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Avant-Propos

La géométrie différentielle étudie les courbes et les surfaces dans le plan et ’espace, et plus
généralement les variétés différentiables. Dans ce domaine, nous appliquons les techniques du
calcul différentiel et intégral a divers objets géométriques, nous permettant ainsi d’explorer leurs
propriétés par des méthodes analytiques.

Ce polycopié accompagne le cours de géométrie différentielle 1 du programme de 2éme année du
bachelor en mathématiques a 'EPFL. Tout au long de I’année, des exercices hebdomadaires vien-
dront compléter ce document. Ces exercices sont une partie intégrante du cours : ils constituent
une part fondamentale des compétences et connaissances que vous devrez maitriser.

Votre participation active est essentielle; je vous encourage vivement & partager vos remarques,
questions ou corrections éventuelles sur le forum dédié. Vos retours sont précieux pour améliorer
la qualité du polycopié et du cours en général. De plus, d’autres ressources et documents seront
mis & disposition sur le site Moodle du cours.

Je vous souhaite une enrichissante découverte de la géométrie différentielle.

Marc Troyanov,
septembre 2024

Voici quelques références récentes, parmi d’autres possibles, sur le sujet de ce cours. Il existe
aussi d’excellentes références plus classiques, & commencer par le traité en 3 volumes de Gaston-
Darboux publiés entre 1887 et 1896.

1. Kobayashi, Shoshichi Differential geometry of curves and surfaces. Springer Undergraduate
Mathematics Series. Springer, Singapore, 2021.

2. Needham, Tristan Visual differential geometry and forms, a mathematical drama in five
acts. Princeton University Press, Princeton, NJ, 2021.

3. Toponogov, Victor Andreevich Differential geometry of curves and surfaces. Birkh&user
Boston, Inc., Boston, MA, 2006.

4. Umehara, Masaaki; Yamada, Kotaro Differential geometry of curves and surfaces. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

5. Marc Troyanov Cours de Géométrie. Presses Polytechniques et Universitaires Romandes

(PPUR), 2009.
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Chapitre 1

Rappels sur les espaces vectoriels
euclidiens et pseudo-euclidiens

1.1 Définitions de bases

Définitions. (i) Un espace vectoriel euclidien est un espace vectoriel de dimension finie sur le
corps des réel muni d’un produit scalaire. On notera génériquement un tel espace par (E", (, }),
ot n € N est la dimension de 'espace vectoriel et ( , ) est le produit scalaire. Rappelons qu’un
produit scalaire est une forme bilinéaire, symétrique et définie-positive sur I’espace vectoriel E™.

En particulier, le produit scalaire standard sur R™ est défini par
n
(T, y) = 21y1 + -+ Totin = > Tl
i=1
(ii) La norme d'un vecteur z € E™ est le nombre réel défini par

2]l = v/ (z, z).

La norme est bien définie car (x,z) > 0 pour tout z.

(iii) Une base {eq, ..., e, } de I'espace vectoriel euclidien = € E™ est dite orthonormée si (e;, e;) =
dij (le symbole de Kronecker). Cela signifie que les vecteurs de cette base sont de norme 1 et
qu’ils sont deux & deux orthogonaux.

I est facile de démontrer 'existence de bases orthonormées

Le produit scalaire peut se retrouver & partir de la norme en utilisant la formule de polarisation :

1
(o) = (lz+l* = llz = )

Les deux identités suivantes sont également utiles :
1
() = 5 (le+ylI” = ll=]* = llyll?)

1
=5 (ll* + ylI* = ll= = y]1*) -
Le résultat suivant est une propriété fondamentale des produits scalaires.

Proposition 1.1. (Inégalité de Cauchy-Schwartz.) Pour tous vecteurs z,y de l’espace euclidien
E™ on a
(2, 9)| < [l[[[ly]-

De plus on a égalité si et seulement si x et y sont colinéaires.
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Preuve. On pose a = (x,y), que 'on suppose non nul (sinon le résultat est trivial), et p(t) =
|ltaz + y||*. On calcule en utilisant les propriétés du produit scalaire :

p(t) = |taz + y||* = (taz + y, tax +y) = ||2[a®* + 20>t + [|y||?,

Ainsi p(t) est un polyndéme a coefficients réel du second degré qui est > 0 pour tout t € R.
Par conséquent le discriminant A = 4la|? (|a|? — ||z]|?||y[|?) doit étre négatif ou nul, c’est-a-dire
la| < ||z|||ly]|. De plus on a égalité si et seulement s'il existe ¢ € R tel que y = —taz.

O
Proposition 1.2. La norme vérifie les propriétés suivantes pour tous z,y € E™ et A € R :
(a) ||z]] > 0 et ||z|| =0 si et seulement si x = 0.
(b) 1Azl = [Alll]l.
(¢) llz £yl < llzll + [lyll-

Preuve. Les deux premiéres propriétés suivent facilement des définitions. La troisiéme propriété
est une conséquence de 'inégalité de Cauchy-Schwartz :

2
le £ ylI* = [ll® + 2, y) + Iyll* < l=l* + 2=yl + 517 = () + lyl)®-

Comme les normes de z, y et = + y sont positives ou nulles, on peut prendre la racine carrée
dans l'inégalité ci-dessus, ce qui nous donne ||z £+ y|| < [|z|| + ||y]|-
O

Définitions. Dans un espace vectoriel euclidien :

(1.) La distance entre deux éléments = et y de E" est définie par
d(x,y) = lly — x|
(2.) L’angle « € [0, 7] entre deux vecteurs non nuls z,y € E" est défini par

(z,y)

cos(a) = ——.
[yl

Cette notion est bien définie car d’une part ||z||||ly|| # 0 lorsque x et y sont non nuls et d’autre part

on a
IRt ) B
[l [[{ly ]
par l'inégalité de Cauchy-Schwartz. Notons que le produit scalaire est parfois défini géométriquement

a partir de la notion d’angle via la formule

(@, y) = [lz[llly]| cos(),

mais du point de vue de I'algébre linéaire, c’est le produit scalaire qui est la notion de base et 'angle
est une notion dérivée.

(3.) L’aire du parallélogramme P(z,y) construit sur les vecteurs x et y est définie par

Aire (P(z,)) = \/ Ile]2lly]12 - (. )*.

A nouveau, I'inégalité de Cauchy-Schwartz justifie aussi que Aire (P(z,y)) est bien définie. On vérifie
d’autre part facilement que

Aire (P(z,y)) = [lz[l[lyll sin(c),
ce qui correspond & la définition de 'aire d’un parallélogramme comme le produit de la “base” par
la “hauteur”.
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(4.) On dit que deux vecteurs x,y € E™ sont orthogonauz, et on note x L y, si (z,y) = 0.

Proposition 1.3. Tout espace vectoriel euclidien E" est un espace métrique pour la distance
définie ci-dessus.

Preuve. Nous devons vérifier que la distance d(z,y) = ||y—=z|| vérifie les trois propriétés suivantes
pour tous z,y,z € E™ :

(i.) d(z,y) > 0 et d(x,y) = 0 si et sulement si z = y.

(ii.) d(z,y) = d(y,z).
(iii.) d(z,z) < d(z,y) + d(y, z) (inégalité du triangle).
Ces propriétés se déduisent treés facilement de la proposition 1.2. Vérifions par exemple l'inégalité
du triangle :

d(@,2z) = llz =z = l(z —y) = (y = 2)| < [|(z =Y + [[(y — 2)|| = d(=,y) + d(y, 2).

O]

Proposition 1.4. Les conditions suivantes suivantes sont équivalentes pour deux vecteurs non
nuls ¢,y € E* :

(i) =Ly, ie (x,y)=0.

(i) L’angle 0 entre x et y est égal g
(iii) On a [l +y| = [z -yl
(iv) On alx+y|?=||z||*+||y||* (théoréme de Pythagore).

Preuve. L’équivalence entre (i) et (ii) vient de

H:g & cos(0) =0 < (r,y) =

L’équivalence entre (i) et (iii) vient de
4a,y) = |z +yl* = llo -yl
et celle entre (i) et (iv) de

2(z,y) = o +yl* = (lz]* + Iy [1*).-

1.2 Orientation d’un espace vectoriel réel de dimension finie

Dans ce bref paragraphe nous définissons la notion d’orientation d’un espace vectoriel de dimen-
sion finie sur le corps des réels. Rappelons que si {ui,...,u,} et {v1,...,v,} sont deux bases
d’un espace vectoriel V, alors on appelle matrice de changement de base de la base {u;} vers la
base {v;} la matrice P = (p;;) définie par

n
vj = E Diji
i=1
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Définition. On dit que deux bases {u1,...,u,} et {v1,...,v,} d'un espace vectoriel réel ont la
méme orientation si le déterminant de la matrice de changement de base P est positif. Sinon on
dit que les bases ont des orientations opposées.

Il n’est pas difficile de vérifier que “avoir la méme orientation” est une relation d’équivalence sur
I’ensemble des bases de V. De plus il existe exactement deux classes d’équivalences.

Définition. On appelle orientation de V le choix d’une classe d’équivalence pour cette relation.
Un espace vectoriel réel orienté est un espace vectoriel muni du choix d’une orientation.

Une orientation de V' est donc définie dés qu’on a choisi une base B = {vy,...,v,} et qu’on 'a
déclarée d’orientation positive. Toute autre base est dite d’orientation positive si elle a la méme
orientation que B; on dit aussi que c’est une base directe. Une base est dite d’orientation négative
si elle a I'orientation opposée a la base B.

Finalement, on dit qu’une application linéaire f : V' — V préserve ['orientation si son détermi-
nant est positif et qu’elle inverse l'orientation si son déterminant est négatif. Cette notion est
indépendante du choix d’une orientation sur V. On note

GLy (V) = {f € GL(V) | det(f) > 0},

c’est un sous-groupe du groupe linéaire général de V.

1.3 Similitudes et isométries d’un espace vectoriel euclidien.

Définition. Un similitude de rapport X > 0 d’un espace vectoriel euclidien E™ est une application
bijective f : E™ — E™ telle que

d(f(x), f())) = Md(z,y),  Va,ycE"

Une isométrie de E™ est une similitude de rapport 1. C’est donc une bijection qui respecte les
distances.

Il est facile de vérifier a partir de cette définition que les similitudes de E™ forment un groupe
et que les isométries forment un sous-groupe normal de ce groupe. Pour décrire le groupe des
isométries, nous commencons par décrire les isométries qui fixent I’origine.

Lemme 1.5. Toute isométrie g : E — E d’un espace euclidien E™ qui fixe l'origine vérifie
(a) g préserve le produit scalaire, i.e. (g(x),g(y)) = (x,y) pour tous x,y € E™.
(b) L’application g est linéaire.

Preuve. (a) Puisque g est une isométrie, on a ||g(y) — g(x)|| = ||y — z|| pour tous z,y € E".
Notons aussi que ||g(z)|| = ||z|| pour tout x car

lg(@)[| = llg(x) = Ol = llg(x) = g(0)I[ = [l = O = [,

puisque ¢g(0) = 0. On a donc

(g(x),9)) = 5 (lg@)I* + lg@)I” = llg(y) — g(=)?)
(lyll* + =l = lly — ||?)

= (z,y).

1
2
1
2
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(b) Nous pouvons maintenant montrer la linéarité de g. Soient x € E un vecteur quelconque et
a € R, alors

lg(az) — ag(x)||* = [lg(az)||* — 2(g(ax), ag(x)) + *||g(z)||*
= [lg(az)|? — 2a(g(azx), g(x)) + o?|g()|?
= |laz|? - 2a(ax, x) + o?||z||?
—0,

ce qui prouve que g(azx) = ag(z).

D’autre part, si xz,y € E sont deux vecteurs, alors

lg(x) + g(y) — g(z +y)II> = (g(x) + g(y) — g9(z + v), 9(x) + g(y) — g(xz +y))
= lg@)[1*> + llg@)II> + llg(z + »)II* + 2(g(x), 9(v)) — 2(g(x), g(x +y)) — 2{g(x + ), 9(»))
= lz]® + Iyl + = + ylI* + 2(z,y) — 2(z,z +y) — 2(z + v, )
=@+ty—(z+y)hz+y—(r+y) =0,

ce qui prouve que g(z +y) = g(x) + ¢g(y). On a donc démontré qu'une isométrie de E qui fixe

I’origine est une application linéaire.
O

Théoréme 1.6. L’application [ : E — E est une similitude de rapport A si et seulement s’il
existe un vecteur b € E" et une isométrie linéaire g : E" — E" tels que f(x) = Ag(x) + b pour
tout x € E™.

On dit que Ag est la partie linéaire de l'isométrie f et b est le vecteur de translation de f.
Remarquons que ce vecteur est donné par b = f(0).

Preuve. On définit une application g : E — E par g(z) = 1 (f(z) — £(0)). Alors il est clair que
g(0) =0 et g est une isométrie car

(g2, 9(9) = lg(x) ~ 9(»)]
= 15 (F(&) ~ £(O)) ~ 5 (F(w) ~ FO)]

= 1)~ F)]
= llz ~ .

—_

Par le lemme précédent, g est linéaire. On a donc montré que Papplication f s’écrit f(x) =
Ag(z) +b. ot b= f(0) € E est un vecteur constant et g est une isométrie linéaire.
O

Corollaire 1.7. Une application f : R™ — R" est une isométrie pour le produit scalaire standard
de R" si et seulement si on a

flx) = Az -+,
ot b= f(0) €R" et A€ GL,(R) est une matrice vérifiant ATA =1,.
Preuve. Par définition du produit scalaire standard de R", on a

<62‘, €j> = (Sij,

ou {ej,...,e,} est la base canonique de R™ (cette relation exprime que la base canonique est
une base orthonormeée).
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D’autre part on a Ae, =Y 1" | aire; et Aeg = 2?21 ajsej, par conséquent :

57"5 = <€7’> es> = <A€T>A63> = <§n: Air€q, En:ajsej> = zn: En:airajs(sij = En:airais = (ATA> ,
i=1 j=1 i=1 e

i=1 j=1

ce qui prouve que ATA =1,.
O

1.4 Le groupe orthogonal

Le résultat précédent justifie la définition importante suivante :

Définition 1.8. Une matrice A € M, (R) est orthogonale si AT A = I,,. L’ensemble des n x n
matrices orthogonales se note

O(n)={Aec M,(R) | ATA=T1,}

Proposition 1.9. Pour toute matrice A € M,(R) les propriétés suivantes sont équivalentes :
(i) A€ O(n), c’est-a-dire ATA = I,,.
(i) A est inversible et A~ = AT,
(iii) ||Az|| = ||z|| pour tout z € R™.
(iv) (Azx, Ay) = (x,y) pour tous x,y € R".
(v) Les colonnes de A forment une base orthonormée de R™.
(vi) Les lignes de A forment une base orthonormée de R™.
(vii) Pour tout vecteur b € R™, Uapplication affine f : R™ — R™ définie par f(x) = Az + b est
une 1sométrie.
De plus O(n) est un sous-groupe de GL,(R) et pour tout A € O(n) on a det(A) = £1.

Dans cette proposition, le produit scalaire est le produit scalaire standard de R™ et la norme et
la distance sont associées a ce produit scalaire. Nous laissons la preuve de cette proposition en
exercice.

Remarquons que 'application déterminant définit un homomorphisme de groupes
det : O(n) — {£1},
le noyau de cet homomorphisme est le groupe spécial orthogonal :

SO(n) = O(n) N SL,(R) = {A € M,(R) | ATA =1, et det(A) = +1}.

La proposition suivante décrit les matrices orthogonales de taille 2 x 2.
Proposition 1.10. Pour toute matrice A € O(2), il existe § € R tel que

[ cos(8) —sin(0) . -
A=Ry= ( sin(0)  cos(d) )’ si det(A) = +1,
B ~( cos(0) sin ()
A=56/2 = ( sin(f) —cos(0)
La matrice Ry représente une rotation d’angle 6 et Sg o représente la réflexion a travers la droite
vectorielle formant un angle 0/2 avec le premier vecteur ey de la base canonique.

), si det(A) = —1.
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Preuve. Les colonnes d’une matrice orthogonale A € O(2) doivent former une base orthonormée

cos(6) )

de R2. 1l existe donc @ € (—, 7] tel que la premiére colonne s’écrive (

sin(6)
La deuxiéme colonne de A doit étre un vecteur de norme 1 orthogonal & la premiére colonne, par
—sin(6 . : .
conséquent £ < ::;EHi > Ceci démontre que ou bien A = Ry ou bien A = Sp 5.

Pour voir que Ry est une matrice de rotation, on peut vérifier que I'angle orienté entre tout
vecteur non nul x et Ry(x) est égal a 6.

Finalement, Sy/o est une symétrie car cette matrice posséde deux vecteurs propres orthogonaux
de valeurs propre +1 et —1 respectivement. Ces vecteurs propres sont (au signe prés)

(o) o ("))

Nous laissons la vérification de ces deux derniéres affirmations en exercice.

1.5 Un théoréme d’Euler

Le théoréme d’Euler décrit les isométries directes fixant un point dans I’espace a trois dimensions.

Théoréme 1.11 (Théoréme d’Euler). Toute isométrie directe f : E3—E? fivant un point est ou
bien [’identité ou bien une rotation autour d’un axe passant par ce point.

Preuve. On peut supposer que f fixe 'origine O. Alors f est une transformation linéaire. On
a f(x) = Ax. On sait également que A € SO(3) (cest-a-dire ATA = I et det(A)= +1). Pour
montrer qu’il existe un axe, il suffit de montrer qu’il existe un vecteur propre de valeur propre
A = 1. En effet, s’il existe un vecteur non nul a tel que Aa = a, alors la droite R a est fixe pour
la transformation f (c’est donc un axe pour f) car

f(ta) =A(ta) =tA(a) = ta

pour tout ¢ € R. Pour montrer que 1 est une valeur propre de A, il faut montrer que

det(A —TI) =0.
On a
det(A—T) = det(A")det(A—T)=det(A"(A-T))
N—_——

=1
= det(ATA— A" =det(T— A") =det(I - A).

Or, comme (A — I) est une matrice 3 x 3 , on a det(A —I) = —det(I — A), donc
det(I— A) = —det(I— A).

Il en résulte que det(I — A) = 0.

Il faut encore prouver que f est bien une rotation autour de I'axe Ra; considérons pour cela un
vecteur u; de longueur 1 et perpendiculaire & a et notons us := a x uj. Observons que Auy et
Aus sont aussi orthogonaux a l'axe car

<Aui,a> = (Aui,Aa> = (ui,a> =0.
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Ceci implique que les vecteurs Auy et Aus sont des combinaisons linéaires de uy et ug, et comme
ces vecteurs sont aussi de longueur 1 et orthogonaux, on a

Au; = cos(f)u; + sin(f)ug,
Auy = —sin(f)ug + cos(f)us
ou # est 'angle entre u; et Auy.
La matrice de la transformation linéaire A dans la base orthonormée uy, us, a est donc la matrice
cos(f) —sin(6)
0

0
sin(f#) cos(d) O
0 0 1

et il s’agit bien d’une rotation autour de I’axe Ra.

O]

Rappelons que la trace d’'une matrice est la somme de ses éléments diagonaux. On prouve dans
le cours d’algébre linéaire que deux matrices semblables ont la méme trace. Donc la trace de A
dans la base originale coincide avec la trace de A dans la base uj, us, a. Cette trace vaut donc
1+ 2cos(f); on a prouvé le résultat suivant.

Proposition 1.12. L’angle 6 d’une rotation A € SO(3) est donné par l’équation

Trace(A) = 1+ 2cos(h).

Certaines matrices de rotation sont trés simples. Par exemple la rotation d’angle 8 autour de
I’axe Ox est donnée par la matrice

1 0 0
R;(0)=1| 0 cos(f) —sin(h)
0 sin(f) cos(9)
et la rotation d’angle 0 autour de I'axe Oy est donnée par la matrice
cos(#) 0 sin(6)
R,(0) = 0 1 0
—sin(f) 0 cos(f)
(observer la place du signe — dans cette matrice!).
Finalement, la rotation d’angle 6 autour de I’axe Oz est donnée par la matrice
cos(f#) —sin(f) O
R.(0)= | sin(d) cos(f) O
0 0 1

Si on effectue une rotation d’angle ¢ autour de l’axe Oz, puis une rotation d’angle 6 autour de
I’axe Oy et enfin une rotation d’angle ¥ de nouveau autour de I’axe Oz, on obtient une matrice

A= R:(¢) o Ry(0) o R() =
cos (1) cos (0) cos (¢) — sin (¢) sin (¢) — cos () cos (8) sin (¢) — sin (¢) cos (¢)  cos () sin ()
( sin (1) cos (0) cos (¢) + cos (¢) sin (¢) —sin (¢) cos (#) sin (¢) + cos (¢) cos (¢p)  sin (¢) sin (6) )
—sin (0) cos (¢) sin (0) sin (¢) cos (0)
Toute matrice de rotation dans R® s’obtient de cette maniére (avec 0 < ¢ <2m, 0 <O < 7et
0 < ¢ < 2m). Les angles 1, 6, ¢ s’appellent les angles d’Euler de la rotation A.
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1.6 Géométrie vectorielle dans I’espace euclidien orienté E?

Soit E3 un espace vectoriel euclidien orienté de dimension 3. On appelle produit vectoriel de deux
vecteurs x,y € E3 le vecteur x x y € E3. vérifiant les conditions géométriques suivantes :

(i) (xxy)Lx et (xxy)Lly.
(i) ||x x y|| = aire(P(x,y)), ou P(x,y) est le parallélogramme construit sur les vecteurs x
ety.
(iii) Si x et y sont linéairement indépendants, alors {x,y,x x y} est une base directe de E3.
La proposition suivante justifie cette définition :
Proposition 1.13. Le produit vectoriel est uniquement défini par les trois conditions ci-dessus.

De plus, si {e1,es,e3} est une base orthonormée directe de E3, alors le produit vectoriel de
X =x1€] + Toey + x3€3 et 'y = y1€1 + yoes + yses se calcule par la formule suivante :

X Xy = (z2y3 — x3y2)e1 + (x3y1 — 1y3)e2 + (T1y2 — T2y1)es. (1.1)

Preuve. Si x et y sont linéairement dépendants, alors aire(P(x,y)) = 0, par conséquent x X y
doit étre le vecteur nul, et on vérifie facilement que dans ce cas le membre de droite de (1.1) est
en effet nul. Lorsque x et y sont linéairement indépendants, I’ensemble des vecteurs qui sont & la
fois orthogonaux & x et a y est un sous-espace vectoriel de dimension 1. Ce sous-espace contient
exactement deux vecteurs dont la norme est égale a aire(P(x,y)), et pour un seul de ces deux
vecteurs, que 'on notera x X y, la base {x,y,x x y} est d’orientation positive.

Nous devons maintenant prouver que le produit vectoriel est donné par la formule (1.1). Cela
demande un peu de calcul. Notons

z = (x2y3 — x3y2)e1 + (z3y1 — x1y3)ex + (T1y2 — z2y1)es,

et observons pour commencer que

1 Y1 T1
(z,x) = (w2y3 — x3y2)x1 + (T3y1 — x1y3)T2 + (T1y2 — Xoy1)w3 =det | 22 y2 w2 | =0.
T3 Y3 T3

De méme (z,y) = 0, ce qui montre que z est orthogonal & x et y. Pour montrer la propriété (ii),
on calcule le carré de la norme® de z, et on en réorganise les termes :

2] = (w2ys — 23y2)” + (z3y1 — 21y3)° + (T1y2 — 211)?

= ZJU??JJQ —2 Z TikYiYyj

i#] 1<j
= Z%QZ/JQ - 2%2%2 +22$iyi$jyj
0 i i<j

2
_ (z ) ) - (z y)
; j i
= ||lz||?[|z]|* - (x,¥)?

= aire(P(x,y))*.

