0, s) := ∠ (T(s0),T(s))

l’angle entre T(s0) et T(s) (où s0, s ∈ I). Comme ‖T(s0)‖ = ‖T(s)‖ = 1, on a par la trigono-
métrie élémentaire que

‖T(s0)−T(s)‖ = 2 sin

(
ϕ(s0, s)

2

)
.
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On a donc

lim
s→s+0

ϕ(s0, s)

s− s0
= lim

s→s+0

 ϕ(s0, s)

2 sin
(
ϕ(s0,s)

2

) · 2 sin
(
ϕ(s0,s)

2

)
s− s0


= lim

s→s+0

 ϕ(s0, s)

2 sin
(
ϕ(s0,s)

2

)
 · lim

s→s+0

2 sin
(
ϕ(s0,s)

2

)
s− s0


= lim

s→s+0

∥∥∥∥T(s0)−T(s)

s− s0

∥∥∥∥ = ‖Ṫ(s0)‖,

car lims→s+0

(
ϕ(s0,s)

2 sin
(
ϕ(s0,s)

2

)
)

= 1.

On a ainsi montré que la courbure est la dérivée à droite de l’angle, on peut noter

κ(s0) = lim
s→s+0

ϕ(s0, s)

s− s0
=

d

ds

∣∣∣∣
s+0

ϕ(s0, s) (2.6)

2.9 Contact entre deux courbes

Définition. On dit que deux courbes de classe Ck

α, β : I → Rn

ayant le même paramètre t ∈ I ont un contact d’ordre k en t0 ∈ I si α(t0) = β(t0) et si leurs
dérivées en t0 coïncident jusqu’à l’ordre k :

dmα

dtm
(t0) =

dmβ

dtm
(t0),

pour m = 1, 2, . . . ., k.

Ainsi, deux courbes α, β ont un contact d’ordre 0 en t0 si elles passent par le même point en t0.
Elles ont un contact d’ordre 1 si elles passent par le même point et elles ont le même vecteur
vitesse en ce point :

α(t0) = β(t0),
dα

dt
(t0) =

dβ

dt
(t0).

Concernant les courbes ayant un contact d’ordre 2, nous avons le résultat suivant :

Théorème 2.17. Deux courbes α, β de classe C2 ont un contact d’ordre 2 en t0 si et seulement
si elles passent par le même point et si elles ont le même vecteur vitesse, la même accélération
tangentielle et le même vecteur de courbure en ce point :

α(t0) = β(t0),
dα

dt
(t0) =

dβ

dt
(t0), V̇α(t0) = V̇β(t0) et Kα(t0) = Kβ(t0).

En particulier, si ces deux courbes sont birégulières alors elles ont le même plan osculateur en t0.

Preuve. C’est une conséquence directe de la proposition 2.14.

A titre d’exemple important, nous avons le corollaire suivant :
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Corollaire 2.18. Deux cercles de Rn parcourus à vitesse constante ont un contact d’ordre 2 si
et seulement si ces deux cercles coïncident.

Preuve. Par le théorème précédent, les deux cercles ont le même vecteur vitesse et le même
vecteur de courbure en leur point de contact. En particulier les deux cercles se situent dans
le même plan, qui est le plan osculateur commun.. On sait en outre par l’exemple 2.12 que la
courbure d’un cercle est égale à l’inverse de son rayon. Les deux cercles ont donc même rayon r.
Mais on sait aussi par l’équation (2.4) que les deux cercles doivent avoir même centre, donc ils
coïncident.

Théorème 2.19. Soit α : I → Rn une courbe de classe C2 qui est birégulière en t0 ∈ I. Alors
il existe un cercle c : I → Rn ayant un contact d’ordre 2 avec α en t0. Ce cercle est unique, son
rayon est l’inverse de |κα(t0)| et son centre est donné par

p = α(t0) +
1

κα(t0)2
Kα(t0). (2.7)

Cercle osculateur.

Définition. Ce cercle s’appelle le cercle osculateur 3, aussi appelé le cercle de courbure à α en
t0. C’est parmi tous les cercles celui qui approxime le mieux la courbe au voisinage de α(t0). Il
est contenu dans le plan osculateur à la courbe en ce point. Son centre est appelé le centre de
courbure et son rayon est le rayon de courbure de α en t0. On le note

ρα(t0) =
1

κα(t0)
.

Preuve. Supposons pour la preuve que la courbe α est paramétrée naturellement (et notons
selon l’usage s le paramètre naturel). On supposera aussi que le point considéré correspond à la
valeur s = 0 du paramètre.

Notons ρ =
1

κα(0)
, T := Tα(0) = α̇(0) et N := ρKα(0), puis posons

p := α(0) + ρN (2.8)

et considérons le cercle de centre p et rayon ρ que nous paramétrisons par

γ(s) = p− ρ cos
(
s
ρ

)
N + ρ sin

(
s
ρ

)
T.

Il s’agit bien d’un cercle, puisque T et N sont orthogonaux et de longueur 1. Il est alors clair que
γ(0) = α(0) et que γ̇(0) = T = α̇(0). On sait d’autre part que la courbure du cercle de rayon ρ
est constante et égale à 1

ρ = κα(0). Le théorème 2.17 entraîne donc que la courbe α et le cercle
γ ont un contact d’ordre 2 en s = 0.

3. Le terme osculateur nous vient du latin et signifie embrasser : le cercle osculateur embrasse la courbe au
point de contact.
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L’unicité de ce cercle découle immédiatement du corollaire 2.18 (et du fait que la notion de
contact entre courbes est clairement transitive).

Définition. On appelle développée de la courbe birégulière α : I → R3 la courbe

β(u) = α(u) + ρα(u)Nα(u),

où ρα est le rayon de courbure de α. On dit aussi que β est la développante de α. La développée
suit le mouvement du centre du cercle osculateur lorsqu’on parcoure la courbe α.

2.10 Le repère de Frenet d’une courbes dans R3

Rappelons que le vecteur tangent et le vecteur normal principal d’une courbe birégulière γ : I →
R3 de classe C2 sont les champs de vecteurs le long de cette courbe définis par

Tγ(u) =
γ̇(u)

Vγ(u)
et Nγ(u) =

γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)

‖γ̈(u)− 〈γ̈(u),Tγ(u)〉 ·Tγ(u)‖
.

Définitions 1. Le vecteur binormal de γ est le produit vectoriel du vecteur unitaire tangent et
du vecteur normal principal :

Bγ(u) = Tγ(u)×Nγ(u).

2. Le Repère de Frenet 4 de γ en u est le repère défini par les trois champs de vecteurs

{Tγ(u),Nγ(u),Bγ(u)}.

Le repère de Frenet est uniquement défini aux points où la courbe est birégulière. C’est un repère
mobile (les trois vecteurs sont des champs qui dépendent du paramètre u), il est orthonormé et
direct. Il suit la courbe en ce sens que le premier vecteur de ce repère, Tγ(u), est toujours tangent
à celle-ci.

Rappelons que le plan passant par γ(u) de directions Tγ(u) et Nγ(u) est le plan osculateur.
Le plan de directions Bγ(u) et Nγ(u) s’appelle le plan normal et le plan de directions Tγ(u) et
Bγ(u) est le plan rectifiant.

Lemme 2.20. Le vecteur binormal à la courbe γ peut aussi s’écrire

Bγ(u) =
γ̇(u)× γ̈(u)

‖γ̇(u)× γ̈(u)‖
.

Preuve. On a
γ̇ × (γ̈ − 〈γ̈,T〉 ·T) = γ̇ × γ̈

4. Jean Frédéric Frenet, mathématicien et astronome français 1816-1900.
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car γ̇ ×T = 0. Donc

B = T×N =
γ̇

Vγ
× (γ̈ − 〈γ̈,T〉 ·T)

‖γ̈ − 〈γ̈,T〉 ·T‖
=

γ̇ × γ̈
Vγ‖γ̈ − 〈γ̈,T〉 ·T‖

=
γ̇(u)× γ̈(u)

‖γ̇(u)× γ̈(u)‖
.

Définition. (i) On dit qu’une courbe γ : I → R3 est régulière au sens de Frenet, ou Frenet
régulière si elle est de classe C2, birégulière, et que le vecteur normal principal est un champ
u 7→ Nγ(u) de classe C1. ,
(ii) La torsion d’une courbe γ : I → R3 régulière au sens de Frenet est la fonction τ : I → R
définie par

τ(u) :=
〈Ṅ(u),B(u)〉

Vγ(u)
.

Il est clair que toute courbe de classe C3 birégulière est régulière au sens de Frenet, mais la
réciproque n’est pas vraie.

Théorème 2.21 (Formules de Serret-Frenet). Soit γ : I → R3 une courbe régulière au sens de
Frenet, Alors le repère de Frenet est de classe C1 et ses dérivées sont données par les formules

1
Vγ(u) Ṫ(u) = κ(u)N(u) ,

1
Vγ(u) Ṅ(u) = −κ(u)T(u) + τ(u)B(u),

1
Vγ(u) Ḃ(u) = − τ(u)N(u).

On verra au théorème 2.25 que la courbure et la torsion déterminent complètement la géométrie
d’une courbe dans R3, par conséquent les formules de Serret-Frenet englobent la totalité de la
théorie des courbes de R3.

Preuve. Le vecteur tangent T(u) est une fonction de classe C1 du paramètre u car la courbe
est supposée de classe C2. Le vecteur normal principal N(u) est une fonction de classe C1 par
hypothèse et le vecteur binormal est une fonction de classe C1 car B(u) = T(u)×N(u).
La première équation est une conséquence immédiate des égalités

Ṫ(u) = Vγ(u)K(u) = Vγ(u)κ(u)N(u).

Pour prouver la deuxième équation, on remarque d’abord que

Ṅ(u) = 〈Ṅ(u),T(u)〉T(u) + 〈Ṅ(u),N(u)〉N(u) + 〈Ṅ(u),B(u)〉B(u),

car {Tγ(u),Nγ(u),Nγ(u)} est un repère orthonormé. D’autre part, on a 〈Ṅ(u),N(u)〉 = 0 car
la norme de N(u) est constante et

〈Ṅ(u),T(u)〉T(u) = −〈N(u), Ṫ(u)〉T(u) = −Vγ(u)κ(u)T(u).

On a donc
Ṅ(u) = −Vγ(u)κ(u)T(u) + Vγ(u)τ(u)B(u),

car 〈Ṅ(u),B(u)〉 = Vγ(u)τ(u) par définition de la torsion.

Pour prouver la troisième équation, on part de

Ḃ(u) = 〈Ḃ(u),T(u)〉T(u) + 〈Ḃ(u),N(u)〉N(u) + 〈Ḃ(u),B(u)〉B(u),
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on a 〈Ḃ(u),B(u)〉 = 0 car ‖B‖ est constante et

〈Ḃ(u),T(u)〉 = −〈B(u), Ṫ(u)〉 = −Vγ(u)κ(u)〈B(u),N(u)〉 = 0.

Donc
Ḃ(u) = 〈Ḃ(u),N(u)〉N(u) = −〈B(u), Ṅ(u)〉N(u) = −Vγ(u)τ(u)N(u).

Le théorème est démontré.

Exemple. Rappelons que l’hélice circulaire est la courbe γ(u) = (a cos(u), a sin(u), bu), on a

γ̇(u) = (−a sin(u), a cos(u), b), γ̈(u) = a(− cos(u),− sin(u), 0) et Vγ =
√
a2 + b2.

Dans la suite, on suppose a > 0 et on notera c := Vγ =
√
a2 + b2. Le repère de Frenet est donc

T =
1

c

 −a sin(u)
a cos(u)

b

 N = −

 cos(u)
sin(u)

0

 B =
1

c

 b sin(u)
−b cos(u)

a


On trouve la courbure et la torsion en dérivant N :

κ = −1

c
〈Ṅ,T〉 =

a

c2
et τ =

1

c
〈Ṅ,B〉 =

b

c2
.

Les résultats qui suivent vont mener à une interprétation géométrique de la torsion.

Proposition 2.22. Une courbe γ : I → R3 régulière au sens de Frenet est située dans un plan
si et seulement si sa torsion est identiquement nulle.

Preuve. Il est clair à partir du Lemme 2.20 que si la courbe γ est située dans un plan Π ⊂ R3,
alors le vecteur binormal est constant (c’est l’un des deux vecteurs unitaires orthogonal à Π). La
troisième formule de Serret-Frenet entraîne alors que τγ(u) = 0.

Réciproquement, supposons τ(u) ≡ 0, alors par la troisième formule de Serret-Frenet, le vecteur
binormal est constant. Notons ce vecteur par B et posons

h(u) := 〈γ(u)− γ(u0),B〉,

et remarquons que
dh

du
:= 〈γ̇(u),B〉 = Vγ(u)〈T(u),B〉 = 0.

Par conséquent h est constante, et comme h(u0) = 0, la fonction h est identiquement nulle, ce
qui montre que la courbe γ est contenue dans le plan d’équation

〈x− γ(u0),B〉 = 0,

qui n’est autre que le plan orthogonal à B passant par γ(u0).
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2.10.1 Variation angulaire du plan osculateur

La proposition suivante donne l’interprétation géométrique de la torsion :

Proposition 2.23. La torsion d’une courbe régulière au sens de Frenet mesure la variation
angulaire de son plan osculateur.

Preuve. Soit γ : I → R3 une courbe régulière au sens de Frenet, que nous supposons paramétrée
naturellement. Notons θ(s0, s) l’angle entre les plans osculateurs à γ en s0 et en s, et remarquons
que

θ(s0, s) := ∠ (B(s0),B(s))

car le vecteur normal au plan osculateur en un point de γ est le vecteur binormal en ce point.
Le lemme est alors une conséquence de l’égalité suivante :

|τ(s0)| = ‖Ḃ(s0)‖ = lim
s→s+0

θ(s0, s)

s− s0
,

qui se prouve de la même manière que la formule (2.6)).

2.10.2 Courbes de pente constante

Définition. On dit qu’une courbe de classe C1 dans R3 est de pente constante si elle est régulière
et si son vecteur tangent fait un angle constant avec une direction fixe. Une telle courbe s’appelle
aussi une hélice généralisée.

Théorème 2.24. Une courbe γ : I → R3 régulière au sens de Frenet est de pente constante si
et seulement si le rapport

τγ(u)

κγ(u)

est constant.

Preuve. On peut supposer sans perdre de généralité que γ est paramétrée naturellement.
Supposons qu’il existe un vecteur constant non nul A ∈ R3 tel que le produit scalaire a =
〈Tγ(s),A〉 est constant. En dérivant cette relation et en utilisant le première équation de Serret-
Frenet, on trouve que

0 = 〈Ṫγ(s),A〉 = κγ(s)〈Nγ(s),A〉.

Nous avons supposé que la courbe est birégulière, donc sa courbure est non nulle et on a donc
〈Nγ(s),A〉 = 0 pour tout s.
Ceci implique que b = 〈Bγ(s),A〉 est également constant, car la troisième équation de Serret-
Frenet nous dit que

d

ds
〈Bγ(s),A〉 = 〈Ḃγ(s),A〉 = −τγ(s)〈Nγ(s),A〉 = 0.

La seconde équation de Serret-Frenet nous dit maintenant que

0 =
d

ds
〈Nγ(s),A〉 = 〈Ṅγ(s),A〉 = −κγ(s)〈Tγ(s),A〉+ τγ(s)〈Bγ(s),A〉,

et donc
τγ(s)

κγ(s)
=
〈Tγ(s),A〉
〈Bγ(s),A〉

=
a

b
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est constante.
Supposons inversément que λ :=

τγ(s)

κγ(s)
est constant et considérons le champ de vecteurs

A(s) := λTγ(s) + Bγ(s).

Il est clair que l’angle entre Tγ et A est constant car 〈A,Tγ〉 = λ. Vérifions que ce vecteur est
constant :

d

ds
A = λṪγ + Ḃγ = λκγ(s)Nγ − τγ(s)Nγ = 0.

La preuve de la proposition est complète.

Remarque. La preuve montre que pour une courbe de pente constante, l’angle θ entre le vecteur
tangent Tγ et la direction fixe A est donné par

cos(θ) =
〈T,A〉

‖T(u)‖ ‖A(u)‖
=

λ√
1 + λ2

=
τγ√

κ2
γ + τ2

γ

.

On remarque aussi que le vecteur A appartient au plan rectifiant de γ.

2.10.3 Le théorème fondamental de la théorie des courbes de R3.

Le théorème fondamental de la théorie des courbes de R3 dit que l’on peut prescrire arbitrairement
la courbure et la torsion d’une courbe birégulière de R3. Cette courbe est unique à un déplacement
près.

Théorème 2.25. Soient κ, τ : I → R sont deux fonctions continues et si κ(s) > 0 pour tout
s ∈ I, alors il existe une courbe γ : I → R3, régulière au sens de Frenet, paramétrée naturellement
et telle que

κγ(s) = κ(s) et τγ(s) = τ(s)

pour tout s. Cette courbe est unique à un déplacement près.

Par exemple toute courbe de R3 ayant courbure constante κ > 0 et torsion constante τ 6= 0 est
isométrique à une hélice circulaire droite.

Démonstration. Nous prouvons d’abord l’unicité. Supposons que γ1, γ2 : I → R3 sont deux
courbes régulières au sens de Frenet, paramétrées naturellement et dont la courbure et la torsion
valent respectivement κ(s) et τ(s). Notons {T1(s),N1(s),B1(s)} et {T2(s),N2(s),B2(s)} leur
repère de Frenet respectifs.

Sans perdre de généralité, on peut supposer que l’intervalle I contient 0. Quitte à composer l’une
ou l’autre (ou les deux) courbes par un déplacement, on peut supposer que γ1(0) = γ2(0) = 0
et qu’en s = 0 les deux repères de Frenet coïncident avec la base canonique {e1, e2, e3} de R3.
Notons alors Fi(s) ∈ SO(3) la matrice orthogonale dont les colonnes sont les composantes des
vecteurs Ti(s),Ni(s),Bi(s) pour i = 1, 2. Les équations de Serret-Frenet s’écrivent alors

d

ds
Fi(s) = Fi(s)Ω(s), où Ω(s) =

 0 −κ(s) 0
κ(s) 0 −τ(s)

0 τ(s) 0

 .
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Nous avons alors

d

ds
(F1F

−1
2 ) =

d

ds
(F1F

>
2 ) = Ḟ1F

>
2 + F1Ḟ

>
2

= (F1Ω)F>2 + F1(F2Ω)>

= F1ΩF>2 + F1Ω>F>2

= 0,

car la matrice Ω est antisymétrique, i.e. Ω> = −Ω. Par conséquent la matrice F1F
−1
2 est

constante. Mais on a supposé que F1(0) = F2(0) = I3 (la matrice identité). Donc F1(s)F2(s)−1 =
I3 pour tout c’est-à-dire F1(s) = F2(s). En particulier T1(s) = T2(s) pour tout s et donc

γ1(s) =

∫ s

0
T1(u)du =

∫ s

0
T2(u)du = γ2(s).

Prouvons maintenant l’existence. Pour cela on se donne deux fonctions continues κ, τ : I → R et
on considère le problème de Cauchy linéaire

d

ds
F(s) = F(s)Ω(s), F(0) = I3, (2.9)

où Ω(s) est la matrice définie plus haut. Le théorème de Cauchy–Lipschitz global du cours
d’analyse II nous dit qu’il existe une solution globale F : I →M3(R) de classe C1 de ce problème.
Nous affirmons que F(s) ∈ SO(3) pour tout s. En effet, on a

d

ds
FF> = ḞF> + FḞ> = FΩF> + FΩ>F> = F(Ω + Ω>)F> = 0

par antisymétrie de Ω. Or F(0)F>(0) = I3 (à cause de la condition initiale dans (2.9)), donc
F(s)F>(s) = I3 pour tout s ∈ I, ce qui signifie que F(s) ∈ SO(3).
Notons respectivement T(s),N(s),B(s) les trois colonnes de la matrice F(s) et définissons γ :
I → R3 par

γ(s) =

∫ s

0
T(u)du.

Alors γ est clairement une courbe de classe C2 car s → T(s) est de classe C1, De plus cette
courbe est paramétrée naturellement puisque γ̇(s) = T(s) est un vecteur unitaire. L’équation
différentielle (2.9) est équivalente aux équations de Serret-Frenet. Cela implique que implique
que s → N(s) est aussi de classe C1 et que la courbure et la torsion de γ sont données par les
fonctions κ et τ , ce qui complète notre démonstration.
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2.11 Courbes dans un plan orienté

Le repère de Frenet et la courbure d’une courbe dans un plan orienté est défini en tenant compte
de l’orientation du plan :

Définition. (a) Le repère de Frenet orienté d’une courbe régulière γ : I → R2 de classe C2 dans
le plan orienté est le repère mobile d’origine γ(u) qui est formé par les deux vecteurs

Tγ(u) =
γ̇(u)

Vγ(u)
, Nor

γ (u) = J(Tγ(u)),

où J est l’opérateur de rotation définit au paragraphe (1.7).

(b) La courbure orientée de γ en u est définie par

κor
γ (u) =

1

Vγ(u)
〈Ṫγ(u),Nor

γ (u)〉.

Remarques.

(i) Le repère {Tγ(u),Nor
γ (u)} est un repère orthonormé direct.

(ii) La courbure non orientée de γ est égale à la valeur absolue de κor
γ (u).

(iii) La courbure orientée peut aussi s’écrire

κor
γ (u) =

Tγ(u) ∧ Ṫγ(u)

Vγ(u)
.

(iv) Si la courbe γ est birégulière, on a

κor
γ (u)Nor

γ (u) = κγ(u)Nγ(u) = Kγ(u) (= le vecteur de courbure).

Cette égalité vient du fait que si on change l’orientation du plan, alors κor
γ (u) et Nor

γ (u)
changent tous les deux de signe.

Dans la suite de ce paragraphe, nous n’utiliserons que le vecteur normal orienté, nous noterons
donc Nγ(u) au lieu de Nor

γ (u), nous noterons aussi kγ(u) pour la courbure orientée.

Proposition 2.26. Avec ces notations, les formules de Serret-Frenet pour une courbe plane de
classe C2 s’écrivent

1

Vγ

d

du
Tγ(u) = kγ(u)Nα(u)

1

Vγ

d

du
Nγ(u) = −kγ(u)Tα(u).

Preuve. On a d’une part

Ṫ = 〈Ṫ,T〉T + 〈Ṫ,N〉N = 〈Ṫ,N〉N = V kN.

par définition de la courbure orientée k (et en utilisant 〈Ṫ,T〉 = 0). D’autre part

Ṅ = 〈Ṅ,T〉T + 〈Ṅ,N〉N = 〈Ṅ,T〉T = −〈Ṫ,N〉T = −V kT.
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Proposition 2.27. La courbure orientée d’une courbe plane γ : I → R2 de classe C2 est donnée
par

kγ(u) =
γ̇(u) ∧ γ̈(u)

V 3
γ (u)

.

Preuve. On a
γ̇ ∧ γ̈ = (VT) ∧ (V̇T + V 2kN) = V 3k,

car T ∧T = 0 et T ∧N = 1.

La courbure orientée de γ(t) = (x(t), y(t)) est donc donnée par

k(t) =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
.

En particulier, si γ est le graphe de la fonction f : [a, b]→ R, i.e. γ(x) = (x, f(x)), alors on a

k(x) =
f ′′(x)

(1 + f ′(x)2)3/2
.