1. Il est souvent plus commode de calculer le carré d’une norme que la norme elle-méme.
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Finalement, pour prouver (iii) on remarque que si x et y sont linéairement indépendants, alors
z est non nul et donc

rr Y1 2
det | 22 y2 22 | = (v2y3 — w3y2)21 + (T3y1 — 21Y3)22 + (T1y2 — T2y1)23
r3 Y3 =3
=2+ 25+ 23 = |2 > 0,
ce qui implique que {x,y,z = x X y} est une base directe. O

Remarque. Le produit vectoriel peut aussi s’écrire

xr2 Y2
T3 Y3

r1r Y1
T3 Y3

r1 Y1
T2 Y2

XXy= e + es,

que l'on écrit aussi parfois sous la forme d’un “déterminant formel”

1 Y1 el
XXYy=|x2 Y2 €3
T3 Y3 €3

Observons aussi que le produit vectoriel définit une application bilinéaire antisymétrique
x : B3 x E3 — E3.

Définition. On appelle produit mizte de trois vecteurs x,y, w € E3, le produit scalaire

X, y,w] = (x Xy,w).

Il est clair a partir de la formule (1.1) que dans une base orthonormée directe, la produit mixte
est donné par le déterminant suivant :

r1r yir wi
[X,y,VV]:: T2 Y2 W2
r3 Ys w3

Cette quantité représente le volume orienté du parallélépipede P(x,y,w) construit sur les trois
vecteurs.

1.7 Géomeétrie vectorielle dans le plan euclidien orienté E?

Dans ce paragraphe et le suivant nous travaillons dans un espace vectoriel euclidien E? muni d’une
orientation ; on se donne également une base orthonormée directe (i.e. d’orientation positive)

{eleg}.

Par définition les vecteurs a = aje; +ases et b = bye; +boey forment une autre base directe de E2
si et seulement si a1by — agby > 0. Ils forment une base d’orientation négative si a1bs — asb; < 0.
L’opérateur J

On note J : E? — E? I'application linéaire qui est donnée dans une base orthonormée directe par
J(vie] + vae) = —ve1 + v1ey. Sa matrice dans une telle base est donc

(175

L’opérateur J est caractérisée par les propriétés géométriques suivantes :
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(i) ||IIv]] = ||v|| (en particulier J(0) = 0),
(i) Jv L v,
(iii) Si v # 0, alors {v,Jv} est une base d’orientation positive.

En particulier, J ne dépend pas de la base orthonormée directe choisie (mais cet opérateur dépend
de lorientation de E2.)

Géométriquement, I'opérateur J est la rotation qui fait tourner le vecteur v d’un quart de tour
dans le sens positif.

€

Jv

Définition. Le produit extérieur de deux vecteurs a, b € E? est le scalaire a A b € R défini par

aAb=(J(a),b) =—(a,J(b)).

Dans une base orthonormée directe {ej, ez}, le produit extérieur de a = aje; + azez et b =
bie1 + bses est donné par

aAb = (—ase; +ajes, bie; + byez) = arby — azby,

c’est-a-dire :

aAb=det <a1 bl).
as by

Noter aussi que
(aADb)? = (af + a3)(b] + b3) — (a1by + azby)”

Les propriétés suivantes découlent immeédiatement de ces formules :

Proposition 1.14. Le produit extérieur vérifie les propriétés suivantes :
(i) Le produit extérieur est bilinéaire et antisymétrique.

(1)) aAb =0 si et seulement si a et b sont colinéaires.

(i1i) |a A b| = aire(P(a,b)).

(iv) la Ab| < |la]l||b]| et on a égalité si et seulement sia L b

(v) aAb >0 si et seulement si {a,b} est une base directe de E?.

On définit alors Pangle orienté 0o, € (—, 7] entre deux vecteurs non nuls {aj, be} de E? par

0 — Z (a1ba), si aAb >0,
o —l(albg), si aAnb <.

ou Z (ajbg) € [0, 7] est ’angle non orienté. Ainsi 'angle orienté entre a; et by est négatif si et
seulement si ces deux vecteurs forment une base d’orientation négative (et dans ce cas le signe du
sinus de I’angle orienté est négatif). L’angle orienté est complétement déterminé par les formules :

(a,b) ) aAb

cos (Oor) = Talllbl’ sin (Oor) = Talbl
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De la méme maniére, on définit ’aire orientée du parallélogramme construit sur les vecteurs
{a1,ba} € E? par
aire(P(a, b), si aAb>0,

ireo (P(a, b) =
aireor (P(a, b) {—aire(P(a,b), si aAb<O.

On voit donc que

aireo;(P(a, b) = ||al| [|b]| sin (foy) = a A b.



Chapitre 2

Courbes dans 'espace et le plan
euclidien

2.1 Qu’est ce qu’une courbe?

La notion mathématique de courbe ou de ligne formalise I'idée intuitive d’un objet du plan ou
de I'espace qui est continu et n’a qu’une dimension. Euclide en donne la définition suivante dans
le livre I des Eléments : une ligne est une longueur sans largeur. Les droites, les cercles et les
ellipses sont des exemples familiers de courbes. Dans la vie courante, un fil de fer ou la trajectoire
d’un projectile sont des exemples concrets de courbes.

La formalisation de la notion de courbe conduit & plusieurs concepts qu’il faudra distinguer.
Le premier est celui de « lieu géométrique » des points satisfaisant certaines propriétés : cette
idée nous conduit & la notion implicite d’'une courbe comme ensemble des points satisfaisant une
équation (dans le plan) ou deux équations (dans l'espace de dimension 3). Le second concept
est celui de courbe comme « trajectoire » : on ne congoit plus la courbe comme un ensemble
de points, mais comme un « point mobile », c¢’est-a-dire une fonction d’un parameétre a valeurs
dans le plan ou dans I'espace : c’est le point de vue paramétrique ou cinématique en théorie des
courbes. L’acte de tracer une courbe au crayon noir sur une feuille blanche se décrit par le point
de vue paramétrique, le résultat de cette action, la courbe qu’on a tracée, correspond au point
de vue implicite. Dans ce chapitre, nous privilégions le point de vue paramétrique.

2.2 Notions fondamentales

Dans ce chapitre, on suppose que l'espace est muni d’un systéme de coordonnées fixe. On
I'identifie donc & R™ et on admet que n est un entier quelconque. On supposera, sauf men-
tion du contraire, que le systéme de coordonnées est orthonormé. La norme d’un vecteur v =
(v1,v2,...,vy,) est alors donnée par

Ivll = /o + v+ 402,

et si w = (wy,wa, ..., wy,) est un second vecteur alors leur produit scalaire est donné par
n
<V,W> = E V;W;.
i=1

Définitions. Une courbe paramétrée dans R™ est une application continue « : I — R" :

a:u (ag(u), ag(u), ..., an(u)) € R, uel

14
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ol I C R est un intervalle appelé I'intervalle de paramétrisation de la courbe.

La variable u parcourant l'intervalle I s’appelle le parameétre (elle est aussi parfois notée par les
lettres s, ¢, p ou 0) et 'ensemble

all) ={a(u) |luel} CR"
s’appelle la trace ou le support de la courbe paramétrée a.
On dit que la courbe « est différentiable en ug € I si la limite

d—a(uo) := lim au) = a(uo)
du u—uQ U — Ug

existe. Cette limite s’appelle alors le vecteur vitesse de la courbe a en ug et on le note &(ug) ou
o/ (up).

Remarquons que la direction du vecteur vitesse est tangente a la courbe en «a(ug) car cette di-
rection est la limite des directions prises par une suite de cordes reliant le point p = a(up) & un
point de la courbe se rapprochant du point p.

a(ug)

La vitesse de o en ug est la norme du vecteur vitesse, on la note

Va(uo) = [[é(uo)]l-

Lemme 2.1. La courbe a(u) = (a1(u),...,an(u)) est différentiable en ugy si et seulement si les
fonctions a;(u) sont dérivables en ug. De plus,

G(up) = <(Z);1(uo), e d;zl(u())> .

Si le systéme de coordonnées est orthonormé, alors on a aussi :

Valuo) = \/ (%)) -+ (B2 )

Nous laissons la vérification de ce lemme en exercice. O

Définitions. Voyons quelques définitions supplémentaires.

(a) La courbe a : I — R" est dite de classe C! si elle est différentiable en tout point de I et si
les dérivées
daj

du
sont continues sur 'intervalle I pour tout 7 =1,2,...,n.

Q5 =
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(b)

La courbe est dite de classe C* (oi1 k est un entier) si les dérivées d’ordre m

d™a;
> (u)
du™
existent et sont continues pour tout j =1,2,... ,net tout m=1,2,... k.

Si une courbe est de classe C* pour tout entier k, on dit qu’elle est de classe C®. Si la
courbe est simplement continue, on dit qu’elle est de classe C.

Si a: I — R™ est une courbe de classe C?, alors son accélération est le vecteur défini par

A2

a(u) = W(u)

Soit a une courbe de classe C* et ug une valeur du paramétre. On dit que le point p = a(ug)
est singulier si &(up) = 0 (de fagon équivalente, p est singulier si et seulement si V,,(ug) = 0).
Le point p = a(ug) est régulier s’il n’est pas singulier.

Une courbe est réguliére si elle est de classe C! et si tous ses points sont réguliers.

Le point p = a(ug) sur une courbe de classe C? est birégulier si &(ug) et é(ug) sont
linéairement indépendants.

Une courbe est biréguliere si elle est de classe C? et si tous ses points sont biréguliers.

Le plan osculateur a la courbe o au point p = «(ug) est le plan passant par p et qui est
paralléle aux vecteurs &(ug) et é&(up). Ce plan n’est défini que si p est un point birégulier.

Un point p sur une courbe « : I — R™ est un point double s’il existe deux valeurs distinctes
du paramétre (ug,ug € I , uy # ug) telles que

p=a(u;) = a(us).

Sia: I — R™ est une courbe et si J C I est un intervalle, alors on dit que la restriction de
a a J est un arc de la courbe o (un arc de courbe n’est donc rien d’autre qu'un « morceau
de courbe »).

On dit qu'un arc de courbe est simple s’il ne contient pas de point double.

La droite tangente & la courbe 7 au point régulier v(ug) est la droite T,,v parcourue a
vitesse constante, passant par y(ug) dans la direction du vecteur vitesse (ug) :

Tuoy = A= y(uo) + My(uo), AER

Premiers exemples

1) La cubique dans R3 est la courbe o : R — R3? définie par

afu) = (au, bu?, cu?),

ol a, b, c sont des constantes non nulles. Cette courbe est de classe C'°°, son vecteur vitesse est

a(u) = (a,2bu, 3cu?)

et son accélération est

a(u) = (0,2b,6cu).

La cubique est donc biréguliére et sa vitesse est

Va(u) = ||a(u)| = Va2 + 4b2u2 + 9c2u?.
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2) La courbe 5 : R — R™ définie par

est de classe C°°. Son vecteur vitesse est

Bu) = (2u,3u?,..., (n+1)u"),

et sa vitesse est Vg(u H H = /4u? + n+ 1)u™)?. Cette courbe a un unique point
singulier en 5(0) = (0 0,...,0).
3) La droite passant par les points distincts p = (p1,p2,...,Pn) €t ¢ = (q1,q2, ..., qn) admet la

paramétrisation affine § : R — R"” suivante :

=p+tpg= (p1+t(qg1 —p1),p2 +t(q2 — p2), --es Pn + t(qn — Pn))-

En posant w = ﬁ = (w1, ws, ..., wy), on a d(t) = (p1 + tws, ..., pp + twy,) . Le vecteur vitesse et
la vitesse sont donnés pour tout ¢ par

o(t) =w et Vs(t) =|wl,
et I'accélération est nulle. La courbe est donc réguliére, de classe C™ et sa vitesse est constante.
Son accélération est nulle et la droite n’est donc pas biréguliére.
4) La méme droite admet de nombreux autres paramétrisations, par exemple :
e(t) = p+t3w = (p1 + 3wy, ..., pp + t3wy,) (t € R).
Dans ce cas,
é(t) = 3t>w et V(t) = 3t ||w]|.
Cette courbe est de classe C™ et elle posséde un unique point singulier en £(0) = p.

5) Ou encore

n(t) =p+ Viw = (p1 + %wh---,pn—l-%wn) (t € R).
Cette courbe n’est pas de classe C1, elle n’est en effet pas différentiable en ¢t = 0. Nous avons
pour t # 0 :

1 1
ﬁ(t):gfz/?’w et Vo(t) = 5t~

et donc V;(t) — oo lorsque ¢ — 0.

o lwl,

6) Le cercle de centre p et rayon r dans le plan IT C R™ admet la paramétrisation

27
c(t) =p+rcos(wt)by + rsin(wt)bs 0<t<—)
w
ol p, by, bs est un repére orthonormé dans le plan I et w > 0 est une constante appelée la vitesse

angulaire (on vérifie en effet facilement que ||c(t) — p|| = r). La vitesse de cette courbe est
¢(t) = —wrsin(wt)by + wrcos(wt)by et V.(t) = wr.

Son accélération est

2

é(t) = —w? rcos(wt)by — w? rsin(wt)bs.

Cette courbe est biréguliére, elle est de classe C™, et sa vitesse est constante. Elle admet un
point double puisque ¢(0) = ¢(22).
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7) Le graphe d’une fonction f : I — R de classe C! est la courbe vpid — R? définie par
Vr(x) = (z, f(2)).

Remarquons que dans cet exemple. la variable z est & la fois une coordonnée du plan et le
paramétre de la courbe. Si f est contintiment dérivable, alors la courbe est de classe C! et on a

(@) = (1, f'(z)) et Vy(z) =1+ (f(2))
Cette courbe est toujours réguliére puisqu’en tout point V,Y(x) > 1.
8) L’hélice circulaire est la courbe vy : R — R3 définie par
~v(u) = (a cos(u), a sin(u), bu),
oll a et b sont des réels non nuls. Son vecteur vitesse et son accélération sont donnés par

Y(u) = (—asin(u),acos(u),b)

Y(u) = a(—cos(u),—sin(u),0).
L’hélice circulaire est donc une courbe biréguliére et la vitesse est constante :

19 1=V + 5.

Hélice circulaire

2.3 Champs de vecteurs le long d’une courbe
Définition. Un champ de vecteurs le long d’une courbe v : I — R™ est la donnée d’un vecteur
W(u) = wi(u)ey + wa(u)es + - - - + wy(u)e,

pour toute valeur du paramétre u € I. Le vecteur W (u) est en général considéré comme un
vecteur fixe d’origine y(u), mais on peut aussi le voir comme un vecteur libre.

Champ de vecteurs le long d’une courbe.

Le champ de vecteurs W (u) est dit de classe C* si les dérivées de wy, wa, . . . wy, existent et sont
continues jusqu’a 'ordre k.
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Exemples de champs de vecteurs

(1) Si~ est de classe C?, alors son vecteur vitesse définit un champ u — “/(u).
(2) Si~ est de classe C2, alors son accélération définit un champ u +— 5(u).

(3) SiW(u) et Z(u) sont deux champs de vecteurs le long de la courbe vy : I — R™et f,g: [ = R
sont deux fonctions, alors

w= f(u)W(u) + g(u)Z(u)
est un nouveau champ de vecteurs le long de la courbe.

(4) Si W(u) est un champ de vecteurs de classe C¥, alors sa dérivée W (u) est un champ de
vecteurs de classe C*~1 et W(u) est un champ de classe C*~2.

(5) En dimension 3, un autre champ est donné par v — W (u) x Z(u).

(6) Si~,pB:I+— R"sont deux courbes ayant méme intervalle de paramétrisation , alors on peut
définir un champ de vecteurs le long de v par

Ce champ s’appelle le champ de poursuite de la courbe [ depuis la courbe 7.

(7) Un champ important est le vecteur tangent d’une courbe réguliére v : I — R” de classe C'.
C’est le champ de vecteurs le long de la courbe obtenu en normalisant le vecteur vitesse :

AW AW
) = B = %)y

(8) Le vecteur normal principal d’une courbe biréguliére v de classe C? est le champ de vecteurs
le long de la courbe défini par

() — (5(w), Ty () - T (u)
N () = ) = ), T () - T ()]

Exercice. Vérifier que, en chaque point d’une courbe biréguliére, les vecteurs T, (u) et N, (u)
forment un repére orthonormé du plan osculateur.

Lemme 2.2 (Régle de Leibniz). Soient W (u) et Z(u) deuz champs de vecteurs de classe C! le
long de la courbe v : I — R™, alors

d

= (W), Z(w) = (W(w), Z(w) + (W(u). Z(u)).

Sin =3, alors on a de méme

et sinm =2,
d

du

Preuve. Démontrons la premiére formule. Pour simplifier on écrit

(W (u) A Z(u)) = W (u) AZ(u) + W(u) AZu).
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On a alors par bilinéarité
W(ute) Z(u+te) — W(u) - Z(u)
= (W(u+2)-Z(u+2) = W) Zu+e)) + (W) Z(u+2) - W(u) - Z(u)
- (W(u te)— W(u)) Z(u+e)+ Wu) - (Z(u te)— Z(u)).

Il suffit de diviser cette identité par ¢ et faire tendre € vers 0 pour obtenir le lemme. Les autres
formules se vérifient de la méme maniére.

O]

Le corollaire suivant est important et sera fréquemment utilisé dans la suite :
Corollaire 2.1 (a) Si Wq(u) et Wa(u) sont deuz champs de vecteurs de classe C1 le long de
v tel que (Wi(u), Wa(u)) est constant, alors on a

(W1 (1), Wa(u)) = —(Wi(u), Wa(u))

pour tout u € I.
(b) Si W (u) est un champ de vecteurs de classe C1 le long de v tel que ||[W|| est constant, alors

W (u) est orthogonal & W (u) pour tout u € 1.
Preuve. L’affirmation (a) est une conséquence immédiate de la régle de Leibniz et (b) découle
de (a).

0
2.4 Longueur et abscisse curviligne

Définition. La longueur d'un arc de courbe + : [a,b] — R™ de classe C'! par morceaux est
I'intégrale de sa vitesse :

b
()= [ vi@a ou v, = i)

Exemple 2.3. 1) Il est clair que si la vitesse est constante : V. (t) = v, alors on a
ly)=v-(b—a).

Ainsi, la longueur d’un chemin parcouru & vitesse constante est égale a la vitesse multipliée par
le temps de parcours :
longueur = vitesse x temps.

2) Comme cas particulier, nous avons le segment [p, g| paramétré par

0(t) = (pr + (@ = p1), -, pn + t(gn — pn));
avec t € [0, M]. On a vu que Vs(t) = ||pg|| = |lg — pl|, et donc

£(0) =Mllq—p|-

3) L’arc de cercle de centre p et rayon r dans R? est paramétré par

c(0) = (p1 + rcos(6), p2 + rsin(h)),
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ou # varie de 0y a 6;. La vitesse de cette courbe est constante : V.(0) = r, et donc
01
te) = / Vido = r (61 — o).
0o

On a donc montré que la longueur d’un arc de cercle est égale au produit du rayon par l’angle
qui sous-tend l’arc.

4) La longueur du graphe 7 : [a,b] — R? de la fonction f : [a,b] — R est donnée par

b b
top) = [ V@de= [ VITT@Rda.

Voyons & présent quelques propriétés importantes de la longueur.

Proposition 2.4. Si g : R" — R" est une similitude de rapport A > 0 et v : [a,b] — R™ est un
arc de courbe de classe C*, alors 7 := gor~y: [a,b] — R"™ est aussi de classe C' et

€(7) = M(7).
En particulier la longueur d’une courbe est invariante par isométrie.

Preuve. On sait que toute similitude g est de la forme g(x) = AAz + b, ou b est un vecteur
et A une matrice orthogonale. On a donc J(u) = AAvy(u) + b, et, par la régle de Leibniz,

F(u) = My (u) + AM3(u) + b = AA5(v)

puisque A et b sont constantes. Comme A est une matrice orthogonale, on a

Vi(u) = 3w = A3 (@) = M3 ()] = AV, (w),

et donc
b b
07) = / Vi (u)du = )\/ Vy(u)du = M(7).
O

Proposition 2.5 (additivité de la longueur). Soit « : [a,b] — R™ une courbe de classe C' et
¢ € [a,b]. Notons B := al, 4 [a,c] = R" ety:= a.y: [c,b] = R" les restrictions de o auz
intervalles [a, c] et [c,b]. Alors

tla) = £(B) +£(7).

Preuve. Cette proposition découle de la propriété correspondante de I'intégrale, nous laissons

le-la lecteur-ice compléter les détails.
O

Proposition 2.6. Pour tout arc de courbe « : [a,b] — R™ de classe C on a

d(a(a), a(b)) < l(a).
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Cette proposition dit que le plus court chemin reliant deux points est le segment de droite reliant
ces deux points.

Preuve. Quitte a composer « par une isométrie, on peut supposer que a(a) =0 = (0,0,...,0)
et a(b) = de; = (d,0,...,0), oit d = d(a(a), a(b)). Ecrivons a(t) = (x1(t), z2(t), ..., z,(t)) dans
un systéme de coordonnées orthonormé, alors

, b/ n 1/2 b b
e<a)—/ \a(t)udt—/ (Zd;?(t)) dtz/ \:’cl(t)dtzf i1 (8)dt = 2 (b) — 1 (a) = d.
a a \;41 a a

O

Définition 2.7. Soit o : I — R™ une courbe paramétrée de classe C' et ug € I une valeur
du parametre. L’abscisse curviligne (aussi appelé le paramétre naturel) sur a correspondant au
point initial po = a(ug) est la fonction s, : I — R définie par

Sa(u) = /u u Vo (r)dr.

L’abscisse curviligne mesure donc la longueur du chemin parcouru sur la courbe depuis le point
initial, elle est négative avant le point initial et positive aprés :

B Uy ) siu=ug
sa(u) = (g y)  stu < uo.

Lorsqu’il n’y a pas de risque de confusion, nous noterons l’abscisse curviligne par s(u) au lieu de
Sa(u).

2.5 Changement de paramétrisation d’une courbe

La notion de courbe que nous avons introduite plus haut est une notion cinématique?®, i.e. fondée
sur la notion de paramétrisation. Il est naturel, d’un point de vue géométrique, d’admettre qu'une
« méme » courbe puisse avoir plusieurs paramétrisations distincts.

Définition. Soit «(t) (t € I) une courbe paramétrée. On dit qu’une courbe S(u) (u € J) est
une reparamétrisation directe de « s’il existe une bijection

h:1I—J

transformant le paramétre ¢ en u = h(t) et telle que
a) h est contintiment différentiable ;

b) K(t) > 0 quel que soit t € I;

c) a=pfoh.

Le diagramme triangulaire suivant représente ls situation schématiquement :

1. Le mot cinématique vient du grec kivnois, qui signifie « mouvement ».
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Observons que les deux courbes ont alors la méme trace, i.e. a(I) = 3(J). Les vecteurs vitesses
sont reliés par
_ B

- = — !
dt du dt h(?) du

En particulier, comme h'(t) # 0, on voit que les courbes « et B ont les mémes points singuliers.

do _ df du (2.1)

Les formules ci-dessus montrent en particulier que lorsqu’on reparamétrise une courbe, celle-ci
ne change pas de sens de parcours (car les vecteurs vitesses des deux courbes ont méme direction
et méme sens). On peut toutefois inverser le sens de parcours d’une courbe par une procédure
similaire & une reparamétrisation.

Définition. On dit qu’une courbe S(u) (u € J) est une reparamétrisation indirecte, ou une
inversion de la courbe a(t) (¢t € I) s’il existe une bijection

h:1I—J

transformant le paramétre ¢ en u = h(t) et telle que
a) h est continiiment différentiable ;

b) h(t) <0 quel que soit ¢t € T;

c) a=poh.

Si B(u) est une reparamétrisation directe ou indirecte de la courbe «(t), alors les vitesses de ces
deux courbes sont reliées par

Va(t) = [I'(8)|Vs(w). (2.2)
Voici un exemple simple : considérons les courbes du plan R?
a(f) = (cos(f),sin(0)) (0<8<m)

et

) = (@, V1-a2), (-l<z<1).

Ces deux courbes ont la méme trace, qui est le demi-cercle unité :

{(z,y)|2*+y* =1,y > 0}.

La fonction h : (0,7) — (—1,1) définie par h(f) = x = cos(f) fait le lien entre les deux
paramétrisations car

y(h(0)) = (z, /1 — 22) = (cos(6),sin(0)) = a(6).

dx
Comme h'(0) = w7 i sin(f) < 0, on voit que la courbe « est une inversion de 7.
Remarque. Observons que si § = 0 ou 6§ = m, alors h'(f) = 0. Le reperamétrage h cesse d’étre

admissible aux extrémités de l'intervalle. Cela correspond au fait que la vitesse de

1
V1—2z2

dy
dx

Vy(x) = ]

tend vers I'infini lorsque =z — +1.
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2.6 Quantités géométriques et quantités cinématiques

Définition. Une quantité ou une notion attachée a une courbe est dite géométrique si elle est
invariante par rapport aux changements de paramétres, et elle est dite cinématique dans le cas
contraire.

Par exemple, la vitesse et 'accélération sont des notions cinématiques alors que la notion de
point singulier, de point régulier et de direction tangente sont des notions géométriques.

Lemme 2.8. Le vecteur tangent T, (t) est une quantité géométrique.
Cette affirmation est géométriquement évidente, puisque T est le champ de vecteurs unitaire
indiquant la direction de la courbe. Voyons tout de méme une preuve formelle :

Preuve. Soit f(u) (u € J) une reparamétrisation directe de la courbe «(t). Il existe alors une
fonction h : I — J telle que h'(t) > 0 et a(t) = B(h(t)). On sait que V,(t) = Vz(u)h'(t), par
conséquent

1 da 1 dp(h(t))

=y oa -

O]

Remarque. Si 5(u) est une reparamétrisation indirecte de «(t), alors on a Ty (t) = —Tg(u).

La longueur d’une courbe est également une quantité géométrique ; plus généralement, nous avons
la proposition suivante.

Proposition 2.2 Soient o et B deuz courbes de classe C'. Si B est une reparamétrisation de

a, alors £(B) = L(a).

Preuve. Considérons d’abord le cas ou 3(u) (o' < u < V') est une reparamétrisation directe de
la courbe a(t) (a <t < b). En utilisant la formule de changement de variables dans les intégrales,
on a

v b U
6(6)—/ Vo(u)du = /Vg(u)ztdt
_ /bVa(t)dt

(a) .

du
Dans le cas ou f(u) est une reparamétrisation indirecte de «(t), alors a < 0Oetona

v a d
(B) = | Vs(u)ydu = /bVB(u)d::dt

' B

b
_ /Va(t)dt
= {(a).
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O
Considérons par exemple I’arc du cercle unité dans le plan R?, reliant les points (1,0) et (g, yo)
et contenu dans le demi-plan y > 0. La longueur de cet arc est donnée par

¢ =0 = Arcos(xg) .

Si cette courbe est paramétrée comme un graphe, i.e. par y(z) = (z,V1 —2?), (zo0 < z < 1),

1
V1—2z2

alors la vitesse est V,(z) = et la longueur est donc donnée par

E—/l du
v VI—u2

La proposition 2.2 nous permet de déduire du résultat précédent ’identité analytique :

Lod
U
——— = Arcos(zg)
Y
/mo V1 —u?
que nous avons obtenue (presque) sans aucun calcul, mais par un raisonnement purement géo-
métrique.

2.7 Parameétrisation naturelle d’une courbe réguliére

Théoréme 2.9. Soit o : I — R™ une courbe régulicre de classe C' et tg € I une valeur du
parametre. Alors il existe un unique reparamétrisation directe h : I — J, telle que 0 € J,
h(to) =0 et B:=aoh™t:J — R" est de vitesse 1, i.e. Vg(s) = 1.

Preuve. Montrons d’abord l'unicité de cette reparamétrisation. On a vu plus haut (p. 23) que
Va(t) = h'(t)Va(s).

Comme V3(s) =1 et h' >0, on a donc 1/(t) = V,(t) et comme h(ty) = 0, on doit avoir

o= h(t) = /t V().

0

Ainsi la fonction h(t) coincide avec I'abscisse curviligne s(t).

Pour montrer l'existence de cette reparamétrisation, on définit & présent h par h(t) = s(t) =

ftz Vo (7)dT et Vintervalle J par J = h(I). Alors h(tg) = 0 et h'(t) = V4 (¢). En utilisant la formule

(2.1) de la page 23, on voit que la courbe B := aoh™!:.J — R" vérifie

O

Définition 2.10. On dit qu’une courbe réguliére v est paramétrée naturellement si H’}/(S)H =1
pour tout s, i.e. si sa vitesse vaut 1. Le théoréme précédent nous dit que toute courbe réguliére
de classe C! peut étre reparamétrée naturellement.

Dés qu’un point initial et un sens de parcours ont été choisis sur la courbe, la paramétrisation
naturelle est unique et elle est donné par 1’abscisse curviligne.

Méthode Pour trouver la paramétrisation naturelle d’une courbe «;, il faut effectuer les opéra-
tions suivantes :
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1
2

(1) Identifier ou choisir le point initial ug.

(2)

(3) Intégrer V,, pour obtenir I’abscisse curviligne s : s(u) = fqz] Vo (T)dT.
(4)

Calculer la vitesse Vo (u) = ||a&(u)]| .

4) Inverser la relation s = s(u) (i.e. exprimer u en fonction

de s : u=u(s)).
(5) On obtient alorsla paramétrisation naturel 5(s) = a(u(s)).

Dans la pratique, les points qui peuvent étre délicats sont les étapes (3) et (4).

Exemple 2.11. La chainette? est la courbe plane paramétrée par a(u) = (u,coshu). Le vecteur
vitesse est &(u) = (1,sinh(u)), et donc

Va(u) = [|a(u)|| = 1/1 + sinh?(u) = cosh(u) .

L’abscisse curviligne depuis le point initial a(0) = (0,1) est donnée par 'intégrale

s(u) :/0 Va(t)dt:/o cosh(t)dt = sinh(u),

et on a donc
u(s) = argsh(s) =log(s + V1 + s?).

Remarquons que cosh(u) = 1/1 4 sinh?(u) = /1 + s2. En substituant cette relation dans la
paramétrisation de «, on obtient la paramétrisation naturelle de la chainette :

B(s) = a(u(s)) = (u(s),coshu(s)) = (argsh(s), V1 + s?).
On vérifie facilement que ||3(s)|| = 1.
Les courbes pour lesquelles on peut effectivement calculer la paramétrisation naturelle sont plutot

rares ; mais cette notion joue un roéle théorique fondamental. Il faut en particulier se souvenir des
relations suivantes qui relient le paramétre naturel s au paramétre donné w.

ds=V(u)-du et — = —. (2.3)

Remarque. L’abscisse curviligne joue un réle fondamental en théorie des courbes, car c’est dans la
paramétrisation naturelle que les relations fondamentales entre les différentes quantités géométriques
liées & une courbe sont le plus clairement mises en évidence. Pour cette raison, les livres traitant de
courbes choisissent souvent d’écrire les formules relativement & la seule abscisse curviligne. Nous n’avons
pas fait ce choix et avons préféré écrire les formules par rapport & un parameétre général en raison de
la difficulté pratique de calculer la paramétrisation naturelle pour la plupart des courbes. Nous invitons
toutefois le-la lecteur-ice & récrire elle-lui-méme les formules des prochains paragraphes dans le cas spécial
d’une courbe paramétrée naturellement ; on constatera ainsi combien les formules et les calculs théoriques
se simplifient.

2. La chainette est ainsi appelée car elle modélise la forme que prend naturellement une chaine ou un cable
suspendu entre deux points fixes sous 'effet de la gravité



CHAPITRE 2. COURBES DANS L’ESPACE ET LE PLAN EUCLIDIEN 27

2.8 Courbure d’une courbe de R"

Définition. Le vecteur de courbure d’une courbe réguliére o : I — R™ de classe C2 est le champ
de vecteurs le long de cette courbe défini par

ou T,(t) = ﬁ(t)o'z(t) est le vecteur tangent a la courbe.

REMARQUE. Le corollaire 2.1 entraine que le vecteur de courbure est toujours orthogonal au

vecteur tangent :
Ko (f) L Ta(t).

On définit aussi la courbure de la courbe «.. C’est par définition la norme du vecteur de courbure :

ko (u) = [[Ka(u)]].
Il est facile de voir que la courbure d’une droite est nulle, voici un autre exemple simple.

Exemple 2.12. Une paramétrisation d’un cercle de centre p et rayon r est donnée par
c(0) = p+rcos(f)uy + rsin(f)uy,
oll p, uy, ug est un repére orthonormé du plan contenant le cercle. On a
¢(0) = —rsin(f)u; + r cos(f)ug,

donc V.(0) =7 et T(c,0) = —sin(f)uy + cos(f)us.

En dérivant le vecteur tangent, on a T(c, ) = — cos()u; — sin(f)us, donc

K(c,0) = ——P(c, 0) = —% (cos(8)uy + sin(8)us)

Ve(0)

et finalement : )
(e, 0) = [K(c,0)] = .

La courbure d’un cercle est donc l'inverse de son rayon.

Remarquons aussi qu’on a la relation suivante exprimant le centre du cercle en fonction d’un
point sur le cercle et de la courbure :

c(0) + r*K(c,0) = p. (2.4)

Proposition 2.13. Le vecteur de courbure K, (t) et la courbure ko (t) = ||Kq(t)|| sont des
quantités géométriques.

Nous laissons la preuve en exercice.

Proposition 2.14 (Formule de Paccélération). Le vecteur accélération d’une courbe réquliére
v : I — R™ vérifie

§() = (V3 (u)* Ky (u) + Va(u) Ty (w). (2.5)
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Preuve. Ecrivons le vecteur vitesse sous la forme §(u) = V; (u) T, (u) et dérivons ce vecteur :

) = (V)T ) = Va () () + V()T ()

= (Vo ()" Ky () + V5 (u)Ty (u).
O

On dit que V,, (u) T (u) est I accélération tangentielle et (V, (u))? Ko(u) est Uaccélération normale
de 7.

En mécanique, cette formule signifie que la force subie par une particule en mouvement est
fonction de 'accélération tangentielle V., et du carré de la vitesse multiplié¢ par la courbure.

Corollaire 2.15. Si a est paramétrée naturellement, i.e. si Vo, = 1, alors
a(s) = K(a, s).

Preuve. Puisque V, =1, on a Va = 0 et le corollaire se déduit immédiatement de la formule
de I'accélération. O

Proposition 2.16. Une courbe « : [a,b] — R™ est de courbure nulle si et seulement si c’est une
droite ou un segment de droite (qui peut étre paramétrée arbitrairement).

Preuve. On peut supposer griace au théoréme 2.9 que « est paramétrée naturellement. Le
corollaire précédent entraine alors que é(s) = K(a, s) et comme k(a,s) = ||K(a,s)|| =0, on a
donc é(s) = 0. Le vecteur v := & est alors constant et on obtient donc en intégrant

a(s) =p+sv
ou p = «(0). O

Lemme 2.3 Le vecteur de courbure d’une courbe de classe C? en un point est un multiple du
vecteur normal principal en ce point :

Ky (1) = iy (u)Ny (u).

Preuve. Nous laissons la preuve en exercice. Rappelons que le vecteur normal principal est
défini par
_ ) = (3(u), Ty (u)) - Ty (u)
N, (u) = — - .
15 (w) = (3(w), Ty(u)) - Ty (u)

O

Proposition 2.4 La courbure d’une courbe de classe C? est la variation angulaire de la direction
de cette courbe par rapport au parameétre naturel.

La signification exacte de cette proposition sera précisée dans la preuve.

Preuve. Soit v : I — R? une courbe de classe C? paramétrée naturellement et notons

¢(s0,8) := £ (T(s0), T(s))

I'angle entre T(sg) et T(s) (ou sg,s € I). Comme || T(s9)| = || T(s)|| =1, on a par la trigono-

métrie élémentaire que
IT(e0) T = 2sin (205
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On a donc
s QO(SO’S)
- plsos) plsns)  2m (%52)
lim —————~ = lim .
s—sg S — S0 s—sg \ 2gin <7"0(S20’5)> §— S0
2sin (7@(320’8))
o [ #os) o (PR
s—)sa' 2sin <7"0(S20’5)> s—>sa' s — 50
. T(sg) — T(s .
= lim oo = ) ] = T (s0)],
580 §— 580

car lim o) ) 1.
s—)saL (251n(¢(520’5)>

On a ainsi montré que la courbure est la dérivée a droite de l’angle, on peut noter

EET (;0(50)8) o d
oo = tim S0

| #ls0,9) (2.6)

2.9 Contact entre deux courbes

Définition. On dit que deux courbes de classe C*
a,f:1—R"

ayant le méme paramétre ¢ € I ont un contact d’ordre k en ty € I si a(tg) = B(to) et si leurs
dérivées en ty coincident jusqu’a l'ordre k :

dmo amg

— o (to) = ——=(to),

dtm dtm
pourm=1,2,.... k.

Ainsi, deux courbes «, 8 ont un contact d’ordre 0 en #; si elles passent par le méme point en tg.
Elles ont un contact d’ordre 1 si elles passent par le méme point et elles ont le méme vecteur
vitesse en ce point :

a(to) = B(to), Z—?(to) = %(to).

Concernant les courbes ayant un contact d’ordre 2, nous avons le résultat suivant :

Théoréme 2.17. Deuz courbes o, 3 de classe C? ont un contact d’ordre 2 en ty si et seulement
si elles passent par le méme point et si elles ont le méme vecteur vitesse, la méme accélération
tangentielle et le méme vecteur de courbure en ce point :

da B

a(te) = B(to), E(tO) = E(tO)v Val(to) = Va(to) et Ka(to) = Kga(to).

En particulier, si ces deux courbes sont biréqulieres alors elles ont le méme plan osculateur en tg.

Preuve. C’est une conséquence directe de la proposition 2.14.
O

A titre d’exemple important, nous avons le corollaire suivant :
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Corollaire 2.18. Deux cercles de R™ parcourus a vitesse constante ont un contact d’ordre 2 si
et seulement si ces deux cercles coincident.

Preuve. Par le théoréme précédent, les deux cercles ont le méme vecteur vitesse et le méme
vecteur de courbure en leur point de contact. En particulier les deux cercles se situent dans
le méme plan, qui est le plan osculateur commun.. On sait en outre par I'exemple 2.12 que la
courbure d’un cercle est égale a I'inverse de son rayon. Les deux cercles ont donc méme rayon r.
Mais on sait aussi par I’équation (2.4) que les deux cercles doivent avoir méme centre, donc ils
coincident. O

Théoréme 2.19. Soit o : I — R™ une courbe de classe C? qui est birégulicre en tq € I. Alors
il existe un cercle ¢ : I — R™ ayant un contact d’ordre 2 avec o en tg. Ce cercle est unique, son
rayon est l'inverse de |kq(to)| et son centre est donné par

p= a(to) + Ka(to). (2.7)

b
Rq (t0)2

Cercle osculateur.

Définition. Ce cercle s’appelle le cercle osculateur?, aussi appelé le cercle de courbure a o en
to. C’est parmi tous les cercles celui qui approxime le mieux la courbe au voisinage de a(tp). Il
est contenu dans le plan osculateur a la courbe en ce point. Son centre est appelé le centre de
courbure et son rayon est le rayon de courbure de a en ty. On le note

1
Ka(to)

Pa (tO) -

Preuve. Supposons pour la preuve que la courbe a est paramétrée naturellement (et notons
selon I'usage s le paramétre naturel). On supposera aussi que le point considéré correspond a la
valeur s = 0 du paramétre.

Notons p = , T:=T4y(0) =c&(0) et N:= pKq,(0), puis posons

ka(0)
p:=a(0)+pN (2.8)

et considérons le cercle de centre p et rayon p que nous paramétrisons par
v(s) =p— p cos <%> N + p sin (%) T.

Il s’agit bien d’un cercle, puisque T et N sont orthogonaux et de longueur 1. Il est alors clair que
v(0) = a(0) et que 4(0) = T = &(0). On sait d’autre part que la courbure du cercle de rayon p
est constante et égale a % = Kq(0). Le théoréme 2.17 entraine donc que la courbe « et le cercle
~ ont un contact d’ordre 2 en s = 0.

3. Le terme osculateur nous vient du latin et signifie embrasser : le cercle osculateur embrasse la courbe au
point de contact.
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L’unicité de ce cercle découle immédiatement du corollaire 2.18 (et du fait que la notion de
contact entre courbes est clairement transitive).

O
Définition. On appelle développée de la courbe biréguliére o : I — R3 la courbe
B(u) = a(u) + pa(u)Na(u),

0l po est le rayon de courbure de ao. On dit aussi que 5 est la développante de «. La développée
suit le mouvement du centre du cercle osculateur lorsqu’on parcoure la courbe a.

2.10 Le repére de Frenet d’une courbes dans R?

Rappelons que le vecteur tangent et le vecteur normal principal d’une courbe biréguliére vy : I —
R3 de classe C? sont les champs de vecteurs le long de cette courbe définis par

_ () = (), Ty (u)) - Ty (u)
19 (u) = (5(u), Ty (w)) - To(u)||

T, = 2 o Ny

Définitions 1. Le vecteur binormal de v est le produit vectoriel du vecteur unitaire tangent et

du vecteur normal principal :
B, (u) = Ty (u) x Ny (u).

2. Le Repeére de Frenet* de v en u est le repére défini par les trois champs de vecteurs

{T(u), Ny(u), By(u)}.

Le repére de Frenet est uniquement défini aux points oil la courbe est biréguliére. C’est un repére
mobile (les trois vecteurs sont des champs qui dépendent du paramétre u), il est orthonormé et
direct. Il suit la courbe en ce sens que le premier vecteur de ce repére, T, (u), est toujours tangent
a celle-ci.

T

Rappelons que le plan passant par v(u) de directions T (u) et N, (u) est le plan osculateur.
Le plan de directions B (u) et N, (u) s’appelle le plan normal et le plan de directions T (u) et
B, (u) est le plan rectifiant.

Lemme 2.20. Le vecteur binormal a la courbe v peut aussi s’écrire

o Y(u) x F(u)
B0 = B
Preuve. On a
i (= (3, ) T) =4 x ¥

4. Jean Frédéric Frenet, mathématicien et astronome francais 1816-1900.
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car ¥ X T = 0. Donc

(—(,T)-T) XA Y(w)

g B B (w)
v, =G T - G T ()

(w)’

2

B=TxN =

X
X

2

O]

Définition. (i) On dit qu'une courbe v : I — R3 est réguliere au sens de Frenet, ou Frenet
réguliere si elle est de classe C2, biréguliére, et que le vecteur normal principal est un champ
u— Ny (u) de classe CL. |

(ii) La torsion d'une courbe 7 : I — R3 réguliére au sens de Frenet est la fonction 7 : I — R
définie par

Il est clair que toute courbe de classe C3 biréguliére est réguliére au sens de Frenet, mais la
réciproque n’est pas vraie.

Théoréme 2.21 (Formules de Serret-Frenet). Soit v : I — R? une courbe réguliére au sens de
Frenet, Alors le repére de Frenet est de classe C' et ses dérivées sont données par les formules

b B = w(uw) N(w) |

fay N(w) = = #(w) T(u) + 7(u) B(u),

(u

=

L«
@ B(u) = — 7(u) N(u).
On verra au théoréme 2.25 que la courbure et la torsion déterminent complétement la géométrie
d’une courbe dans R3, par conséquent les formules de Serret-Frenet englobent la totalité de la
théorie des courbes de R3.

>

Preuve. Le vecteur tangent T(u) est une fonction de classe C! du paramétre u car la courbe
est supposée de classe C?. Le vecteur normal principal N(u) est une fonction de classe C'! par
hypothése et le vecteur binormal est une fonction de classe C1 car B(u) = T(u) x N(u).

La premiére équation est une conséquence immédiate des égalités
T(u) = Vy(uw)K(u) = V4 (u)k(u)N(u).

Pour prouver la deuxiéme équation, on remarque d’abord que

car {T-(u), N, (u),N,(u)} est un repére orthonormé. D’autre part, on a (N(u), N(u)) = 0 car
la norme de N(u) est constante et

On a donc '
N(u) = =V;(u)s(w)T(u) + V4 (u)7(u)B(u),

car (N(u), B(u)) = V,(u)7(u) par définition de la torsion.

Pour prouver la troisiéme équation, on part de
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on a (B(u),B(u)) = 0 car ||B|| est constante et

Donc
B(u) = (B(u), N(u))N(u) = —(B(u), N(u))N(u) = =V, (u)7(u)N(u).

Le théoréme est démontré.
O

Exemple. Rappelons que I'hélice circulaire est la courbe y(u) = (acos(u), asin(u), bu), on a

Y(u) = (—asin(u),acos(u),b), #(u) = a(—cos(u), —sin(u),0) et V, = \a?+ b2

Dans la suite, on suppose a > 0 et on notera ¢ := V,, = v/ a? + b%. Le repére de Frenet est donc

L[ @ sin(u) cos(u) 1 bsin(u)
T=- a cos(u) N =—| sin(u) B=-| —bcos(u)
c c
b 0 a

On trouve la courbure et la torsion en dérivant N :

1. 1. b
h=—-(NT)=2 o r=—(NB)=—.
C C

c? c?

Les résultats qui suivent vont mener & une interprétation géométrique de la torsion.

Proposition 2.22. Une courbe vy : I — R3 réguli¢re au sens de Frenet est située dans un plan
si et seulement si sa torsion est identiquement nulle.

Preuve. Il est clair & partir du Lemme 2.20 que si la courbe v est située dans un plan IT C R3,
alors le vecteur binormal est constant (c’est I'un des deux vecteurs unitaires orthogonal a IT). La
troisieme formule de Serret-Frenet entraine alors que 7 (u) = 0.

Réciproquement, supposons 7(u) = 0, alors par la troisiéme formule de Serret-Frenet, le vecteur
binormal est constant. Notons ce vecteur par B et posons

h(u) == {y(u) = 7(uo), B),

et remarquons que

% = (Y(u),B) = V;(u)(T(u), B) = 0.

Par conséquent h est constante, et comme h(ug) = 0, la fonction h est identiquement nulle, ce
qui montre que la courbe v est contenue dans le plan d’équation

<X - 7(“0)7 B> =0,

qui n’est autre que le plan orthogonal & B passant par «y(ug).
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2.10.1 Variation angulaire du plan osculateur

La proposition suivante donne 'interprétation géométrique de la torsion :

Proposition 2.23. La torsion d’une courbe réguliere au sens de Fremet mesure la variation
angulaire de son plan osculateur.

Preuve. Soit v : I — R3 une courbe réguliére au sens de Frenet, que nous supposons paramétrée
naturellement. Notons 6(sg, s) angle entre les plans osculateurs & v en s et en s, et remarquons
que

0(s0,s) := £(B(sp),B(s))

car le vecteur normal au plan osculateur en un point de  est le vecteur binormal en ce point.
Le lemme est alors une conséquence de 1’égalité suivante :

i7(s0)] = [B(so)]| = lim 265025,

s—sg S S0

qui se prouve de la méme maniére que la formule (2.6)).

2.10.2 Courbes de pente constante

Définition. On dit qu'une courbe de classe C'! dans R? est de pente constante si elle est réguliére
et si son vecteur tangent fait un angle constant avec une direction fixe. Une telle courbe s’appelle
aussi une hélice généralisée.

Théoréme 2.24. Une courbe v : I — R3 régulicre au sens de Frenet est de pente constante si
et seulement si le rapport

est constant.