Définitions. On dit qu’un arc γ(u) (a < u < b) est convexe si la courbure orientée kγ est
positive sur cet arc. L’arc est concave si la courbure orientée est négative. Un point d’inflexion
est un point séparant un arc convexe d’un arc concave (en particulier la courbure est nulle en un
point d’inflexion).
On dit qu’un arc est une spirale si la courbure est strictement monotone sur cet arc. Un point
de la courbe est un sommet si c’est un maximum local ou un minimum local de la courbure.

arc concave
arc convexe

point d’inflexion

La fonction angulaire

La fonction angulaire mesure l’inclinaison en chaque point d’une courbe par rapport à la direction
horizontale.

Définition. Soit γ : [a, b]→ R2 une courbe régulière de classe C1. La fonction angulaire de la
courbe γ avec point initial p = γ(u0)) est la fonction ϕ : [a, b]→ R telle que
(a) ϕ(u0) est l’angle orienté entre γ̇(u) et le vecteur e1 = (1, 0).
(b) ϕ est continue.
(c) L’angle orienté entre γ̇(u) et e1 = (1, 0) est égal à ϕ(u) modulo 2π pour tout u ∈ [a, b]

Remarque. Dans le concept de fonction angulaire d’une courbe plane, on n’identifie pas ϕ(u)
à ϕ(u) + 2π. Au contraire, le paramètre angulaire mesure le nombre de tours effectués (entre u0

et u) par le vecteur tangent. Ce nombre peut être supérieur à 2π.
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Le nombre ϕ(b) − ϕ(a) est la variation angulaire totale de la courbe. Si γ : [a, b] → R2 est une
courbe périodique (i.e. une courbe fermée régulière), alors le nombre entier

ϕ(b)− ϕ(a)

2π
∈ Z

s’appelle le nombre de rotations de γ.

Lemme 2.28. Le repère de Frenet orienté d’une courbe régulière γ : [a, b] → R2 de classe C1

peut s’écrire

Tγ(u) = (cos(ϕ(u)), sin(ϕ(u)) et Nγ(u) = (− sin(ϕ(u)), cos(ϕ(u)),

où ϕ : [a, b]→ R est la fonction angulaire de γ.

Preuve. La formule pour T est évidente, puisque ϕ (modulo 2π) mesure l’angle du vecteur
tangent T avec e1. La formule pour N se déduit alors de la définition N = J(T).

Théorème 2.29. La courbure orientée d’une courbe γ : I → R2 de classe C2 vérifie

kγ(u) =
1

Vγ(u)

dϕ

du
.

Preuve. Par le lemme précédent, on a Ṫ = (− sin(ϕ(u)), cos(ϕ(u))ϕ̇(u) = Nϕ̇, donc kγ =
1
V 〈Ṫ,N〉 = 1

V ϕ̇.

Lorsque la courbe est paramétrée naturellement, on a kγ(s) = dϕ
ds . On écrit souvent cette relation

sous la forme différentielle :
dϕ = kds.

Le diagramme de courbure

Soit γ : I → R2 une courbe régulière de classe C2. Choisissons un point initial sur γ et un sens de
parcours. Le diagramme de courbure de γ est la courbe dans un plan de coordonnées s, k donnée
par

u 7→ (s(u), k(u)) ,

où s(u) est l’abscisse curviligne de γ correspondant aux choix du point initial et du sens de
parcours, et k est la courbure orientée.

Le diagramme de courbure est toujours un graphe (c’est le graphe de la fonction courbure k = k(s)
exprimée à partir de l’abscisse curviligne). Les éléments de la courbe γ que l’on peut facilement
mettre en correspondance avec le diagramme de courbure sont :

• sa longueur `(γ) ;

• le signe de la courbure ;

• les points d’inflexions de γ (ce sont les points où k(s) change de signe) ;

• les sommets de γ (i.e. les extremums locaux de la courbure orientée).

D’autre part, l’aire
∫ `

0 k(s)ds =
∫ `

0 dϕ limitée par le diagramme de courbure correspond à la
variation angulaire totale de la courbe. Hormis la position de la courbe dans le plan, le diagramme
de courbure contient toutes les informations géométriques sur une courbe de R2.
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Théorème 2.30 (Théorème fondamental de la théorie des courbes planes). Toute fonction
continue k : [0, `] → R est la courbure orientée d’une courbe plane de classe C2 paramétrée
naturellement. Cette courbe est unique à un déplacement près.

Ce théorème est la version bidimensionnelle du Théorème 2.25, mais la preuve est plus élémen-
taire.

Preuve. Montrons d’abord l’unicité. Supposons que γ : [0, `]→ R2 est une courbe de classe C2

paramétrée naturellement dont la courbure orientée est k(s). Le vecteur tangent est donné par

T(s) = γ̇(s) = (ẋ(s), ẏ(s)) = (cos(ϕ(s))), sin(ϕ(s))

où ϕ : [0, `]→ R est la fonction angulaire. Les trois fonctions (x(s), y(s), ϕ(s)) forment alors une
solution du système d’équations différentielles

dx

ds
= cos(ϕ)

dy

ds
= sin(ϕ)

dϕ

ds
= k(s)

. (2.10)

La courbe γ est donc déterminée à partir de la fonction k(s) en résolvant ces équations.
Pour résoudre ce système, on calcule ϕ par intégration : ϕ(s) = ϕ0 +

∫ s
0 k(σ)dσ. Puis on trouve

x(s) et y(s) par une nouvelle intégration :

x(s) = x0 +

∫ s

0
cos(ϕ(σ))dσ , y(s) = y0 +

∫ s

0
sin(ϕ(σ))dσ

les constantes x0, y0, et ϕ0 sont des constantes d’intégration et peuvent être choisies arbitraire-
ment (ce sont les conditions initiales du système d’équations différentielles).
En changeant les valeurs de x0 et y0, on modifie la courbe par une translation ; si l’on change
ϕ0, alors la courbe γ subit une rotation. L’argument montre à la fois l’existence et l’unicité de
la courbe γ à un déplacement près.

Remarque. La relation k = k(s) entre l’abscisse curviligne et la courbure orientée s’appelle
l’équation intrinsèque de la courbe. Elle contient la même information que le diagramme de
courbure.

Exemple. Considérons la courbe dont le diagramme de courbure est une droite oblique (i.e.
l’équation intrinsèque est linéaire : k(s) = ms + n avec m 6= 0). Alors la fonction angulaire est
donnée par

ϕ(s) =

∫
k(s) ds =

m

2
s2 + ns+ c ,

et la courbe est donc donnée par

x(s) =

∫
cos
(m

2
s2 + ns+ c

)
ds , y(s) =

∫
sin
(m

2
s2 + ns+ c

)
ds .

Ces intégrales s’appellent les fonctions de Fresnel. Elle ne peuvent pas être exprimées à partir
des fonctions élémentaires.

Cette courbe s’appelle une chlotoïde ou spirale de Cornu, elle permet par exemple de passer
d’une droite à un cercle sans discontinuité de la courbure. Pour cette raison, elle est utilisée dans
la conception des tracés ferroviaires ou autoroutiers.
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Chlotoïde.

2.12 Le théorème des quatre sommets

Définition. On dit que γ : [a, b]→ Rn est une courbe fermée de classe Cm si la fonction γ peut
s’étendre à un intervalle ouvert [a− ε, b+ ε] et si on a γ(a) = γ(b) et

dkγ

duk
(a) =

dkγ

duk
(b),

pour 1 ≤ k ≤ m. On dit aussi que γ est une courbe périodique de classe Cm car on peut l’étendre
en une fonction périodique γ : R→ Rn de période (b− a).

En particulier, si γ : [a, b] → Rn est une courbe fermée de classe C1 alors γ(a) = γ(b) et
γ̇(a) = γ̇(b). Le vecteur vitesse est donc le même en t = a et en t = b. Et si la courbe est fermée
de classe C2, alors le courbure en t = a est égale à la courbure en t = b.

Théorème 2.31. Toute courbe fermée de classe C3 dans un plan orienté, qui n’est pas un cercle,
possède au moins quatre sommets.

On rappelle qu’un sommet d’une courbe de classe C2 est un maximum local ou un minimum
local de la courbure orientée. A titre d’exemple, une ellipse possède deux minimums et deux
maximums de courbure. La preuve utilisera le lemme suivant :

Lemme 2.32. Soit γ : [0, `] → R2 une courbe fermée de classe C3 paramétrée naturellement.
Alors ∫ `

0
x(s)k̇(s)ds =

∫ `

0
y(s)k̇(s)ds = 0.

Preuve du Lemme. Examinons la seconde intégrale, on a∫ `

0
y(s)k̇(s)ds = −

∫ `

0
ẏ(s)k(s)ds =

∫ `

0
ẍ(s)ds = 0.

En effet la première égalité est une intégration par parties, la seconde égalité vient de la relation
ẍ = −kẏ qui se déduit des équations de Serret-Frenet et la dernière égalité est évidente.

Preuve du Théorème. La preuve dans le cas général est assez élaborée, nous ne la donnerons
que dans le cas où la courbe est le bord d’un domaine convexe du plan. Par hypothèse, γ est
une courbe fermée de classe C3, par conséquent la dérivée de la courbure vérifie k̇(0) = k̇(`) et
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la fonction k(s) doit donc avoir au moins un maximum local et un minimum local. Nous allons
d’abord prouver par l’absurde que k(s) doit avoir au moins un troisième extremum local.

Supposons donc par l’absurde que k(s) a exactement deux extremums locaux, et faisons égale-
ment les hypothèse suivantes sans perte de généralité :

1. On suppose que γ : [0, `]→ R2 est paramétrée naturellement.

2. Le minimum local de k(s) est en s = 0 et le maximum local est en s0 ∈ (0, `).

3. γ(0) = (0, 0) et γ(s0) = (x0, 0).

Ces hypothèses entraînent que k(s) est strictement croissante sur l’intervalle (0, s0) et strictement
décroissante sur (s0, `). Donc k̇(s) > 0 sur le premier intervalle et k̇(s) < 0 sur le deuxième
intervalle.
Puisque γ borde un domaine convexe, les deux arcs γ|[0,s0] et γ|[s0,`] sont situés l’un dans le
demi-plan {y ≥ 0} et l’autre dans le demi-plan {y ≤ 0}. Supposons par exemple que y(s) > 0
sur l’intervalle (0, s0) et y(s) < 0 sur l’intervalle (s0, `), alors nous avons y(s)k̇(s) > 0 pour tous
s 6∈ {0, s0}. Mais ceci entre en contradiction avec le lemme précédent car ce lemme implique que∫ s0

0
y(s)k̇(s)ds = −

∫ `

s0

y(s)k̇(s)ds.

L’argument est le même (avec le signe opposé) si y(s) < 0 sur l’intervalle (0, s0) et y(s) > 0 sur
(s0, `).
Nous avons montré que k̇(s) doit avoir au moins trois changements de signe. Mais comme on a
k̇(0) = k̇(`), cette fonction ne peut pas avoir un nombre impair de changements de signe. Il y a
donc au moins quatre changements de signe.

Note historique. Le théorème des quatre sommets a été démontré par le mathématicien indien
Syamadas Mukhopadhyaya en 1909 pour les courbes fermées convexes, puis par le mathématicien
allemand A. Kneser dans le cas général en 1912. Il existe une réciproque, démontrée d’abord en
1971 par Herman Gluck dans le cas des courbes convexes, puis en 2005 par Björn Dahlberg dans
le cas général.



Chapitre 3

Calcul différentiel et sous-variétés
différentiables de Rn

Les sous-variétés différentiables sont des parties de Rn qui généralisent les courbes et surfaces en
toutes dimensions et codimensions. On les supposes assez régulières pour qu’on puisse appliquer
les concepts et outils du calcul différentiel.

3.1 Rappels de calcul différentiel

3.1.1 Dérivées directionnelles et dérivées partielles

Soit U un domaine de Rm et f : U → Rn une application. Pour un point p de U et un vecteur
v ∈ Rm on définit la dérivée directionnelle de f en direction de v au point p par

Dvf(p) =
d

dt

∣∣∣∣
t=0

f(p+ tv) = lim
t→0

f(p+ tv)− f(p)

t
∈ Rn, (3.1)

si cette limite existe.

Si {e1, e2, . . . , em} est la base canonique de Rm et x1, x2, . . . , xm sont les coordonnées associées
(i.e. un vecteur x ∈ Rm s’écrit x =

∑m
i=1 xiei), alors la dérivée directionnelle de f en direction

du vecteur ei s’appelle la dérivée partielle de f au point p en direction de la ième coordonnée (ou
en direction du vecteur ei), et on note

∂f

∂xi
(p) = Deif(p) = lim

t→0

f(p+ tei)− f(p)

t
∈ Rn. (3.2)

Remarque. Il est important de noter que l’existence des dérivées partielles d’une fonction en un point
donné ne garantit pas l’existence des dérivées directionnelles dans toutes les directions. Par exemple la
fonction f : R2 → R définie par

f(x, y) =


xy

(x2 + y2)3/4
si (x, y) 6= (0, 0),

0 si (x, y) = (0, 0)

est continue et possède les dérivées partielles
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0, mais la dérivée directionnelle en

(0, 0) en direction de v = (v1, v2) n’existe pas si v1 et v2 sont non nuls car

lim
t→0+

f(tv1, tv2)− f(0, 0)

t
= lim

t→0+

t2v1v2
t((tv1)2 + (tv22))3/4

=
v1v2

(v21 + v22)3/4
lim
t→0+

1√
t

= ±∞.

43
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3.1.2 Applications de classe Ck sur un ouvert de Rm

On dit que l’application f : U → Rn est de classe C1 si elle est continue et si toutes les dérivées
partielles du premier ordre

∂f

∂xi
: U → Rn

existent en tout point de U et sont continues. La fonction est de classe Ck (k un entier ≥ 2) si
les m+ 1 fonctions f, ∂f

∂x1
, . . . ∂f

∂xm
: U → Rn sont de classe Ck−1.

On note C0(U,Rn) l’ensemble des applications continues sur U et Ck(U,Rn) l’ensemble des
applications de classe Ck. Une application est de classe C∞ si elle est de classe Ck pour tout k
et on note C∞(U,Rn) = ∩k≥0C

k(U,Rn). On dit parfois que f est lisse si f ∈ C∞(U,Rn).
Lorsque n = 1, i.e. lorsque f est à valeurs dans R on note simplement Ck(U) = Ck(U,R), on
appelle les éléments de Ck(U) des fonctions (ainsi les fonctions sont les applications à valeurs
dans R).

La matrice à n lignes et m colonnes contenant les dérivées partielles

Df =


∂f1

∂x1
· · · ∂f1

∂xm
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xm


s’appelle la matrice Jacobienne 1 de f . Noter que c’est une fonction du point p ∈ U . Lorsque
n = m, le déterminant de cette matrice est alors bien défini, on l’appelle le Jacobien de f et on
note 2

Jf (p) = det

(
∂fi
∂xj

(p)

)
.

Définitions. 1. Un difféomorphisme de classe Ck entre deux ouverts U et V de même dimension
est une application bijective f : U → V telle que f et f−1 sont de classe Ck. Lorsque k = 0, on
dit que f est un homéomorphisme.
2. Une application f : U → Rn est un difféomorphisme local de classe Ck en p ∈ U s’il existe
un voisinage ouvert U ′ ⊂ U de p tel que V ′ = f(U ′) est ouvert et la restriction f |U ′ est un
Ck-difféomorphisme de U ′ sur V ′.
3. Finalement on dit que f : U → Rn est un difféomorphisme local si c’est un difféomorphisme
local en chaque point de U .

Observer qu’un difféomorphisme local n’est pas forcément une application injective (ni surjective
d’ailleurs).

Remarque. Un homéomorphisme de classe Ck n’est pas toujours un difféomorphisme. Par
exemple la fonction f(x) = x3 décrit un homéomorphisme C∞ de R vers R mais l’inverse
f−1(y) = 3

√
y n’est pas dérivable en y = 0.

Il y a deux façons de concevoir un difféomorphisme f : U → V . Dans le premier point de vue,
on considère que f déplace les points de U (éventuellement en déformant l’ensemble U). Ainsi,
si p est un point de U , on considère que q = f(p) est un autre point, qui appartient à V .

1. Du nom de Carl Gustav Jacob Jacobi, mathématicien allemand (1804–1851).
2. Une autre notation, un peu désuète mais assez explicite, est

∂(f1, . . . , fn)

∂(x1, . . . , xn)
= det

(
∂fi
∂xj

)
.



CHAPITRE 3. CALCUL DIFFÉRENTIEL ET SOUS-VARIÉTÉS 45

Dans le second point de vue, les points ne “bougent” pas, mais on considère que (y1, y2, . . . , yn) =
f(x1, x2, . . . , xn) représente un nouveau système de coordonnées sur U . Ceci nous mène à la
définition suivante :

Définition. Un système de coordonnées curviligne de classe Ck sur l’ouvert U ⊂ Rn est la donnée
de n fonctions y1, y2, . . . , yn : U → R telles que

φ : (x1, x2, . . . , xn) 7→ (y1, y2, . . . , yn)

décrit un difféomorphisme de classe Ck de U vers un ouvert V = φ(U) ⊂ Rn.

3.1.3 Applications Différentiables au sens de Fréchet

Définition. L’application f : U ⊂ Rm → Rn est différentiable au sens de Frechet en p ∈ U s’il
existe une application linéaire ` : Rm → Rn telle que

f(x)− f(p)− `(x− p) = o(‖x− p‖)

Intuitivement, une application f est donc différentiable (au sens de Frechet) en p si f(x)− f(p)
est tangente à une application linéaire :

Lemme 3.1. Si elle existe, l’application linéaire de la définition précédente est unique.

On appelle alors cette application la différentielle de f en p et on note 3

dfp := `.

Preuve du lemme. Supposons que `1 et `2 soient deux applications linéaires telles que

f(x)− f(p)− `1(x− p) = f(x)− f(p)− `2(x− p) = o(‖x− p‖).

Soit v un vecteur quelconque de Rn et t ∈ R un réel assez petit pour que x+ tv ∈ U , alors on a

f(p+ tv)− f(p)− `1(tv) = o(‖tv‖) = o(t),

et de même
f(p+ tv)− f(p)− `2(tv) = o(‖tv‖) = o(t).

Par conséquent, on a
t(`1(v)− `2(v)) = `1(tv)− `2(tv) = o(t),

ce qui signifie que

lim
t→0

‖`1(tv)− `2(tv)‖
t

= 0 = lim
t→0
‖`1(v)− `2(v)‖,

c’est-à-dire `1(tv) = `2(tv).

Remarque. Il est fréquent de noter h le vecteur h = x − p. On pense alors à h comme un
“accroissement” de p. On a alors

f(p+ h) = f(p) + dfp(h) + o(‖h‖).

On remarque aussi que dfp(h) peut se calculer par la formule suivante :

dfp(h) = lim
t→0

(
f(p+ th)− f(p)

t

)
=

d

dt

∣∣∣∣
t=0

f(p+ th),

Il s’agit donc de la dérivée directionnelle de f au point p en direction de h.

3. La notation Dfp est également souvent utilisée, mais nous préférons garder cette notation pour la matrice
jacobienne.
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Exemples

(i) Si I ⊂ R est un intervalle ouvert, alors f : I → R est différentiable en p ∈ I si et seulement
si f est dérivable en p et

dfp(h) = f ′(p) · h.

(ii) Soit f : Rm → Rn une application affine, i.e. une application du type f(x) = Ax + b (où
A est une n × m matrice à coefficients réels). Alors f est différentiable en tout point et
dfp = A pour tout p ∈ Rm.

(iii) Si β : E1 × E2 → E3 est une application bilinéaire (où Ei sont des espaces normés de
dimension finie), alors

dβ(p1,p2)(h1, h2) = β(p1, h2) + β(h1, p2)

(iv) Considérons l’application ψ : Mn(R)→Mn(R) définie par ψ(A) = A2, alors

dψA(H) = AH +HA.

(v) L’application φ : GLn(R)→ GLn(R) définie par φ(A) = A−1 est différentiable et on a

dφA(H) = −A−1HA−1.

(vi) La différentielle de l’application det : GLn(R)→ R est donnée par

d detA(H) = Trace(Cof(A)>H).

où Cof(A) est la matrice des cofacteurs de A.

Proposition 3.2 (Différentiation en chaîne). Soient U ⊂ Rm, V ⊂ Rn deux ouverts et f : U →
V , g : V → Rs deux applications telles que f est Fréchet différentiable en p ∈ U et g est Fréchet
différentiable en q = f(p) ∈ V , alors g ◦ f : U → Rs est Fréchet différentiable en p et

d(g ◦ f)p = dgq ◦ dfp

Cette proposition est l’une des raisons qui rend la notion de différentiabilité au sens de Fréchet
efficace et importante.

Preuve. Par hypothèse, on a

f(p+ h)− f(p) = dfp(h) + o(‖h‖) et g(q + k)− g(q) = dgq(k) + o(‖k‖).

Donc

g ◦ f(p+ h)− g ◦ f(p) = g ◦ f(p+ h)− g(q)

= g (f(p) + dfp(h) + o(‖h‖))− g(q)

= g (q + dfp(h) + o(‖h‖))− g(q)

= dgq (dfp(h) + o(‖h‖)) + o (dfp(h) + o(‖h‖))
= dgq ◦ dfp(h) + o(‖h‖),

ce qui démontre que d(g ◦ f)p = dgq ◦ dfp.

Proposition 3.3. Soit f : U → Rn une application différentiable en chaque point de U , où U
est un ouvert convexe de Rm. Supposons que la différentielle de f est bornée sur U , i.e. il existe
C > 0 tel que ‖dfp‖ ≤ C pour tout p ∈ U (ici on utilise la norme d’opérateur pour df). Alors f
est C-Lipschitzienne, i.e.

‖f(y)− f(x)‖ ≤ C‖y − x‖.
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Preuve. Le segment de droite reliant x à y est contenu dans le domaine U puisque celui-ci est
supposé convexe. On paramétrise ce segment par γ(t) = x+ t(y − x) ∈ U . On a alors

f(y)− f(x) = f(γ(1))− f(γ(0)) =

∫ 1

0

d

dt
f(γ(t))dt.

Or la règle de dérivation en chaîne nous dit que

d

dt
f(γ(t)) = dfγ(t)(γ̇(t)) = dfγ(t)(y − x),

donc

‖f(y)− f(x)‖ =

∥∥∥∥∫ 1

0
dfγ(t)(γ̇(t))dt

∥∥∥∥
≤
∫ 1

0
‖dfγ(t)(y − x)‖dt

≤
∫ 1

0
‖dfγ(t)‖ · ‖y − x‖dt

≤ C‖y − x‖.

Théorème 3.4. Si f : U ⊂ Rm → Rn est de classe C1, alors f est différentiable au sens de
Frechet en tout point p de U . De plus la matrice de la différentielle dfp est la matrice Jacobienne
de f en p :

dfp =

(
∂fi
∂xj

(p)

)
Démonstration. Nous donnons la preuve pour m = 2, le cas général est semblable. Écrivons

f(p1 + h1, p2 + h2)− f(p1, p2) = f(p1 + h1, p2 + h2)− f(p1 + h1, p2) + f(p1 + h1, p2)− f(p1, p2).

On a d’une part

f(p1 + h1, p2)− f(p1, p2) =
∂f(p1, p2)

∂x1
h1 + o(h1).

D’autre part, en appliquant le théorème des accroissements fini à la fonction

φ(t) = f(p1 + h1, p2 + th2),

on sait qu’il existe s ∈ [0, 1] tel que

φ(1)− φ(0) = φ′(s) = h2 ·
∂f(p1 + h1, p2 + sh2)

∂x2
,

c’est-à-dire
f(p1 + h1, p2)− f(p1, p2) = h2 ·

∂f(p1 + h1, p2 + sh2)

∂x2
.