Preuve. On peut supposer sans perdre de généralité que v est paramétrée naturellement.
Supposons qu’il existe un vecteur constant non nul A € R3 tel que le produit scalaire a =
(T4(s), A) est constant. En dérivant cette relation et en utilisant le premiére équation de Serret-
Frenet, on trouve que

0= (Ty(s), A) = ry(s)(Ny(s), A).
Nous avons supposé que la courbe est biréguliére, donc sa courbure est non nulle et on a donc
(N,(s),A) =0 pour tout s.
Ceci implique que b = (B,(s), A) est également constant, car la troisiéme équation de Serret-
Frenet nous dit que

(B, (), A) = (By(s), A) = 74 (s)(N, (), A) = 0.

La seconde équation de Serret-Frenet nous dit maintenant que

d

0:£

(N (5), A) = (Ny(5), A) = —5y(5)(T5(5), A) + 7 (5) (B (s), A),

et donc
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est constante.
7(8)
Firy(5)

A(s) :== AT, (s) + B,(s).

Supposons inversément que \ :=

est constant et considérons le champ de vecteurs

Il est clair que I’angle entre T, et A est constant car (A, T,) = A. Vérifions que ce vecteur est
constant :

d . .
£A = AT, + B, = Aky(s)N, —7,(s)N, = 0.

La preuve de la proposition est compléte.
O

Remarque. La preuve montre que pour une courbe de pente constante, ’angle 6 entre le vecteur
tangent T, et la direction fixe A est donné par

cos(f) = (T, A) - A _ Ty
IT@IA@] - Vi+aZ \/H%JFTWQ'

On remarque aussi que le vecteur A appartient au plan rectifiant de ~.

2.10.3 Le théoréme fondamental de la théorie des courbes de R?3.

Le théoréme fondamental de la théorie des courbes de R? dit que I'on peut prescrire arbitrairement
la courbure et la torsion d’'une courbe biréguliére de R3. Cette courbe est unique & un déplacement
pres.

Théoréme 2.25. Soient k,7 : I — R sont deux fonctions continues et si k(s) > 0 pour tout
s € I, alors il existe une courbe vy : I — R3, régulicre au sens de Frenet, paramétrée naturellement
et telle que

Ry(s) = K(s) et m(s) = 7(s)

pour tout s. Cette courbe est unique & un déplacement prés.

Par exemple toute courbe de R? ayant courbure constante x > 0 et torsion constante 7 # 0 est
isométrique a une hélice circulaire droite.

Démonstration. Nous prouvons d’abord I'unicité. Supposons que 1,72 : I — R3? sont deux
courbes réguliéres au sens de Frenet, paramétrées naturellement et dont la courbure et la torsion
valent respectivement (s) et 7(s). Notons {T1(s),N1(s),B1(s)} et {Ta(s),Na(s),Ba(s)} leur
repére de Frenet respectifs.

Sans perdre de généralité, on peut supposer que 'intervalle I contient 0. Quitte & composer 'une
ou l'autre (ou les deux) courbes par un déplacement, on peut supposer que ~1(0) = v2(0) = 0
et quen s = 0 les deux repéres de Frenet coincident avec la base canonique {e1, e, e3} de R3.
Notons alors F;(s) € SO(3) la matrice orthogonale dont les colonnes sont les composantes des
vecteurs T;(s), N;(s),B;(s) pour i = 1,2. Les équations de Serret-Frenet s’écrivent alors

d

TFi(5) =Fi(s)Qs),  on Q)= | wls) 0 —7(s)
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Nous avons alors

d

d . )
—1 T T T
%(FIFQ ) = £(F1F2) = F1F2 + F1F2
= (F1Q)F, + F(Fo0) "
=F OF, +FQ'F)
= (),
car la matrice  est antisymétrique, i.e. Q7 = —Q. Par conséquent la matrice FF, L est

constante. Mais on a supposé que F1(0) = F2(0) = I3 (la matrice identité). Donc F1(s)Fa(s)~! =
I3 pour tout c’est-a-dire F1(s) = Fa(s). En particulier T (s) = T2(s) pour tout s et donc

no = [ T (u)du = / T (u)du = ().

Prouvons maintenant l’existence. Pour cela on se donne deux fonctions continues s, 7 : I — R et
on considére le probléme de Cauchy linéaire

d—F(s) = F(s)Q(s), F(0) =13, (2.9)
s

ou €(s) est la matrice définie plus haut. Le théoréme de Cauchy-Lipschitz global du cours
d’analyse IT nous dit qu'il existe une solution globale F : I — M3(RR) de classe C'! de ce probléme.
Nous affirmons que F(s) € SO(3) pour tout s. En effet, on a

d . .
d—FFT =FF +FF' =FOF + FQ'F' =FQ+QNF" =0

s
par antisymétrie de Q. Or F(0)F'(0) = I3 (& cause de la condition initiale dans (2.9)), donc
F(s)F'(s) = I pour tout s € I, ce qui signifie que F(s) € SO(3).
Notons respectivement T(s),N(s), B(s) les trois colonnes de la matrice F(s) et définissons = :
I — R3 par

o) = [ T,

Alors 7y est clairement une courbe de classe C? car s — T(s) est de classe C!, De plus cette
courbe est paramétrée naturellement puisque (s) = T(s) est un vecteur unitaire. L’équation
différentielle (2.9) est équivalente aux équations de Serret-Frenet. Cela implique que implique
que s — N(s) est aussi de classe C! et que la courbure et la torsion de v sont données par les
fonctions « et 7, ce qui compléte notre démonstration.

O
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2.11 Courbes dans un plan orienté
Le repére de Frenet et la courbure d’une courbe dans un plan orienté est défini en tenant compte
de lorientation du plan :

Définition. (a) Le repére de Frenet orienté d’une courbe réguliére v : I — R? de classe C? dans
le plan orienté est le repére mobile d’origine ~y(u) qui est formé par les deux vecteurs

o) = 20 N ) = (T (),

ou J est opérateur de rotation définit au paragraphe (1.7).

(b) La courbure orientée de «y en u est définie par

Remarques.
(i) Le repére {T.(u), NS (u)} est un repére orthonormé direct.
(ii) La courbure non orientée de 7 est égale a la valeur absolue de x5 (u).

(iii) La courbure orientée peut aussi s’écrire

T, (u) A T (u)
Vy(u) '

(iv) Si la courbe 7 est biréguliére, on a
Ky (u)NS (1) = Ky (u)Ny (u) = Ky (u) (= le vecteur de courbure).

Cette égalité vient du fait que si on change l'orientation du plan, alors x5 (u) et N9 (u)

changent tous les deux de signe.

Dans la suite de ce paragraphe, nous n’utiliserons que le vecteur normal orienté, nous noterons
donc N, (u) au lieu de N9 (u), nous noterons aussi k- (u) pour la courbure orientée.

Proposition 2.26. Avec ces notations, les formules de Serret-Frenet pour une courbe plane de
classe C? s’écrivent

1 d

W@Tv(u) = ky(u)Ng(u)
1 d
VW@N’Y(U) = —ky(u)Tq(u).

Preuve. On a d’une part
T = (T,T)T + (T,N)N = (T,N)N = VEN.
par définition de la courbure orientée k (et en utilisant (T, T) = 0). D’autre part

N = (N, T)T + (N,N)N = (N, T)T = —(T,N)T = —VkT.
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Proposition 2.27. La courbure orientée d’une courbe plane v : I — R? de classe C? est donnée
par

Preuve. On a .
A5 =(VT)A (VT + V2kN) = V3,

car TAT=0et TAN=1.

La courbure orientée de v(t) = (x(t),y(t)) est donc donnée par

&ij — iy
k(t) = (@2 + )32

En particulier, si «y est le graphe de la fonction f : [a,b] — R, i.e. y(z) = (z, f(z)), alors on a

f"(x)

= W e

Définitions. On dit qu'un arc y(u) (@ < u < b) est conveze si la courbure orientée k. est
positive sur cet arc. L’arc est concave si la courbure orientée est négative. Un point d’inflexion
est un point séparant un arc convexe d’un arc concave (en particulier la courbure est nulle en un
point d’inflexion).

On dit qu’un arc est une spirale si la courbure est strictement monotone sur cet arc. Un point
de la courbe est un sommet si c¢’est un maximum local ou un minimum local de la courbure.

arc convexe

arc concave ’\

point d’inflexion

La fonction angulaire

La fonction angulaire mesure I’inclinaison en chaque point d’une courbe par rapport a la direction
horizontale.

Définition. Soit 7 : [a,b] — R? une courbe réguliére de classe C. La fonction angulaire de la
courbe v avec point initial p = y(ug)) est la fonction ¢ : [a,b] — R telle que

(a) ¢(up) est I'angle orienté entre 4(u) et le vecteur e; = (1,0).

(b) ¢ est continue.

(c) L’angle orienté entre §(u) et e; = (1,0) est égal & ¢(u) modulo 27 pour tout u € [a, D]

REMARQUE. Dans le concept de fonction angulaire d’une courbe plane, on n’identifie pas ¢(u)
a p(u) + 2m. Au contraire, le paramétre angulaire mesure le nombre de tours effectués (entre ug
et u) par le vecteur tangent. Ce nombre peut étre supérieur a 27.
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Le nombre ¢(b) — ¢(a) est la variation angulaire totale de la courbe. Si v : [a,b] — R? est une
courbe périodique (i.e. une courbe fermée réguliére), alors le nombre entier

p(b) — p(a)
€L

s’appelle le nombre de rotations de ~y.

Lemme 2.28. Le repére de Frenet orienté d’une courbe réguliere v : [a,b] — R? de classe C*
peut s’écrire

T, (u) = (cos(p(u)),sin(¢(u)) et Ny(u) = (—sin(e(u)), cos(p(u)),
ot ¢ : [a,b] = R est la fonction angulaire de ~y.

Preuve. La formule pour T est évidente, puisque ¢ (modulo 27) mesure I'angle du vecteur
tangent T avec e;. La formule pour N se déduit alors de la définition N = J(T).
O

Théoréme 2.29. La courbure orientée d'une courbe v : I — R? de classe C? vérifie

L de

Fio () = Vo(u) du

Preuve. Par le lemme précédent, on a T = (—sin(p(u)), cos(p(u))@(u) = N¢, donc k., =
L(T N) = L¢
Vv 9 V%O'

O
Lorsque la courbe est paramétrée naturellement, on a k- (s) = ‘é—f. On écrit souvent cette relation

sous la forme différentielle :

dy = kds.

Le diagramme de courbure

Soit v : I — R? une courbe réguliére de classe C?. Choisissons un point initial sur y et un sens de
parcours. Le diagramme de courbure de «y est la courbe dans un plan de coordonnées s, k donnée
par

w = (s(u), k(u)),

ol s(u) est labscisse curviligne de = correspondant aux choix du point initial et du sens de
parcours, et k est la courbure orientée.

Le diagramme de courbure est toujours un graphe (c’est le graphe de la fonction courbure k = k(s)
exprimée & partir de 1’abscisse curviligne). Les éléments de la courbe v que ’on peut facilement
mettre en correspondance avec le diagramme de courbure sont :

e sa longueur £(v);
o le signe de la courbure;
e les points d’inflexions de 7 (ce sont les points ot k(s) change de signe) ;
e les sommets de v (i.e. les extremums locaux de la courbure orientée).
D’autre part, Daire fog k(s)ds = fog dy limitée par le diagramme de courbure correspond a la

variation angulaire totale de la courbe. Hormis la position de la courbe dans le plan, le diagramme
de courbure contient toutes les informations géométriques sur une courbe de R?.
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Théoréme 2.30 (Théoréme fondamental de la théorie des courbes planes). Toute fonction
continue k : [0,£] — R est la courbure orientée d’une courbe plane de classe C? paramétrée
naturellement. Cette courbe est unique a un déplacement prés.

Ce théoréme est la version bidimensionnelle du Théoréme 2.25, mais la preuve est plus élémen-
taire.

Preuve. Montrons d’abord 1'unicité. Supposons que 7 : [0,£] — R? est une courbe de classe O
paramétrée naturellement dont la courbure orientée est k(s). Le vecteur tangent est donné par

T(s) = 4(s) = (&(s),4(s)) = (cos((s))),sin(p(s))

ou ¢ : [0,¢] — R est la fonction angulaire. Les trois fonctions (x(s),y(s), ¢(s)) forment alors une
solution du systéme d’équations différentielles

(d
== = cos()
d
d—‘Z =sin(p) - (2.10)
dep
ok
\ ds (s)

La courbe 7y est donc déterminée a partir de la fonction k(s) en résolvant ces équations.
Pour résoudre ce systéme, on calcule ¢ par intégration : ¢(s) = o + fos k(o)do. Puis on trouve
x(s) et y(s) par une nouvelle intégration :

o) o0+ [ costploNds .y =m+ [ sinplo))do

les constantes g, yo, et o sont des constantes d’intégration et peuvent étre choisies arbitraire-
ment (ce sont les conditions initiales du systéme d’équations différentielles).

En changeant les valeurs de xg et yg, on modifie la courbe par une translation; si 'on change
o, alors la courbe v subit une rotation. L’argument montre & la fois 'existence et 1'unicité de

la courbe v & un déplacement prés.
O

REMARQUE. La relation k = k(s) entre I’abscisse curviligne et la courbure orientée s’appelle
I’ équation intrinséque de la courbe. Elle contient la méme information que le diagramme de
courbure.

Exemple. Considérons la courbe dont le diagramme de courbure est une droite oblique (i.e.
I'équation intrinséque est linéaire : k(s) = ms 4+ n avec m # 0). Alors la fonction angulaire est
donnée par

©(s) :/kz(s)ds: %s2+ns+c,

et la courbe est donc donnée par

x(s) = /cos (%52+n5—|—0) ds , y(s)= /sin (%52 +ns+c) ds.

Ces intégrales s’appellent les fonctions de Fresnel. Elle ne peuvent pas étre exprimées a partir
des fonctions élémentaires.

Cette courbe s’appelle une chlotoide ou spirale de Cornu, elle permet par exemple de passer
d’une droite a un cercle sans discontinuité de la courbure. Pour cette raison, elle est utilisée dans
la conception des tracés ferroviaires ou autoroutiers.
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Chlotoide.

2.12 Le théoréme des quatre sommets

Définition. On dit que v : [a,b] — R™ est une courbe fermée de classe C™ si la fonction vy peut
s’étendre & un intervalle ouvert [a — e,b+ ¢] et si on a y(a) = vy(b) et

dk'y dk'y
W(a) = W(b)a

pour 1 < k < m. On dit aussi que = est une courbe périodique de classe C™ car on peut ’étendre
en une fonction périodique v : R — R™ de période (b — a).

En particulier, si v : [a,b] — R™ est une courbe fermée de classe C! alors y(a) = v(b) et
4(a) = 4(b). Le vecteur vitesse est donc le méme en ¢t = a et en t = b. Et si la courbe est fermée
de classe C?, alors le courbure en t = a est égale a la courbure en t = b.

Théoréme 2.31. Toute courbe fermée de classe C° dans un plan orienté, qui n’est pas un cercle,
posséde au moins quatre sommets.

On rappelle qu'un sommet d’une courbe de classe C? est un maximum local ou un minimum
local de la courbure orientée. A titre d’exemple, une ellipse posséde deux minimums et deux
maximums de courbure. La preuve utilisera le lemme suivant :

Lemme 2.32. Soit v : [0,£] — R? une courbe fermée de classe C® paramétrée naturellement.
Alors
K . e .
/ z(s)k(s)ds :/ y(s)k(s)ds = 0.
0 0

Preuve du Lemme. Examinons la seconde intégrale, on a

/()éy(S)l%(s)ds = — /OE y(s)k(s)ds = /Oéli‘(s)ds —0.

En effet la premiére égalité est une intégration par parties, la seconde égalité vient de la relation
¥ = —ky qui se déduit des équations de Serret-Frenet et la derniére égalité est évidente.
O

Preuve du Théoréme. La preuve dans le cas général est assez élaborée, nous ne la donnerons
que dans le cas ou la courbe est le bord d’un domaine convexe du plan. Par hypothése, v est
une courbe fermée de classe C3, par conséquent la dérivée de la courbure vérifie k(0) = k(¢) et
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la fonction k(s) doit donc avoir au moins un maximum local et un minimum local. Nous allons
d’abord prouver par I'absurde que k(s) doit avoir au moins un troisiéme extremum local.

Supposons donc par l'absurde que k(s) a exactement deux extremums locaux, et faisons égale-
ment les hypothése suivantes sans perte de généralité :

1. On suppose que 7 : [0, /] — R? est paramétrée naturellement.

2. Le minimum local de k(s) est en s = 0 et le maximum local est en s¢ € (0, /).

3. 4(0) = (0,0) et 1(s0) = (x0,0).
Ces hypothéses entrainent que k(s) est strictement croissante sur 'intervalle (0, sg) et strictement
décroissante sur (sg, £). Donc k(s) > 0 sur le premier intervalle et k(s) < 0 sur le deuxiéme
intervalle.
Puisque v borde un domaine convexe, les deux arcs 7\[07 so] €F 7][30,4 sont situés l'un dans le
demi-plan {y > 0} et 'autre dans le demi-plan {y < 0}. Supposons par exemple que y(s) > 0
sur Pintervalle (0, s0) et y(s) < 0 sur intervalle (s, ), alors nous avons y(s)k(s) > 0 pour tous
s € {0, so}. Mais ceci entre en contradiction avec le lemme précédent car ce lemme implique que

AﬂmM@ﬁz—LZ@Mwm

L’argument est le méme (avec le signe opposé) si y(s) < 0 sur U'intervalle (0, so) et y(s) > 0 sur
(s0, 7).

Nous avons montré que k:(s) doit avoir au moins trois changements de signe. Mais comme on a
k(0) = k(£), cette fonction ne peut pas avoir un nombre impair de changements de signe. Il y a

donc au moins quatre changements de signe.
O

Note historique. Le théoréme des quatre sommets a été démontré par le mathématicien indien
Syamadas Mukhopadhyaya en 1909 pour les courbes fermées convexes, puis par le mathématicien
allemand A. Kneser dans le cas général en 1912. Il existe une réciproque, démontrée d’abord en
1971 par Herman Gluck dans le cas des courbes convexes, puis en 2005 par Bjérn Dahlberg dans
le cas général.



Chapitre 3

Calcul différentiel et sous-variétés
différentiables de R"

Les sous-variétés différentiables sont des parties de R™ qui généralisent les courbes et surfaces en
toutes dimensions et codimensions. On les supposes assez réguliéres pour qu’on puisse appliquer
les concepts et outils du calcul différentiel.

3.1 Rappels de calcul différentiel

3.1.1 Dérivées directionnelles et dérivées partielles

Soit U un domaine de R™ et f : U — R"™ une application. Pour un point p de U et un vecteur
v € R™ on définit la dérivée directionnelle de f en direction de v au point p par

f(p+tv) — f(p)

D = — tv) = lim e R" 3.1
ofp) = - tzof(er ) = lim . , (3.1)

si cette limite existe.
Si {e1,e9,...,en} est la base canonique de R™ et x1,x9, ..., x,, sont les coordonnées associées

(i.e. un vecteur x € R™ gécrit x = " z;€;), alors la dérivée directionnelle de f en direction
du vecteur e; s’appelle la dérivée partielle de f au point p en direction de la i°™ coordonnée (ou
en direction du vecteur e;), et on note

of L
Bz, (p) = De, f(p) = lim ;

€R". (3.2)

Remarque. Il est important de noter que l'existence des dérivées partielles d’une fonction en un point
donné ne garantit pas l'existence des dérivées directionnelles dans toutes les directions. Par exemple la
fonction f : R? — R définie par

Ty

fe) = L @rgppn (z,y) # (0,0),

0 si (z,9) = (0,0)
, . i /) of . AP
est continue et posséde les dérivées partielles 8—(0, 0) = 8—(0,0) = 0, mais la dérivée directionnelle en
x )

(0,0) en direction de v = (v1,v2) n’existe pas si v; et vo sont non nuls car

f(tvl, t’Ug) — f(O, O) . t21}11}2 V1V

I — 1 - im — =
S0 ! (v 4 v3)3/4 are! Vit

= +o0.
10t t 120t £((tv1)2 + (to3))3/% >

43
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3.1.2 Applications de classe C* sur un ouvert de R™

On dit que lapplication f : U — R"™ est de classe C! si elle est continue et si toutes les dérivées
partielles du premier ordre

0
/ U —>R"
8$Z'
existent en tout point de U et sont continues. La fonction est de classe C* (k un entier > 2) si
les m + 1 fonctions f, 8‘%, e % : U — R sont de classe CF1.

On note C°(U,R™) I'ensemble des applications continues sur U et C¥(U,R™) I'ensemble des
applications de classe C*. Une application est de classe C™ si elle est de classe C* pour tout k
et on note C°(U, R") = My>oC*(U,R™). On dit parfois que f est lisse si f € C(U,R").
Lorsque n = 1, i.e. lorsque f est & valeurs dans R on note simplement C*(U) = C*(U,R), on
appelle les éléments de C* (U) des fonctions (ainsi les fonctions sont les applications & valeurs
dans R).

La matrice & n lignes et m colonnes contenant les dérivées partielles

on .. 9L
a$1 aIm
Df=| i .
O fn O fn
dr1 Oz,

s’appelle la matrice Jacobienne' de f. Noter que c’est une fonction du point p € U. Lorsque
n = m, le déterminant de cette matrice est alors bien défini, on 'appelle le Jacobien de f et on
note 2

Jy(p) = det <g£ (p)> :

Définitions. 1. Un difféomorphisme de classe C* entre deux ouverts U et V' de méme dimension
est une application bijective f : U — V telle que f et f~! sont de classe C*. Lorsque k = 0, on
dit que f est un homéomorphisme.

2. Une application f : U — R™ est un difféomorphisme local de classe C* en p € U s'il existe
un voisinage ouvert U’ C U de p tel que V' = f(U’) est ouvert et la restriction f|;, est un
C*k-diffeomorphisme de U’ sur V'.

3. Finalement on dit que f : U — R” est un difféomorphisme local si ¢’est un difféomorphisme
local en chaque point de U.

Observer qu'un difféomorphisme local n’est pas forcément une application injective (ni surjective
d’ailleurs).

Remarque. Un homéomorphisme de classe C* n’est pas toujours un difféeomorphisme. Par
exemple la fonction f(z) = 2% décrit un homéomorphisme C* de R vers R mais l'inverse
Yy = &y n’est pas dérivable en y = 0.

Il y a deux fagons de concevoir un difféomorphisme f : U — V. Dans le premier point de vue,
on considére que f déplace les points de U (éventuellement en déformant ’ensemble U). Ainsi,
si p est un point de U, on considére que ¢ = f(p) est un autre point, qui appartient a V.

1. Du nom de Carl Gustav Jacob Jacobi, mathématicien allemand (1804-1851).
2. Une autre notation, un peu désuéte mais assez explicite, est

Ofr, i fn) _ . (OF
8(x17...,xn) o det (8@) ’
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Dans le second point de vue, les points ne “bougent” pas, mais on considére que (y1,¥y2,-..,Yn) =
f(z1,za,...,x,) représente un nouveau systéme de coordonnées sur U. Ceci nous méne a la
définition suivante :

Définition. Un systéme de coordonnées curviligne de classe C* sur 'ouvert U C R™ est la donnée
de n fonctions y1,y2, ..., yn : U = R telles que

¢Z(.’,12‘1,.’L‘2,...,5L’n) = (ylay27"'7y'fl)

décrit un diffeomorphisme de classe C* de U vers un ouvert V = ¢(U) C R™.

3.1.3 Applications Différentiables au sens de Fréchet

Définition. L’application f : U C R™ — R" est différentiable au sens de Frechet en p € U s’il
existe une application linéaire £ : R™ — R” telle que

f(x) = f(p) = (x = p) = o([lx — pl|)

Intuitivement, une application f est donc différentiable (au sens de Frechet) en p si f(x) — f(p)
est tangente & une application linéaire :
Lemme 3.1. Si elle existe, l'application linéaire de la définition précédente est unique.
On appelle alors cette application la différentielle de f en p et on note?
dfp == 1.

Preuve du lemme. Supposons que £; et fo soient deux applications linéaires telles que

f(x) = f(p) = ta(z —p) = f(z) — f(p) — La(z — p) = o([|z — pl|).

Soit v un vecteur quelconque de R™ et ¢ € R un réel assez petit pour que = + tv € U, alors on a

f(p+tv) = f(p) — la(tv) = o([[tv]]) = o(2),
et de méme
f(p+1tv) = fp) — La(tv) = o(|[tv]]) = o(?).
Par conséquent, on a
t(ly(v) — la(v)) = £1(tv) — La(tv) = ot),
ce qui signifie que
L) — ()]
t—0 t
c’est-a-dire £1(tv) = lo(tv). O

=0 = lim ||, (v) — £2(v)],
t—0

Remarque. Il est fréquent de noter h le vecteur h = x — p. On pense alors & A comme un
“accroissement” de p. On a alors

fp+h) = f(p) +dfp(h) + o([|A]])-

On remarque aussi que dfy,(h) peut se calculer par la formule suivante :

(f(p+th) - f(p)> _ dﬁ
t

dfp(h) = lim ”

t—0

f(p+th),
t=0

Il s’agit donc de la dérivée directionnelle de f au point p en direction de h.

3. La notation D f, est également souvent utilisée, mais nous préférons garder cette notation pour la matrice
jacobienne.
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Exemples

(i) Si I C R est un intervalle ouvert, alors f : I — R est différentiable en p € I si et seulement
si f est dérivable en p et

dfp(h) = f'(p) - h.

(ii) Soit f : R™ — R™ une application affine, i.e. une application du type f(x) = Az + b (on
A est une n x m matrice a coefficients réels). Alors f est différentiable en tout point et
dfp = A pour tout p € R™.

(iii) Si 8 : Fy X Ea — E3 est une application bilinéaire (ot E; sont des espaces normés de
dimension finie), alors

dB(py p2) (h1, he) = B(p1, ha) + B(h1,p2)
(iv) Considérons I'application v : M,,(R) — M, (R) définie par 1)(A) = A2, alors
dpa(H) = AH + HA.
(v) L’application ¢ : GL,(R) — GL,(R) définie par ¢(A) = A~ est différentiable et on a
dos(H) = —AtHA™L
(vi) La différentielle de application det : GL,(R) — R est donnée par
ddet 4(H) = Trace(Cof (A)" H).
ot Cof(A) est la matrice des cofacteurs de A.

Proposition 3.2 (Différentiation en chaine). Soient U C R™, V. C R" deux ouverts et f : U —
V,g:V — R® deux applications telles que f est Fréchet différentiable en p € U et g est Fréchet
différentiable en q = f(p) € V, alors go f : U — R® est Fréchet différentiable en p et

d(g o f)p = dgq o dfy

Cette proposition est I'une des raisons qui rend la notion de différentiabilité au sens de Fréchet
efficace et importante.

Preuve. Par hypothése, on a

fp+h) = f(p) = dfp(h) +o([hl]) et glg+k)—g(q) = dge(k) + o([|E])-

Donc

gof(p+h)—gof(p)=goflp+h)—gl)
=g (f(p) + dfp(h) + o([[R]])) — g(q)
=g (g +dfp(h) +o([[h]])) — g(q)
= dgq (dfp(h) + o(|[R|))) + o (dfy(h) + o([|R]]))
= dgq o dfp(h) + o([|Al]),

ce qui démontre que d(g o f), = dgq © dfp.

O

Proposition 3.3. Soit f : U — R" une application différentiable en chaque point de U, ou U
est un ouvert convexe de R™. Supposons que la différentielle de f est bornée sur U, i.e. il existe
C > 0 tel que ||dfp|| < C pour tout p € U (ict on utilise la norme d’opérateur pour df ). Alors f
est C-Lipschitzienne, 1i.e.

1f(y) = f@)ll < Clly — |-
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Preuve. Le segment de droite reliant & y est contenu dans le domaine U puisque celui-ci est
supposé convexe. On paramétrise ce segment par v(t) =z + t(y —x) € U. On a alors

L g
) — F@) = F(3(1) — F((0)) = / F(y (1))t

Or la régle de dérivation en chaine nous dit que

FO0) = dfs ) (5(0)) = dFy 0 — ),

donc

1) = 1@ = | [ ot
1
< [t ot o)

1
< /D ldfoll - lly — xdt
< Clly — 2.
]

Théoréme 3.4. Si f : U C R™ — R" est de classe C', alors f est différentiable au sens de
Frechet en tout point p de U. De plus la matrice de la différentielle df, est la matrice Jacobienne

de fenp :
g Afi

Démonstration. Nous donnons la preuve pour m = 2, le cas général est semblable. Ecrivons

f(p1+h1,p2+ ha) — f(p1,p2) = f(p1 + ha,p2 + ha) — f(p1+ h1,p2) + f(p1 + h1,p2) — f(p1, p2).

On a d’une part
of (p1,p2)
8$1

D’autre part, en appliquant le théoréme des accroissements fini & la fonction

f(p1+ h1,p2) — f(p1,p2) = hi + o(h1).

¢(t) = f(p1 + h1,p2 + tha),
on sait qu’il existe s € [0, 1] tel que

Of(p1 + hi1,p2 + sha)
8%2 ’

¢(1) = ¢(0) = ¢'(s) = ha-

c’est-a-dire
Of(p1 + h1,p2 + sha)

f(p1+ h1,p2) — f(p1,p2) = ha -

6%2
Par continuité de ngl’ on a
0 + h1,p2 + sh 0 )
f(pr+ N, p2+ she) _ 0f(p1,p2) + o(hy, ha)
0xo O0xa
En regroupant toute ces identités, on obtient
of (p1, of (p1,
f(p1+ hi,p2 + ha) — f(p1,p2) = 9(pr.p2) | hi + 91(pr.p2) | ha + o(h1, ha).

0xq 0xa
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On a donc montré que f est différentiable en p et que

of of
d ~h1+ =—— - hs. 3.3
fo(h) = - o el (3.3)
Cette derniére relation signifie que la matrice de df est la matrice Jacobienne de f. O

Corollaire 3.5. Si f : U C R™ — R" est de classe C*, alors Uapplication p — dfp est continue.

3.1.4 Une autre interprétation de la différentielle

La formule (3.3) suggére une autre facon de voir la différentielle d’une fonction. Remarquons
d’abord que si g : U C R™ — R est une fonction différentiable & valeurs scalaires, alors dg,
est une forme linéaire, c’est-a-dire un élément du dual de R™ pour tout point p de U. Si, en
particulier, g est elle-méme une forme linéaire, alors on a dg, = g pour tout point p. On a donc
la remarque suivante :

Pour tout systéme de coordonnées linéaires x1, . .., T, sur R™ on a en tout point* d:L'Z'|p =
Ainsi pour tout vecteur v = vie; + - - + Ve, ON A

dz;(v) = v; = (e;,v),
A condition toutefois que x1, ...,z soit le systéme de coordonnées linéaires associé a la base

€ly...,Em.

Considérons maintenant une application différentiable f : U C R™ — R", alors nous avons en
tout point p et pour tout ¢t =1,...,m:

dfy(e:) = lim (f (p+ tei) f(p)) of

t 8%( p)

Pour le vecteur v = viey + - - - + Ve, on a donc par linéarité de df :

df(v dep ei)v; = v; = Z 8% p)dz;(v)

car v; = dz;(v). On écrit cette formule sous la forme classique suivante :

df = ‘lfdxi (3.4)

Remarque 3.6. (1) Les raisonnement précédents montrent que I'image de df, est le sous-espace

vectoriel engendré par les vecteurs aa—jl(p), el %(p)

Il est important de ne pas oublier que si n > 1, alors f est une fonction & valeurs vectorielles, nous
pouvons donc encore développer df dans la base canonique de R™ et écrire la formule précédente

0 =3 gl =33 Hisan,

i=1 j=1

sou la forme

ou on a noté ici {1, ...,dy,} la base canonique de R™.

4. Noter que cette formule ne s’applique pas pour des coordonnées curvilignes (non linéaires). Par exemple on
ne peut pas écrire dr = r ou df = 0 dans le cas des coordonnées polaires (r, ) du plan.
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La notion de gradient

Considérons a nouveau une fonction différentiable g : U C R™ — R a valeurs scalaires. On a vu
que sa différentielle en tout point p est la forme linéaire

dg, = Z 8x<d$i'
i=1 "

Définition 3.7. On appelle gradient de g en p le vecteur dual de la forme linéaire dg,, ou la
dualité est induite par le produit scalaire standard de R™. Le gradient s’écrit

et il se caractérise par la condition
dgp(v) = (Vg(p),v), ¥ veR™

Notons encore que la matrice jacobienne de g en p est naturellement une matrice-ligne car dg,
est un élément du dual de R™. Puisque le gradient de g est un vecteur, il est représenté par une
matrice colonne. Ainsi nous avons

dg
aﬂfi
dg = 09 .. D9 et Vg=(dg) = |
ox;

3.1.5 Le théoréme d’inversion locale

Théoréme 3.8. Soit U un ouvert de R™ et f € CK¥(U,R") (avec k > 1). Alors f est un C*-
difféomorphisme local au voisinage de p € U si et seulement si J¢(p) # 0.

La preuve a été vue au cours d’analyse 2, nous la donnons ci-dessous par souct de complétude.

Preuve. Quitte a remplacer f par lapplication = — f(z 4+ p) — f(p), on se raméne au cas
p = f(p) = 0. En composant ensuite f avec 'application linéaire df ! on peut supposer que
dfo = Id. Avec ces hypotheéses, on a donc

f(x) =2+ g(x),

oil g € CF(U,R") vérifie g(0) = 0 et dgo = 0, c’est-a-dire g(x) = o(||z]|).
Nous devons construire un voisinage de 0 dans R™ sur lequel f est inversible. Comme z — dg,

est continu et dgg = 0, il existe 7 > 0 tel que pour tout = dans la boule fermée B, de centre 0 et

de rayon r on a ||dg||, < % (on prend 7 assez petit pour que B, C U). Cela implique que g est

%—Lipschitz sur cette boule, c’est-a-dire

_ 1
z.a' € By = |g@) = g(@)l| < glla" - ]|

En particulier [|g(x)|| < § pour tout 2 € B,. On va montrer que tout point y € B, j» appartient
a I'image de f par la méthode du point fixe. Observons que

fle)=r+g(x)=y <+ z=y—g().
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Fixons donc yo € B, 3 et définissons T : B, — R" par

T(x) =yo — g(x).

Observons d’abord que T(B,) C B, car
lall <7 = IT@)] = llyo = 9@l < llyoll + lg(@)]| < 5 +5 <
Ainsi T définit une transformation 7' : B, — B,. Montrons qu’elle est strictement contractante :
z,2' € By = ||T(2") - T(2)|| = [lg(2’) — g(2)]| < %Hw’ —z|.

L’application 7' posséde donc un unique point fixe g € B, tel que T(zo) = xg, c’est-a-dire
f(zo) = yo. On a montré que B, ; est contenu dans I'image de f.

Considérons maintenant P'ouvert V = B, N f~(B, /2), alors, par construction, f: V — B, /5 est
surjective. Cette application est aussi injective par unicité du point fixe de T'.

Notons h : B,/ — V l'inverse de f|;, et montrons d’abord que h est continue en 0. Observons
que pour x € V on a f(x) =z + g(z), donc

el = 11 (z) = g(@) | < [ F @I+ lg) <[ f @) + %lel,

ce qui implique, en posant x = h(y), que

Bl = llzll < 207G = 21yl

Nous pouvons montrer maintenant que h est différentiable en 0 et que sa différentielle en 0 est
I'identité. Nous avons en effet :
1hCy) =yl _ [le = @) _ llg@)] _ 3[lg(@)]

1yl Iyl Iyl = 2 iz

qui tend vers 0 lorsque x — 0 (et cette condition est équivalente a y — 0).

Nous avons démontré que si f : U — R” est C* et si df,, est inversible en un point p € U, alors
f définit une bijection dans un voisinage de p et I'inverse f~! est différentiable en f(p). Il est
clair que si df,, est inversible p € U, alors df est inversible en tout point d’un voisinage de p (car
le jacobien est une fonction continue). L'inverse f~! est alors de classe C* car la différentielle de
f~1 au point f(x) admet pour matrice jacobienne I'inverse de la matrice jacobienne de df;.

O]

Corollaire 3.9. Une application f : U — V de classe C*, avec k > 1 entre deuz owverts U et
V de R™ est un difféomorphisme (global) si et seulement f est bijective et J¢(p) # 0 pour tout
peU.

3.1.6 Le théoréme du rang constant

Rappels d’algébre linéaire. Rappelons que le rang d’une application linéaire £ : R™ — R"
est la dimension de I'image Im(¢) C R™. L’application linéaire ¢ est de rang r si et seulement si,
aprés changement de bases sur R™ et sur R, sa matrice prend la forme

L. 0
a=(5 1)
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Dans ces coordonnées, ’application ¢ s’écrit
Uz, .. xm) = (21,...,2.,0,...0).

On montre aussi que le rang est le plus grand entier r» € N tel que la matrice A admet un r x r
mineur non nul (i.e. une sous-matrice carrée de taille r x r et de déterminant non nul).

Définitions 3.10. o Le rang d’une application f : U € R™ — R” de classe C! est la fonction
rang; : U C R™ — N définie par rang(p) = rang(dfy).

o On dit que f est de rang mazimal en p si rang;(p) = min(m, n).

o f est une immersion si rang; (p) = m pour tout p € U (de fagon équivalente df,, est injective
pour tout p € U).

o f est une submersion si rang;(p) = n pour tout p € U (de fagon équivalente df, est surjective
pour tout p € U).

Exemple 3.11. a) Soit F' : R — R? l'application définie par F(z) = (22,2%). On a DF, =

2
<3;2>, et donc le rang de F' vaut 0 en (0,0) et 1 en tout autre point.

b) Soit G : R? — R? I'application définie par G(x1,22) = (23 + x2,23). Alors DG = (gi% (1))
1
Ainsi, le rang de G vaut 1 si 1 = 0 et 2 sinon.

Lemme 3.12. Soit f : U C R™ — R"™ une application de classe C', alors la fonction U —
N définie par p v~ rang;(p) est semi-continue inférieurement. En particulier si f est de rang
maximal en un point p, alors f est de rang mazimal dans un voisinage de ce point.

Rappelons qu’une fonction p : U — R est semi-continue inférieurement si pour tout o € R
I'ensemble {x € U | p(x) > a} est ouvert.

Preuve. L’application f vérifie rang s (p) > r si et seulement si la matrice jacobienne de df;, admet
un r X r mineur non nul (i.e. si cette matrice contient une sous-matrice carrée de taille r x r
dont le déterminant est non nul). Par continuité de la matrice jacobienne, ce méme mineur est
non nul dans un voisinage de p.

O

Le théoréme du rang constant affirme qu’une application de classe C* dont le rang est constant
est localement C*-équivalente a une application linéaire :

Théoréme 3.13 (Théoréme du rang constant). Soit f : U C R™ — R™ une application de
classe C* et de rang constant = r. Pour tout point p € U il existe des voisinages V de p et W
de ¢ = f(p) ainsi que des C*-difféomorphismes

P: V-V CR” e U:W—W CR”

tels que
(i) V.cUetf(V)CW,
(i) ®(p) =0 € R™ et ¥(q) =0 € R",
(iii) Uapplication F = Wo fo®~1: V' — W' s’écrit

F(x1,...,xm) = (x1,...2.,0,...0).
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Notons en particulier que F' est une application linéaire, alors que f ne l’est pas en général. La
situation peut se représenter sur le diagramme suivant :

v w

9| |v
v W
Preuve. On peut supposer, quitte a faire des translations, que p =0 € R™ et ¢ = f(p) =0 € R™.

Quitte a faire des changements de bases sur R™ et R", on peut aussi supposer que dfy prenne la
forme normale, c’est-a-dire que la matrice jacobienne de f en 0 est la n x m matrice

af; I, 0
DFy = 0)| =
’ <8xj( )> < 0 0 >
Définissons ’application suivante ® : U — R™

O(x1,...,xm) = (fi(x),..., fr(@), Trs1, ... Tm),

et observons que la matrice jacobienne de ® en 0 est la m x m matrice identité, car

o= (5 0) = (6 1)

Par le théoréme d’inversion locale, on sait que ® définit un difféeomorphisme de classe C* d’un
voisinage V' de 0 € R™ sur un autre voisinage V'’ de 0 € R™.

On considére maintenant 'application f o ®~!:V’ — R", cette application s’écrit
fod Nay,...,zm) = (xl, vz, [ 0 ® (), L f o (I)fl(a?)) ,

et sa matrice jacobienne en x est une m X n matrice de la forme

I. 0 > 0 _1
, avec A(x)= <fz o® > .
( * A2) Oz; (r+1)<ij<n

Or nous savons que cette matrice est de rang r pour tout = € V’ car rang f o ®~! = rang f = r.
Par conséquent A(z) est la matrice nulle pour tout x € V’. Ainsi f o ®~! ne dépend que des
variables x1,...,x, et on peut donc écrire

fo <I>*1(x) = (z1,...,xp,h(z1,...,2,))
On définit maintenant une application ¥ : f(U) — R™ par

U(y) = W1, Yrs Y1 — M1 (U155 Ur )y Yn = P (Y1, -+ 9))-

La matrice jacobienne de ¥ en 0 est une n X n matrice du type

o\ (1, 0
8y] o * ITZ—’I‘ )

Cette matrice est inversible, donc ¥ définit un C*-difféomorphisme d’un voisinage W de 0 € R™
vers un voisinage W' de 0. On vérifie finalement que F := Wo fo®~!: V' — W’ est donné par

Vofod l(xy,...,2,) = (x1,...2,,0,...0).

Une conséquence importante du théoréme du rang constant est le
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Théoréme 3.14 (Théoréme des fonctions implicites). Soit f : U C R™ — R"™ une application
C™® ot m =n+ k. Soit p un point de U et supposons que la matrice Jacobienne partielle (de

taille n x n)
512)
<amﬂ' 1<i<n, (k+1)<j<m

est inversible en p. Alors il existe un voisinage de p de type VxW C U avec V. C RF et W Cc R"
ainsi qu’une application ¢ : V. — W de classe C telle que pour tout x € V. x W on a

flz)=q < (Trt1,---,2m) = d(21,...,2k)

ot g = f(p).

Nous laissons la preuve en exercice. Remarquons que le rang de f en p est égale & n, donc par le
Lemme 3.12, le rang est constant, égal a n dans un voisinage de p. On peut donc supposer que
f est une submersion.

3.2 Sous-Variétés de R"

Une sous-variété de dimension m dans 'espace R™ est un sous-ensemble qui peut localement,
c’est-a-dire au voisinage de chaque point, étre approximé par un sous-espace affine de dimension
m < n. On suppose que des conditions de régularité (i.e. de différentiabilité) sont vérifiées. Voici
la définition précise.

Définition. Un sous-ensemble M C R™ est une sous-variété de dimension m de classe C¥ si
pour tout point p de M il existe un voisinage U C R™ de p et un C*-diffeomorphisme ¢ : U — V,
ot V' est un ouvert de R™, tel que

dUNM)=VNE

ol E C R" est un sous-espace affine de dimension m.

On dit aussi que (n — m) est la codimension de M. Une sous-variété de dimension 2 s’appelle
une surface et une sous-variété de dimension 1 est une courbe. Une sous-variété de codimension
1, donc de dimension (n — 1), s’appelle une hypersurface.

Remarque. Sans perdre de généralité, On peut remplacer dans cette définition les mots sous-
espace affine par sous-espace vectoriel. On peut méme supposer que £ C R™ est le sous-espace
vectoriel engendré par les m premiers vecteurs de la base canonique :

E={y cR" | yms1 =" =yn=0}.

Dans la pratique, vérifier que M est une sous-variété de dimension m revient & montrer que pour
tout point p € M, il existe un systéme de cordonnées curvilignes yi, ..., ¥y, dans un voisinage
U C R” de p tel que

PpUNM)=Vn{yeV |yn1 = =yn=0},
o ¢(x1,...,2n) = (Y1,...,Yn) est le diffécomorphisme qui représente le changement de coordon-
nées.
On peut alors considérer que les m premiéres coordonnées yi,..., Y, sont des “coordonnées

curvilignes locales” sur la sous variété M ; elle servent a paramétrer une région de la variété au
voisinage du point p.
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Observons aussi que les coordonnées restantes 4,41, ---,Yyn sont nulles sur la sous-variété, elle
représentent donc un systéme de n — m équations (en général non linéaires) qui définissent
localement la variété.

Premiers exemples.
(i) Une sous-variété de dimension 0 de R™ est un sous-ensemble discret (tous ses points sont
isolés).
(ii) Une sous-variété de dimension n de R™ est un sous-ensemble ouvert de R™ .
(iii) L’ensemble vide est une sous-variété de dimension m pour tout entier m.

(iv) Si f : U — R est une fonction de classe C* définie sur un ouvert U C R™, alors son graphe
M={(z,t) eUxR|t=f(x)}
est une sous-variété de R™ L,

Les trois premiers exemples sont banals. S’agissant du quatriéme exemple, pour montrer que le
graphe M de la fonction f € C*(U) est une sous-variété, on considére application ¢ : U x R —
U x R définie par

(X1, Ty 1) = (T1, -« oy Ty Tl — f(X1, -0, Tm)).

Cette application est clairement de classe C* et c’est un diffeomorphisme dont I'inverse est
explicitement donné par

O W1y Y Ymt1) = Wiy e oy Yo Yt + F (Y15 Ym))-

I est clair que ¢(M) = U x{0} € R™*! qui est un ouvert d’un sous-espace vectoriel de dimension
m.

Théoréme 3.15. Soit f: U — R™ une application de classe C* et de rang constant r, ou U est
un ouvert de R™. Alors on a les conclusions suivantes :
A) Pour chaque point ¢ € R™, la préimage f~1(q) C U est une sous-variété différentiable de
codimension 1 (i.e. de dimension m —r).

B) Chaque point p € U admet un voisinage Vy, C U tel que l'image directe f(V,) C R™ est une
sous-variété de dimension r.

En particulier :

a) Si f:U C R™ — R" est une submersion de classe C*, alors f~!(q) est une sous-variété de
codimension n.

b) Si f:U C R™ — R" est une immersion de classe C*, alors chaque point p € U admet un
voisinage V},, C U tel que I'image directe f(V},) C R™ est une sous-variété de dimension m.

Remarque. En général, I'image f(U) C R™ d’une immersion f : U — R™ n’est pas une sous-
variété, méme si f est injectif. Il est par contre facile de voir que f(U) est une sous-variété si f
est une immersion et f définit un homéomorphisme de U vers M.
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Des exemples pour le cas A4 :

1) Si F: R™ — R est une fonction C™ telle que dF, # 0 quel que soit p, alors F~1(g) est une
hypersurface de R™.

2) La sphére S*~! est une hypersurface (car la sphére est définie par I'équation > :1;12 =1).

3) Si F,G : R™ — R sont tels que dF), et dG), sont linéairement indépendants quel que soit p,
alors F~(q1) N G~!(q2) est une sous-variété de codimension 2.

4) Le groupe orthogonal O(n) est une sous-variété de M, (R) (car O(n) est défini par I’équation
XX =1,).

Preuve du théoréme. Le théoréme du rang constant nous dit que 'application f est localement
équivalente a une application linéaire de rang r. Donc la préimage d’un point par f et son image
directe sont localement équivalents & des sous-espaces vectoriels, or c’est précisément cela la
définition d’une sous-variété.