Par continuité de ∂f
∂x1

, on a

∂f(p1 + h1, p2 + sh2)

∂x2
=
∂f(p1, p2)

∂x2
+ o(h1, h2)

En regroupant toute ces identités, on obtient

f(p1 + h1, p2 + h2)− f(p1, p2) =
∂f(p1, p2)

∂x1
· h1 +

∂f(p1, p2)

∂x2
· h2 + o(h1, h2).
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On a donc montré que f est différentiable en p et que

dfp(h) =
∂f

∂x1
· h1 +

∂f

∂x2
· h2. (3.3)

Cette dernière relation signifie que la matrice de df est la matrice Jacobienne de f .

Corollaire 3.5. Si f : U ⊂ Rm → Rn est de classe C1, alors l’application p 7→ dfp est continue.

3.1.4 Une autre interprétation de la différentielle

La formule (3.3) suggère une autre façon de voir la différentielle d’une fonction. Remarquons
d’abord que si g : U ⊂ Rm → R est une fonction différentiable à valeurs scalaires, alors dgp
est une forme linéaire, c’est-à-dire un élément du dual de Rm pour tout point p de U . Si, en
particulier, g est elle-même une forme linéaire, alors on a dgp = g pour tout point p. On a donc
la remarque suivante :

Pour tout système de coordonnées linéaires x1, . . . , xm sur Rm on a en tout point 4 dxi|p = xi.

Ainsi pour tout vecteur v = v1e1 + · · ·+ vmem, on a

dxi(v) = vi = 〈ei, v〉,

A condition toutefois que x1, . . . , xm soit le système de coordonnées linéaires associé à la base
e1, . . . , em.

Considérons maintenant une application différentiable f : U ⊂ Rm → Rn, alors nous avons en
tout point p et pour tout i = 1, . . . ,m :

dfp(ei) = lim
t→0

(
f(p+ tei)− f(p)

t

)
=

∂f

∂xi
(p).

Pour le vecteur v = v1e1 + · · ·+ vmem, on a donc par linéarité de df :

dfp(v) =
m∑
i=1

dfp(ei)vi =
m∑
i=1

∂f

∂xi
(p)vi =

m∑
i=1

∂f

∂xi
(p)dxi(v)

car vi = dxi(v). On écrit cette formule sous la forme classique suivante :

df =
m∑
i=1

∂f

∂xi
dxi (3.4)

Remarque 3.6. (1) Les raisonnement précédents montrent que l’image de dfp est le sous-espace
vectoriel engendré par les vecteurs ∂f

∂x1
(p), . . . , ∂f

∂xm
(p).

Il est important de ne pas oublier que si n > 1, alors f est une fonction à valeurs vectorielles, nous
pouvons donc encore développer df dans la base canonique de Rn et écrire la formule précédente
sou la forme

df =

m∑
i=1

∂ ~f

∂xi
dxi =

m∑
i=1

n∑
j=1

∂fj
∂xi

~ujdxi,

où on a noté ici {~u1, . . . , ~un} la base canonique de Rn.

4. Noter que cette formule ne s’applique pas pour des coordonnées curvilignes (non linéaires). Par exemple on
ne peut pas écrire dr = r ou dθ = θ dans le cas des coordonnées polaires (r, θ) du plan.
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La notion de gradient

Considérons à nouveau une fonction différentiable g : U ⊂ Rm → R à valeurs scalaires. On a vu
que sa différentielle en tout point p est la forme linéaire

dgp =
m∑
i=1

∂g

∂xi
dxi.

Définition 3.7. On appelle gradient de g en p le vecteur dual de la forme linéaire dgp, où la
dualité est induite par le produit scalaire standard de Rm. Le gradient s’écrit

−→
∇g(p) =

m∑
i=1

∂g

∂xi
ei,

et il se caractérise par la condition

dgp(v) = 〈
−→
∇g(p),v〉, ∀ v ∈ Rm.

Notons encore que la matrice jacobienne de g en p est naturellement une matrice-ligne car dgp
est un élément du dual de Rn. Puisque le gradient de g est un vecteur, il est représenté par une
matrice colonne. Ainsi nous avons

dg =

(
∂g

∂xi
· · · ∂g

∂xi

)
et
−→
∇g = (dg)> =


∂g

∂xi
...
∂g

∂xi


3.1.5 Le théorème d’inversion locale

Théorème 3.8. Soit U un ouvert de Rn et f ∈ Ck(U,Rn) (avec k ≥ 1). Alors f est un Ck-
difféomorphisme local au voisinage de p ∈ U si et seulement si Jf (p) 6= 0.

La preuve a été vue au cours d’analyse 2, nous la donnons ci-dessous par souci de complétude.
Preuve. Quitte à remplacer f par l’application x 7→ f(x + p) − f(p), on se ramène au cas
p = f(p) = 0. En composant ensuite f avec l’application linéaire df−1

0 , on peut supposer que
df0 = Id. Avec ces hypothèses, on a donc

f(x) = x+ g(x),

où g ∈ Ck(U,Rn) vérifie g(0) = 0 et dg0 = 0, c’est-à-dire g(x) = o(‖x‖).
Nous devons construire un voisinage de 0 dans Rm sur lequel f est inversible. Comme x 7→ dgx
est continu et dg0 = 0, il existe r > 0 tel que pour tout x dans la boule fermée B̄r de centre 0 et
de rayon r on a ‖dg‖x ≤ 1

3 (on prend r assez petit pour que B̄r ⊂ U). Cela implique que g est
1
3 -Lipschitz sur cette boule, c’est-à-dire

x, x′ ∈ B̄r ⇒ ‖g(x′)− g(x)‖ ≤ 1

3
‖x′ − x‖.

En particulier ‖g(x)‖ ≤ r
3 pour tout x ∈ B̄r. On va montrer que tout point y ∈ Br/2 appartient

à l’image de f par la méthode du point fixe. Observons que

f(x) = x+ g(x) = y ⇔ x = y − g(x).
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Fixons donc y0 ∈ Br/2 et définissons T : B̄r → Rn par

T (x) = y0 − g(x).

Observons d’abord que T (B̄r) ⊂ B̄r car

‖x‖ ≤ r ⇒ ‖T (x)‖ = ‖y0 − g(x)‖ ≤ ‖y0‖+ ‖g(x)‖ ≤ r

2
+
r

3
< r.

Ainsi T définit une transformation T : B̄r → B̄r. Montrons qu’elle est strictement contractante :

x, x′ ∈ B̄r ⇒ ‖T (x′)− T (x)‖ = ‖g(x′)− g(x)‖ ≤ 1

3
‖x′ − x‖.

L’application T possède donc un unique point fixe x0 ∈ B̄r tel que T (x0) = x0, c’est-à-dire
f(x0) = y0. On a montré que Br/2 est contenu dans l’image de f .
Considérons maintenant l’ouvert V = Br ∩ f−1(Br/2), alors, par construction, f : V → Br/2 est
surjective. Cette application est aussi injective par unicité du point fixe de T .
Notons h : Br/2 → V l’inverse de f |V et montrons d’abord que h est continue en 0. Observons
que pour x ∈ V on a f(x) = x+ g(x), donc

‖x‖ = ‖f(x)− g(x)‖ ≤ ‖f(x)‖ + ‖g(x)‖ ≤ ‖f(x)‖ +
1

3
‖x‖,

ce qui implique, en posant x = h(y), que

‖h(y)‖ = ‖x‖ ≤ 3

2
‖f(x)‖ =

3

2
‖y‖.

Nous pouvons montrer maintenant que h est différentiable en 0 et que sa différentielle en 0 est
l’identité. Nous avons en effet :

‖h(y)− y‖
‖y‖

=
‖x− f(x)‖
‖y‖

=
‖g(x)‖
‖y‖

≤ 3

2

‖g(x)‖
‖x‖

qui tend vers 0 lorsque x→ 0 (et cette condition est équivalente à y → 0).

Nous avons démontré que si f : U → Rn est Ck et si dfp est inversible en un point p ∈ U , alors
f définit une bijection dans un voisinage de p et l’inverse f−1 est différentiable en f(p). Il est
clair que si dfp est inversible p ∈ U , alors df est inversible en tout point d’un voisinage de p (car
le jacobien est une fonction continue). L’inverse f−1 est alors de classe Ck car la différentielle de
f−1 au point f(x) admet pour matrice jacobienne l’inverse de la matrice jacobienne de dfx.

Corollaire 3.9. Une application f : U → V de classe Ck, avec k ≥ 1 entre deux ouverts U et
V de Rn est un difféomorphisme (global) si et seulement f est bijective et Jf (p) 6= 0 pour tout
p ∈ U .

3.1.6 Le théorème du rang constant

Rappels d’algèbre linéaire. Rappelons que le rang d’une application linéaire ` : Rm → Rn
est la dimension de l’image Im(`) ⊂ Rn. L’application linéaire ` est de rang r si et seulement si,
après changement de bases sur Rm et sur Rn, sa matrice prend la forme

A =

(
Ir 0
0 0

)
.
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Dans ces coordonnées, l’application ` s’écrit

`(x1, . . . , xm) = (x1, . . . , xr, 0, . . . 0).

On montre aussi que le rang est le plus grand entier r ∈ N tel que la matrice A admet un r × r
mineur non nul (i.e. une sous-matrice carrée de taille r × r et de déterminant non nul).

Définitions 3.10. ◦ Le rang d’une application f : U ⊂ Rm → Rn de classe C1 est la fonction
rangf : U ⊂ Rm → N définie par rangf (p) = rang(dfp).
◦ On dit que f est de rang maximal en p si rangf (p) = min(m,n).
◦ f est une immersion si rangf (p) = m pour tout p ∈ U (de façon équivalente dfp est injective

pour tout p ∈ U).
◦ f est une submersion si rangf (p) = n pour tout p ∈ U (de façon équivalente dfp est surjective

pour tout p ∈ U).

Exemple 3.11. a) Soit F : R → R2 l’application définie par F (x) = (x2, x3). On a DFx =(
2x
3x2

)
, et donc le rang de F vaut 0 en (0, 0) et 1 en tout autre point.

b) Soit G : R2 → R2 l’application définie par G(x1, x2) = (x2
1 + x2, x

3
1). Alors DG =

(
2x1 1
3x2

1 0

)
.

Ainsi, le rang de G vaut 1 si x1 = 0 et 2 sinon.

Lemme 3.12. Soit f : U ⊂ Rm → Rn une application de classe C1, alors la fonction U →
N définie par p 7→ rangf (p) est semi-continue inférieurement. En particulier si f est de rang
maximal en un point p, alors f est de rang maximal dans un voisinage de ce point.

Rappelons qu’une fonction ρ : U → R est semi-continue inférieurement si pour tout α ∈ R
l’ensemble {x ∈ U | ρ(x) > α} est ouvert.

Preuve. L’application f vérifie rangf (p) ≥ r si et seulement si la matrice jacobienne de dfp admet
un r × r mineur non nul (i.e. si cette matrice contient une sous-matrice carrée de taille r × r
dont le déterminant est non nul). Par continuité de la matrice jacobienne, ce même mineur est
non nul dans un voisinage de p.

Le théorème du rang constant affirme qu’une application de classe Ck dont le rang est constant
est localement Ck-équivalente à une application linéaire :

Théorème 3.13 (Théorème du rang constant). Soit f : U ⊂ Rm → Rn une application de
classe Ck et de rang constant = r. Pour tout point p ∈ U il existe des voisinages V de p et W
de q = f(p) ainsi que des Ck-difféomorphismes

Φ : V → V ′ ⊂ Rm et Ψ : W →W ′ ⊂ Rn

tels que

(i) V ⊂ U et f(V ) ⊂W ,

(ii) Φ(p) = 0 ∈ Rm et Ψ(q) = 0 ∈ Rn,
(iii) l’application F = Ψ ◦ f ◦ Φ−1 : V ′ →W ′ s’écrit

F (x1, . . . , xm) = (x1, . . . xr, 0, . . . 0).
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Notons en particulier que F est une application linéaire, alors que f ne l’est pas en général. La
situation peut se représenter sur le diagramme suivant :

V W

V ′ W ′

f

Φ Ψ

F

Preuve. On peut supposer, quitte à faire des translations, que p = 0 ∈ Rm et q = f(p) = 0 ∈ Rn.
Quitte à faire des changements de bases sur Rm et Rn, on peut aussi supposer que df0 prenne la
forme normale, c’est-à-dire que la matrice jacobienne de f en 0 est la n×m matrice

DF0 =

(
∂fi
∂xj

(0)

)
=

(
Ir 0
0 0

)
Définissons l’application suivante Φ : U → Rm

Φ(x1, . . . , xm) = (f1(x), . . . , fr(x), xr+1, . . . xm),

et observons que la matrice jacobienne de Φ en 0 est la m×m matrice identité, car

DΦ0 =

(
∂Φi

∂xj
(0)

)
=

(
Ir 0
0 Im−r

)
.

Par le théorème d’inversion locale, on sait que Φ définit un difféomorphisme de classe Ck d’un
voisinage V de 0 ∈ Rm sur un autre voisinage V ′ de 0 ∈ Rm.
On considère maintenant l’application f ◦ Φ−1 : V ′ → Rn, cette application s’écrit

f ◦ Φ−1(x1, . . . , xm) =
(
x1, . . . , xr, f

r+1 ◦ Φ−1(x), . . . fn ◦ Φ−1(x)
)
,

et sa matrice jacobienne en x est une m× n matrice de la forme(
Ir 0
∗ ∆(x)

)
, avec ∆(x) =

(
∂

∂xj
fi ◦ Φ−1

)
(r+1)≤i,j≤n

.

Or nous savons que cette matrice est de rang r pour tout x ∈ V ′ car rang f ◦Φ−1 = rang f = r.
Par conséquent ∆(x) est la matrice nulle pour tout x ∈ V ′. Ainsi f ◦ Φ−1 ne dépend que des
variables x1, . . . , xr et on peut donc écrire

f ◦ Φ−1(x) = (x1, . . . , xr, h(x1, . . . , xr))

On définit maintenant une application Ψ : f(U)→ Rn par

Ψ(y) = (y1, . . . , yr, yr+1 − hr+1(y1, . . . , yr), yn − hn(y1, . . . , yr)).

La matrice jacobienne de Ψ en 0 est une n× n matrice du type(
∂Ψi

∂yj

)
=

(
Ir 0
∗ In−r

)
.

Cette matrice est inversible, donc Ψ définit un Ck-difféomorphisme d’un voisinage W de 0 ∈ Rn
vers un voisinage W ′ de 0. On vérifie finalement que F := Ψ ◦ f ◦ Φ−1 : V ′ →W ′ est donné par

Ψ ◦ f ◦ Φ−1(x1, . . . , xn) = (x1, . . . xr, 0, . . . 0).

Une conséquence importante du théorème du rang constant est le
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Théorème 3.14 (Théorème des fonctions implicites). Soit f : U ⊂ Rm → Rn une application
C∞ où m = n + k. Soit p un point de U et supposons que la matrice Jacobienne partielle (de
taille n× n) (

∂fi
∂xj

)
1≤i≤n, (k+1)≤j≤m

est inversible en p. Alors il existe un voisinage de p de type V ×W ⊂ U avec V ⊂ Rk et W ⊂ Rn
ainsi qu’une application φ : V →W de classe C∞ telle que pour tout x ∈ V ×W on a

f(x) = q ⇔ (xk+1, . . . , xm) = φ(x1, . . . , xk)

où q = f(p).

Nous laissons la preuve en exercice. Remarquons que le rang de f en p est égale à n, donc par le
Lemme 3.12, le rang est constant, égal à n dans un voisinage de p. On peut donc supposer que
f est une submersion.

3.2 Sous-Variétés de Rn

Une sous-variété de dimension m dans l’espace Rn est un sous-ensemble qui peut localement,
c’est-à-dire au voisinage de chaque point, être approximé par un sous-espace affine de dimension
m ≤ n. On suppose que des conditions de régularité (i.e. de différentiabilité) sont vérifiées. Voici
la définition précise.

Définition. Un sous-ensemble M ⊂ Rn est une sous-variété de dimension m de classe Ck si
pour tout point p deM il existe un voisinage U ⊂ Rn de p et un Ck-difféomorphisme φ : U → V ,
où V est un ouvert de Rn, tel que

φ(U ∩M) = V ∩ E

où E ⊂ Rn est un sous-espace affine de dimension m.

On dit aussi que (n −m) est la codimension de M . Une sous-variété de dimension 2 s’appelle
une surface et une sous-variété de dimension 1 est une courbe. Une sous-variété de codimension
1, donc de dimension (n− 1), s’appelle une hypersurface.

Remarque. Sans perdre de généralité, On peut remplacer dans cette définition les mots sous-
espace affine par sous-espace vectoriel. On peut même supposer que E ⊂ Rm est le sous-espace
vectoriel engendré par les m premiers vecteurs de la base canonique :

E = {y ∈ Rm | ym+1 = · · · = yn = 0}.

Dans la pratique, vérifier queM est une sous-variété de dimension m revient à montrer que pour
tout point p ∈ M , il existe un système de cordonnées curvilignes y1, . . . , yn dans un voisinage
U ⊂ Rn de p tel que

φ(U ∩M) = V ∩ {y ∈ V | ym+1 = · · · = yn = 0},

où φ(x1, . . . , xn) = (y1, . . . , yn) est le difféomorphisme qui représente le changement de coordon-
nées.
On peut alors considérer que les m premières coordonnées y1, . . . , ym sont des “coordonnées
curvilignes locales” sur la sous variété M ; elle servent à paramétrer une région de la variété au
voisinage du point p.
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Observons aussi que les coordonnées restantes ym+1, . . . , yn sont nulles sur la sous-variété, elle
représentent donc un système de n − m équations (en général non linéaires) qui définissent
localement la variété.

Premiers exemples.

(i) Une sous-variété de dimension 0 de Rn est un sous-ensemble discret (tous ses points sont
isolés).

(ii) Une sous-variété de dimension n de Rn est un sous-ensemble ouvert de Rn .

(iii) L’ensemble vide est une sous-variété de dimension m pour tout entier m.

(iv) Si f : U → R est une fonction de classe Ck définie sur un ouvert U ⊂ Rm, alors son graphe

M = {(x, t) ∈ U × R | t = f(x)}

est une sous-variété de Rm+1.

Les trois premiers exemples sont banals. S’agissant du quatrième exemple, pour montrer que le
graphe M de la fonction f ∈ Ck(U) est une sous-variété, on considère l’application φ : U ×R→
U × R définie par

φ(x1, . . . , xm, xm+1) = (x1, . . . , xm, xm+1 − f(x1, . . . , xm)).

Cette application est clairement de classe Ck et c’est un difféomorphisme dont l’inverse est
explicitement donné par

φ−1(y1, . . . , ym, ym+1) = (y1, . . . , ym, ym+1 + f(y1, . . . , ym)).

Il est clair que φ(M) = U×{0} ⊂ Rm+1, qui est un ouvert d’un sous-espace vectoriel de dimension
m.

Théorème 3.15. Soit f : U → Rn une application de classe Ck et de rang constant r, où U est
un ouvert de Rm. Alors on a les conclusions suivantes :

A) Pour chaque point q ∈ Rn, la préimage f−1(q) ⊂ U est une sous-variété différentiable de
codimension r (i.e. de dimension m− r).

B) Chaque point p ∈ U admet un voisinage Vp ⊂ U tel que l’image directe f(Vp) ⊂ Rn est une
sous-variété de dimension r.

En particulier :

a) Si f : U ⊂ Rm → Rn est une submersion de classe Ck, alors f−1(q) est une sous-variété de
codimension n.

b) Si f : U ⊂ Rm → Rn est une immersion de classe Ck, alors chaque point p ∈ U admet un
voisinage Vp ⊂ U tel que l’image directe f(Vp) ⊂ Rn est une sous-variété de dimension m.

Remarque. En général, l’image f(U) ⊂ Rn d’une immersion f : U → Rn n’est pas une sous-
variété, même si f est injectif. Il est par contre facile de voir que f(U) est une sous-variété si f
est une immersion et f définit un homéomorphisme de U vers M .
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Des exemples pour le cas A :

1) Si F : Rm → R est une fonction C∞ telle que dFp 6= 0 quel que soit p, alors F−1(q) est une
hypersurface de Rm.

2) La sphère Sn−1 est une hypersurface (car la sphère est définie par l’équation
∑

i x
2
i = 1).

3) Si F,G : Rm → R sont tels que dFp et dGp sont linéairement indépendants quel que soit p,
alors F−1(q1) ∩G−1(q2) est une sous-variété de codimension 2.

4) Le groupe orthogonal O(n) est une sous-variété de Mn(R) (car O(n) est défini par l’équation
X>X = In).

Preuve du théorème. Le théorème du rang constant nous dit que l’application f est localement
équivalente à une application linéaire de rang r. Donc la préimage d’un point par f et son image
directe sont localement équivalents à des sous-espaces vectoriels, or c’est précisément cela la
définition d’une sous-variété.
Commençons par démontrer l’affirmation (A). Fixons q ∈ Rn, si q 6∈ f(U), alors f−1(q) = ∅ et
il n’y a rien à montrer. On suppose donc que q ∈ f(U) et on choisit un point p ∈ M = f−1(q).
Par le théorème du rang constant on sait qu’il existe des ouverts V, V ′ ⊂ Rm, et W,W ′ ⊂ Rn
tels que V ⊂ U , f(V ) ⊂ W , p ∈ V , q ∈ W , ainsi que des difféomorphismes Ψ : W → W ′ et
Φ : V → V ′ tels que Φ(p) = 0, Ψ(q) = 0 et F = Ψ ◦ f ◦ Φ−1 : V ′ → W ′ s’écrit F (x1, . . . , xn) =
(x1, . . . xr, 0, . . . 0). On a alors

Φ(M ∩ V ) = V ′ ∩ {x ∈ Rm | x1 = x2 = · · · = xr = 0} ⊂ Rm.

Ceci démontre qu M = f−1(q) est différentiablement équivalent à un ouvert d’un sous-espace
vectoriel de dimension m − r au voisinage de chacun de ses points. Par définition M est donc
une sous-variété de dimension m− r de Rm.
Montrons maintenant l’affirmation (B). Fixons un point quelconque p ∈ U et considérons des
voisinages V de p et W de q = f(p) ainsi que des difféomorphismes Ψ : W →W ′ et Φ : V → V ′

comme plus haut. Notons M = f(V ), alors

Ψ(M ∩W ) = W ′ ∩ {x ∈ Rm | xr+1 = · · · = xn−1 = xn = 0} ⊂ Rn,

ce qui prouve que M est une sous-variété de dimension n− (n− r) = r de Rn.

3.3 L’espace tangent à une sous-variété

Un vecteur v ∈ Rn est tangent en un point p à une sous-variété m ∈ Rn si c’est le vecteur vitesse
d’une courbe différentiable contenue dans la variété et passant par p. Plus précisément ;

Définition. SoitM ⊂ Rn une sous-variété de classe C1 de dimension m et soit p un point deM .
On dit qu’un vecteur v ∈ Rn est un vecteur tangent à M s’il existe une courbe γ : (−ε, ε)→M
de classe C1 telle que

γ(0) = p et γ̇(0) = v.

Dans ce cas on dit que la courbe γ représente le vecteur tangent v. On note TpM l’ensemble
des vecteurs tangents à M en p.

Exemple. Si U ⊂ Rn est un ouvert, alors TpU est canoniquement isomorphe à Rn, car tout
vecteur v ∈ Rn est le vecteur vitesse de la courbe γv(t) = p+ tv (cette courbe est contenu dans
l’ouvert U pour |t| < ε assez petit).
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Proposition 3.16. En chaque point p d’une sous-variété différentiable M ⊂ Rn de dimension
m, l’espace tangent TpM est un sous-espace vectoriel de dimension m de Rn.

Preuve. On sait par définition de la notion de variété qu’il existe un voisinage U de p et un
difféomorphisme φ : U → V tel que φ(p) = 0 et

φ(U ∩M) = V ∩ E

où E ⊂ Rn est un sous-espace-vectoriel de dimension m.
Soit v ∈ TpM un vecteur tangent àM en p. Par définition il existe une courbe α : (−ε, ε)→M∩U
de classe C1 telle que α(0) = p et v = α̇(0). Définissons la courbe β : (−ε, ε) → V ∩ E par
β(t) = φ ◦ α(t), alors on a

v =
d

dt

∣∣∣∣
t=0

α(t) =
d

dt

∣∣∣∣
t=0

φ−1(β(t)) = dφ−1
0 (β̇(0)) ∈ dφ−1

0 (E),

ce qui montre que TpM est inclus dans l’espace vectoriel dφ−1
0 (E).

Pour montrer l’inclusion inverse, on considère un vecteur quelconque w ∈ E, alors pour ε > 0
assez petit, la courbe : β(−ε, ε)→ E définie par β(t) = tw prend ses valeurs dans V ∩E. Notons
α = φ−1 ◦ β, alors α : (−ε, ε) → M ∩ U est une courbe C1 telle que α(0) = p, par conséquent
α̇(0) ∈ TpM . Mais on a

dφ−1
0 (w) = dφ−1

0 (β̇(0)) =
d

dt

∣∣∣∣
t=0

φ−1β(t) = α̇(0) ∈ TpM,

par conséquent dφ−1
0 (E) ⊂ TpM . On a montré que

TpM = dφ−1
0 (E),

qui est bien un sous-espace vectoriel de dimension m car dφ−1
0 est un isomorphisme de Rn dans

lui-même.

Plan tangent à une surface.

Proposition 3.17. Si f : U ⊂ Rn → Rk une application différentiable de rang constant r, alors
pour tout point p de la sous-variété M = f−1(q), on a TpM = Ker(dfp).

Preuve. Sous les hypothèses de la proposition, M est une sous-variété de Rn de dimension
m = n − r. En particulier l’espace tangent TpM est un sous-espace vectoriel de dimension m.
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Montrons que TpM ⊂ Ker(dfp). Soit v ∈ TpM un vecteur tangent M en p et α : (−ε, ε) → M
une courbe qui représente v, alors

dfp(v) = dfp (α̇(0)) =
d

dt

∣∣∣∣
t=0

f(α(t)) = 0,

car f(α(t)) = q pour tout t puisque α(t) ∈ M . Ceci montre que TpM ⊂ Ker(dfp). Mais d’autre
part, dfp : Rn → Rk est une application linéaire de rang r, donc son noyau Ker(dfp) est un
sous-espace vectoriel de dimension n− r = m. On conclut que TpM = Ker(dfp).

Exemple. Considérons le cas d’une hypersurface M = f−1(0) où f : U ⊂ Rn → R est une
submersion. Alors pour tout point p ∈M = f−1(0) on a

TpM = {v ∈ Rn | dfp(v) = 0} = {v ∈ Rn | 〈
−→
∇f(p),v〉 = 0},

l’espace tangent en p à M est donc le sous-espace vectoriel orthogonal au gradient
−→
∇f(p).

Proposition 3.18. Si f : U ⊂ Rk → Rn est une application différentiable de rang constant r
telle que M = f(U) ⊂ Rn est une sous-variété (de dimension r), alors pour tout q = f(p) ∈M ,
on a TqM = Im(dfp).

Preuve. Observons que la courbe t 7→ f(p+ tei) est tracée sur la sous-variété M et passe par le
pont q en t = 0, par conséquent le vecteur

bi :=
d

dt

∣∣∣∣
t=0

f(p+ tei) =
∂f

∂xi
(p) = dfp(ei)

est un élément de TqM pour tout i = 1, . . . , k. Les vecteurs {b1, . . . ,bk} engendrent le sous-
espace vectoriel Im(dfp), par conséquent Im(dfp) ⊂ TqM . Or ces deux sous-espaces vectoriels
sont de dimension r, ils sont par conséquent égaux.

Remarque. Les vecteurs {b1, . . . ,bk} de la preuve précédentes forment les colonnes de la matrice
Jacobienne de f en p. Ils sont linéairement indépendants si et seulement si le rang de f en p est
égale à k.

Exemple. Considérons le graphe de la fonction différentiable ϕ : U → R où U est un ouvert de
R2, notons S cette surface et p un point de S. Il y a deux façons de comprendre le plan tangent
TpS.

(i) Point de vue implicite : La surface S est l’ensemble des zéros de la fonction f : U ×R→ R
définie par f(x, y, z) = z − ϕ(x, y). Le gradient de f est

−→
∇f = (−ϕx,−ϕy, 1) et le plan

tangent en p = (x, y, ϕ(x, y)) admet l’équation

TpS =
(−→
∇f(p)

)⊥
= {v = (v1, v2, v3) | v3 = ϕxv1 + ϕyv2}

où on a noté pour simplifier ϕx = ∂ϕ
∂x et ϕy = ∂ϕ

∂y .

(ii) Point de vue paramétrique : La surface S est l’image de U par l’application h : U → R3

définie par h(x, y) = (x, y, ϕ(x, y)). Alors TpS est le sous-espace vectoriel engendré par

b1 =
∂h

∂x
= (1, 0, ϕx) et b2 =

∂h

∂y
= (0, 1, ϕy).

On vérifie facilement que ces deux descriptions donnent le même sous-espace vectoriel.
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Remarque. L’espace tangent TpM d’une sous-variété M ⊂ Rn est un sous-espace vectoriel de Rn. Ce
sous-espace n’est pas géométriquement tangent à la sous-variété M (il peut même être disjoint de M).
Pour cette raison on introduit la notion suivante :

Définition 3.19. L’espace affine tangent à une sous-variété différentiable M ⊂ Rn en un point p ∈ M
est le sous-espace affine

ApM = {q ∈ Rn | (q − p) ∈ TpM} = p+ TpM.

Observons que le point p appartient à l’intersectionM∩ApM et le sous-espace affine est géométriquement
tangent à M en ce point.

Exemple. Si f : U ⊂ Rn → R est une fonction de classe C1 telle que dfp 6= 0 en tout p ∈ U , alors l’espace
affine tangent à l’hypersurface M = f−1(0) en p est l’hyperplan

ApM :=

{
x ∈ Rn |

n∑
i=1

∂f

∂xi
(p)(xi − pi) = 0

}
.

A titre d’exemple concret, le plan tangent en p = (x0, y0, z0) à l’ellipsoïde x2

a2 + y2

b2 + z2

c2 = 1 est le plan
d’équation

x0(x− x0)

a2
+
y0(y − y0)

b2
+
z0(z − z0)

c2
= 0.

3.4 Applications différentiables entre deux sous-variétés

La notion d’application différentiable entre des ouverts U ∈ Rm et V ⊂ Rn se généralise au cas
des applications entre deux sous-variétés.

Définitions. Soient M ⊂ Rd et N ⊂ R` deux sous-variétés différentiables de classe Ck et
f : M → N une application entre ces deux sous-variétés. On dit que f est différentiable de classe
Ck au voisinage du point p ∈ M s’il existe un voisinage ouvert U ⊂ Rd de p et une application
F : U → R` de classe Ck telle que F et f coïncident sur l’intersection U ∩M , c’est-à-dire qu’on
a F |M∩U = f |M∩U . L’application F s’appelle alors une extension locale de f au voisinage de p.
On dit f : M → N différentiables de classe Ck et on note f ∈ Ck(M,N) si f est différentiable
au voisinage de tout point de M .

On distingue certaines applications différentiables particulières :

(a) On dit que f ∈ Ck(M,N) est un difféomorphisme de classe Ck si f est bijective et f−1 ∈
Ck(N,M).

(b) On dit que ψ : Ω→M est une paramétrisation locale de classe Ck si Ω est un ouvert de Rm et
ψ est un difféomorphisme de classe Ck de l’ouvert Ω ⊂ Rm vers son image W = ψ(Ω) ⊂M .
Lorsque ψ est bijective, on dit que c’est une paramétrisation globale de M .

(c) On dit que ϕ : W → U est une carte locale de classe Ck pour la variété M si W est un
ouvert relatif 5 de M (appelé le domaine de la carte), U est un ouvert de Rm et ϕ est un
difféomorphisme de classe Ck. Dans ce cas on doit avoir m = dim(M). Une carte locale est
donc l’inverse d’une paramétrisation locale.

Exemple. La projection stéréographique est l’application π : Sn \{N} → Rn définie sur le com-
plémentaire du “pôle nord” N de la sphère unité Sn−1 ⊂ Rn+1 (c’est-à-dire le point (0, . . . , 0, 1))
qui envoie le point P ∈ Sn \{N} sur l’intersection P ′ de la droite par N et P avec Rn (vu comme
l’hyperplan de Rn+1 défini par {xn+1 = 0}). La projection stéréographique est donc une carte
de la sphère dont le domaine est le complémentaire du pôle nord.

5. Un sous-ensemble W ⊂M est un ouvert relatif de M s’il existe un ouvert V ⊂ Rn tel que W = V ∩M .
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N

p

π(p)

La différentielle d’une application de classe C1 est définie a priori pour les applications entre des
ouverts de Rn. La proposition suivante permet de généraliser cette notion importante au cas des
applications entre deux sous-variétés.

Proposition 3.20. Soit f : M → N une application entre deux variétés différentiables et p ∈M .
Supposons que f soit de classe C1 au voisinage de p. Alors pour toute extension locale F : U → R`
de f au voisinage de p, on a dFp(TpM) ⊂ TqN , où q = f(p).
De plus la restriction dFp|TpM : TpM → TqN ne dépend pas de l’extension locale de f choisie.

On notera dfp : TpM → TqN l’application ainsi définie et on dit que c’est la différentielle de
l’application f : M → N en p.

Preuve. Par définition de la notion de vecteur tangent, il existe une courbe γ : (−ε, ε)→M de
classe C1 telle que γ(0) = p et γ̇(0) = v. Si on suppose ε > 0 assez petit, alors γ(−ε, ε) ⊂ U ∩M
et la règle de dérivation en chaîne appliquée à F ◦ γ nous dit que

w = dFp(v) = dFp(γ̇(0)) =
d

dt

∣∣∣∣
t=0

F (γ(t)) =
d

dt

∣∣∣∣
t=0

f(γ(t)),

car par définition on a F |M∩U = f |M∩U . Cela montre d’une part que l’image w ne dépend que
de f et non de l’extension F choisie et d’autre part que w appartient à TqN puisque la courbe
α = f ◦ γ : (−ε, ε)→ N vérifie α(0) = q et ˙α(0) = w.

Remarquons que cette preuve nous donne une interprétation très naturelle de la différentielle
dfp : TpM → TqN : si le vecteur tangent v ∈ TpM est représenté par la courbe γ tracée sur M ,
alors dfp(v) ∈ TqN est le vecteur tangent représenté par la courbe f ◦ γ.

Proposition 3.21 (Règle de dérivation en chaîne). Si f : M1 → M2 et g : M2 → M3 sont des
applications différentiables de classe Ck entre des sous-variétés différentiables, alors g◦f : M1 →
M3 est différentiable de classe Ck et pour tout point p ∈M1 on a

d(g ◦ f)p = dgf(p) ◦ dfp,

qui est une application linéaire de TpM1 vers Tg(f(p))M3.

Preuve. Il suffit d’appliquer la règle de dérivation en chaîne classique à des extensions F et G
des applications f et g à des voisinages de p, respectivement f(p).
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3.5 Le fibré tangent à une sous-variété

Définition. On appelle espace tangent total ou fibré tangent à la sous-variété M ⊂ Rn le
sous-ensemble de Rn × Rn défini par

TM = {(p,v) ∈ Rn × Rn | p ∈M et v ∈ TpM}.

Proposition 3.22. (a) Si M ⊂ Rn est une sous-variété de dimension m et de classe Ck avec
k ≥ 2, alors TM ⊂ R2n est une sous-variété de dimension 2m et de classe Ck−1.

(b) Si f : M → N est une application différentiable de classe Ck entre deux sous-variétés de
classe Ck, alors l’application

Tf : TM → TN définie par Tf(p, v) = (f(p), dfp(v))

est une application différentiable de classe Ck−1.

(c) Les sous-variétés différentiables de classe C∞ forment une catégorie dont les morphismes
sont les applications de classe C∞. La correspondance (M → TM , f → Tf) définit un
foncteur covariant de cette catégorie dans elle-même.

Nous laissons la preuve en exercice.
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4.1 Distances extrinsèque et intrinsèque sur une sous-variété

Définitions. (i) La distance extrinsèque entre deux points p et q sur une sous-variété M ⊂ Rn
est la distance euclidienne ‖q − p‖ entre ces deux points.

(ii) La distance intrinsèque entre deux points p et q sur une sous-variété connexe M ⊂ Rn de
classe C1 est l’infimum des longueurs des courbes de classe C1 par morceaux tracées sur la
sous-variété et qui relient ces deux points. On note cette distance par

dM (p, q) = inf{`(γ) | γ : [a, b]→M, γ est C1 par morceaux, γ(a) = p, γ(b) = q}. (4.1)

(iii) Deux sous variété connexes M1 ⊂ Rn et M2 ⊂ Rd de classe C1 dans sont dites intrinsèque-
ment isométriques s’il existe une application bijective f : M1 →M2 telle que dM2(f(p), f(q)) =
dM1(p, q) pour tous p, q ∈M1. Dans ce cas on dit que l’application f est une isométrie entre les
deux sous-variétés.

Le·la lecteur·ice vérifiera sans difficulté que la distance ainsi définie satisfait aux propriétés ha-
bituelles d’une distance, et donc (M,dM ) est un espace métrique. Remarquons aussi que

dM (p, q) ≥ ‖q − p‖

pour toute paire de points p et q de M .

Exemple. La distance intrinsèque entre deux points p et q d’une sphère S de centre c et de
rayon R dans Rn est égale à dS(p, q) = Rα, où α = ^c(p, q) est l’angle entre les vecteurs (p− c)
et (q − c). La distance extrinsèque est égale à ‖q − p‖ = 2R sin(α/2). L’inégalité précédente est
donc dans ce cas l’inégalité

α ≥ 2 sin(α/2),

qui est vérifiée pour tout α ≥ 0.

Lemme 4.1. Soit f : M1 → M2 un difféomorphisme entre deux sous-variétés connexes de
classe C1. Supposons que pour tout point p ∈ M1, et tout vecteur tangent v ∈ TpM1, on a
‖dfp(v)‖ = ‖v‖. Alors f est une isométrie entre M1 et M2 pour les distances intrinsèques dM1

et dM2, c’est-à-dire
dM2(f(p), f(q))) = dM1(p, q)

pour tous p, q ∈M1.

Remarquons que l’hypothèse de cette proposition signifie que dfp est une isométrie linéaire entre
les espaces tangents TpM1 et Tf(p)M2. En particulier on a 〈dfp(v1), dfp(v2)〉 = 〈v1,v2〉 pour tous
v1,v2 ∈ TpM1,

Preuve. Soit γ : [a, b]→M1 un chemin de classe C1 par morceaux reliant p à q, alors γ̃ = f ◦γ :
[a, b]→M2 un chemin de classe C1 par morceaux dans la variété M2 qui relie f(p) à f(q). Nous
avons alors ˙̃γ(t) = dfγ(t)(γ̇(t)), et donc, par hypothèse

‖ ˙̃γ(t)‖ = ‖dfγ(t)(γ̇(t))‖ = ‖γ̇(t)‖

pour tout t ∈ [a, b]. Par conséquent

`(γ̃) =

∫ b

a
‖ ˙̃γ(t)‖dt =

∫ b

a
‖γ̇(t)‖dt = `(γ).

Ceci implique que
dM2(f(p), f(q))) ≤ `(γ̃) = `(γ).
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En prenant l’infimum des chemins γ qui relient p à q on conclut que dM2(f(p), f(q))) ≤ dM1(p, q).
Finalement, en remplaçant f par le difféomorphisme f−1 et en répétant le même argument, on
obtient également l’inégalité dM1(p, q) ≤ dM2(f(p), f(q))), ce qui prouve que f est une isométrie.

La réciproque du lemme précédent est également vraie, nous l’énonçons sous forme d’un théorème
que nous admettons sans démonstration :

Théorème 4.2. Une application f : M1 → M2 entre deux sous-variétés connexes de classe C2

est une isométrie entre M1 et M2 pour les distances intrinsèques dM1 et dM2 si et seulement si f
est un difféomorphisme de classe C1 tel que ‖dfp(v)‖ = ‖v‖ pour tout p ∈M1 et tout v ∈ TpM1.

Remarque. La partie difficile de ce théorème est de prouver qu’une application f qui préserve les
distances (i.e. telle que dM2(f(p), f(q))) = dM1(p, q) pour tous p, q ∈ M1) est différentiable. Ce
résultat a été démontré par S. B. Myers et N. E. Steenrod en 1939.

Exemple. Deux sous-variétés M1 et M2 de Rn sont dites congruentes s’il existe une isométrie
globale f : Rn → Rn telle que f(M1) = M2. Lorsque c’est le cas, il est clair que la restriction
f |M1

est une isométrie de M1 vers M2 pour la distance intrinsèque, et aussi pour la distance
extrinsèque (ce qui n’est en général pas le cas pour les isométries intrinsèques).

4.2 Le tenseur métrique associé à une paramétrisation locale

On a vu que la distance intrinsèque entre deux points d’une sous-variété connexe est l’infimum
des longueurs des courbes reliant ces deux points. Il sera donc important de pouvoir calculer la
longueur d’une courbe lorsqu’elle est décrite dans une paramétrisation (locale) de la variété.

Rappelons qu’une paramétrisation locale d’une sous-variété M ⊂ Rn de classe Ck est la
donnée :

(i) d’un domaine Ω ⊂ Rm, où m = dim(M),

(ii) et d’une application ψ : Ω → M , de classe Ck, qui est un difféomorphisme sur son
image ψ(Ω) ⊂M . En particulier, ψ est une immersion de Ω dans Rn.

Par la condition (ii), on sait que ψ est en particulier une immersion. Si on note (u1, . . . , um) les
coordonnées sur Ω, alors pour tout u ∈ Ω, les vecteurs

b1(u) =

−→
∂ψ

∂u1
(u), . . . ,bm(u) =

−→
∂ψ

∂um
(u)

sont donc linéairement indépendants et forment ainsi une base de l’espace tangent Tψ(u)M .

Définition. On dit que {b1(u), . . . ,bm(u)} est la base adaptée à la paramétrisation ψ de l’espace
tangent Tp S, où p = ψ(u).

Les paramètres u1, . . . , um s’appellent les coordonnées curvilignes locales associées à la paramé-
trisation locale ψ de M . Les courbes sur M obtenues en fixant toutes les coordonées ui sauf une
s’appellent les lignes de coordonnées sur la sous-variété paramétrée M . Ensemble, elles forment
le réseau de coordonnées associé à la paramétrisation ψ.
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u2

u1
x1

x2

x3

S

ψ

Ω

Définition. Les vecteurs {b1, . . . ,bm} ne forment en général pas une base orthonormée de
l’espace tangent TpM . La matrice de Gram G de cette base s’appelle le tenseur métrique de la
sous-variété M dans la paramétrisation ψ.
Notons que, puisque les vecteurs bi dépendent de u ∈ Ω, le tenseur métrique G = (gij) : Ω →
Mm(R) est une fonction à valeurs matricielle définie sur le domaine Ω. Ses coefficients sont

gij(u) = 〈bi(u),bj(u)〉 =

m∑
k=1

∂ψk
∂ui

∂ψk
∂uj

. (4.2)

Le tenseur métrique est donc une fonction G ∈ Ck−1(Ω,Mm(R)) de classe Ck−1 définie sur Ω à
valeurs dans l’espace vectoriel des m×m matrices symétriques. Le tenseur métrique est associé
à la paramétrisation locale ψ : Ω→M et non pas uniquement à la sous-variété M ⊂ Rn.
Le tenseur métrique s’appelle aussi la première forme fondamentale de associée à ψ. On verra
plus loin qu’il y a aussi une deuxième et une troisième formes fondamentales.

Exemple 1 (graphe d’une fonction). Comme premier exemple, considérons le graphe S de
la fonction f : Ω→ R, où Ω est un ouvert de R2. Une paramétrisation ψ : Ω→ S est donné par

ψ(x, y) = (x, y, f(x, y)).

La base du plan tangent en un point de la surface adaptée à cette paramétrisation est

b1 =
∂ψ

∂x
=

 1
0
fx

 , b2 =
∂ψ

∂y
=

 0
1
fy

 ,

où on a noté fx =
∂f

∂x
et fy =

∂f

∂y
. Les coefficients du tenseur métrique sont donc

g11 = 〈b1,b1〉 = 1 + f2
x , g12 = 〈b1,b2〉 = fxfy, g22 = 〈b2,b2〉 = 1 + f2

y ,

c’est-à-dire

G(x, y) =

(
1 + f2

x fxfy
fxfy 1 + f2

y

)
.
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Exemple 2 (Surface de révolution)
Considérons une courbe régulière α(v) = (r(v), z(v)) de classe C1, où v ∈ I ⊂ R dans un plan
muni de coordonnées (r, z) et supposons que r(v) > 0 pour tout v ∈ I.
On appelle surface de révolution de profil α autour de l’axe Oz la surface S ⊂ R3 paramétrée
par ψ : Ω→ S, (Ω = [0, 2π]× I), où

ψ(u, v) = (x(u, v), y(u, v), z(u, v))

est donné par 
x(u, v) = r(v) cos(u)
y(u, v) = r(v) sin(u)
z(u, v) = z(v).

La coordonnée u s’appelle longitude et la coordonnée v s’appelle latitude. Les courbes u = const.
sont les méridiens et les courbes v = const. sont les parallèles. de S.

u

v

u = longitude
v = latitude

La base du plan tangent associée à cette paramétrisation est

b1 =
∂ψ

∂u
=

−r(v) sin(u)
r(v) cos(u)

0

 ; b2 =
∂ψ

∂v
=

r ′(v) cos(u)
r ′(v) sin(u)
z ′(v).


Les coefficients du tenseur métrique sont

g11 =

∥∥∥∥∂ψ∂u
∥∥∥∥2

= r(v)2, g12 = 〈 ∂ψ
∂u

,
∂ψ

∂v
〉 = 0, g22 =

∥∥∥∥∂ψ∂v
∥∥∥∥2

= r ′(v)2 + z ′(v)2.

On a donc

G(u, v) =

(
r(v)2 0

0 (r′2(v) + z′2(v))

)
=

(
r(v)2 0

0 ‖α̇(v)‖2
)
.

Remarquons que le réseau des coordonnées longitude-latitude est partout orthogonal puisque
g12 ≡ 0.
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Application à la sphère : La sphère Sa de rayon a centrée à l’origine est la surface d’équation
x2 + y2 + z2 = a2. C’est la surface de révolution dont le profil est le demi-cercle

γ(v) = (r(v), z(v)) = (a cos(v), a sin(v)) (−π
2 ≤ v ≤

π
2 ).