Commencons par démontrer I'affirmation (A). Fixons ¢ € R”, si ¢ € f(U), alors f~1(q) = 0 et
il n’y a rien & montrer. On suppose donc que g € f(U) et on choisit un point p € M = f~!(q).
Par le théoréme du rang constant on sait qu’il existe des ouverts V,V/ C R™, et W, W' C R"
tels que V.Cc U, f(V)C W,peV,qe W, ainsi que des diffecomorphismes ¥ : W — W' et
®:V — V' telsque ®(p) =0, ¥(q) =0et F=Wo fod LV — W sécrit F(xy,...,2,) =
(x1,...2,,0,...0). On a alors

SMNV)=V'N{zeR" |z =29=---=x, =0} CR™.

Ceci démontre qu M = f~1(q) est différentiablement équivalent & un ouvert d’un sous-espace
vectoriel de dimension m — r au voisinage de chacun de ses points. Par définition M est donc
une sous-variété de dimension m — r de R™.

Montrons maintenant I'affirmation (B). Fixons un point quelconque p € U et considérons des
voisinages V de p et W de ¢ = f(p) ainsi que des diffécomorphismes ¥ : W — W' et ®: V — V’
comme plus haut. Notons M = f(V'), alors

YMOW)=Wn{zeR"|z,p1 = =241 =2, =0} CR",

ce qui prouve que M est une sous-variété de dimension n — (n — r) = r de R™.

3.3 L’espace tangent a une sous-variété

Un vecteur v € R” est tangent en un point p & une sous-variété m € R" si c’est le vecteur vitesse
d’une courbe différentiable contenue dans la variété et passant par p. Plus précisément ;

Définition. Soit M C R™ une sous-variété de classe C! de dimension m et soit p un point de M.
On dit qu'un vecteur v € R™ est un vecteur tangent a M s'il existe une courbe 7 : (—¢,e) = M
de classe C! telle que

7(0)=p et H(0)=v.

Dans ce cas on dit que la courbe v représente le vecteur tangent v. On note T, M ’ensemble
des vecteurs tangents & M en p.

Exemple. S5i U C R" est un ouvert, alors T,U est canoniquement isomorphe a R", car tout
vecteur v € R™ est le vecteur vitesse de la courbe () = p + tv (cette courbe est contenu dans
louvert U pour |t| < € assez petit).
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Proposition 3.16. En chaque point p d’une sous-variété différentiable M C R™ de dimension
m, l’espace tangent T, M est un sous-espace vectoriel de dimension m de R™.

Preuve. On sait par définition de la notion de variété qu’il existe un voisinage U de p et un
difféeomorphisme ¢ : U — V tel que ¢(p) = 0 et

dUNM)=VNE

ol E C R"™ est un sous-espace-vectoriel de dimension m.

Soit v € T, M un vecteur tangent a M en p. Par définition il existe une courbe o : (—¢,e) — MNU
de classe C! telle que a(0) = p et v = &(0). Définissons la courbe 3 : (—¢,¢) — V N E par
B(t) = ¢ oa(t), alors on a

¢~ (B(t) = dy ' (B(0)) € doy ' (E),

t=0

v

Todt|,_, T dt

ce qui montre que 7}, M est inclus dans 'espace vectoriel dgy 1(E)

Pour montrer I'inclusion inverse, on considére un vecteur quelconque w € FE, alors pour £ > 0
assez petit, la courbe : f(—¢,¢) — E définie par 5(t) = tw prend ses valeurs dans V' N E. Notons
a=¢ top, alors a: (—e,e) = M NU est une courbe C! telle que a(0) = p, par conséquent
&(0) € T,M. Mais on a

g (w) = g (50) = | 67IB0) = G(0) € Ty,

par conséquent d¢y, *(E) C T,M. On a montré que
T,M = dgg ' (B),

qui est bien un sous-espace vectoriel de dimension m car d¢, ! est un isomorphisme de R™ dans
lui-méme.

O]

Plan tangent & une surface.

Proposition 3.17. Si f : U C R® — R* une application différentiable de rang constant r, alors
pour tout point p de la sous-variété M = f~1(q), on a T,M = Ker(df,).

Preuve. Sous les hypothéses de la proposition, M est une sous-variété de R"™ de dimension
m = n — r. En particulier I'espace tangent 7T}, M est un sous-espace vectoriel de dimension m.
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Montrons que T, M C Ker(dfy,). Soit v € T, M un vecteur tangent M en p et a : (—¢,e) - M
une courbe qui représente v, alors

af(v) = dfy (6(0) = 2| falt) =0,

dt|,_q
car f(a(t)) = ¢ pour tout ¢t puisque a(t) € M. Ceci montre que T,M C Ker(df,). Mais d’autre
part, df, : R" — R* est une application linéaire de rang r, donc son noyau Ker(dfy) est un

sous-espace vectoriel de dimension n —r = m. On conclut que T, M = Ker(df),).
O

Exemple. Considérons le cas d'une hypersurface M = f~1(0) ot f : U C R® — R est une
submersion. Alors pour tout point p € M = f~1(0) on a

T,M = {v e R" | df,(v) = 0} = {v € R" | (V/(p),v) = 0},
I’espace tangent en p & M est donc le sous-espace vectoriel orthogonal au gradient ? f(p).

Proposition 3.18. Si f : U € R¥ — R" est une application différentiable de rang constant r
telle que M = f(U) C R™ est une sous-variété (de dimension r), alors pour tout ¢ = f(p) € M,
on a Ty,M = Im(dfy).

Preuve. Observons que la courbe t — f(p+ te;) est tracée sur la sous-variété M et passe par le
pont g en t = 0, par conséquent le vecteur
of

flp+te) = o, (p) = dfp(e;)

est un élément de T, M pour tout ¢ = 1,...,k. Les vecteurs {by,..., by} engendrent le sous-
espace vectoriel Im(df,), par conséquent Im(df,) C T;M. Or ces deux sous-espaces vectoriels
sont de dimension 7, ils sont par conséquent égaux.

O]

Remarque. Les vecteurs {by, ..., b} de la preuve précédentes forment les colonnes de la matrice
Jacobienne de f en p. Ils sont linéairement indépendants si et seulement si le rang de f en p est
égale a k.

Exemple. Considérons le graphe de la fonction différentiable ¢ : U — R ot U est un ouvert de
R?, notons S cette surface et p un point de S. Il y a deux facons de comprendre le plan tangent
T,S.
(i) Point de vue implicite : La surface S est 'ensemble des zéros de la fonction f: U xR — R
définie par f(x,y,2) = z — p(z,y). Le gradient de f est ?f = (—@z, =y, 1) et le plan
tangent en p = (x,y, p(x,y)) admet 1’équation

1,5 = (V1)) = {v = (01.02,09) | v = oot + 02}

ol on a noté pour simplifier p, = g—i et @, = g—‘;.

(ii) Point de vue paramétrique : La surface S est I'image de U par l'application h : U — R3
définie par h(x,y) = (z,y, p(z,y)). Alors T),S est le sous-espace vectoriel engendré par

oh oh
b= 5o = (10.0a) et by=7 =01,

On vérifie facilement que ces deux descriptions donnent le méme sous-espace vectoriel.
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Remarque. L’espace tangent T, M d’une sous-variété M C R" est un sous-espace vectoriel de R". Ce
sous-espace n’est pas géométriquement tangent a la sous-variété M (il peut méme étre disjoint de M).
Pour cette raison on introduit la notion suivante :

Définition 3.19. L’espace affine tangent a une sous-variété différentiable M C R™ en un point p € M
est le sous-espace affine
ApM ={qeR" |(qg—p) € T,M} =p+T,M.

Observons que le point p appartient a I'intersection M NA,M et le sous-espace affine est géométriquement
tangent a M en ce point.

Exemple. Si f: U C R" — R est une fonction de classe C! telle que df, # 0 en tout p € U, alors 'espace
affine tangent a 'hypersurface M = f~1(0) en p est ’hyperplan

A = { R Y 5L ()i~ pi) = 0}.
i=1 "

A titre d’exemple concret, le plan tangent en p = (o, yo, 20) & lellipsoide ﬁ—z + %5 + Z = 1 est le plan

2 2
2 02
d’équation

zo(z — %0) | Yo(y — o) n z0(z — 20)

a? + b2 c? =0

3.4 Applications différentiables entre deux sous-variétés

La notion d’application différentiable entre des ouverts U € R et V C R se généralise au cas
des applications entre deux sous-variétés.

Définitions. Soient M C R% et N C RY deux sous-variétés différentiables de classe C* et
f+ M — N une application entre ces deux sous-variétés. On dit que f est différentiable de classe
C* au voisinage du point p € M s’il existe un voisinage ouvert U C R? de p et une application
F : U — R’ de classe C* telle que F et f coincident sur I'intersection U N M, c’est-a-dire qu’on
a Flynu = flynu- Lapplication F' s’appelle alors une extension locale de f au voisinage de p.

On dit f : M — N différentiables de classe C* et on note f € C*¥(M, N) si f est différentiable
au voisinage de tout point de M.

On distingue certaines applications différentiables particuliéres :

(a) On dit que f € C*(M, N) est un difféomorphisme de classe C* si f est bijective et f~1 €
Cr(N, M).

(b) Ondit que 1 : Q — M est une paramétrisation locale de classe C* si Q est un ouvert de R™ et
1 est un difféomorphisme de classe C* de I'ouvert Q C R™ vers son image W = 4(Q) C M.
Lorsque % est bijective, on dit que c’est une paramétrisation globale de M.

(c) On dit que ¢ : W — U est une carte locale de classe C* pour la variété M si W est un
ouvert relatif® de M (appelé le domaine de la carte), U est un ouvert de R™ et ¢ est un
difféomorphisme de classe C*. Dans ce cas on doit avoir m = dim(M). Une carte locale est
donc l'inverse d’une paramétrisation locale.

Exemple. La projection stéréographique est Uapplication 7 : S™\ {N} — R™ définie sur le com-
plémentaire du “péle nord” N de la sphére unité S~ C R"*! (c’est-a-dire le point (0,...,0,1))
qui envoie le point P € S™\ { N} sur I'intersection P’ de la droite par N et P avec R" (vu comme
I'hyperplan de R"*! défini par {z,,1 = 0}). La projection stéréographique est donc une carte
de la sphére dont le domaine est le complémentaire du pdle nord.

5. Un sous-ensemble W C M est un ouvert relatif de M g’il existe un ouvert V- C R™ tel que W =V N M.
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La différentielle d’une application de classe C'! est définie a priori pour les applications entre des
ouverts de R™. La proposition suivante permet de généraliser cette notion importante au cas des
applications entre deux sous-variétés.

Proposition 3.20. Soit f : M — N une application entre deuz variétés différentiables etp € M.
Supposons que f soit de classe C' au voisinage de p. Alors pour toute extension locale F : U — R*
de f au voisinage de p, on a dF,(T,M) C TyN, ou q¢ = f(p).

De plus la restriction de\TpM : T,M — TyN ne dépend pas de l’extension locale de f choisie.

On notera df, : T,M — T, N Tl'application ainsi définie et on dit que c’est la différentielle de
Uapplication f: M — N en p.

Preuve. Par définition de la notion de vecteur tangent, il existe une courbe 7 : (—g,e) — M de
classe C* telle que (0) = p et 4(0) = v. Si on suppose £ > 0 assez petit, alors y(—¢,e) C UNM
et la régle de dérivation en chaine appliquée & F' oy nous dit que

d d

w=dR(0) = dRG0) = Z|  FO®) = |

f(r(@),

car par définition on a F|,;~; = flynp- Cela montre d'une part que I'image w ne dépend que
de f et non de I'extension F' choisie et d’autre part que w appartient a T; N puisque la courbe

a= fory:(—e¢e)— N vérifie a(0) = q et a(0) = w.
O

Remarquons que cette preuve nous donne une interprétation trés naturelle de la différentielle
dfy : T,M — TN : si le vecteur tangent v € T, M est représenté par la courbe v tracée sur M,
alors dfy,(v) € Ty N est le vecteur tangent représenté par la courbe for.

Proposition 3.21 (Reégle de dérivation en chaine). Si f : My — My et g : My — M3 sont des
applications différentiables de classe C* entre des sous-variétés différentiables, alors go f + My —
M3 est différentiable de classe C* et pour tout point p € My on a

d(go f)p = dgs) o dfp,
qui est une application linéaire de T), My vers Ty rp)) Ms.

Preuve. Il suffit d’appliquer la régle de dérivation en chaine classique & des extensions F et G

des applications f et g a des voisinages de p, respectivement f(p).
O
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3.5 Le fibré tangent & une sous-variété

Définition. On appelle espace tangent total ou fibré tangent a la sous-variété M C R” le
sous-ensemble de R™ x R™ défini par

TM ={(p,v) eR"xR" |pe M et veT,M}.

Proposition 3.22. (a) Si M C R" est une sous-variété de dimension m et de classe C* avec
k> 2, alors TM C R?" est une sous-variété de dimension 2m et de classe C*~1.

(b) Si f: M — N est une application différentiable de classe C* entre deux sous-variétés de
classe C*, alors Uapplication

Tf:TM — TN  définie par T f(p,v) = (f(p),dfp(v))

est une application différentiable de classe C*~1.

(c) Les sous-variétés différentiables de classe C™° forment une catégorie dont les morphismes
sont les applications de classe C*°. La correspondance (M — TM, f — Tf) définit un
foncteur covariant de cette catégorie dans elle-méme.

Nous laissons la preuve en exercice.
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(Géométrie des sous-variétés

Dans ce chapitre nous étudions la géométrie des sous-variétés du point de vue des distances, aires
et volumes, angles etc. La notion de courbure des surfaces sera étudiée au chapitre 5
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4.1 Distances extrinséque et intrinséque sur une sous-variété

Définitions. (i) La distance extrinséque entre deux points p et ¢ sur une sous-variété M C R”
est la distance euclidienne ||g — p|| entre ces deux points.

(ii) La distance intrinséque entre deux points p et g sur une sous-variété connexe M C R" de
classe C! est l'infimum des longueurs des courbes de classe C'! par morceaux tracées sur la
sous-variété et qui relient ces deux points. On note cette distance par

dur(p,q) = inf{l(7) | v : [a,b] = M, ~ est C! par morceaux, v(a) = p, y(b) = q}. (4.1)

(iii) Deux sous variété connexes My C R™ et My C R? de classe O dans sont dites intrinséque-
ment isométriques s'il existe une application bijective f : My — My telle que das, (f(p), f(q)) =
dpr, (p, q) pour tous p,q € M. Dans ce cas on dit que l'application f est une isométrie entre les
deux sous-variétés.

Le-la lecteur-ice vérifiera sans difficulté que la distance ainsi définie satisfait aux propriétés ha-
bituelles d’une distance, et donc (M, dps) est un espace métrique. Remarquons aussi que

dyv(p,q) > llg — pl

pour toute paire de points p et ¢ de M.

Exemple. La distance intrinséque entre deux points p et ¢ d’une sphére S de centre ¢ et de
rayon R dans R" est égale a dgs(p,q) = Ra, ot a = <.(p, q) est 'angle entre les vecteurs (p — ¢)
et (¢ — ¢). La distance extrinséque est égale a ||¢ — p|| = 2R sin(«/2). L'inégalité précédente est
donc dans ce cas l'inégalité

a > 2sin(a/2),

qui est vérifiée pour tout a > 0.

Lemme 4.1. Soit f : M1 — Ms un difféomorphisme entre deux sous-variétés connexres de
classe C*. Supposons que pour tout point p € My, et tout vecteur tangent v € T,My, on a
\ldfp(v)|| = ||[V||. Alors f est une isométrie entre My et My pour les distances intrinséques dpy,
et dyg,, c’est-a-dire

da, (f(p), f(a))) = dar, (P, q)
pour tous p,q € M.

Remarquons que I’hypothése de cette proposition signifie que df,, est une isométrie linéaire entre
les espaces tangents T), M et Ty, Mz. En particulier on a {(df,(v1), dfy(v2)) = (v1, va) pour tous
Vi,Vy € Tle,

Preuve. Soit 7 : [a,b] — M un chemin de classe C! par morceaux reliant p & ¢, alors 7 = fo~y :
[a,b] — My un chemin de classe C'! par morceaux dans la variété My qui relie f(p) a f(q). Nous
avons alors 7(t) = df.;)(¥(t)), et donc, par hypothese

13O = lldfy @ G = 13
pour tout t € [a,b]. Par conséquent
b b
() = [ B = [ 1ol = )

Ceci implique que

dar, (f(P), (9))) < L(7) = £(7)-
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En prenant U'infimum des chemins v qui relient p & g on conclut que da, (f(p), f(q))) < dur, (P, q).
Finalement, en remplacant f par le difféomorphisme f~! et en répétant le méme argument, on
obtient également l'inégalité dar, (p, q) < dar, (f(p), f(q))), ce qui prouve que f est une isométrie.

O

La réciproque du lemme précédent est également vraie, nous I’énongons sous forme d’un théoréme
que nous admettons sans démonstration :

Théoréme 4.2. Une application f : My — My entre deux sous-variétés connexes de classe C?
est une isométrie entre My et My pour les distances intrinséques dyy, et dpr, si et seulement si f
est un difféomorphisme de classe C* tel que ||df,(v)| = ||| pour tout p € My et tout v € T,M;.

Remarque. La partie difficile de ce théoréme est de prouver qu’'une application f qui préserve les
distances (i.e. telle que dar, (f(p), f(q))) = dar, (p, q) pour tous p,q € M) est différentiable. Ce
résultat a été démontré par S. B. Myers et N. E. Steenrod en 1939.

Exemple. Deux sous-variétés M; et My de R™ sont dites congruentes s’il existe une isométrie
globale f : R™ — R™ telle que f(M;) = Mas. Lorsque c’est le cas, il est clair que la restriction
fl 11, €st une isométrie de My vers My pour la distance intrinseque, et aussi pour la distance
extrinséque (ce qui n’est en général pas le cas pour les isométries intrinséques).

4.2 Le tenseur métrique associé a une paramétrisation locale

On a vu que la distance intrinséque entre deux points d’une sous-variété connexe est I'infimum
des longueurs des courbes reliant ces deux points. Il sera donc important de pouvoir calculer la
longueur d’une courbe lorsqu’elle est décrite dans une paramétrisation (locale) de la variété.

Rappelons qu'une paramétrisation locale d’une sous-variété M C R™ de classe CF est la
donnée :

(i) d’un domaine 2 C R™, ou m = dim(M),

(i) et d'une application 1 : Q — M, de classe C¥, qui est un difféomorphisme sur son
image 1 (€2) C M. En particulier, ¢ est une immersion de €2 dans R".

Par la condition (ii), on sait que 1 est en particulier une immersion. Si on note (u1,...,un) les
coordonnées sur (2, alors pour tout u € €2, les vecteurs
— —
oY 0
bi(u) = —(u),...,by(u —

(1) = 5 (0). . ()

- Oup,

(u)
sont donc linéairement indépendants et forment ainsi une base de 'espace tangent Ty, M.

Définition. On dit que {by(u),..., by, (u)} est la base adaptée a la paramétrisation ¢ de espace
tangent T}, S, ott p = 9(u).

Les paramétres uyq, . .., uy, s’appellent les coordonnées curvilignes locales associées a la paramé-
trisation locale 1) de M. Les courbes sur M obtenues en fixant toutes les coordonées u; sauf une
s’appellent les lignes de coordonnées sur la sous-variété paramétrée M. Ensemble, elles forment
le réseau de coordonnées associé a la paramétrisation .
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Uy |

U

U

)

Définition. Les vecteurs {bi,...,b;,} ne forment en général pas une base orthonormée de
I'espace tangent T, M. La matrice de Gram G de cette base s’appelle le tenseur métrique de la
sous-variété M dans la paramétrisation .

Notons que, puisque les vecteurs b; dépendent de u € €, le tenseur métrique G = (g;5) : @ —
M,,,(R) est une fonction & valeurs matricielle définie sur le domaine 2. Ses coefficients sont

g15(u) = {bi(u) by(u)) = D0 T OV (4.2)
k=1 ¢

Le tenseur métrique est donc une fonction G € C*~1(Q, M,,(R)) de classe C*~! définie sur Q a
valeurs dans I’espace vectoriel des m x m matrices symétriques. Le tenseur métrique est associé
a la paramétrisation locale ¥ : 2 — M et non pas uniquement & la sous-variété M C R".

Le tenseur métrique s’appelle aussi la premiére forme fondamentale de associée & 1. On verra
plus loin qu’il y a aussi une deuxiéme et une troisiéme formes fondamentales.

Exemple 1 (graphe d’une fonction). Comme premier exemple, considérons le graphe S de
la fonction f: Q — R, ol © est un ouvert de R?. Une paramétrisation v :  — S est donné par

Y(z,y) = (z,y, f(z,y)).

La base du plan tangent en un point de la surface adaptée a cette paramétrisation est

1 0
x
f T Y f Y
0 0
oll on a noté f, = a—i et fy = 83J: Les coefficients du tenseur métrique sont donc

ginn=(bi,b1) =1+ f2,  gia=(b,ba)=fofy,  ga2=(ba,ba) =1+ [,

c’est-a-dire . f2 £t
+ x x
G(z,y) = < hf 1 +chy2> .
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Exemple 2 (Surface de révolution)
Considérons une courbe réguliére a(v) = (r(v), 2(v)) de classe C!, ott v € I C R dans un plan
muni de coordonnées (r, z) et supposons que 7(v) > 0 pour tout v € I.

On appelle surface de révolution de profil o autour de Uaze Oz la surface S C R? paramétrée

par ¢ : Q@ — S, (Q =1[0,27] x I), ou

w(uﬂ U) = (x(ua U)? y(u, U)? Z(ua ’U))

est donné par

La coordonnée u s’appelle longitude et la coordonnée v s’appelle latitude. Les courbes u = const.
sont les méridiens et les courbes v = const. sont les paralléles. de S.

v = latitude

La base du plan tangent associée & cette paramétrisation est

—r(v) sin(u) r’(v) cos(u)
b; = ?;5 = r(v)ocos(u) ; by = (?;ﬁ = r’(v)/(si)n(u)

Les coeflicients du tenseur métrique sont

9% 9y
ou’ Ov

G(u,v) = < T(S)Z (r*(v) iz%)) ) - < ki Hd(g)HQ ) |

Remarquons que le réseau des coordonnées longitude-latitude est partout orthogonal puisque
gi2 = O

2

2
=7r()?, g1z = =7r'(v)? + 2'(v)%

_|[9¥ Y= 0 _ ||y
g11 = ou =Y, 922 = v

On a donc
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Application a la sphére : La sphére S, de rayon a centrée a 'origine est la surface d’équation
22+ y? 4+ 22 = a®. C'est la surface de révolution dont le profil est le demi-cercle

A(v) = (r(v), 2(v)) = (a cos(v), asin(v))  (~5 <v < 3).
La paramétrisation de la sphére est donc donné par

x = a cos(u) cos(v)
y = a sin(u) cos(v)
z = a sin(v)
ott (u,v) parcourt le domaine €2 défini par les inégalités 0 < u < 27, —§ < v < T (les paramétres

utilisés dans cet exemple, s’appellent les coordoonées géographiques sur la sphére). Les formules
précédentes nous donnent le tenseur métrique suivant :

g1 = a? cosz(v), g12 = 0, go2 = a® (4.3)
c’est-a-dire ) 2( )
a“ cos”(v 0
G(u,v) = ( 0 o2 > .

Exemple 3 (Surface réglée). Une surface est dite réglée si elle est une réunion de droites ou
de segments de droites, ces droites sont appelées les génératrices. Le plan, le cylindre et le cone
sont les exemples les plus simples de surfaces réglées.