La paramétrisation de la sphère est donc donné par
x = a cos(u) cos(v)
y = a sin(u) cos(v)
z = a sin(v)

où (u, v) parcourt le domaine Ω défini par les inégalités 0 ≤ u ≤ 2π, −π
2 ≤ v ≤

π
2 (les paramètres

utilisés dans cet exemple, s’appellent les coordoonées géographiques sur la sphère). Les formules
précédentes nous donnent le tenseur métrique suivant :

g11 = a2 cos2(v), g12 = 0, g22 = a2 (4.3)

c’est-à-dire

G(u, v) =

(
a2 cos2(v) 0

0 a2

)
.

Exemple 3 (Surface réglée). Une surface est dite réglée si elle est une réunion de droites ou
de segments de droites, ces droites sont appelées les génératrices. Le plan, le cylindre et le cône
sont les exemples les plus simples de surfaces réglées.

Pour paramétrer une surface réglée, on se donne une courbe α : I → R3, qu’on appellera une
directrice de la surface réglée, et qu’on suppose transverse aux génératrices, ainsi qu’un champ
de vecteurs w(u) le long de α, ce champ indique la direction des génératrices. La surface est alors
paramétrée par

ψ(u, v) = α(u) + vw(u)

où (u, v) ∈ Ω := I × R.

On a alors
b1 =

∂ψ

∂u
= α̇(u) + v ẇ(u), b2 =

∂ψ

∂v
= w(u).

et le tenseur métrique est donné par
g11 = ‖α̇‖2 + 2 〈 α̇, ẇ 〉v + v2 ‖ẇ‖2
g12 = 〈 α̇,w 〉+ v〈 ẇ,w 〉
g22 = ‖w‖2.

Voyons deux cas particuliers de surface réglée où ce tenseur métrique prend une forme simple.
Supposons d’abord que α est une courbe plane paramétrée naturellement et que le vecteur w
est constant, unitaire et orthogonal au plan contenant α. On dit alors que S est un cylindre
généralisé.
On a ‖α̇‖ = ‖w‖ = 1, ẇ = 0 et 〈α̇,w〉 = 0. Par conséquent g11 = g22 = 1 et g12 = 0 et le

tenseur métrique est alors G =

(
1 0
0 1

)
.

L’autre cas particulier est la surface des tangentes à une courbe birégulière α : I → R3 que
l’on suppose paramétrée naturellement. C’est la surface réglée obtenue en prenant le champ de
vecteur u = T(u) = α̇(u), on a donc

g11 = ‖α̇‖2 + 2 〈 α̇, Ṫ 〉 v + v2 ‖Ṫ‖2 = 1 + (κ(u)v)2

g12 = 〈α̇,T〉+ v〈Ṫ,T〉 = 1
g22 = ‖T‖2 = 1.
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où κ(u) est la courbure de α. Le tenseur métrique est alors

G(s, v) =

(
1 + (κ(u)v)2 1

1 1

)
.

Remarque. Il est utile de remarquer que les vecteurs bj(u) =
∂ψ

∂uj
(u) forment les colonnes de la matrice

jacobienne Dψ(u) =

(
∂ψi

∂uj
(u)

)
. Par conséquent on a

G(u) = Dψ(u)> ·Dψ(u). (4.4)

Cette identité peut nous donner une façon rapide de calculer un tenseur métrique.

Exemple. Reprenons l’exemple du tenseur métrique d’un graphe M , mais cette fois dans le cas d’une
fonction de m variables f ∈ Ck(Ω,R), où Ω est un ouvert de Rm. La variété M est donc paramétrée
par l’application ψ : Ω → Rn+1 définie par ψ(x1, . . . , xm) = (x1, . . . , xm, f(x1, . . . , xm)). La matrice
jacobienne de ψ en un point de Ω est

Dψ =


1 0 · · · 0

0 1 · · ·
...

...
... · · · 1

fx1
fx2

· · · fxm

 ,

où fxi
=

∂f

∂xi
. Le tenseur métrique est donc

G = Dψ> ·Dψ =


1 + f2x1

fx1fx2 · · · fx1fxm

fx2fx2 1 + f2x2
· · · fx2fxm

...
... · · ·

...
fxmfx1 fxmfx2 · · · 1 + f2xm

 ,

que l’on peut aussi écrire gij = δij + fxifxj .

4.3 Signification géométrique du tenseur métrique

Le rôle du tenseur métrique est de nous permettre de calculer la norme d’un vecteur ainsi que
le produit scalaire entre deux vecteurs tangents en un point d’une sous-variété différentiable
M ⊂ Rn lorsque ces vecteurs sont exprimés dans la base adaptée à une paramétrisation locale
ψ : Ω→M .

En effet, si ξ, η ∈ TpM sont deux vecteurs tangents en un point p = ψ(u) ∈ M , alors on peut
écrire ξ =

∑m
i=1 ξibi et η =

∑m
j=1 ηjbj , ou {b1, . . . ,bm} ⊂ TpM est la base de TpM adaptée à

la paramétrisation ψ. On a donc

〈ξ, η〉 =
m∑

i,j=1

ξiηj〈bi,bj〉 =
m∑

i,j=1

gij(u)ξiηj ,

où les gij sont les coefficients du tenseur métrique. On notera souvent ce produit scalaire sous la
forme

gu(ξ, η) =
m∑

i,j=1

gij(u)ξiηj .
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En particulier la norme du vecteur ξ ∈ TpM et l’angle θ entre les vecteurs ξ, η ∈ TpM (supposés
non nuls) sont donnés par

‖ξ‖ =
√

gu(ξ, ξ) =
√∑

gijξiξj ,

et
cos(θ) =

gu(ξ, η)√
gu(ξ, ξ)

√
gu(η, η)

=

∑
gijξiηj√∑

gijξiξj ·
√∑

gijηiηj
.

Ces formulent nous permettent de calculer la longueur d’une courbe α : [a, b]→M de classe C1

tracée dans l’image d’une paramétrisation ψ : Ω→M . La représentation de la courbe α dans la
carte Ω s’écrit

α(t) = ψ−1(α(t)) = (u1(t), . . . , um(t)) ∈ Ω, t ∈ [a, b]

(i.e. nous avons une courbe auxiliaire α(t) ∈ Ω dans le domaine de la paramétrisation Ω telle que
ψ ◦ α(t) = α(t) pour tout t ∈ I).

Ω

ψ

α
α

S

x2
u1

u2

x1

x3

I

Courbe tracée sur une sous-variété.

Le vecteur vitesse de α est donné par

α̇(t) =
d

dt
ψ (α(t)) =

m∑
i=1

∂ψ

∂ui

dui
dt

=

m∑
i=1

u̇i(t)bi(u),

et la longueur de α est finalement donnée par

`(α) =

∫ b

a
‖α̇(t)‖dt =

∫ b

a

√∑
gij(u(t))u̇i(t)u̇j(t)dt.

Rappelons que l’abscisse curviligne le long de la courbe α est la longueur de l’arc α|[a,s]. En

particulier on a
ds

dt
= ‖α̇(t)‖. On peut donc écrire

(
ds

dt

)2

=
m∑

i,j=1

gij
dui
dt

duj
dt
.

En multipliant formellement cette égalité par dt2, on obtient

ds2 =
m∑

i,j=1

gijduiduj .
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Cette identité exprime le carré de l’élément de longueur infinitésimal d’une courbe α sur la sous-
variété dans les coordonnées ui associée à une carte. On voit que cette expression (qu’on appelle
simplement “ le ds2”) contient la même information que le tenseur métrique.

L’étude du ds2 nous donne une troisième façon de calculer le tenseur métrique qui est très efficace
dans certains cas. Considérons une courbe α(t) = (x1(t), . . . , xn(t)) sur la variété M = ψ(Ω). Sa
représentation dans la carte est ψ−1(α(t)) = (u1(t), . . . , um(t)), et on a le long de cette courbe

ds2 =
n∑
i=1

dx2
i =

m∑
i,j=1

gijduiduj .

Il suffit alors de calculer dxi =
∑m

j=1

∂xi
∂uj

duj pour trouver les coefficients gij du tenseur métrique.

Exemple a. Les coordonnées polaires dans le plan sont données par les formules x = r cos(θ),
y = r sin(θ). On a donc

ds2 = dx2 + dy2 = (cos(θ)dr − r sin(θ)dθ)2 + (sin(θ)dr + r cos(θ)dθ)2 = dr2 + r2dθ2.

Le tenseur métrique associé est donc donné par G(r, θ) =

(
1 0
0 r2

)
.

Exemple b. La surface de révolution autour de l’axe Oz dont le profil est la courbe γ(v) =
(r(v), z(v)) admet la paramétrisation

(x, y, z) = (r(v) cos(u), r(v) sin(u), z(v)).

On a donc

ds2 = dx2 + dy2 + dz2

=
(
r′(v) cos(u)dv − r(v) sin(u)du

)2
+
(
r′(v) sin(u)dv + r(v) cos(u)du

)2
+ (z′(v))2dv2

= r2(v)du2 + (r′(v)2 + z′(v))2dv2.

Le tenseur métrique associé est donc donné par

G(u, v) =

(
r2(v) 0

0 (r′(v)2 + z′(v))2

)
=

(
r2(v) 0

0 ‖γ′(v)‖2
)
.

4.4 Sur les isométries entre sous-variétés paramétrées

Le résultat suivant nous dit comment se comparent les tenseurs métriques de deux sous-variétés
paramétrées qui sont isométriques :

Théorème 4.3. Soient ψ1 : Ω1 → M1 et ψ2 : Ω2 → M2 deux sous-variétés paramétrées de
classe C1. Alors il existe une isométrie intrinsèque f : M1 → M2 si et seulement s’il existe un
difféomorphisme h : Ω1 → Ω2 tel que pour tout u ∈ Ω1 on a

G1(u) = Dh(u)>G2(h(u))Dh(u), (4.5)

où G1 est le tenseur métrique de ψ1, G2 est le tenseur métrique de ψ2 et Dh est la matrice
jacobienne du difféomorphisme h.
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La situation est représentée par le diagramme commutatif suivant :

M1 M2

Ω1 Ω2

f

ψ1

h

ψ2

Remarquons aussi que si on note h(u1, . . . , um) = (v1, . . . , vm), alors la formule (4.5) peut s’écrire

gij(u) =
m∑

µ,ν=1

g̃µν(v)
∂vµ
∂ui

∂vν
∂uj

, (4.6)

où G1 = (gij) et G2 = (g̃ij) et m = dim(M1) = dim(M2). Cette formule peut aussi s’écrire sous
forme différentielle :

ds2 =
m∑

i,j=1

gij(u)duiduj =
m∑

µ,ν=1

g̃uν(v)dvµdvν . (4.7)

Preuve. Supposons qu’il existe une isométrie intrinsèque f : M1 → M2, et remarquons que
f ◦ ψ1 : Ω1 → M2 est une paramétrisation de M2 (en général différente de ψ2). Par le théorème
4.2, on sait que f est une isométrie si et seulement si

〈dfp(ξ), dfp(η〉 = 〈ξ, η〉

pour tout p ∈M1 et ξ, η ∈ TpM1. Ceci implique que pour tout u ∈ Ω1, les coefficients du tenseur
métrique de ψ1 vérifient :

gij(u) = 〈dψ1u(ei), dψ1u(ej)〉
= 〈dfψ1(u)(dψ1u(ei)), dfψ1(u)(dψ1u(ej))〉
= 〈d(f ◦ ψ1)u(ei), d(f ◦ ψ1)uej)〉

où {e1, . . . , em} est la base canonique de Rm. Cette condition s’écrit matriciellement

G1(u) = Dψ1(u)> ·Dψ1(u) = D(f ◦ ψ1(u))> ·D(f ◦ ψ1(u)).

On considère maintenant l’application h : Ω1 → Ω2 définie par h = ψ−1
2 ◦f ◦ψ1. Cette application

est un difféomorphisme de Ω1 vers Ω2 car c’est la composition de trois difféomorphismes, de plus
on a ψ2 ◦ h = f ◦ ψ1, par conséquent

G1(u) = D(ψ2 ◦ h(u))> ·D(ψ2 ◦ h(u))

= Dh(u)>Dψ2(h(u)>Dψ2(h(u)Dh(u)

= Dh(u)>G2(h(u))Dh(u).

Inversément, supposons qu’il existe un difféomorphisme h : Ω1 → Ω2 tel que la condition (4.5)
est vérifiée, alors on définit f : M1 → M2 par f = ψ2 ◦ h ◦ ψ−1

1 : M1 → M2. Le calcul précédent
prouve que f est une isométrie de M1 vers M2.

Le théorème 4.3 contient les cas particuliers suivants :

Corollaire 4.4. Si les deux sous-variétés paramétrées de classe C1 ψ1 : Ω→M1 et ψ2 : Ω→M2,
avec même domaine de paramétrisation, Ω ⊂ Rm ont le même tenseur métrique, alors elles sont
isométriques
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Preuve. Ce corollaire correspond au cas où h : Ω→ Ω est l’identité.

Corollaire 4.5. Si ψ1 : Ω1 → M et ψ2 : Ω2 → M sont deux paramétrisations de la même
sous-variété M , alors il existe un difféomorphisme h : Ω1 → Ω2 tel que (4.5) soit satisfaite pour
tout u ∈ Ω1

Preuve. Correspond au cas où f est l’identité.

4.5 Intégration sur une sous-variété

Définition. Si M ⊂ Rn est une sous-variété de dimension m et ψ : Ω → M est une paramétri-
sation régulière globale de classe C1, alors l’intégrale

Volm(M) =

∫
Ω

√
det(G(u)) du1 · · · dum. (4.8)

s’appelle le volume m-dimensionnel de la variété M .

Nous ne pouvons pas prouver ici cette formule, que nous prenons donc comme une définition. Toutefois
elle peut se justifier heuristiquement de la façon suivante : Considérons une sous-variété paramétrée
ψ : Ω → M de classe C1 et de dimension m. Pour estimer son volume, on peut subdiviser le domaine
Ω ⊂ Rm en sous-domaines Ωi :

Ω = ∪iΩi, tels que si i 6= j, alors Ωi ∩ Ωj est de mesure nulle,

en sorte que
Volm(M) = Volm(ψ(Ω)) =

∑
i

Volm(ψ(Ωi)).

Si les sous-domaines Ωi sont suffisamment petits, on peut approximer la restriction de ψ à Ωi par sa
différentielle, ainsi

Volm(ψ(Ωi)) ∼= Volm(dψui
(Ωi)) =

√
det(dψ>ui

dψui
) Volm(Ωi) =

√
detG(u) Volm(Ωi),

où ui ∈ Ωi est arbitraire. On a donc

Volm(M) ∼=
∑
i

√
detG(u) Volm(Ωi).

En raffinant la subdivision de Ω, et en supposant que max{diam(Ωi)} → 0, cette somme converge vers
l’intégrale (4.8).

Remarque. Lorsque M est une surface, i.e. m = 2, on note Vol2(M) = Aire(M) et on dit que
c’est l’aire de M . Lorsque m = 1, Vol1(M) n’est rien d’autre que la longueur de la courbe M .

Le résultat suivant nous dit que le volume est une notion géométrique, c’est-à-dire indépendante
de la paramétrisation choisie.

Proposition 4.6. Soient ψ1 : Ω1 → M et ψ2 : Ω2 → M sont deux paramétrisations régulières
globales de classe C1 d’une même sous-variété M ⊂ Rn de dimension m. Alors on a∫

Ω1

√
det(G1(u)) du =

∫
Ω2

√
det(G2(v)) dv.
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Ce résultat se déduit du corollaire 4.5 en appliquant la formule de changement de variables dans
les intégrales multiples.

Exemple 1. Si S est le graphe de la fonction f : Ω→ R, alors

Aire(S) =

∫∫
Ω

√
1 + f2

x + f2
y dxdy.

Exemple 2. La paramétrisation par longitude et latitude de la sphère Sa ⊂ R3 de rayon a admet
Ω = [0, 2π]× [−π

2 ,
π
2 ] comme domaine de paramétrisation , et on a

G(u, v) =

(
a2 cos(v)2 0

0 a2

)
,

donc dA = a2 cos(v)dudv et l’aire de cette sphère est

Aire(Sa) =

∫∫
Sa

dA =

∫∫
Ω

√
detG(u, v)dudv =

∫ π
2

v=−π
2

∫ 2π

u=0
a2 cos(v)dudv = 4πa2.

Généralisation. Plus généralement, si ψ : Ω → M ⊂ Rn est une paramétrisation globale de
classe C1 d’une sous-variété M et ρ : M → R est une fonction continue non négative, alors
l’intégrale de la fonction ρ sur M est définie par∫

M
ρ(x)dV :=

∫
Ω

(ρ ◦ ψ)(u)
√

detG(u)du.

Nous pouvons aussi considérer le cas des fonctions à valeurs vectorielles. Par exemple, le centre
de gravité de la variété M (pour une distribution de masse homogène) est le point C ∈ Rn défini
par

C =
1

Vol(M)

∫
S
x dV =

1

Vol(M)

∫
Ω
ψ(u)

√
detG(u) du. (4.9)

4.6 Domaines riemanniens

Définition. On appelle métrique riemannienne de classe Ck sur un domaine Ω ⊂ Rm la donnée
en chaque point u ∈ Ω, d’un un produit scalaire

gu : Rm × Rm → R,

qui varie de façon différentiable par rapport à u. Cette condition signifie que la fonctions gij :
Ω→ R définies par gij(u) = gu(ei, ej) sont de classe Ck, où {e1, . . . , em} est la base canonique
de Rm. On note parfois

gu =
m∑

i,j=1

gij(u)duiduj ,

et on dit que cette expression est le tenseur métrique sur le domaine Ω. Un domaine riemannien
est une couple (Ω,g), où Ω est un domaine de Rm et g est une métrique riemannienne définie
sur ce domaine.

Cette structure permet de faire de la géométrie (dite géométrie intrinsèque ou géométrie rieman-
nienne) dans le domaine Ω indépendamment d’une éventuelle réalisation de ce domaine comme
plongement dans un espace euclidien. En particulier
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◦ La norme riemannienne d’un vecteur ξ au point u est

‖ξ‖u =
√
gu(ξ, ξ) =

√√√√ m∑
i,j=1

gij(u)ξiξj .

◦ L’angle en u ∈ Ω entre les vecteurs non nuls ξ et η est

cos (^u(ξ, η)) =
gu(ξ, η)

‖ξ‖g‖η‖g

◦ La longueur riemannienne de la courbe γ : [a, b] → Ω de classe C1 par morceaux est définie
par

`g(γ) =

∫ b

a
‖γ̇(t)‖γ(t) dt =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt.

◦ La distance intrinsèque entre deux points est définie comme l’infimum des longueurs des
courbes de classe C1 par morceaux contenues dans le domaine Ω qui rejoignent ces deux
points.

◦ Le volume du domaine Riemannien (Ω,g) est l’intégrale

Vol(Ω,g) =

∫
Ω

√
det(gij(u)) du1 · · · dum.

Voyons quelques exemples :

1) Si ψ : Ω→ Rn est une immersion, alors le tenseur métrique défini par

gu(ξ, η) = 〈dψu(ξ), dψu(η)〉

définit une structure Riemannienne sur Ω pour laquelle on a gij =

〈
∂ψ

∂ui
,
∂ψ

∂uj

〉
.

2) La métrique hyperbolique de Poincaré sur le demi-espace Hm = {x ∈ Rm | xm > 0} est la
métrique riemannienne définie par

hx(ξ, η) =
〈ξ, η〉Rm
x2
m

.

Pour cette métrique on a hij(x) = 1
x2m
δij .

3) La métrique hyperbolique de Poincaré dans la boule Bm = {x ∈ Rm | ‖x‖ < 1} est la métrique
riemannienne définie par

gx(ξ, η) =
4〈ξ, η〉Rm

(1− ‖x‖2)2 .

Pour cette métrique on a hij(x) =
δij

(1−‖x‖2)2
.

On peut démontrer que les domaines Hm et Bm sont isométriques pour leur métriques hyperbo-
liques respectives.



Chapitre 5

Les surfaces et leur courbure

5.1 Co-orientation d’une surface et application de Gauss

Définition. On appelle co-orientation d’une surface régulière S ⊂ R3 de classe C1 la donnée
d’un champ de vecteurs continu ν : S → R3 tel que ‖ν(p)‖ = 1 et ν(p) ⊥ TpS pour tout point
p ∈ S. La surface S est co-orientable si elle admet une co-orientation.

Remarques. (i) Si elle existe, une co-orientation ν de la surface S est unique au signe près. De
plus le champ ν est de classe Ck−1 si la surface S est de classe Ck.
(ii) Toute surface de classe C1 est localement co-orientable, i.e. elle admet une co-orientation au
voisinage de chacun de ses points.
(iii) Un exemple de surface qui n’est pas co-orientable globalement est le ruban de Möbius. On
peut d’ailleurs prouver que toute surface qui n’est pas co-orientable contient un ouvert qui est
homéomorphe au ruban de Möbius.
(iv) Le choix d’une co-orientation d’une surface régulière S permet de définir une orientation du
plan tangent TpS pour tout p ∈ S qui dépend continûment du point. On dit alors que la surface
est orientée (les deux termes sont donc essentiellement synonymes).

Une co-orientation est concrètement obtenue de la façon suivante : Si la surface S est définie par
l’équation f(x, y, z) = 0, alors une co-orientation est donnée par le champ

ν(x) =
∇f(x)

‖∇f(x)‖
,

en supposant que le gradient de f ne s’annule pas sur S. Si la surface est paramétrée de façon
régulière par l’application injective ψ : Ω→ S ⊂ R3, alors une co-orientation est donnée par

ν =
∂ψ
∂u ×

∂ψ
∂v

‖∂ψ∂u ×
∂ψ
∂v ‖

.

74



CHAPITRE 5. LES SURFACES ET LEUR COURBURE 75

Mentionnons pour finir, que l’application ν est souvent vue non comme un champ de vecteus
mais comme une application de la surface S vers la sphère unité. Dans ce cas, l’application

ν : S → S2

s’appelle l’application de Gauss.

5.2 Courbure d’une courbe tracée sur une surface

5.2.1 Géodésiques

Définition 5.1. Une courbe γ : I → S de classe C2 tracée sur une surface régulière S ⊂ R3 est
une géodésique de cette surface si son accélération est normale à la surface :

γ̈(t) ⊥ Tγ(t)S, pour tout t ∈ I.

Si la surface est co-orientée par le champ ν, alors γ : I → S est géodésique si et seulement si elle
vérifie l’équation différentielle suivante sur l’intervalle I :

γ̈(t)× ν(γ(t)) = 0.

Lemme 5.2. Toute géodésique sur une surface régulière est parcourue à vitesse constante.

Nous laissons la preuve en exercice.

Exemples. 1) Les géodésiques d’un plan sont les droites de ce plan paramétrées affinement (i.e.
parcourues à vitesse constante).
2) Les géodésiques d’une sphère sont les grand cercles de cette sphère, paramétrés à vitesse
constante.

5.2.2 Repère de Darboux, courbures normale et géodésique

Définition 5.3. Soit γ : I → S une courbe régulière de classe C2 tracée sur une surface régulière
co-orientée S ⊂ R3.
(i) On appelle repère de Darboux 1 le long de γ relatif à la surface S le repère mobile orthonormé
{ν(t),Tγ(t),µ(t)} où Tγ(t) = 1

Vγ(t) γ̇(t) est le vecteur tangent unitaire à γ, ν(t) est la co-
orientation de S évaluée au point γ(t) ∈ S et µ(t) = ν(t)×Tγ(t).

(ii) La courbure normale et la courbure géodésique de γ sont les fonctions du paramètre t définies
respectivement par

kn(t) = 〈Kγ(t),ν(t)〉 et kg(t) = 〈Kγ(t),µ(t)〉.

où Kγ(t) est le vecteur de courbure de γ. Ces courbures représentent les composantes
normale et tangentielle de la courbure de γ.

(iii) La torsion géodésique de γ par

τg(t) = 1
Vγ(t)〈ν̇(t),µ(t)〉.

Remarquons qu’en tout point p = γ(t) de la courbe, les vecteurs {Tγ(t),µ(t)} forment une base
orthonormée du plan tangent TpS. La courbe γ est géodésique si et seulement si cette courbe est
paramétrée à vitesse constante et sa courbure géodésique est nulle. Il est par ailleurs clair que

Kγ(t) = kn(t)ν(t) + kg(t)µ(t) et kn(t)2 + kg(t)
2 = κ(t)2 = ‖Kγ(t)‖2.

1. Attention, il n’y a pas de lien entre cette notion et le vecteur de Darboux défini au chapitre 2.
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Proposition 5.4 (Équations de Darboux). Le repère de Darboux vérifie les équations différen-
tielles suivantes : 

1
Vγ

Ṫ = kgµ + knν,
1
Vγ

ν̇ = −knT + τgµ,
1
Vγ

µ̇ = −kgT− τgν.

Nous laissons la preuve de cette proposition en exercice.

La courbure géodésique apparaît naturellement lorsqu’on dérive la fonctionnelle de longueur
d’une courbe. De façon plus précise, considérons une courbe γ : [a, b] → S de classe C2 sur une
surface régulière S, que l’on suppose paramétrée naturellement : ‖γ̇(u)‖ ≡ 1 (on notera ici u le
paramètre de γ). Une déformation de γ sur S est la donnée d’une application ψ : [a, b]×(−ε, ε)→
S ⊂ R3, de classe C2 telle γ(u) = ψ(u, 0) pour tout u ∈ [a, b]. On note alors γv(u) = ψ(u, v), que
l’on considère comme une famille à un paramètre de courbes tracées sur S et qui déforment la
courbe initiale γ = γ0. Nous avons alors le résultat suivant :

Théorème 5.5 (Formule de variation première pour la longueur). Dans les conditions ci-dessus,
la dérivée en v = 0 de la fonctionnelle longueur v → `(γv) en 0 est donnée par

∂

∂v

∣∣∣∣
v=0

`(γv) =

〈
∂ψ

∂v
, γ̇(u)

〉∣∣∣∣b
u=a

−
∫ b

a
kg(u)

〈
∂ψ

∂v
(u, 0),µ(u)

〉
du. (5.1)

Preuve. On a

∂

∂v

∣∣∣∣
v=0

`(γv) =

∫ b

a

∂

∂v

∣∣∣∣
v=0

(√
〈∂ψ∂u ,

∂ψ
∂u 〉
)
du.

Pour simplifier cette intégrale, on observe que

∂

∂v

(√〈
∂ψ

∂u
,
∂ψ

∂u

〉)
=

〈
∂2ψ

∂v∂u
,
∂ψ

∂u

〉
√〈

∂ψ

∂u
,
∂ψ

∂u

〉 =
1∥∥∥∥∂ψ∂u
∥∥∥∥
〈
∂2ψ

∂u∂v
,
∂ψ

∂u

〉
.

Nous avons supposé que pour v = 0, on
∥∥∥∂ψ∂u∥∥∥ = ‖γ̇(u)‖ = 1, par conséquent

∂

∂v

∣∣∣∣
v=0

`(γv) =

∫ b

a

〈
∂2ψ

∂u∂v
,
∂ψ

∂u

〉
du =

〈
∂ψ

∂v
,
∂ψ

∂u

〉∣∣∣∣b
u=b

−
∫ b

a

〈
∂ψ

∂v
,
∂2ψ

∂u2

〉
du.

(on a intégré par parties). En v = 0, nous avons ∂ψ
∂u = γ̇(u) et〈

∂ψ

∂v
,
∂2ψ

∂u2

〉
=

〈
∂ψ

∂v
, γ̈(u)

〉
=

〈
∂ψ

∂v
,Kγ(u)

〉
=

〈
∂ψ

∂v
, kg(t)µ(u)

〉
car

∂ψ

∂v
est un champ de vecteurs tangent à la surface. On a donc finalement

∂

∂v

∣∣∣∣
v=0

`(γv) =

〈
∂ψ

∂v
(u, 0), γ̇(u)

〉∣∣∣∣b
u=b

−
∫ b

a
kg(t)

〈
∂ψ

∂v
,µ(u)

〉
du.

Une conséquence importante de ce théorème dit qu’une courbe sur une surface S qui minimise
la distance intrinsèque entre ses extrémités est une géodésique si elle est parcourue à vitesse
constante :
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Corollaire 5.6. Soit γ : [a, b] une courbe de classe C2 paramétrée à vitesse constante sur la
surface S. Si la longueur de γ est égale à la distance entre les points p = γ(a) et q = γ(b), alors
γ est une géodésique de S.

Preuve. Soit ψ : [a, b]× (−ε, ε)→ S ⊂ R3 une déformation quelconque de classe C2 de γ dont

les extrémités sont fixées, i.e. ψ(a, v) = p et ψ(b, v) = q pour tout v ∈ (−ε, ε), alors ∂ψ
∂v

s’annule
lorsque u = a et u = b. La formule de variation première (5.1) s’écrit donc

∂

∂v

∣∣∣∣
v=0

`(γv) = −
∫ b

a
kg(t) 〈ξ(u),µ(u)〉 du,

où on a noté pour simplifier ξ(u) =
∂ψ

∂v
(u, 0). Mais par hypothèse `(γ0) = d(p, q) est la longueur

minimale parmi toutes les courbes sur S qui relient p à q, par conséquent
∂

∂v

∣∣∣∣
v=0

`(γv) = 0 et

on a donc ∫ b

a
kg(t) 〈ξ(u),µ(u)〉 du = 0,

Dans cette égalité, ξ est un champ de vecteurs quelconque le long de γ qui s’annule aux extrémités
de la courbe (car nous avons considéré une déformation ψ à extrémités fixes quelconque de γ).
Cette condition implique que la courbure géodésique kg de γ est identiquement nulle et donc γ
est géodésique.

Une géodésique ne minimise pas toujours la distance entre ses extrémités, toutefois c’est le cas
localement ; et cette propriété caractérise les géodésiques :

Théorème 5.7. Une courbe de classe C2 sur une surface régulière S est une géodésique de cette
surface si et seulement si

(i) La vitesse V de γ est constante.

(ii) La courbe γ réalise localement les distances minimales entre les points qu’elle parcourt. De
façon plus précise, pour tout t0 ∈ I il existe ε > 0 tel que si t1, t2 ∈ [t0 − ε, t0 + ε], alors la
distance dS(γ(t1), γ(t2) est égale à la longueur de l’arc γ|[t1,t2]

Il suit du corollaire précédent que si la courbe γ vérifie les conditions (i) et (ii), alors c’est une
géodésique. La preuve de l’affirmation sort du cadre de ce cours.

Remarque. La notion de géodésique est a priori une notion cinématique puisqu’elle fait inter-
venir l’accélération de la courbe. On définit parfois une géodésique comme une courbe qui réalise
localement la distance entre les points de cette courbe. Cela revient à garder la condition (ii) du
corollaire et à oublier la condition (i) ; avec cette définition alternative la notion de géodésique
devient une notion géométrique, équivalente à la condition que la courbure géodésique s’annule.
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5.2.3 Le théorème de Meusnier

Le théorème de Meusnier 2 dit que la courbure normale d’une courbe tracée sur une surface en
un point p ne dépend que de la direction de cette courbe en ce point :

Théorème 5.8 (Meusnier, 1785). Soit γ : I → S une courbe régulière de classe C2 tracée sur
une surface co-orientée S. Alors sa courbure normale en t ∈ I ne dépend que de la direction de
γ̇(t). Plus précisément, nous avons la formule suivante :

kn(t) = −〈dν(γ̇(t)), γ̇(t)〉
‖γ̇(t)‖2

. (5.2)

En particulier la courbure normale ne dépend pas de l’accélération de la courbe.

Remarquons que la formule précédente peut aussi s’écrire

kn(t) = −〈dν(Tγ(t)),Tγ(t)〉, (5.3)

où Tγ(t) =
γ̇(t))

‖γ̇(t))‖
est le vecteur tangent à γ en t.

Preuve. On a clairement 〈ν(γ(t)), γ̇(t)〉 = 0 pour tout t ∈ I. En dérivant cette relation et en
appliquant la formule de l’accélération on obtient

0 =
d

dt
〈ν(γ(t)), γ̇(t)〉 = 〈 d

dt
ν(γ(t)), γ̇(t)〉+ 〈ν(γ(t)), γ̈(t)〉

= 〈 d
dt
ν(γ(t)), γ̇(t)〉+ V̇γ(t)〈ν(γ(t)),Tγ(t)〉+ Vγ(t)2〈ν(γ(t)),Kγ(t)〉,

où Vγ(t) = ‖γ̇(t)‖. Nous avons 〈ν(γ(t)),Tγ(t)〉 = 0 et kn(t) = 〈ν(γ(t)),Kγ(t)〉 est la courbure
normale de γ. Notons aussi que

d

dt
ν(γ(t)) = dν(γ̇(t)).

Par conséquent le calcul précédent montre que

kn(t) = −〈dν(γ̇(t)), γ̇(t)〉
Vγ(t)2

.

Nous avons immédiatement le corollaire suivant :

Corollaire 5.9. Si γ1 : (−ε, ε) → S et γ2 : (−ε, ε) → S sont deux courbes régulières de classe
C2 sur une surface régulière co-orientée S ⊂ R3 de classe C2 telles que γ1(0) = γ2(0) = p et
γ̇1(0) = λγ̇2(0) avec λ 6= 0, alors γ1 et γ2 ont même courbure normale en t = 0.

5.3 L’application de Weingarten et la deuxième forme fondamen-
tale

Dans cette section, nous présentons différentes notions de courbure liées à une surface. Nous
commençons par la définition suivante, qui est motivée par la preuve du théorème de Meusnier :

2. Jean-Baptiste Meusnier (1754–1793).
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Définition 5.10. On appelle application de Weingarten en un point p d’une surface S ⊂ R3

co-orientée, régulière de classe C2, la différentielle en ce point de l’application de Gauss. On note
cette application

Lp = dνp.

Remarque 5.11. (1) L’application de Weingarten s’appelle souvent the shape operator dans les
livres en anglais.

(2) Certain livres définissent l’application de Weingarten avec le signe opposé (i.e. Lp = −dνp).

(3) L’application de Weingarten est a priori une application linéaire entre le plan tangent en p à
la surface S et le plan tangent à ν(p) à la sphère unité S2. Cependant le vecteur ν(p) est à la fois
vecteur normal de TpS et vecteur normal à Tν(p)S2, donc ces deux plans tangents coïncident et
on peut donc considérer que l’application de Weingarten au point p ∈ S est un endomorphisme
du plan tangent TpS :

Lp = dνp : TpS → TpS.

Définition 5.12. La seconde forme fondamentale en un point p d’une surface régulière de classe
C2 co-orientée S ⊂ R3 est l’application bilinéaire hp : TpS×TpS → R définie sur le plan tangent
TpS par

hp(ξ, η) = −gp(Lp(ξ), η)

où g est le tenseur métrique associé à ψ.

La formule (5.2) nous dit que la courbure normale d’une courbe de C2 sur la surface S peut
s’écrire

kn(t) = −gp(Lp(γ̇(t)), γ̇(t))

gp(γ̇(t), γ̇(t))
=

hp(γ̇(t)), γ̇(t))

gp(γ̇(t), γ̇(t))
(5.4)

Proposition 5.13. Soit ψ : Ω → S une surface paramétrée régulière de classe C2 et notons

bi =
∂ψ

∂ui
, alors les coefficients de la seconde forme fondamentale dans la base {b1(u),b2(u)} de

TpS adaptée à la paramétrisation ψ en un point p = ψ(u) sont donnés par

hij(u) = hp(bi,bj) =

〈
ν(p),

∂2ψ

∂ui∂uj
(u)

〉
. (5.5)

Preuve. Pour simplifier la suite, on notera ν(u) pour ν(ψ(u)). Pour tout u ∈ Ω, nous avons
〈ν(u),bj(u)〉 = 0, par conséquent

〈 ∂ν
∂ui

,bj〉+ 〈ν, ∂bj
∂ui
〉 = 0.

Or, par définition de l’application de Weingarten, on a

L(bi) = dν(bi) = dν

(
∂ψ

∂ui

)
=
∂ν ◦ ψ
∂ui

.

et
∂bj
∂ui

=
∂

∂ui

∂ψ

∂uj
=

∂2ψ

∂ui∂uj
.

Par conséquent :

hp(bi,bj) = −〈L(bi),bj〉 = −
〈
∂ν ◦ ψ
∂ui

,bj

〉
=

〈
ν,
∂bj
∂ui

〉
=

〈
ν,

∂2ψ

∂ui∂uj

〉
.
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Remarque. Il est commode de noter

bij =
∂bj
∂ui

=
∂2ψ

∂ui∂uj
.

La proposition précédente nous dit qu’en tout point de la surface paramétrée par ψ, on a

hij = 〈ν,bij〉.

Corollaire 5.14. Si ψ : Ω → S une surface paramétrée régulière de classe C2, alors la seconde
forme fondamentale h est une forme bilinéaire symétrique en tout point de S :

hp(ξ, η) = hp(η, ξ),

pour tous ξ, η ∈ TpS. De façon équivalente, l’application de Weingarten L est auto-adjointe, i.e.
on a

gp(Lp(ξ), η) = gp(ξ, Lp(η)).

Preuve. Il suffit de vérifier que h(b1,b2) = h(b2,b1), ce qui se déduit immédiatement de la

proposition précédente car
∂2ψ

∂u2∂u1
=

∂2ψ

∂u1∂u2
.

Proposition 5.15. Notons G la matrice du tenseur métrique dans la base {b1,b2} en un point
donné de la surface paramétrée ψ : Ω → S. Notons de même H la matrice de la seconde forme
fondamentale et L la matrice de l’application de Weingarten. Alors on a

H = −GL = −L>G

Cette formule est utile en pratique car il est souvent plus facile de calculer la deuxième forme fondamentale
que l’application de Weingarten. On peut donc calculer d’abord G et H, puis

L = −G−1H.

Preuve. Pour deux vecteurs tangents quelconques ξ = ξ1b1 + ξ2b2 et η = η1b1 + η2b2, nous
avons h(ξ, η) = −g(L(ξ), η) = −g(ξ, L(η)). Cette relation s’écrit matriciellement

ξ>Hη = −ξ>G(Lη) = −ξ>(GL)η.

Comme ξ et η sont quelconques, on doit avoir H = −GL.
On a également ξ>Hη = −(Lξ)>Gη = −ξ>(L>G)η, qui entraîne H = −L>G.
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5.4 Les différentes courbures d’une surface

5.4.1 La courbure normale

Le théorème de Meusnier, ou plus précisément la formule (5.2), nous suggère la définition sui-
vante :

Définition 5.16. Soit p un point d’une surface régulière de classe C2 co-orientée. La courbure
normale en direction du vecteur tangent non nul v ∈ TpS \ {0} est définie par

kn(v) =
hp(v,v)

gp(v,v)
= −gp(Lp(v),v)

gp(v,v)

La preuve du théorème de Meusnier montre que la courbure normale d’une courbe régulière γ
tracée sur S et est précisément égale à kn(γ̇(t)). En particulier, la courbure normale kn(v) en p
est la courbure de l’intersection de la surface S avec le plan Πv passant par p et de directions ν
et v. Un telle courbe s’appelle une section normale de la surface S.

p

Πθ

Cθ

np

vp

Section normale d’une surface

Rappelons que l’application de Weingarten Lp est un point p d’une surface régulière S de classe
C2 est un endomorphisme autoadjoint du plan tangent TpS. Par le théorème spectral, on sait
donc que les valeurs propres de Lp sont réelles et qu’il existe une base orthonormée de TpS formée
de vecteurs propres de Lp.

5.4.2 Courbures principales, moyenne et de Gauss

Définitions.

1.) Les valeurs propres de −Lp s’appellent les courbures principales de S au point p. On les notes
k1(p) et k2(p) ; on supposera que k1 ≤ k2.

2.) Le déterminant de Lp s’appelle la courbure de Gauss de S au point p. On note

K(p) = det(Lp) = k1(p)k2(p).

3.) Le point p ∈ S est dit

◦ elliptique si K(p) > 0, c’est-à-dire si les courbures principales en p ont le même signe.
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◦ hyperbolique si K(p) < 0, c’est-à-dire si les courbures principales en p ont des signes
opposés.

◦ parabolique si l’une (et une seule) des courbures principales en p est nulle.
◦ planaire si les deux courbures principales en p sont nulles : k1(p) = k2(p) = 0.
◦ ombilique si les deux courbures principales en p sont égales : k1(p) = k2(p) (de façon

équivalente, le point p est ombilique si Lp est scalaire).
4.) La courbure moyenne de S en p est la moyenne des courbures principales, on la note 3

H(p) =
1

2
(k1(p) + k2(p)) = −1

2
Trace(Lp).

5.) Les directions principales de S en un point non ombilique sont les directions des vecteurs
propres de Lp.

6.) Une courbe de classe C1 tracée sur la surface S est une ligne de courbure de S si elle est
tangente en chaque point à une direction principale.

Remarques.
1. Les directions principales en un point non ombilique p sont orthogonales car ce sont des
vecteurs propres de l’opérateur autoadjoint Lp.

2. Il suit immédiatement de la proposition 5.15 que la courbure de Gauss est donnée par

K(p) =
det(H(p))

det(G(p))
, (5.6)

où G et H sont les matrices de la première et la seconde forme fondamentale de S.

Le résultat suivant, dû à Euler, nous dit que la courbure normale d’une surface dans une direction
non nulle s’exprime en fonction des courbures principales et de l’angle que fait la direction
considérée avec les directions principales :

Proposition 5.17 (Euler). Soit p un point non ombilique d’une surface régulière de classe C2.
On note v1 et v2 les vecteurs unités de TpS dans les direction principales. Alors la courbure
normale du vecteur vθ = cos(θ)v1 + sin(θ)v2 ∈ TpS est donnée par

kn(vθ) = k1 cos(θ)2 + k2 sin(θ)2,

où k1, k2 sont les courbures principales de S en p.

Nous laissons la preuve de cette proposition en exercice.

Corollaire 5.18. Les courbures principales en un point p d’une surface régulière S de classe C2

sont les valeurs minimale et maximale de la courbure normale de S en ce point.

Preuve. Notons k1 et k2 les courbures principales de p en S, et supposons que k1 ≥ k2. La
formule précédente peut aussi s’écrire

kn(vθ) = k1 + (k2 − k1) sin(θ)2.

Nous avons 0 ≤ sin(θ)2 ≤ 1, donc k1 ≤ kn(vθ) ≤ k2 et on a kn(vθ) = k1 lorsque sin(θ) = 0 et
kn(vθ) = k2 lorsque sin(θ) = ±1.

3. Attention aux notations, ne pas confondre la seconde forme fondamentale et la courbure moyenne, ça devrait
être clair dans chaque cas selon le contexte.
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5.4.3 Interprétation locale des courbures principales.

Pour étudier la géométrie locale d’une surface S de classe C2 au voisinage d’un point régulier p,
il est commode d’introduire un système de coordonnées cartésien Oxyz dont l’origine 0 coïncide
avec le point p et le plan tangent à S en 0 est le plan Oxy. Dans ce cas, on dit que le système
de coordonnées cartésien est adapté à la surface S en point p. La surface est alors localement
représentée comme le graphe z = ϕ(x, y) d’une fonction ϕ : Ω → R de classe C2 où Ω ⊂ R2 est
un voisinage de (0, 0) dans le plan. De plus on a

ϕ(0, 0) = 0,
∂ϕ

∂x
(0, 0) =

∂ϕ

∂x
(0, 0) = 0.

Une paramétrisation locale de la surface est alors donnée par l’application ψ : Ω → R3 définie
par ψ(x, y) = (x, y, ϕ(x, y)) et la base adaptée en 0 est

b1(0, 0) =
∂ψ

∂x
(0, 0) = (1, 0, 0) = e1, b2(0, 0) =

∂ψ

∂y
(0, 0) = (0, 1, 0) = e2.

Pour la suite nous choisirons la co-orientation définie par le vecteur normal ν = b1 × b2 = e3.

Le tenseur métrique à l’origine prend la valeur G =

(
1 0
0 1

)
.

Les coefficients de la seconde forme fondamentale en (0, 0) sont les produits scalaires

h11 = 〈ν, ψxx〉 = 〈e3, ψxx〉 = ϕxx,

et de même h12 = ϕxy et h22 = ϕyy, on a donc

H =

(
ϕxx ϕxy
ϕxy ϕyy

)
(c’est la matrice hessienne de ϕ en (0, 0)). La matrice de l’application de Weingarten est alors
donnée par

L = −G−1H = −
(
ϕxx ϕxy
ϕxy ϕyy

)
On a finalement

K = det(L) = ϕxxϕyy − ϕ2
xy et H = −1

2
Trace(L) =

1

2
(ϕxx + ϕyy).

Noter que tous ces calculs sont valable en 0, et a priori uniquement en 0.

Quitte à effectuer une rotation de notre système de coordonnées autour de l’axe Oz, on peut
supposer que les directions principales de S en 0 sont les directions des vecteurs e1 et e2. On a
donc le développement de Taylor

ϕ(x, y) =
1

2

(
ax2 + by2

)
+ o

(
x2 + y2

)
,

avec a = φxx(0, 0) et b = φyy(0, 0) (et on a φxy(0, 0) = 0). Ainsi les courbures principales de
S en 0 sont k1 = a et k2 = b, la courbure de Gauss est K = ab et la courbure moyenne est
H = 1

2(a+ b).

Point elliptique Point hyperbolique Point parabolique
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La représentation locale de la surface comme un graphe dans un système de coordoonées nous
permet donc de facilement interpréter la géométrie des différents types de point : le point 0 est
elliptique si a et b ont le même signe (non nul), il est hyperbolique si a et b ont des signes opposés
(non nuls), il est parabolique si a ou b est nul mais pas les deux et il est plat si a = b = 0. Le
point est ombilique si a = b.

Une remarque sur l’orientation des surfaces.

Si on change le signe de la co-orientation ν de la surface S, alors l’application de Weingarten L
change de signe. Par conséquent le signe des courbures principales et de la courbure moyenne est
sensible au choix de la co-orientation. Un calcul montre que dans le cas de la sphère, ces courbures
sont positives pour le choix de la normale intérieure à la sphère et elles sont négatives pour le choix
de la normale extérieure. Cela s’explique géométriquement par le fait que l’accélération d’une
courbe tracée sur une sphère pointe vers l’intérieur de cette sphère. D’une manière générale, si la
surface S est le bord d’un domaine de R3, il est préférable de choisir le champ normal ν pointant
du côté intérieur, avec cette convention le bord d’un domaine convexe de R3 est de courbure
moyenne positive. Observons en revanche que la courbure de Gauss K = det(L) ne dépend pas
du choix de la co-orientation.