Pour paramétrer une surface réglée, on se donne une courbe o : I — R3, qu’on appellera une
directrice de la surface réglée, et qu’on suppose transverse aux génératrices, ainsi qu'un champ
de vecteurs w(u) le long de «, ce champ indique la direction des génératrices. La surface est alors
parameétrée par

B(u,v) = afu) + v w(u)
ou (u,v) € Q:=1xR.
On a alors
_ o _
=5 =

et le tenseur métrique est donné par

_9 _

b, a(u) +vw(u), by = 5 w(u).

guir = [[&l? + 2 (@, W v+ o [|w]]?
912:<de>+v<waw>
g22 = [|w|]*.

Voyons deux cas particuliers de surface réglée ou ce tenseur métrique prend une forme simple.
Supposons d’abord que « est une courbe plane paramétrée naturellement et que le vecteur w
est constant, unitaire et orthogonal au plan contenant «. On dit alors que S est un cylindre
généralisé.

On a ||@| = ||w|] =1, w = 0 et (&, w) = 0. Par conséquent g1; = g2 = 1 et gio = 0 et le

1
tenseur métrique est alors G = ( 0 (1) )

L’autre cas particulier est la surface des tangentes a une courbe biréguliére o : I — R3 que
I’on suppose paramétrée naturellement. C’est la surface réglée obtenue en prenant le champ de
vecteur u = T(u) = &(u), on a donc

gin = [lél? + 26, T ) v+ o |TY> = 1 + (k(u)v)*

gi12 = <a7T> + 'U<T,T> =1
go2 = | T[> = 1.
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ol k(u) est la courbure de a. Le tenseur métrique est alors

G(s,v) = < 1+ (k(u)v)® 1 ) |

1 1
. o .
Remarque. Il est utile de remarquer que les vecteurs b;(u) = 6—(u) forment les colonnes de la matrice
Uy
L i .
jacobienne D) (u) = 5 (u) |. Par conséquent on a
J
G(u) = Dy(u) " - Di(w). (4.4)

Cette identité peut nous donner une fagon rapide de calculer un tenseur métrique.

Exemple. Reprenons 'exemple du tenseur métrique d’un graphe M, mais cette fois dans le cas d’une
fonction de m variables f € C*(Q,R), ot © est un ouvert de R™. La variété M est donc paramétrée
par 'application ¢ : Q@ — R"T! définie par (z1,...,2m) = (T1,--+,Tm, f(T1,...,2m)). La matrice
jacobienne de 1 en un point de €2 est

1 o .- 0
Dy = O 1 .. : 7

. : e 1

fﬂil fa:z e fwm

ou fg, = pIe Le tenseur métrique est donc
L
V4 f20 forfes 0 forfon
G = DwT . Dw _ fﬂz.fl'g 1 +f:c22 N fx2 f’cm |

f;vm.fam fwmf;vg 1+fx2

m

que l'on peut aussi écrire g;; = 0ij + fa, fe,-

4.3 Signification géométrique du tenseur métrique

Le role du tenseur métrique est de nous permettre de calculer la norme d’un vecteur ainsi que
le produit scalaire entre deux vecteurs tangents en un point d’une sous-variété différentiable
M C R” lorsque ces vecteurs sont exprimés dans la base adaptée & une paramétrisation locale

Yv:Q— M.

En effet, si £,n € T,M sont deux vecteurs tangents en un point p = ¢(u) € M, alors on peut
éerire § = Y31, &by et =371, m;bj, ou {by,..., by} C T,M est la base de T, M adaptée a
la paramétrisation . On a donc

Emy =" &nibi,by) = > gij(wémy,

1,j=1 1,j=1

ot les g;; sont les coefficients du tenseur métrique. On notera souvent ce produit scalaire sous la
forme

gu(&m) = > gij(u)émy.

1,j=1
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En particulier la norme du vecteur § € T, M et 'angle 6 entre les vecteurs &, n € T, M (supposés

non nuls) sont donnés par
1€l = V&u(6,6) = \/ D 9ii&&,

cos() = gu(&,m) _ 2. 9ij€iny _
VEu(&: Vg, n) 2 9i&is - /2 gigminy

et

Ces formulent nous permettent de calculer la longueur d’une courbe « : [a,b] — M de classe C!
tracée dans I'image d’une paramétrisation ¢ : 2 — M. La représentation de la courbe a dans la
carte () s’écrit

Q(t) = wil(a(t)) = (Ul(t)v S 7um(t)) €}, te [a’v b]

(i.e. nous avons une courbe auxiliaire a(t) € Q dans le domaine de la paramétrisation Q telle que
Yo a(t) = at) pour tout t € I).

Z3

Uy

~

I

I 1 -
L m

Courbe tracée sur une sous-variété.

Le vecteur vitesse de o est donné par

6(t) = 50 (@) = 3 SE D= 3 ia(o)bitw)
i=1 " i=1

et la longueur de « est finalement donnée par

b b
) = [ latlde = [ /3 gi(ueyiso, @t

Rappelons que l'abscisse curviligne le long de la courbe « est la longueur de I'arc 4. En

ds
particulier on a i ||&(t)||. On peut donc écrire
s\ i du; du;
at) ~ ijflg” dt dt

En multipliant formellement cette égalité par dt?, on obtient

m
d82 = Z gijduiduj.
1,j=1
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Cette identité exprime le carré de l’élément de longueur infinitésimal d’une courbe « sur la sous-
variété dans les coordonnées wu; associée a une carte. On voit que cette expression (qu’on appelle
simplement “le ds?”) contient la méme information que le tenseur métrique.

L’étude du ds? nous donne une troisiéme facon de calculer le tenseur métrique qui est trés efficace

dans certains cas. Considérons une courbe a(t) = (z1(t), ..., x,(t)) sur la variété M = (Q2). Sa
représentation dans la carte est ¥~ (a(t)) = (u1(t),...,um(t)), et on a le long de cette courbe
n m
ds? = Zda:? = Z gijdu;du;.
i=1 ij=1
m 8:@ . J
11 suffit alors de calculer dz; = ) =1 a—duj pour trouver les coefficients g;; du tenseur métrique.
"
J

Exemple a. Les coordonnées polaires dans le plan sont données par les formules z = r cos(6),
y = rsin(f). On a donc

ds? = da® + dy? = (cos(0)dr — rsin(0)d)* + (sin(0)dr + r cos(0)d0)? = dr? + r2d6>.

. . 1
Le tenseur métrique associé est donc donné par G(r,0) = < 0 1?2 >

Exemple b. La surface de révolution autour de I'axe Oz dont le profil est la courbe v(v) =
(r(v), z(v)) admet la paramétrisation

(z,y,2) = (r(v) cos(u), r(v)sin(u), z(v)).
On a donc
ds? = da? + dy? + dz?
= (' (v) cos(u)dv — r(v) sin(u)du)2 + (r'(v) sin(u)dv + r(v) cos(u)alu)2 + (2 (v))%dv?
= r2(v)du® + (' (v)?* + 2/ (v))?dv?.

Le tenseur métrique associé est donc donné par

G(u0) = < "8 s e > - ( " o > |

4.4 Sur les isométries entre sous-variétés paramétrées

Le résultat suivant nous dit comment se comparent les tenseurs métriques de deux sous-variétés
paramétrées qui sont isométriques :

Théoréme 4.3. Soient 1 : Q1 — M; et ¥y : Qo — My deuxr sous-variétés paramétrées de
classe C1. Alors il existe une isométrie intrinséque f : My — My si et seulement s’il existe un
difféomorphisme h : 1 — Qo tel que pour tout u € 1 on a

G1(u) = Dh(u) " Go(h(u))Dh(u), (4.5)

ot G1 est le tenseur métrique de V1, Go est le tenseur métrique de Yo et Dh est la matrice
jacobienne du difféomorphisme h.
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La situation est représentée par le diagramme commutatif suivant :

M14>M2

o T

91L>QQ

Remarquons aussi que si on note h(uq,...,uny) = (v1,...,0n), alors la formule (4.5) peut s’écrire
811# ov,

gzj g;w s (4.6)
4;1 871@‘ 8uj

ot Gi = (g45) et Go = (§s5) et m = dim(M;) = dim(M>). Cette formule peut aussi s’écrire sous
forme différentielle :

ds? = Z gij(u)du;duj = Z Guv(v)dv,dv,. (4.7)
ivjzl M,Vil

Preuve. Supposons qu’il existe une isométrie intrinséque f : My — Ms, et remarquons que
for: Q1 — My est une paramétrisation de My (en général différente de v)7). Par le théoréme
4.2, on sait que f est une isométrie si et seulement si

<dfp(§)a dfp(ﬁ) = (&,m)

pour tout p € My et &, € T,M;. Ceci implique que pour tout u € €)1, les coefficients du tenseur
métrique de 1 vérifient :

gij(u) = (dy1, (e;), dir, (e5))
= (df y, () (Y1, (€1)), Af s, (u) (Y1, (€5)))
= (d(f o P1)ulei), d(f o P1)uej))

ou {ei,...,en} est la base canonique de R™. Cette condition s’écrit matriciellement

Gi(u) =Dty (u) " - Depy(u) = D(f o thr(u)) " - D(f o 1 (uw)).

On considére maintenant ’application h : 1 — Q9 définie par h = 1)y Lo fouhy. Cette application
est un difféomorphisme de €21 vers {29 car c’est la composition de trois difféomorphismes, de plus
on a i o h = f oy, par conséquent

Gi(u) = D 0 h(u))" - D(¢2 0 h(w))
= Dh(u) "D¢ha(h(u) "Dpa(h(u)Dh(u)
= Dh(u) " Gao(h(u))Dh(u).
Inversément, supposons qu'’il existe un difféeomorphisme h : Q1 — Q9 tel que la condition (4.5)
est vérifiée, alors on définit f : My — My par f =1a0hot) Lo My — Ms. Le calcul précédent

prouve que f est une isométrie de My vers Ms.

O]

Le théoréme 4.3 contient les cas particuliers suivants :

Corollaire 4.4. Si les deuz sous-variétés paramétrées de classe C by : Q — My et g : Q@ — Mo,
avec méme domaine de paramétrisation, 2 C R™ ont le méme tenseur métrique, alors elles sont
1SOmeétriques



CHAPITRE 4. GEOMETRIE DES SOUS-VARIETES 71

Preuve. Ce corollaire correspond au cas ot h : 2 — € est I'identité.
O

Corollaire 4.5. Si Y1 : Q1 — M et ipo : Qo — M sont deuxr paramétrisations de la méme
sous-variété M, alors il existe un difféomorphisme h : Qq — Qg tel que (4.5) soit satisfaite pour
tout u € q

Preuve. Correspond au cas ot f est l'identité.

4.5 Intégration sur une sous-variété

Définition. Si M C R est une sous-variété de dimension m et ¢ : Q — M est une paramétri-
sation réguliére globale de classe C!, alors I'intégrale

Vol (M) = /Q JA(G (@) dus - - - duipy. (4.8)

s’appelle le volume m-dimensionnel de la variété M.

Nous ne pouvons pas prouver ici cette formule, que nous prenons donc comme une définition. Toutefois
elle peut se justifier heuristiquement de la fagon suivante : Considérons une sous-variété paramétrée
1 Q — M de classe C! et de dimension m. Pour estimer son volume, on peut subdiviser le domaine
Q C R™ en sous-domaines €; :

Q =,y tels que si ¢ # j, alors ©; N Q; est de mesure nulle,

en sorte que

Vol,, (M) = Vol,,, ((Q2)) = Z Vol (¥(§%:)).

Si les sous-domaines €2; sont suffisamment petits, on peut approximer la restriction de @ a €); par sa
différentielle, ainsi

Vol (1(2:)) 22 Vol (dipy, () = y/det(d),] dipy,) Vol () = v/det G(u) Vol (€2;),

ol u; € €); est arbitraire. On a donc

Vol (M) 22>~ \/det G(u) Vol ().

En raffinant la subdivision de €2, et en supposant que max{diam(Q2;)} — 0, cette somme converge vers
l'intégrale (4.8).

Remarque. Lorsque M est une surface, i.e. m = 2, on note Voly(M) = Aire(M) et on dit que
c’est l'aire de M. Lorsque m = 1, Vol; (M) n’est rien d’autre que la longueur de la courbe M.

Le résultat suivant nous dit que le volume est une notion géométrique, c’est-a-dire indépendante
de la paramétrisation choisie.

Proposition 4.6. Soient 1 : Q1 — M et s : Qo — M sont deux paramétrisations réguliéres
globales de classe C' d’une méme sous-variété M C R" de dimension m. Alors on a

/Q Vdet(Gi(u)) du :/Q vV det(Ga(v)) dv.
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Ce résultat se déduit du corollaire 4.5 en appliquant la formule de changement de variables dans
les intégrales multiples.

Exemple 1. Si S est le graphe de la fonction f: Q — R, alors
Aire(S) = / / JUt 2+ £2 dedy.
Q

Exemple 2. La paramétrisation par longitude et latitude de la sphére S, C R? de rayon a admet
Q= [0,27] x [~F, 5] comme domaine de paramétrisation , et on a

Gluv) = <a2 005(0)2 6?2) ’

donc dA = a? cos(v)dudv et 'aire de cette sphére est

Aire(S, // dA = // Vv det G(u, v)dudv —/ / a’ cos(v)dudv = 4ma?.

Généralisation. Plus généralement, si ¢ : @ — M C R" est une paramétrisation globale de
classe C! d’une sous-variété M et p : M — R est une fonction continue non négative, alors
Iintégrale de la fonction p sur M est définie par

/Mp(ar)dV ::/ p o 1) (u)/det G(u)du.

Nous pouvons aussi considérer le cas des fonctions & valeurs vectorielles. Par exemple, le centre
de gravité de la variété M (pour une distribution de masse homogéne) est le point C' € R™ défini

par
1
C= Vol )/XdV_Vol /11} )V det G(u) du. (4.9)

4.6 Domailnes riemanniens

Définition. On appelle métrique riemannienne de classe C* sur un domaine Q C R™ la donnée
en chaque point v € 2, d'un un produit scalaire

LR X R™ SR,

qui varie de fagon différentiable par rapport a u. Cette condition signifie que la fonctions g;; :
Q — R définies par g;j(u) = gu(e;, e;) sont de classe C¥, o {eq,...,e,,} est la base canonique
de R™. On note parfois

Bu = E 92] duzdu]a
t,j=1
et on dit que cette expression est le tenseur métrique sur le domaine 2. Un domaine riemannien
est une couple (£2,g), ou © est un domaine de R™ et g est une métrique riemannienne définie
sur ce domaine.

Cette structure permet de faire de la géométrie (dite géométrie intrinséque ou géométrie rieman-
nienne) dans le domaine 2 indépendamment d’une éventuelle réalisation de ce domaine comme
plongement dans un espace euclidien. En particulier
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o La norme riemannienne d’un vecteur £ au point u est

> gij(W)&E;.

ij=1

1€l = V8ul&;§) =

o L’angle en u € ) entre les vecteurs non nuls £ et n est

_ &ul&m)
cos (<u(€,m)) = I€Nlglnlle

o La longueur riemannienne de la courbe v : [a,b] — Q de classe C! par morceaux est définie
par

b b
) = [ 1i0lhwdt= [ feoG@. i) d.

o La distance intrinséque entre deux points est définie comme l'infimum des longueurs des
courbes de classe C! par morceaux contenues dans le domaine  qui rejoignent ces deux
points.

o Le volume du domaine Riemannien (€2, g) est l'intégrale

Vol(£2, g) :/Q\/det(gij(u))dul---dum.

Voyons quelques exemples :

1) Si¢: Q — R™ est une immersion, alors le tenseur métrique défini par

gu(&,n) = (dYu(§), dibu(n))

oY

8uz-’ 8uj .

2) La métrique hyperbolique de Poincaré sur le demi-espace H™ = {z € R™ | z,,, > 0} est la
métrique riemannienne définie par

définit une structure Riemannienne sur €2 pour laquelle on a g;; = <

<£7 77>Rm
h, (57 77) = D) .
xm
Pour cette métrique on a h;j(x) = :L%Q(Sij.

3) La métrique hyperbolique de Poincaré dans la boule B" = {z € R™ | ||z|| < 1} est la métrique
riemannienne définie par
4<£7 77>1Rm

g:(§m) = m

Pour cette métrique on a h;;(z) = U_ﬁ%
On peut démontrer que les domaines H™ et B™ sont isométriques pour leur métriques hyperbo-
liques respectives.



Chapitre 5

Les surfaces et leur courbure

5.1 Co-orientation d’une surface et application de Gauss

Définition. On appelle co-orientation d’une surface réguliére S C R? de classe C! la donnée
d’un champ de vecteurs continu v : S — R3 tel que |[v(p)|| = 1 et v(p) L T,,S pour tout point
p € S. La surface S est co-orientable si elle admet une co-orientation.

Remarques. (i) Si elle existe, une co-orientation v de la surface S est unique au signe prés. De
plus le champ v est de classe C*~1 si la surface S est de classe CF.

(ii) Toute surface de classe C! est localement co-orientable, i.e. elle admet une co-orientation au
voisinage de chacun de ses points.

(iii) Un exemple de surface qui n’est pas co-orientable globalement est le ruban de Mdbius. On
peut d’ailleurs prouver que toute surface qui n’est pas co-orientable contient un ouvert qui est
homéomorphe au ruban de Mé&bius.

(iv) Le choix d'une co-orientation d’une surface réguliére S permet de définir une orientation du
plan tangent 7,5 pour tout p € S qui dépend contintiment du point. On dit alors que la surface
est orientée (les deux termes sont donc essentiellement synonymes).

Une co-orientation est concrétement obtenue de la fagon suivante : Si la surface S est définie par
I'équation f(z,y,z) = 0, alors une co-orientation est donnée par le champ
V()

") = G @

en supposant que le gradient de f ne s’annule pas sur S. Si la surface est paramétrée de fagon
réguliére par I'application injective 1 : @ — S C R?, alors une co-orientation est donnée par

9 o 0P
auxav

V=—F"—7—.
0 0
152 < 52|

74
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Mentionnons pour finir, que 'application v est souvent vue non comme un champ de vecteus
mais comme une application de la surface S vers la sphére unité. Dans ce cas, I'application

v:S—§?

s’appelle I'application de Gauss.

5.2 Courbure d’une courbe tracée sur une surface

5.2.1 Géodésiques

Définition 5.1. Une courbe v : I — S de classe C? tracée sur une surface réguliére S C R? est
une géodésique de cette surface si son accélération est normale a la surface :

F(t) LTS, pour tout t € I.

Si la surface est co-orientée par le champ v, alors v : I — S est géodésique si et seulement si elle
vérifie I’équation différentielle suivante sur l'intervalle I :

J(t) x v(y(t)) = 0.
Lemme 5.2. Toute géodésique sur une surface réquliére est parcourue a vitesse constante.

Nous laissons la preuve en exercice.
Exemples. 1) Les géodésiques d'un plan sont les droites de ce plan paramétrées affinement (i.e.
parcourues a vitesse constante).

2) Les géodésiques d’'une sphére sont les grand cercles de cette sphére, paramétrés a vitesse
constante.

5.2.2 Repére de Darboux, courbures normale et géodésique

Définition 5.3. Soit v : I — S une courbe réguliére de classe C? tracée sur une surface réguliére
co-orientée S C R3.
(i) On appelle repére de Darbouz! le long de v relatif & la surface S le repére mobile orthonormé

{v(t), Ty(t), u(t)} o Ty(t) = ﬁv(t) est le vecteur tangent unitaire a 7, v(t) est la co-
orientation de S évaluée au point (t) € S et u(t) = v(t) x T, (t).

(ii) La courbure normale et la courbure géodésique de «y sont les fonctions du paramétre ¢ définies
respectivement par

kn(t) = (K (@), v(1) et ky(t) = (K5 (1), u(D))-
ot K(t) est le vecteur de courbure de 7. Ces courbures représentent les composantes
normale et tangentielle de la courbure de 7.

(iii) La torsion géodésique de -y par

Remarquons qu’en tout point p = ~(t) de la courbe, les vecteurs {T(t), u(t)} forment une base
orthonormée du plan tangent 7,,S. La courbe v est géodésique si et seulement si cette courbe est
paramétrée & vitesse constante et sa courbure géodésique est nulle. Il est par ailleurs clair que

Ko () = kn(O)v(t) + kg(Om(t) et kn(t)* + ko(t)® = k(1) = | K, (1)].

1. Attention, il n’y a pas de lien entre cette notion et le vecteur de Darboux défini au chapitre 2.
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Proposition 5.4 (Equations de Darboux). Le repére de Darboux vérifie les équations différen-
tielles sutvantes :

V%T = kg + kpv,
wr = kT +7m,
1 -

W[J, = —kgT — TgV.

Nous laissons la preuve de cette proposition en exercice.

La courbure géodésique apparait naturellement lorsqu’on dérive la fonctionnelle de longueur
d’une courbe. De facon plus précise, considérons une courbe v : [a,b] — S de classe C? sur une
surface réguliére S, que 'on suppose paramétrée naturellement : ||¥(u)|| = 1 (on notera ici u le
paramétre de 7). Une déformation de -y sur S est la donnée d’une application 1 : [a, b] X (—¢, &) —
S C R3, de classe C? telle v(u) = 1 (u,0) pour tout u € [a, b]. On note alors v, (u) = ¥(u,v), que
I’'on considére comme une famille & un paramétre de courbes tracées sur S et qui déforment la
courbe initiale v = vg. Nous avons alors le résultat suivant :

Théoréme 5.5 (Formule de variation premiére pour la longueur). Dans les conditions ci-dessus,
la dérivée en v =0 de la fonctionnelle longueur v — £(7,) en 0 est donnée par

5ot =(Graw) - [ o) (52000 (1)
0

b
0
BN vzof(%) —/a 90

Pour simplifier cette intégrale, on observe que

b

Preuve. On a

(V15250 ) au.
v=0

ov

%y oy
0 o o _<auau’au>_ 1 Py O
<8u8u> ou

Nous avons supposé que pour v = 0, on ‘ g—lﬁ = ||¥(u)|| = 1, par conséquent
0 0 )_/bz%pa¢(w_ o oY buﬁ oy VN
o |, To) = o \Oudv’ ou SN\ o/ |,y Jo \Ov Ou? '

(on a intégré par parties). En v = 0, nous avons g—fj =9(u) et

(2000 < (20 ) = (26, 0) = (2 kot

0
car %% est un champ de vecteurs tangent a la surface. On a donc finalement

ov
i:b B /ab kg (t) <?§,u(u)> du.
O

Une conséquence importante de ce théoréme dit qu'une courbe sur une surface S qui minimise
la distance intrinséque entre ses extrémités est une géodésique si elle est parcourue a vitesse
constante :

0

ov

fn) = G 0).4(0))

v=0
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Corollaire 5.6. Soit v : [a,b] une courbe de classe C* paramétrée a vitesse constante sur la
surface S. Si la longueur de ~y est égale a la distance entre les points p = y(a) et g = y(b), alors
v est une géodésique de S.

Preuve. Soit 1 : [a,b] x (—¢,e) — S C R? une déformation quelconque de classe C? de v dont

0
les extrémités sont fixées, i.e. ¥(a,v) = p et ¥(b,v) = ¢ pour tout v € (—¢,¢), alors a—d} s’annule
v

lorsque u = a et u = b. La formule de variation premiére (5.1) s’écrit donc

b b
sol 00 == [ k() . ) du,
v |,—g a
\ ) - oY : .
ou on a noté pour simplifier &(u) = 8—(u, 0). Mais par hypothése £(y9) = d(p, q) est la longueur
v
minimale parmi toutes les courbes sur S qui relient p & ¢, par conséquent £ (v) =0 et
v

v=0
on a donc

b
[ a0 (€ ) =0,

Dans cette égalité, € est un champ de vecteurs quelconque le long de v qui s’annule aux extrémités
de la courbe (car nous avons considéré une déformation ¢ a extrémités fixes quelconque de 7).
Cette condition implique que la courbure géodésique k, de ~y est identiquement nulle et donc ~
est géodésique.