5.4.4 Courbure des surfaces de révolution

Considérons le cas d’une surface de révolution S autour de l’axe Oz dont le profil est la courbe
α(v) = (r(v), z(v)) (v ∈ I). On suppose que α est de classe C2, paramétrée naturellement,
et que r(v) > 0 pour tout v ∈ I. La paramétrisation standard de cette surface est donné par
ψ : Ω = [0, 2π]× I → S ⊂ R3 :

ψ(u, v) = (r(v) cos(u), r(v) sin(u), z(v)) .

Le repère adapté est

b1 =
∂ψ

∂u
=

 −r(v) sin(u)
r(v) cos(u)

0

 , b2 =
∂ψ

∂v
=

 ṙ(v) cos(u)
ṙ(v) sin(u)

ż(v)

 , ν =
b1 × b2

‖b1 × b2‖
=

 ż(v) cos(u)
ż(v) sin(u)
−ṙ(v)

 ,

où on a noté ˙ pour la dérivée par rapport à v. Rappelons que ṙ(v)2 + ż(v)2 = 1 par hypothèse,
le tenseur métrique est donc

G =

(
r2(v) 0

0 1

)
(qu’on peut aussi écrire ds2 = r2(v)du2 + dv2). Les dérivées secondes de ψ sont

b11(u, v) =
∂b1

∂u
=
∂2ψ

∂u2
=

 −r(v) cos(u)
−r(v) sin(u)

0

 ,

b12(u, v) =
∂b1

∂v
=
∂b2

∂u
=

∂2ψ

∂u∂v
=

 −ṙ(v) sin(u)
ṙ(v) cos(u)

0

 ,

et

b22(u, v) =
∂b2

∂v
=
∂2ψ

∂v2
=

 r̈(v) cos(u)
r̈(v) sin(u)

z̈(v)

 .
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La matrice de la seconde forme fondamentale est alors donnée par hij = 〈ν,bij〉,

H =

(
−r(v)ż(v) 0

0 (r̈(v)ż(v)− z̈(v)ṙ(v))

)
,

ce qui nous donne la courbure de Gauss :

K =
det(H)

det(G)
= − ż(v)(r̈(v)ż(v)− z̈(v)ṙ(v))

r(v)
.

En utilisant la relation ṙ(v)2 + ż(v)2 = 1, on peut simplifier cette expression. On a

0 =
d

dv
(ṙ2 + ż2) = 2ṙr̈ + 2żz̈,

donc
ż2 = 1− ṙ2 et żz̈ = −ṙr̈,

d’où l’on déduit que

K = −1

r
(r̈ż2 − żz̈ṙ) = −1

r

(
r̈(1− ṙ2) + ṙ2r̈

)
= − r̈

r
.

On a donc montré que la courbure de Gauss de notre surface de révolution est

K(v) = − 1

r(v)

d2r(v)

dv2
. (5.7)

Remarque. La matrice de l’application de Weingarten dans la base {b1,b2} en un point quel-
conque de la surface de révolution S est donnée par

L = −G−1H =

 ż(v)

r(v)
0

0 −(r̈(v)ż(v)− z̈(v)ṙ(v))

 .

En particulier, les vecteurs b1,b2 sont les vecteurs propres de L, cela prouve que les directions
principales sur la surface sont les directions des parallèles et des méridiens.

Surfaces de révolution à courbure de Gauss constante.

La formule (5.7), nous permet de déterminer toutes les surfaces de révolution dont la courbure
de Gauss K est constante. Il s’agit en effet de résoudre les équations différentielles

r̈ +Kr = 0, ż =
√

1− ṙ2.

Exemple 1. Supposons K = 1, alors une solution simple est donnée par r(v) = cos(v) et
z(v) = sin(v). Cette solution correspond à la sphère unité standard.

Les autres solutions sont données par
r(v) = a

Il y a d’autre solutions, qui donnent d’autres surfaces de révolutions à courbure de Gauss
constante positives :

Exemple 2. Si K = −1, une solution est donnée par

r(v) = e−v, z(v) =

∫ v

0

√
1− e−2sds.
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Cette dernière intégrale ne peut pas s’exprimer par des fonctions élémentaires, toutefois la courbe
de profil α(v) = (r(v), z(v)) peut-être décrite (et donc dessinée) par les propriétés suivantes :

(r(0), z(0)) = (1, 0) et α(v) + Tα(v) est un point de l’axe vertical Oz.

En effet, le vecteur tangent Tα est égal à α̇ puisque α est paramétrée naturellement, on a donc

α(v) + Tα(v) = α(v) + α̇(v)

= (r(v), z(v)) + (ṙ(v), ż(v))

= (r(v) + ṙ(v), z(v) + ż(v))

= (0, z(v) + ż(v)),

car (v) + ṙ(v) = e−v + (−e−v) = 0.

Une telle courbe s’appelle une tractrice d’axe Oz et la surface de révolution d’une tractrice autour
de son axe est la pseudo-sphère de Minding-Beltrami 4

4. La pseudo-sphère apparaît dans les travaux de Ferdinand Minding en 1839, puis de Eugenio Beltrami en
1868.
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5.5 Quelques théorèmes classiques de la théorie des surfaces

Dans ce paragraphe nous énonçons, sans tous les démontrer, quelques théorèmes importants de la
théorie des surfaces dans R3. Rappelons pour commencer qu’un point d’une surface est ombilique
si les deux courbures principales en ce point sont égales.

Théorème 5.19. Si tous les points d’une surface régulière S ⊂ R3 de classe C3 sont ombiliques,
alors S est contenue dans un plan ou dans une sphère.

Preuve. Supposons que tout les points de S soient ombiliques. Alors il existe une fonction
λ : S → R telle que Lp(ξ) = λ(p)ξ pour tout p ∈ S et tout ξ ∈ TpS. Soit ψ : Ω → S une
paramétrisation locale de S, nous avons alors avec les notations de la proposition 5.13 :

∂ν

∂ui
= L(bi(u)) = λ(ψ(u))bi(u) = λ(ψ(u))

∂ψ

∂ui
.

Écrivons λ(u) = λ(ψ(u)) pour simplifier, alors

∂2ν

∂u1∂u2
=

∂λ

∂u1

∂ψ

∂u2
+ λ

∂2ψ

∂u1∂u2
=

∂λ

∂u1
b2 + λ

∂2ψ

∂u1∂u2
.

La même équation est vérifiée en échangeant les indices 1 et 2, on a donc pour tout u ∈ Ω :

∂λ

∂u1
b2 −

∂λ

∂u2
b1 =

∂2ν

∂u1∂u2
− ∂2ν

∂u2∂u1
+ λ

∂2ψ

∂u1∂u2
− λ ∂2ψ

∂u2∂u1
= 0.

Puisque les vecteurs b1 et b2 sont en tout points linéairement indépendants, on doit avoir

∂λ

∂u1
=

∂λ

∂u2
= 0,

et donc λ est constant. Si λ = 0, alors ν est constant et S est contenu dans un plan orthogonal
à ce vecteur. Si λ 6= 0, alors c = ψ − 1

λν est constant et la surface S est donc contenue dans la
sphère de centre c et de rayon 1/|λ|.

Le résultat le plus important sur la courbure des surfaces est probablement le célèbre théorème
egregium démontré par K. F. Gauss en 1827. Il dit que la courbure de Gauss est une notion
intrinsèque de la géométrie des surfaces (deux surfaces intrinsèquement isométriques ont même
courbure de Gauss).

Théorème 5.20 (Théorème Egregium de Carl Friedrich Gauss (1827)). Si f : S1 → S2 est
une isométrie entre deux surfaces de R3 de classe C3 pour la distance intrinsèque, alors on a
K1 = K2 ◦ f où Ki est la courbure de Gauss de Si.

Nous démontrerons ce théorème plus loin (voir théorème C.3).

Exemple. On sait qu’un cône ou un cylindre sont des surfaces localement isométriques au plan,
donc ces surfaces sont de courbure nulle. Le théorème egregium nous dit aussi qu’il n’existe pas
d’isométrie entre un ouvert d’un ouvert d’une sphère et un ouvert du plan.

Dans le cas des surfaces à courbure de Gauss constante, F. Minding 5 a démontré le résultat
suivant, qui est une réciproque partielle du théorème egregium :

Théorème 5.21 (Théorème de Ernst Ferdinand Minding, 1839.). Deux surfaces S1 et S2 de R3

de classe C3 qui ont même courbure de Gauss constante sont localement isométriques pour la
distance intrinsèque.

5. Ferdinand Minding (1806-1885)
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En particulier, ce théorème dit que toute surface de courbure nulle est localement isométrique au
plan et toute surface dont la courbure de Gauss est constante positive est localement isométrique
à une sphère.

Le résultats précédent concernait la géométrie locale des surfaces, i.e. la géométrie au voisinage
d’un point quelconque de la surface. Les théorèmes suivants sont de nature globale.

Théorème 5.22 (Formule de Gauss-Bonnet). Si S1 et S2 sont deux surfaces compactes sans
bord de R3 qui sont homéomorphes, alors elles ont la même courbure totale :∫∫

S1

K1dA1 =

∫∫
S1

K2dA2,

de plus cette courbure totale appartient à 4πZ.

Plus précisément, la courbure totale d’une telle surface est égale à sa caractéristique d’Euler,
multipliée par 2π. La caractéristique d’Euler est un entier qui ne dépend que de la topologie de
la surface.

Théorème 5.23 (H. Liebmann, 1900.). Soit S une surface compacte (sans bord) de classe C4

dans R3 dont la courbure de Gauss est partout positive. Supposons que ou bien la courbure de
Gauss est constante ou bien la courbure moyenne est constante. Alors S est une sphère.

Théorème 5.24 (Théorème de Jacques Hadamard sur les surfaces à courbure positive).
Soit S ⊂ R3 une surface régulière compacte, sans bord, de classe C3. Alors les conditions suivantes
sont équivalentes :

(i) La courbure de Gauss de S est strictement positive en tout point de S.

(ii) S est le bord d’un domaine bornée strictement convexe D ⊂ R3.

(iii) L’application de Gauss ν : S → S2 est un difféomorphisme de classe C1.

Théorème 5.25. Toute surface compacte sans bord de R3 admet au moins un point où la cour-
bure de Gauss est strictement positive.

Par comparaison, nous avons le résultat suivant sur les surfaces complètes à courbure constante
négative :

Théorème 5.26 (Théorème de David Hilbert (1901).). Il n’existe pas de surface régulière de
classe C3 dans R3 qui soit complète, sans bord, et dont la courbure de Gauss est constante
négative.

Rappelons qu’une surface est dite complète si toute suite de Cauchy dans cette surface converge.

Théorème 5.27 (Théorème de N. V. Efimov (1964)). Il n’existe pas de surface régulière de
classe C2 dans R3 qui soit complète, sans bord, et dont la courbure de Gauss vérifie sup(K) < 0.



Annexe A

Notions de topologie et espaces
vectoriels normés

A.1 Rappels de topologie

La topologie étudie et formalise les notions de voisinage, de convergence et de continuité.

Définition A.1. Soit X un ensemble. On appelle topologie sur X une famille de sous-ensembles
O ⊂ P(X) telle que

i.) ∅, X ∈ O,
ii.) si U, V ∈ O, alors U ∩ V ∈ O,
iii.) si {Uα}α∈A ⊂ O est une famille quelconque d’éléments de O, alors

⋃
α∈A Uα ∈ O.

On dit que U ⊂ X est ouvert si U ∈ O et que F ⊂ X est fermé si F c = X \ F ∈ O. L’ensemble
A ⊂ X est un voisinage du point p ∈ X s’il existe un ouvert U ∈ O tel que p ∈ U ⊂ A. Un
espace topologique est un couple (X,O) où X est un ensemble et O est une topologie sur X.

Il est clair que l’intersection d’une famille quelconque de fermés d’un espace topologique (X,O)
est un fermé. Pour tout A ∈ O, on note Ā l’intersection de tous les fermés qui contiennent A :

Ā =
⋂

F⊃A, F fermé

F.

L’ensemble A est donc le plus petit ensemble fermé qui contient A. On l’appelle l’adhérence ou
la fermeture de A. On le note aussi Cl(A) (“Cl” pour closure = fermeture en anglais).

On définit aussi l’intérieur de A. C’est le plus grand ouvert qui est contenu dans A, on le note
Ao ou Int(A), il est définit par

Int(A) = Ao =
⋃

U⊂A, U ouvert

U.

Il est clair que Int(A) ⊂ Cl(A) ; , la différence s’appelle la frontière de A et se note

Fr(A) = Cl(A) \ Int(A).

Une application f : (X,OX) → (Y,OY ) entre deux espaces topologiques est continue si l’image
inverse d’un ouvert de Y est un ouvert de X, i.e. f−1(OY ) ⊂ OX . L’application est ouverte si
l’image directe d’un ouvert de X est un ouvert de Y , i.e. f(OX) ⊂ OY .
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L’application f est un homéomorphisme si elle est bijective, continue et ouverte (et donc f−1 :
Y → X est aussi continue).

L’espace topologique (X,O) est séparé (on dit aussi qu’il est de Hausdorff ) si toute paire de points
distincts admet des voisinages disjoints, i.e. si pour tout p, q ∈ X, p 6= q, il existe U, V ∈ O tels
que U ∩ V = ∅ et p ∈ U , q ∈ V . L’espace topologique (X,O) est connexe si tout sous-ensemble
qui est à la fois ouvert et fermé est égal à X ou ∅. La réunion de tous les sous ensembles
connexes contenant un point x ∈ X s’appelle la composante connexe de x. L’ensemble X est
réunion disjointe des ses composantes connexes, et chaque composante connexe est un sous-
ensemble connexe et maximal (i.e. qui n’est contenu dans aucun sous-ensemble connexe plus
grand). L’espace X est localement connexe si tout point admet un voisinage connexe. Lorsque X
est localement connexe, les composantes connexes de X sont les sous-ensembles qui sont ouverts,
fermés et connexes.

L’espace topologique (X,O) admet une base dénombrable d’ouverts (on dit aussi qu’il vérifie le
second axiome de dénombrabilité) s’il existe une suite dénombrable d’ouverts {Ui}i∈N telle que
tout ouvert est réunion d’éléments de cette suite.

Exemples d’espaces topologiques.

1.) Pour tout ensemble X, l’ensemble O = P(X) de toutes les parties de X est une topologie
séparée appelée la topologie discrète.

2.) O = {∅, X} est une topologie appelée la topologie grossière. Elle est non séparée dès que X
contient au moins deux points.

3.) La collection des sous-ensembles deX qui sont vide ou de complémentaire fini est une topologie
sur X (en général non séparée). On l’appelle la topologie cofinie.

4.) Si (X, d) est un espace métrique, alors il existe une topologie séparée dont les ouverts sont
les parties U ⊂ X qui sont réunion de boules ouvertes, i.e. d’ensembles du type

B(p, ε) = {q ∈ X
∣∣ d(p, q) < ε}.

Un espace topologique (X,O) est dit métrisable s’il existe une distance d sur X induisant la
topologie O.

5.) Si (X,OX) est un espace topologique et Y ⊂ X, alors

OY := {V = U ∩ Y
∣∣U ∈ Ox}

est une topologie sur Y . On l’appelle la topologie relative ou la topologie induite sur Y par OX .
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Le théorème d’invariance du domaine

Un théorème fondamental sur la topologie de Rn est le suivant :

Théorème A.2 (Théorème d’invariance du domaine de Brouwer (1912)). Si U est un ouvert de
Rn et f : U → Rn est une application continue et injective, alors f est une application ouverte
(et c’est donc un homéomorphisme sur son image).

Ce théorème a été démontré par le mathématicien néerlandais Luitzen E.J. Brouwer en 1912.
Il existe plusieurs preuves, dont certaines utilisent des techniques de topologie algébrique. Nous
admettons ce résultat sans démonstration.

Corollaire A.3 (Invariance de la dimension). Soient U un ouvert de Rn non vide, et V un
ouvert de Rm. Si U et V sont homéomorphes, alors m = n. Plus généralement, deux variétés
non vides qui sont homéomorphes ont même dimension.

Rappelons que Cantor avait démontré qu’il existe une bijection entre Rn et Rm pour toute paire
d’entiers n,m ≥ 1, le corollaire ci-dessus nous dit qu’une telle bijection ne peut pas être un
homéomorphisme si n 6= m, ce qui est conforme à notre intuition de la notion de dimension.

Preuve. Supposons que n > m et que g : U → V est un homéomorphisme. Considérons
l’application f : U → Rn définie par

f(x1, x2, . . . , xn) = (g1(x), g2(x), . . . , gm(x), 0, . . . , 0︸ ︷︷ ︸
n−m

).

Alors f est continue et injective, donc f(U) ⊂ Rn est ouvert par le théorème précédent. Mais
c’est impossible car f(U) ⊂ {y ∈ Rn

∣∣ yn = 0} qui ne contient aucun sous-ensemble ouvert non
vide. Donc il est impossible que n > m . De même m 6> n.

A.2 Rappels sur la notion de norme

Soit E un espace vectoriel sur le corps de réels. Rappelons qu’un norme sur E est une fonction
‖ ‖ : E → R vérifiant les trois propriétés suivantes pour tous x, y ∈ E et λ ∈ R :

i.) ‖x‖ ≥ 0 et ‖x‖ = 0 si et seulement si x = 0,
ii.) ‖λx‖ = |λ|‖x‖,
iii.) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A toute norme sur E on défini une distance d sur E définie par d(x, y) = ‖y− x‖ ; en particulier
une norme définit une topologie sur E et on peut alors parler d’ouverts, de fermés, d’ensembles
compacts, de convergence, de continuité etc.

Deux normes ‖ ‖1 et ‖ ‖2 sur E sont dites équivalentes (ou topologiquement équivalentes) si elles
définissent la même topologie.

Lemme A.4. a) Les normes ‖ ‖1 et ‖ ‖2 sur l’espace vectoriel E sont équivalentes si et seulement
s’il existe une constante c > 0 telle que pour tout x ∈ E on a

1

c
‖x‖2 ≤ ‖x‖1 ≤ c‖x‖2.

b) Deux normes sur un espace vectoriel de dimension finies sont toujours équivalentes.

La preuve est un simple exercice du cours d’analyse 2.
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Exemples de normes.

1.) Si 〈 , 〉 est un produit scalaire, alors ‖x‖ =
√
〈x, x〉 est une norme (lorsque c’est le cas, on

dit que la norme ‖ ‖ dérive d’un produit scalaire).

2.) Pour 1 ≤ p <∞, on définit la norme ‖ ‖p sur Rn par

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

3.) Toujours sur Rn, on définit la norme ‖ ‖∞ par

‖x‖∞ = max |xi|.

4.) Sur l’espace C0([0, 1]) des fonctions continues sur l’intervalle [0, 1], on définit aussi des normes
‖ ‖p :

‖f‖p =

(∫ 1

0
|f(t)|pdt

)1/p

et ‖f‖∞ = sup
t∈[0,1]

|f(t)|.

5.) Si (V1, ‖ ‖1) et (V2, ‖ ‖2) sont deux espaces normés de dimensions finies, on définit la norme
d’opérateurs sur l’espace vectoriel L(V1, V2) des homomorphismes linéaires de V1 dans V2 par

‖Φ‖Op = sup{‖Φ(x)‖2 | ‖x‖1 ≤ 1}.

6.) La norme de Hilbert-Schmidt sur l’espaceMn(R) des matrices carrées de taille n à coefficients
réels est définie par

‖A‖HS = Trace(A>A) =
∑
i,j

√
A2
ij .

Proposition A.5. Toute application linéaire entre deux espaces vectoriels réels normés de di-
mension finie est continue.

Preuve. Soit Φ : V1 → V2 une application linéaire entre deux espaces normés de dimensions finies
(V1, ‖ ‖1) et (V2, ‖ ‖2), et soit {e1, . . . , en} une base de V1 et notons C = max1≤i≤n ‖Φ(ei)‖2.
Si x =

∑n
i=1 xiei et y =

∑n
i=1 yiei, alors

‖Φ(y)− Φ(x)‖2 = ‖Φ(y − x)‖2 =

∥∥∥∥∥Φ

(
n∑
i=1

(yi − xi)ei

)∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

(yi − xi)Φ(ei)

∥∥∥∥∥
2

≤
n∑
i=1

|yi − xi|‖Φ(ei)‖

≤ C
n∑
i=1

|yi − xi|.

Par conséquent, si y → x alors Φ(y)→ Φ(x).



Annexe B

Sur les notations classiques de la
géométrie différentielle des surfaces

Parmi les textes historiquement importants traitant de la la géométrie différentielle des surfaces,
on doit citer Recherches sur la courbure des surfaces. par Leonhard Euler en 1760, Application
de l’analyse à la géométrie, à l’usage de l’École impériale polytechnique par Gaspard Monge en
1807 et les Leçons sur la théorie générale des surfaces et les applications géométriques du calcul
infinitésimal en 4 volumes par Gaston Darboux publiés entre 1887 et 1896. Ces développements
historiques ont conduit à un système de notations assez différent de celui que nous avons exposés
dans ces notes de cours, mais qui reste fréquemment utilisé car il est efficace dans les calculs.

On se donne d’abord un système d’axes orthonormés Oxyz dans l’espace euclidien R3, en sorte
qu’un point p peut être représenté par son vecteur position (ou rayon vecteur), qui est noté
r =
−→
Op = (x, y, z). On obtient une courbe r(t) = (x(t), y(t), z(t)) lorsque le point dépend d’un

paramètre t. L’abscisse curviligne le long de cette courbe est donnée par l’intégrale

s =

∫
‖ṙ‖dt, où ‖ṙ‖ =

√(
dx
dt

)2
+
(
dy
dt

)2
+
(
dz
dt

)2
.

La différentielle ds = ‖ṙ‖dt s’appelle l’élément linéaire, et il est commode d’écrire

ds2 = dr · dr = dx2 + dy2 + dz2.

Lorsque le point dépend de deux paramètre u, v, on obtient une surface

r = r(u, v) = (x(u, v), y(u, v), z(u, v)).

On demandera à cette surface d’être régulière, ce qu’on exprimera par la condition

ru × rv est non nul, où ru = ∂r
∂u =

(
∂x
∂u ,

∂y
∂u ,

∂z
∂u ,
)
, rv = ∂r

∂v =
(
∂x
∂v ,

∂y
∂v ,

∂z
∂v

)
.

Cette condition nous dit que l’application (u, v) 7→ r(u, v) est une immersion d’un ouvert de
R2 dans R3 et les vecteurs ru,rv forment la base adaptée du plan tangent à la surface au point
r(u, v). Une co-orientation de la surface est donnée en tout point p = r(u, v) par

ν =
ru × rv
‖ru × rv‖

.

L’élément linéaire peut donc se réécrire en fonction des différentielles du et dv :

ds2 = dr · dr =

(
∂r

∂u
du+

∂r

∂v
dv

)
·
(
∂r

∂u
du+

∂r

∂v
dv

)
= E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2,
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avec

E =
∂r

∂u
· ∂r
∂u

=

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2

,

F =
∂r

∂u
· ∂r
∂v

=
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
,

G =
∂r

∂v
· ∂r
∂v

=

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

.

L’élément d’aire s’écrit alors

dA = ‖ru × rv‖ dudv =
√
EG− F 2 dudv.

Les paramètres u et v sont vus comme des coordonnées curvilignes sur la surface et les différen-
tielles du, dv sont des coordonnées linéaires sur l’espace tangent à la surface eu point p = r(u, v).
Le ds2 s’appelle aussi la première forme fondamentale et se note I = dr · dr. En comparant avec
les notations du §4.2, on remarque que

g11 = E, g12 = F, g22 = G.

Comme premier exemple, considérons l’hélicoïde r(u, v) = (v cos(u), v sin(u), u). On a

dr = (−v sin(u), v cos(u), 1) du+ (cos(u), sin(u), 0) dv,

donc l’élément linéaire est donné par

ds2 = dr · dr = (1 + v2)du2 + dv2.

Le tenseur métrique est donc E = g11 = (1 + v2), F = g12 = 0 et G = g22 = 1. On a aussi

ru × rv = (− sin(u), cos(u),−v) ,

et
dA = ‖ru × rv‖dudv =

√
EG− F 2dudv =

√
1 + v2dudv.

Comme second exemple, on considère maintenant la surface de révolution autour de l’axe Oz paramétrée
par

r(u, v) = (ρ(v) cos(u), ρ(v) sin(u), z(v)).

Alors
dr = (−ρ(v) sin(u), ρ(v) cos(u), 0) du+ (ρ′(v) cos(u), ρ′(v) sin(u), z′(v)), dv,

l’élément linéaire est donné par

ds2 = dr · dr = ρ(v)2du2 +
(
ρ′(v)2 + z′(v)2

)
dv2.

On peut écrire le tenseur métrique matriciellement :(
E F
F G

)
=

(
ρ(v)2 0

0
(
ρ′(v)2 + z′(v)2

)) .
On a aussi

ru × rv = (ρ(v)z′(v) cos(u), ρ(v)z′(v) sin(u),−ρ(v)ρ′(v)) ,

et
dA = ‖ru × rv‖dudv =

√
EG− F 2 dudv = ρ(v)

√
ρ′(v)2 + z′(v)2 dudv.
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La deuxième forme fondamentale s’obtient en dérivant une seconde fois le vecteurs position
r(u, v). On pose

L = ruu · ν = −ru · νu,
M = ruv · ν = −ru · νv,
N = rvv · ν = −rv · νv.

Alors la seconde forme fondamentale est donnée par

II = Ldu2 + 2Mdudv +Ndv2.

Les notations (e, f, g) sont parfois utilisées pour les coefficients (L,M,N). Bien évidemment
nous avons L = h11, M = h12 et N = h22. Avec ces notations, la courbure normale d’une courbe
γ(t) = r(u(t), v(t)) est donnée par

kn(t) =
II(γ̇, γ̇)

I(γ̇, γ̇)
=
Lu̇2 + 2Mu̇v̇ +Nv̇2

Eu̇2 + 2Fu̇v̇ +Gv̇2
.

La courbure de Gauss est

K =
det(II)

det(I)
=
LN −M2

EG− F 2
.

Revenons aux exemples : Pour l’hélicoïde, nous avons

ru = (−v sin(u), v cos(u), 1), rv = (cos(u), sin(u), 0), ν =
ru × rv
‖ru × rv‖

=
(− sin(u), cos(u),−v)√

1 + v2
,

et les coefficients de la seconde forme fondamentale sont donc

L = ruu · ν = 0,

M = ruv · ν =
1√

1 + v2
,

N = rvv · ν = 0.

La courbure de Gauss de l’hélicoïde est alors

K =
LN −M2

EG− F 2
= − 1

(1 + v2)2

Pour la surface de révolution, on a

ru = (−ρ(v) sin(u), ρ(v) cos(u), 0), rv = (ρ′(v) cos(u), ρ′(v) sin(u), z′(v)),

et
ν =

ru × rv
‖ru × rv‖

=
(z′(v) cos(u), z′(v) sin(u),−ρ′(v))√

ρ′(v)2 + z′(v)2
.

Les coefficients de la seconde forme fondamentale sont alors

L = ruu · ν = − ρ(v)z′(v)√
ρ′(v)2 + z′(v)2

,

M = ruv · ν = 0,

N = rvv · ν =
ρ′′(v)z′(v)− ρ′(v)z′′(v)√

ρ′(v)2 + z′(v)2
.

La courbure de Gauss est alors

K =
LN −M2

EG− F 2
= −z

′(v)(ρ′′(v)z′(v)− ρ′(v)z′′(v))

ρ(v)



Annexe C

Symboles de Christoffel et preuve du
Théorème Egregium

C.1 Les symboles de Christoffel

La seconde forme fondamentale d’une surface paramétrée contrôle les composantes normales des
dérivées des vecteurs de bases {b1,b2} adaptés. Les composantes tangentielles de ces dérivées
s’expriment à partir des symboles de Christoffel 1, que nous introduisons ci-dessous. Ces quantités
interviennent dans l’équation intrinsèque des géodésiques et jouent un rôle central dans la preuve
du théorème egregium.

Rappelons que le repère mobile adapté à une paramétrisation ψ : Ω → S se définit de la façon
suivante :

b1 =
∂ψ

∂u1
, b2 =

∂ψ

∂u2
, ν =

b1 × b2

‖b1 × b2‖
.

Nous noterons bij les dérivées de b1 et b2 :

bij =
∂bi
∂uj

=
∂2ψ

∂ui∂uj

où i, j prennent les valeurs 1 ou 2. Nous pouvons développer les vecteurs bij dans la base
{b1,b2,ν} :

bij = Γ1
ij b1 + Γ2

ij b2 + hij ν. (C.1)

Observer que les hij sont les coefficients de la deuxième forme fondamentale.

Définition C.1. (i) Les coefficients Γkij s’appellent les symboles de Christoffel de deuxième
espèce de la surface paramétrée.

(ii) Les symboles de Christoffel de première espèce sont les produits scalaires de bij avec bk.
On les notes

Γijk = 〈bij ,bk〉. (C.2)

1. Elwin Bruno Christoffel, mathématicien allemand 1829–1900.
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Remarques.
1. Les symboles de Christoffel sont des fonctions des paramètres (u1, u2) ∈ Ω.
2. Les symboles de Christoffel de première et deuxième espèces s’expriment linéairement les uns
en fonctions des autres. On a en effet

Γijk = 〈bij ,bk〉 = 〈Γ1
ij b1 + Γ2

ij b2 + hij ν,bk〉 = Γ1
ijg1k + Γ2

ijg2k,

de façon spécifique :

Γij1 = g11Γ1
ij + g12Γ2

ij et Γij2 = g21Γ1
ij + g22Γ2

ij . (C.3)

On peut inverser cette relation :

Γ1
ij =

g22Γij1 − g12Γij2
g11g22 − g2

12

et Γ2
ij =

g11Γij2 − g12Γij1
g11g22 − g2

12

. (C.4)

3. Les symboles de Christoffel sont symétriques en leur deux premiers indices :

Γijk = Γjik et Γkij = Γkji.

Cela découle de l’égalité b21 = b12, qui provient de la symétrie des dérivées partielles d’ordre 2
pour une fonction de classe C2 :

∂2ψ

∂u2∂u1
=

∂2ψ

∂u1∂u2
.

Le lemme suivant jouera un rôle fondamental dans la suite. Il nous dit que les symboles de
Christoffel ne dépendent que de la géométrie intrinsèque de la surface.

Lemme C.2 (Levi-Civita). Les symboles de Christoffel d’une surface paramétrée ψ : Ω → S ⊂
R3 de classe C2 ne dépendent que des coefficients gij du tenseur métrique et de leur dérivées du
premier ordre.

Preuve. En dérivant le coefficient gjk du tenseur métrique, on voit que

∂gjk
∂ui

=
∂

∂ui
〈bj ,bk〉 = 〈bij ,bk〉+ 〈bj ,bik〉 .

C’est-à-dire
∂gjk
∂ui

= Γijk + Γikj .

De même on a
∂gik
∂uj

= Γjik + Γjki et
∂gij
∂uk

= Γkij + Γkji.

On a donc, en tenant compte de la symétrie Γij,k = Γji,k,

∂gjk
∂ui

+
∂gik
∂uj

− ∂gij
∂uk

= (Γijk + Γikj) + (Γjik + Γjki)− (Γkij + Γkji) = 2Γijk.

Les symboles de Christoffel de première espèce sont donc donnés par la somme suivante de
dérivées des coefficients du tenseur métrique :

Γijk =
1

2

(
∂gjk
∂ui

+
∂gik
∂uj

− ∂gij
∂uk

)
(C.5)

En appliquant (C.4), on voit que les symboles de Christoffel de deuxième espèce ne dépendent
également que des coefficients du tenseur métrique et de leur dérivées.
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C.2 Accélération des courbes tracées sur une surface

Les courbes sur les surfaces possèdent la propriété remarquable suivante.

Théorème C.1 Soit γ : I → S une courbe de classe C2 tracée sur la surface S supposée
également de classe C2. Alors son accélération normale en un point est donnée par

〈ν, γ̈〉 = h(γ̇, γ̇), (C.6)

où h est la seconde forme fondamentale. En particulier, l’accélération normale en un point ne
dépend que du vecteur vitesse en ce point.

Ce théorème nous dit que si deux courbes sur S passent par un même point p, et ont le même
vecteur vitesse en ce point, alors elles ont aussi la même accélération normale.

Preuve. Nous présentons deux preuves de ce résultat. La première preuve est très courte : on
sait que 〈ν(γ(t)), γ̇(t)〉 = 0 pour tout t ∈ S, on a donc

〈ν(γ(t)), γ̈(t)〉 = −
〈
d

dt
ν(γ(t)), γ̇(t)

〉
= −〈dν(γ̇(t)), γ̇(t)〉 = h(γ̇, γ̇).

La seconde preuve donne plus de détails sur le vecteur accélération : On peut représenter la
courbe γ dans la paramétrisation de la surface par γ(t) = ψ(u1(t), u2(t)), et donc

γ̇(t) = u̇1b1 + u̇2b2.

Ainsi,

γ̈(t) = ü1b1 + ü2b2 + u̇1ḃ1 + u̇2ḃ2

= ü1b1 + ü2b2 + u̇1(u̇1b11 + u̇2b12) + u̇2(u̇1b21 + u̇2b22)

= ü1b1 + ü2b2 + (u̇1)2b11 + 2u̇1u̇2b12 + (u̇2)2b22.

Les vecteurs b1 et b2 sont orthogonaux à ν, et comme hij = 〈bij ,ν〉 on a

〈γ̈(t),ν〉 = h11(u̇1)2 + 2h12u̇1u̇2 + h22(u̇2)2 = H(γ̇, γ̇).

A l’aide des symboles de Christoffel, nous pouvons développer plus complètement le calcul de
l’accélération. Nous avons vu lors de la démonstration précédente que

γ̈(t) = ü1b1 + ü2b2 + (u̇1)2b11 + 2u̇1u̇2b12 + (u̇2)2b22.

En développant les vecteurs bij dans la base b1,b2,ν via l’équation (C.2), nous trouvons

γ̈(t) =
(
ü1 + Γ1

11u̇
2
1 + 2Γ1

12u̇1u̇2 + Γ1
22u̇

2
2

)
b1

+
(
ü2 + Γ2

11u̇
2
1 + 2Γ2

12u̇1u̇2 + Γ2
22u̇

2
2

)
b2

+ h(γ̇, γ̇)ν.

L’équation des géodésiques peut en particulier se récrire sous la forme suivante :
ü1 + Γ1

11u̇
2
1 + 2Γ1

12u̇1u̇2 + Γ1
22u̇

2
2 = 0

ü2 + Γ2
11u̇

2
1 + 2Γ2

12u̇1u̇2 + Γ2
22u̇

2
2 = 0.

(C.7)

Ces équations, avec le lemme (C.2), montrent en particulier que la notion de géodésique ne
dépend que de la géométrie intrinsèque de la surface.
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C.3 Preuve du Théorème Egregium

Nous reformulons le théorème Egregium de la façon suivante :

Théorème C.3. La courbure de Gauss d’une surface paramétrée ψ : Ω→ S ⊂ R3 de classe C3

ne dépend que des coefficients gij du tenseur métrique et de leur dérivées jusqu’à l’ordre 2.

Le démonstration utilise les deux lemmes suivants qui sont de nature calculatoire. Leur preuve
ne présentent pas de difficulté particulière autre qu’une attention soutenue aux indices. L’effort
se justifie par l’importance du théorème egregium.

Lemme C.4. On a
〈bij ,bkm〉 = Γ1

kmΓij1 + Γ2
kmΓij2 + hkmhij .

Preuve. Rappelons que bkm = Γ1
km b1 + Γ2

km b2 + hkmν, donc

〈bij ,bkm〉 =
〈
bij , Γ1

km b1 + Γ2
km b2 + hkmν

〉
= Γ1

km 〈bij ,b1〉+ Γ2
km 〈bij ,b2〉+ hkm〈bij ,ν〉

= Γ1
kmΓij1 + Γ2

kmΓij2 + hkmhij

Lemme C.5. On a
〈b11,b22〉 − ‖b12‖2 =

∂

∂u1
Γ221 −

∂

∂u2
Γ121.

Preuve. Calculons

∂

∂u1
Γ221 =

∂

∂u1
〈b22,b1〉 =

〈
∂b22

∂u1
,b1

〉
+

〈
b22,

∂b1

∂u1

〉
=

〈
∂b22

∂u1
,b1

〉
+ 〈b22,b11〉.

On a donc 〈
∂b22

∂u1
,b1

〉
=

∂

∂u1
Γ221 − 〈b22,b11〉.

De même 〈
∂b12

∂u2
,b1

〉
=

∂

∂u2
Γ121 − 〈b12,b12〉.

La différence de ces deux identités prouve le lemme car 2

∂b22

∂u1
− ∂b12

∂u2
=

∂3ψ

∂u1∂u2∂u2
− ∂3ψ

∂u2∂u2∂u1
= 0.

Démonstration du Théorème Egregium. En appliquant les deux lemmes précédents, on voit
que

∂

∂u1
Γ221 −

∂

∂u2
Γ121 = 〈b11,b22〉 − ‖b12‖2

=
(
Γ1

11Γ221 + Γ2
11Γ222 + h11h22

)
−
(
Γ1

12Γ121 + Γ2
12Γ122 + h12h12

)
=
(
h11h22 − h2

12

)
+
(
Γ1

11Γ221 + Γ2
11Γ222 − Γ1

12Γ121 − Γ2
12Γ122

)
.

2. C’est à cet endroit qu’on doit supposer que ψ est de classe C3.
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On a donc

h11h22 − h2
12 =

∂

∂u1
Γ221 −

∂

∂u2
Γ121 − Γ1

11Γ221 − Γ2
11Γ222 + Γ1

12Γ121 + Γ2
12Γ122.

Par conséquent la courbure de Gauss K = det (H)
det (G) peut s’écrire

K =
1

g11g22 − g2
12

(
∂

∂u1
Γ221 −

∂

∂u2
Γ121 − Γ1

11Γ221 − Γ2
11Γ222 + Γ1

12Γ121 + Γ2
12Γ122

)
. (C.8)

Il suit alors du lemme (C.2) que la courbure de Gauss est fonction des coefficients gij et de leur
dérivées premières et secondes.

Exemple. Supposons que le tenseur métrique est donné par ds2 = du2
1 + a2du2

2, où a est une
fonction positive de (u1, u2). On a donc g11 = 1, g12 = g21 = 0 et g22 = a2. Les symboles de
Christoffel de première espèce se calculent à partir de (C.5). On trouve que

Γ221 = −a ∂a
∂u1

, Γ122 = Γ212 = a
∂a

∂u1
, Γ222 = a

∂a

∂u2
,

et tous les autres Γijk sont nuls. Pour les coefficients de seconde espèces, nous avons Γ1
ij = Γij1

et Γ2
ij = 1

a2
Γij2. Donc la formule (C.8) se réduit à

K =
1

a2

(
∂

∂u1
Γ221 + Γ2

12Γ122

)
=

1

a2

(
∂

∂u1
Γ221 +

1

a2
(Γ122)2

)
= −1

a

∂2a

∂u2
1

. (C.9)

C.4 Les équations de Codazzi-Mainardi

Le théorème C.3 est une conséquence de l’identité
∂b11

∂u2
=
∂b12

∂u1
provenant de la symétrie des

dérivées partielles. On a plus généralement

∂bii
∂uk

=
∂bik
∂ui

, (C.10)

et cette identité nous permet de trouver de nouvelles relations. On vérifie par un calcul direct
que 〈

ν,
∂bik
∂ui

〉
= Γ1

ikh1i + Γ2
ikh2i +

∂hik
∂ui

, (C.11)

et 〈
ν,
∂bii
∂uk

〉
= Γ1

iih1k + Γ2
iih2k +

∂hii
∂uk

. (C.12)

En utilisant (C.10), on obtient alors

∂hik
∂ui

− ∂hii
∂uk

= Γ1
iih1k + Γ2

iih2k − Γ1
ikh1i − Γ2

ikh2i. (C.13)

C’est l’équation de Codazzi-Mainardi.
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Un théorème démontré par P. Bonnet en 1867 nous dit que si l’on se donne deux matrices (gij)
et (hij) de taille 2×2 qui dépendent de deux paramètres u, v et qui vérifient les relations données
dans les équations de Gauß et de Codazzi-Mainardi, alors il existe un morceau de surface dans
R3 pour laquelle (gij) est la première forme fondamentale et (hij) la deuxième. Cette surface est
unique à un déplacement près. 3

Le théorème de Bonnet entraîne en particulier que toutes les relations qui existent entre la pre-
mière et la deuxième forme fondamentales (et leur dérivées) sont des conséquences des équations
de Gauß et de Codazzi-Mainardi.

3. C’est le théorème fondamental de la théorie des surfaces.



Annexe D

Formulaire

• Produit scalaire Un espace vectoriel euclidien est un espace vectoriel réel de dimension
finie muni d’un produit scalaire (i.e. une forme bilinéaire symétrique définie positive) qu’on note
〈 , 〉. Dans une base orthornormée il est donné par 〈a,b〉 =

∑n
i=1 aibi. A partir de la norme le

produit scalaire s’exprime

〈a,b〉 =
1

4

(
‖a + b‖2 − ‖a− b‖2

)
.

On a aussi

〈a,a〉 = ‖a‖2 |〈a,b〉| ≤ ‖a‖ ‖b‖

〈a,b〉 = ‖a‖ ‖b‖ cos (ϑ(a,b)) proja(b) =
〈a,b〉
‖a‖2

a

〈a,b〉 =
1

2

(
‖a + b‖2 − ‖a‖2 − ‖b‖2

)
〈a,b〉 =

1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
• Produits vectoriel et mixte dans R3.
1.) Dans une base orthonormée d’orientation positive on a

a× b =

∣∣∣∣a2 b2
a3 b3

∣∣∣∣ e1 −
∣∣∣∣a1 b1
a3 b3

∣∣∣∣ e2 +

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ e3

2.) (a× b)× c = 〈a, c〉b− 〈b, c〉a
3.) a× (b× c) = 〈a, c〉b− 〈a,b〉 c
4.) 〈a× b, c× d〉 = 〈a, c〉 〈b,d〉 − 〈a,d〉 〈b, c〉
5.) 〈a× b, c× d〉 = 〈(a× b)× c,d〉.
6.) Le produit mixte de trois vecteurs a,b, c ∈ V3 est défini par [a,b, c] = 〈a× b, c〉 = 〈a,b× c〉

il est trilinéaire et est donné par le déterminant 3× 3 formé par la matrice dont les colonnes sont les
coefficients des 3 vecteurs.

7.) on a (a× b)× (c× d) = [a,b,d]c− [a,b, c]d.

• Produits extérieur dans le plan. Dans le plan orienté R2, le produit extérieur de deux
vecteurs est

a ∧ b = 〈J(a),b〉
où J est l’opérateur de rotation d’angle π/2 dans le sens positif.

102
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• Courbes. Le vecteur vitesse d’une courbe γ de Rn se note γ̇ La vitesse est V = Vγ(u) =
‖γ̇(u)‖ et l’abscisse curviligne depuis le point initial γ(u0) est

s(u) =

∫ u

u0

Vγ(τ)dτ.

La formule de l’accélération est
γ̈(u) = V̇T + V 2K

où T = 1
V γ̇ et K = 1

V Ṫ est le vecteur de courbure. La courbure de γ est la fonction scalaire
κ(u) = ‖K(u)‖.

• Repère de Frenet. Si γ(u) ∈ R3 est C3 et birégulière, le repère mobile de Frenet est le
repère repère orthonormé direct d’origine γ(u) et de base

T = 1
V γ̇, N =

Ṫ

‖Ṫ‖
=

1

κ
K, B =

γ̇ × γ̈
‖γ̇ × γ̈‖

.

La torsion est τ = 1
V 〈B, Ṅ〉 et on a les équations de Serret-Frenet :

1
V Ṫ = κN, 1

V Ṅ = −κT + τB, 1
V Ḃ = −τN

On a aussi
κ =

‖γ̇ × γ̈‖
V 3

, τ =
[γ̇, γ̈,

...
γ ]

‖γ̇ × γ̈‖2
=

[γ̇, γ̈,
...
γ ]

κ2V 6

Le vecteur de Darboux est le champ de vecteurs le long de γ défini par

D = τT + κB

• Surfaces paramétrée. Si ψ : Ω → R3 est une surface paramétrée, le repère mobile adapté
est

b1 =

−→
∂ψ

∂u1
(u1, u2), b2 =

−→
∂ψ

∂u2
(u1, u2), ν =

b1 × b2

‖b1 × b2‖
b1,b2 engendrent le plan tangent à la surface au point p = ψ(u1, u2) et ν est le vecteur normal.
Si f(x, y, z) = 0 est une équation pour la surface alors on a aussi

ν = ±
−→
∇f
‖
−→
∇f‖

.

Le tenseur métrique G = (gi,) est la matrice de Gram de {b1,b2}, i.e. gij = 〈bi,bj〉.
L’élément d’aire infinitésimale est

dA =
√
g11g22 − g2

12 · du1du2 = ‖b1 × b2‖du1du2

et l’élément de longueur infinitésimale est

ds =
√
g11 du2

1 + 2 g12 du1 du2 + g22 du2
2
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• Repère de Darboux, courbures normales et géodésiques. Si γ est tracée sur la surface
S, on note µ = ν ×T. Le repère de Darboux est {ν,Tγ ,µ}. La courbure normale, la courbure
géodésique et la torsion géodésique de γ sont définis par

kn(u) = 〈Kγ(u),ν(u)〉, kg(u) = 〈Kγ(u),µ(u)〉 et τg(u) = 1
Vγ(u)〈ν̇(u),µ(u)〉.

Les équations de Darboux sont :

1
V Ṫ = kgµ + knν,

1
V ν̇ = −knT + τgµ,

1
V µ̇ = −kgT− τgν.

• Application de Weingarten et deuxième forme fondamentale. L’application de Wein-
garten Lp en un point d’une surface S est l’endomorphisme de TpS défini par Lp = dνp.
La deuxième forme fondamentale est la forme bilinéaire sur TpS définie par hp(ξ, η) = −〈Lp(ξ), η〉.
Les coefficients de hp dans la base adaptée {b1,b2} se calculent par :

hij = h(bi,bj) = 〈ν,bij〉 ,

où

bij =
∂bj
∂ui

=
∂2 ψ

∂ui∂uj

Les coefficients de la matrice de l’application de Weingarten dans la même base sont définis par

L(bi) =
∂ν

∂ui
= `1ib1 + `2ib2.

Pour calculer cette matrice il est commode d’utiliser la relation H = −GL, qui implique

L = −G−1H.

Les courbures principales, de Gauss et moyenne de S en p sont les valeurs propres, le déterminant
et la demi trace de −Lp. Le point p est ombilique si les deux courbures principales coïncident en
ce point.
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