O

Une géodésique ne minimise pas toujours la distance entre ses extrémités, toutefois c’est le cas
localement ; et cette propriété caractérise les géodésiques :

Théoréme 5.7. Une courbe de classe C? sur une surface régulicre S est une géodésique de cette
surface si et seulement si

(i) La vitesse V' de vy est constante.

(ii) La courbe v réalise localement les distances minimales entre les points qu’elle parcourt. De
facon plus précise, pour tout to € I il existe € > 0 tel que si t1,ts € [tg — €,ty + €], alors la
distance dg(7y(t1),¥(t2) est égale a la longueur de Uarc 7|y, 4,

I1 suit du corollaire précédent que si la courbe 7 vérifie les conditions (i) et (ii), alors c’est une
géodésique. La preuve de affirmation sort du cadre de ce cours.

Remarque. La notion de géodésique est a priori une notion cinématique puisqu’elle fait inter-
venir ’accélération de la courbe. On définit parfois une géodésique comme une courbe qui réalise
localement la distance entre les points de cette courbe. Cela revient a garder la condition (ii) du
corollaire et a oublier la condition (i) ; avec cette définition alternative la notion de géodésique
devient une notion géométrique, équivalente a la condition que la courbure géodésique s’annule.
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5.2.3 Le théoréme de Meusnier

Le théoréme de Meusnier 2 dit que la courbure normale d’une courbe tracée sur une surface en
un point p ne dépend que de la direction de cette courbe en ce point :

Théoréme 5.8 (Meusnier, 1785). Soit v : I — S une courbe réguli¢re de classe C? tracée sur
une surface co-orientée S. Alors sa courbure normale en t € I ne dépend que de la direction de
A(t). Plus précisément, nous avons la formule suivante :

BRI
N T >

En particulier la courbure normale ne dépend pas de l’accélération de la courbe.

Remarquons que la formule précédente peut aussi s’écrire
kn(t) = —(dv (T (1)), T(1)), (5.3)

V(1))
@I

Preuve. On a clairement (v(y(t)),5(t)) = 0 pour tout ¢ € I. En dérivant cette relation et en
appliquant la formule de ’accélération on obtient

ou T, (t) = est le vecteur tangent a v en t.

0= L wr(1)).3(0) = (v (D). 40) + (wlr(0). (1)
= (w0, 30+ V5 () (1)), T () + Vi (1) (1)), K (1),

ou V,(t) = ||¥(t)||. Nous avons (v(v(t)), T,(t)) = 0 et k,(t) = (v(v(t)),K,(t)) est la courbure
normale de . Notons aussi que

Cu (1) = dw(3(1).

Par conséquent le calcul précédent montre que

O]

Nous avons immeédiatement le corollaire suivant :

Corollaire 5.9. Si v : (—¢,e) = S et 72 : (—¢,e) — S sont deux courbes réguliéres de classe
C? sur une surface réquliere co-orientée S C R3 de classe C? telles que v1(0) = 72(0) = p et
41(0) = Ay2(0) avec A # 0, alors y1 et y2 ont méme courbure normale en t = 0.

5.3 L’application de Weingarten et la deuxiéme forme fondamen-
tale

Dans cette section, nous présentons différentes notions de courbure liées a une surface. Nous
commengons par la définition suivante, qui est motivée par la preuve du théoréme de Meusnier :

2. Jean-Baptiste Meusnier (1754-1793).
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Définition 5.10. On appelle application de Weingarten en un point p d’une surface S C R3
co-orientée, réguliére de classe C?, la différentielle en ce point de I’application de Gauss. On note
cette application

L, = dv,.

Remarque 5.11. (1) L’application de Weingarten s’appelle souvent the shape operator dans les
livres en anglais.

(2) Certain livres définissent I’application de Weingarten avec le signe opposé (i.e. L, = —dvp).

(3) L’application de Weingarten est a priori une application linéaire entre le plan tangent en p a
la surface S et le plan tangent a v(p) & la sphére unité S?. Cependant le vecteur v(p) est a la fois
vecteur normal de 7,5 et vecteur normal a T,,(p)S2, donc ces deux plans tangents coincident et
on peut donc considérer que 'application de Weingarten au point p € S est un endomorphisme
du plan tangent 7,5 :

L, =dv,:T,S = T,S.

Définition 5.12. La seconde forme fondamentale en un point p d’une surface réguliére de classe
C? co-orientée S C R3 est application bilinéaire h, : 7,5 x T,,S — R définie sur le plan tangent
T,S par

h,(&,n) = —gp(Lp(§),n)

ol g est le tenseur métrique associé & .

La formule (5.2) nous dit que la courbure normale d'une courbe de C? sur la surface S peut
s’écrire

b (t) — B ((0).5(0) _ 1y((0).5(0) 5

( (t)af)/(t)) gp('Y(t)/Y(t))

Proposition 5.13. Soit ¢ : Q — S une surface paramétrée réqulicre de classe C? et notons

b, = %, alors les coefficients de la seconde forme fondamentale dans la base {b1(u), ba(u)} de

ou;

T,S adaptée a la paramétrisation 1 en un point p = 1p(u) sont donnés par

2
hio) =y (i) = (). 5o 0)). (5.5)

Preuve. Pour simplifier la suite, on notera v(u) pour v(¢(u)). Pour tout u € 2, nous avons
(v(u),bj(u)) = 0, par conséquent

ov 8bj
<87ui7bj> + <V7 8U1> =0.
Or, par définition de 'application de Weingarten, on a
0 ov o
L(b;) =dv(b;) =d = .

et
Ob; 0 oY _ 82w

8ui - 8u187u] - 8u,8u] '

Par conséquent :

ov o Ob; 82
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Remarque. Il est commode de noter

_0b;
N Oul N aulau]

La proposition précédente nous dit qu’en tout point de la surface paramétrée par 1, on a

hij = (v, bij).

Corollaire 5.14. Si ¢ : Q — S une surface paramétrée régulicre de classe C?, alors la seconde
forme fondamentale h est une forme bilinéaire symétrique en tout point de S :

hy, (€, 1) = hy (1, €),

pour tous £,m € T,S. De fagon équivalente, l'application de Weingarten L est auto-adjointe, i.e.
on a

gp(Lp(§),n) = gp(&, Lp(n))-

Preuve. Il suffit de vérifier que h(by, by) = h(bg,b1), ce qui se déduit immédiatement de la
0% B 0?1
8uQ8u1 N aula’LLg.

proposition précédente car
O

Proposition 5.15. Notons G la matrice du tenseur métrique dans la base {b1,bs} en un point
donné de la surface paramétrée 1 : Q — S. Notons de méme H la matrice de la seconde forme
fondamentale et L la matrice de Uapplication de Weingarten. Alors on a

H=-GL=-L'G

Cette formule est utile en pratique car il est souvent plus facile de calculer la deuxiéme forme fondamentale
que l'application de Weingarten. On peut donc calculer d’abord G et H, puis

L=-G 'H.

Preuve. Pour deux vecteurs tangents quelconques & = £1b; + &bo et n = by 4 19ba, nous
avons h(&,n) = —g(L(§),n) = —g(&, L(n)). Cette relation s’écrit matriciellement

¢"Hn = —¢"G(Lp) = ¢ (GL)n.

Comme ¢ et 1 sont quelconques, on doit avoir H = —GL.
On a également ¢ 'Hny = —(L¢) "Gy = —¢T (LT G)n, qui entraine H = —L'G.
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5.4 Les différentes courbures d’une surface

5.4.1 La courbure normale

Le théoréme de Meusnier, ou plus précisément la formule (5.2), nous suggére la définition sui-
vante :

Définition 5.16. Soit p un point d’une surface réguliére de classe C? co-orientée. La courbure
normale en direction du vecteur tangent non nul v € T),S \ {0} est définie par

o (v) = 2200Y) _ gpl(Lp(v), V)

gp(v,v) gP(VaV)

La preuve du théoréme de Meusnier montre que la courbure normale d’une courbe réguliére v
tracée sur S et est précisément égale & k,(%(t)). En particulier, la courbure normale &, (v) en p
est la courbure de l'intersection de la surface S avec le plan I, passant par p et de directions v
et v. Un telle courbe s’appelle une section normale de la surface S.

Iy

Section normale d’une surface

Rappelons que I'application de Weingarten L, est un point p d’'une surface réguliére S de classe
C? est un endomorphisme autoadjoint du plan tangent T,S. Par le théoréme spectral, on sait
donc que les valeurs propres de L, sont réelles et qu’il existe une base orthonormée de 7,S formée
de vecteurs propres de L.

5.4.2 Courbures principales, moyenne et de Gauss

Définitions.

1.) Les valeurs propres de —L,, s’appellent les courbures principales de S au point p. On les notes
k1(p) et ko(p); on supposera que ki < k.

2.) Le déterminant de L, s’appelle la courbure de Gauss de S au point p. On note
K(p) = det(Lp) = k1(p)k2(p)-

3.) Le point p € S est dit

o elliptique si K(p) > 0, c’est-a-dire si les courbures principales en p ont le méme signe.
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o hyperbolique si K(p) < 0, c’est-a-dire si les courbures principales en p ont des signes
OppPOSsés.

o parabolique si I'une (et une seule) des courbures principales en p est nulle.
o planaire si les deux courbures principales en p sont nulles : k1(p) = k2(p) = 0.

o ombilique si les deux courbures principales en p sont égales : ki(p) = ka(p) (de fagon
équivalente, le point p est ombilique si L, est scalaire).

4.) La courbure moyenne de S en p est la moyenne des courbures principales, on la note?

H(p) = 5(ka(p) + kap)) = 3 Trace(L,).

5.) Les directions principales de S en un point non ombilique sont les directions des vecteurs
propres de L.

6.) Une courbe de classe C! tracée sur la surface S est une ligne de courbure de S si elle est
tangente en chaque point & une direction principale.

Remarques.
1. Les directions principales en un point non ombilique p sont orthogonales car ce sont des
vecteurs propres de 'opérateur autoadjoint L.

2. 1l suit immédiatement de la proposition 5.15 que la courbure de Gauss est donnée par

_ det(H(p))

KP) = Gen@tp))

(5.6)

ou G et H sont les matrices de la premiére et la seconde forme fondamentale de S.

Le résultat suivant, dii & Euler, nous dit que la courbure normale d’une surface dans une direction
non nulle s’exprime en fonction des courbures principales et de l'angle que fait la direction
considérée avec les directions principales :

Proposition 5.17 (Euler). Soit p un point non ombilique d’une surface réguliére de classe C2.
On note vi et vy les vecteurs unités de T,S dans les direction principales. Alors la courbure
normale du vecteur vg = cos(0)vy + sin(f)vy € T),S est donnée par

En(ve) = ki cos(0)? + kg sin(6)?,
ot k1, ko sont les courbures principales de S en p.

Nous laissons la preuve de cette proposition en exercice.

Corollaire 5.18. Les courbures principales en un point p d’une surface régulicre S de classe C*?
sont les valeurs minimale et mazimale de la courbure normale de S en ce point.

Preuve. Notons k1 et ko les courbures principales de p en S, et supposons que k1 > ks. La
formule précédente peut aussi s’écrire

En(vg) = k1 4 (ko — k1) sin(9)2.

Nous avons 0 < sin(#)? < 1, donc k; < ky(vg) < ko et on a k,(vg) = ky lorsque sin(f) = 0 et
kn(ve) = ko lorsque sin(6) = £1.
O

3. Attention aux notations, ne pas confondre la seconde forme fondamentale et la courbure moyenne, ¢a devrait
étre clair dans chaque cas selon le contexte.
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5.4.3 Interprétation locale des courbures principales.

Pour étudier la géométrie locale d'une surface S de classe C? au voisinage d’un point régulier p,
il est commode d’introduire un systéme de coordonnées cartésien Oxyz dont l'origine 0 coincide
avec le point p et le plan tangent & S en 0 est le plan Oxy. Dans ce cas, on dit que le systéme
de coordonnées cartésien est adapté a la surface S en point p. La surface est alors localement
représentée comme le graphe z = o(z,y) d'une fonction ¢ : Q — R de classe C? ou Q C R? est
un voisinage de (0,0) dans le plan. De plus on a

Ip Ip

2(0,0) =0, Z7(0,0) = =(0,0) = 0.

Une paramétrisation locale de la surface est alors donnée par I'application ¢ : Q — R3 définie
par Y(z,y) = (z,y, p(z,y)) et la base adaptée en 0 est

b1(0,0) = gﬁ(o,O) =(1,0,0) =e;,  by(0,0) = ?5(0,0) =(0,1,0) = ey.

Pour la suite nous choisirons la co-orientation définie par le vecteur normal v = b; X by = eg3.

1
Le tenseur métrique a l'origine prend la valeur G = ( 0 (1] >

Les coefficients de la seconde forme fondamentale en (0,0) sont les produits scalaires

hiy = <V71/}mc> = <937¢mc> = Pzzx,

et de méme hio = @gy et hag = @yy, on a donc

H-= ( Prx Pxy )
Poy  Pyy
(c’est la matrice hessienne de ¢ en (0,0)). La matrice de I'application de Weingarten est alors
donnée par
L=-G 'H=— ( Yoz Pry )
Py  Pyy
On a finalement

1 1
K = det(L) = @uppyy — 05, et H= 5 Trace(L) = o (¢aa + ¢yy)-

Noter que tous ces calculs sont valable en 0, et a priori uniquement en 0.

Quitte a effectuer une rotation de notre systéme de coordonnées autour de 'axe Oz, on peut
supposer que les directions principales de S en 0 sont les directions des vecteurs e et es. On a
donc le développement de Taylor

1
o(z,y) = 3 (az® + by®) + o(2? +y?),
avec @ = ¢z2(0,0) et b = ¢y, (0,0) (et on a ¢,y (0,0) = 0). Ainsi les courbures principales de
S en 0 sont k1 = a et kg = b, la courbure de Gauss est K = ab et la courbure moyenne est
H = 3(a+0b).

Point elliptique Point hyperbolique Point parabolique
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La représentation locale de la surface comme un graphe dans un systéme de coordoonées nous
permet donc de facilement interpréter la géométrie des différents types de point : le point 0 est
elliptique si a et b ont le méme signe (non nul), il est hyperbolique si a et b ont des signes opposés
(non nuls), il est parabolique si a ou b est nul mais pas les deux et il est plat si a = b = 0. Le
point est ombilique si a = b.

Une remarque sur ’orientation des surfaces.

Si on change le signe de la co-orientation v de la surface S, alors 'application de Weingarten L
change de signe. Par conséquent le signe des courbures principales et de la courbure moyenne est
sensible au choix de la co-orientation. Un calcul montre que dans le cas de la sphére, ces courbures
sont positives pour le choix de la normale intérieure a la sphére et elles sont négatives pour le choix
de la normale extérieure. Cela s’explique géométriquement par le fait que I'accélération d’une
courbe tracée sur une sphére pointe vers 'intérieur de cette sphére. D’une maniére générale, si la
surface S est le bord d’un domaine de R3, il est préférable de choisir le champ normal v pointant
du coté intérieur, avec cette convention le bord d’un domaine convexe de R? est de courbure
moyenne positive. Observons en revanche que la courbure de Gauss K = det(L) ne dépend pas
du choix de la co-orientation.

5.4.4 Courbure des surfaces de révolution

Considérons le cas d’une surface de révolution S autour de 'axe Oz dont le profil est la courbe
a(v) = (r(v),z(v)) (v € I). On suppose que a est de classe C?, paramétrée naturellement,
et que r(v) > 0 pour tout v € I. La paramétrisation standard de cette surface est donné par
Y :Q=10,21] x [ - S CR?:

Y(u,v) = (r(v) cos(u), r(v) sin(u), z(v)) .

Le repére adapté est

—r(v) sin(u) 7(v) cos(u) Z(v) cos(u)
b = (Z% = r(v) cos(u) , by = (Z% = | 7(v)sin(u) |, v= HEiiE;! =1 Z(v) s(in)(u)
0 Z(v —7(v

ot on a noté * pour la dérivée par rapport & v. Rappelons que 7(v)? + 2(v)? = 1 par hypothése,

le tenseur métrique est donc
r2(v) 0
o= (%)

(qu'on peut aussi écrire ds? = r?(v)du? + dv?). Les dérivées secondes de v sont

oby 0%
bua(u ) = 5o = 5z =

ob, 0by 0%

bua(u,v) = ov  Ou  oudv 7(v) %OS(U) ’
“ (v) cos(u)
9 7*(v) cos(u
bas(u,v) = 222 = I [ i) sin(u)
ov ov? .
Z(v
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La matrice de la seconde forme fondamentale est alors donnée par h;; = (v, by;),
H-— (—r(v)é(v) 0 )
0 (F(v)2(v) = 2(v)i(v)) )’
ce qui nous donne la courbure de Gauss :

oo det@®) _ 2(0)(7(v)2(v) — Z(v)r(v))

© det(G) r(v)

En utilisant la relation 7(v)? 4 #(v)? = 1, on peut simplifier cette expression. On a

0= d%(fQ + 2%) = 277 4 233,

donc
2

32=1—72 et ZZ = —TT,
d’ott 'on déduit que
1 1 7
K ...9 (1 .9 .9 .. )
= —;(r — ZEr) = - (r( — %) 47 r) =

On a donc montré que la courbure de Gauss de notre surface de révolution est

K@w)=——— : (5.7)

Remarque. La matrice de I'application de Weingarten dans la base {bi,ba} en un point quel-
conque de la surface de révolution S est donnée par

2(v) 0

L=-G 'H=|r(v)
0 =((v)z(v) = 2(v)i(v))

En particulier, les vecteurs by, by sont les vecteurs propres de L, cela prouve que les directions
principales sur la surface sont les directions des paralléles et des méridiens.

Surfaces de révolution a courbure de Gauss constante.

La formule (5.7), nous permet de déterminer toutes les surfaces de révolution dont la courbure
de Gauss K est constante. Il s’agit en effet de résoudre les équations différentielles

P Kr=0, z=+1-72
Exemple 1. Supposons K = 1, alors une solution simple est donnée par r(v) = cos(v) et

z(v) = sin(v). Cette solution correspond & la sphére unité standard.

Les autres solutions sont données par
r(v) =a

Il y a d’autre solutions, qui donnent d’autres surfaces de révolutions & courbure de Gauss
constante positives :

Exemple 2. Si K = —1, une solution est donnée par

r(v) =e", z(v) = /Ov V1—e2ds.
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Cette derniére intégrale ne peut pas s’exprimer par des fonctions élémentaires, toutefois la courbe
de profil a(v) = (r(v), z(v)) peut-étre décrite (et donc dessinée) par les propriétés suivantes :

(r(0),2(0)) = (1,0) et a(v) + Ty (v) est un point de l'axe vertical Oz.
En effet, le vecteur tangent T, est égal & & puisque « est paramétrée naturellement, on a donc

a(v) + To(v) = av)+a

4
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car (v) +7r(v) =e V4 (—e7") =0.

Une telle courbe s’appelle une tractrice d’axe Oz et la surface de révolution d’une tractrice autour
4

de son axe est la pseudo-sphére de Mindina-Beltrami

4. La pseudo-sphére apparait dans les travaux de Ferdinand Minding en 1839, puis de Eugenio Beltrami en
1868.
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5.5 Quelques théorémes classiques de la théorie des surfaces

Dans ce paragraphe nous énongons, sans tous les démontrer, quelques théorémes importants de la
théorie des surfaces dans R3. Rappelons pour commencer qu’'un point d’une surface est ombilique
si les deux courbures principales en ce point sont égales.

Théoréme 5.19. Si tous les points d’une surface régulicre S C R? de classe C® sont ombiliques,
alors S est contenue dans un plan ou dans une sphére.

Preuve. Supposons que tout les points de S soient ombiliques. Alors il existe une fonction
A S = R telle que Ly(§) = A(p)€ pour tout p € S et tout & € T,S. Soit ¢ : 2 — S une
paramétrisation locale de .S, nous avons alors avec les notations de la proposition 5.13 :

v L(b;(u)) = Mt(u))b;(u) = AM(tp(u)) ov

8ui - 8u2 '
Ecrivons A(u) = A(1)(u)) pour simplifier, alors
2 2 2
Ov _ 00y 0w A\ oY
8u16u2 3u1 (9UQ 8u18u2 8’&1 8u18u2
La méme équation est vérifiée en échangeant les indices 1 et 2, on a donc pour tout u € € :
Qb—ﬂb— 0*v B 0*v 0%y B 02 B
8u1 2 8UQ 1= 8'&181@ 871,2(9101 8U16U2 8'&2811,1 -
Puisque les vecteurs by et by sont en tout points linéairement indépendants, on doit avoir
n_ o _
8U1 N 8U2 -

et donc A est constant. Si A = 0, alors v est constant et S est contenu dans un plan orthogonal
a ce vecteur. Si A # 0, alors ¢ = ¢ — %1/ est constant et la surface S est donc contenue dans la
sphére de centre c et de rayon 1/|A|.

O]

Le résultat le plus important sur la courbure des surfaces est probablement le célébre théoréme
egregium démontré par K. F. Gauss en 1827. Il dit que la courbure de Gauss est une notion
intrinséque de la géométrie des surfaces (deux surfaces intrinséquement isométriques ont méme
courbure de Gauss).

Théoréme 5.20 (Théoréme Egregium de Carl Friedrich Gauss (1827)). Si f : S; — S est
une isométrie entre deur surfaces de R® de classe C® pour la distance intrinséque, alors on a
Ky = Kso f ou K; est la courbure de Gauss de S;.

Nous démontrerons ce théoréme plus loin (voir théoréme C.3).

Exemple. On sait qu'un céne ou un cylindre sont des surfaces localement isométriques au plan,
donc ces surfaces sont de courbure nulle. Le théoréme egregium nous dit aussi qu’il n’existe pas
d’isométrie entre un ouvert d’un ouvert d’une sphére et un ouvert du plan.

Dans le cas des surfaces a courbure de Gauss constante, F. Minding® a démontré le résultat
suivant, qui est une réciproque partielle du théoréme egregium :

Théoréme 5.21 (Théoréme de Ernst Ferdinand Minding, 1839.). Deuz surfaces Sy et Sy de R3
de classe C3 qui ont méme courbure de Gauss constante sont localement isométriques pour la
distance intrinséque.

5. Ferdinand Minding (1806-1885)
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En particulier, ce théoréme dit que toute surface de courbure nulle est localement isométrique au
plan et toute surface dont la courbure de Gauss est constante positive est localement isométrique
a une sphére.

Le résultats précédent concernait la géométrie locale des surfaces, i.e. la géométrie au voisinage
d’un point quelconque de la surface. Les théorémes suivants sont de nature globale.

Théoréme 5.22 (Formule de Gauss-Bonnet). Si Sy et Sy sont deur surfaces compactes sans
bord de R® qui sont homéomorphes, alors elles ont la méme courbure totale :

/ KldAl = / KgdAQ,
S1 Sl

de plus cette courbure totale appartient a 4nZ.

N

Plus précisément, la courbure totale d’une telle surface est égale & sa caractéristique d’Euler,
multipliée par 27. La caractéristique d’Euler est un entier qui ne dépend que de la topologie de
la surface.

Théoréme 5.23 (H. Liebmann, 1900.). Soit S une surface compacte (sans bord) de classe C*
dans R3 dont la courbure de Gauss est partout positive. Supposons que ou bien la courbure de
Gauss est constante ou bien la courbure moyenne est constante. Alors S est une sphére.

Théoréme 5.24 (Théoréme de Jacques Hadamard sur les surfaces & courbure positive).
Soit S C R3 une surface réguliére compacte, sans bord, de classe C3. Alors les conditions suivantes
sont équivalentes :

(i) La courbure de Gauss de S est strictement positive en tout point de S.
(ii) S est le bord d’un domaine bornée strictement convere D C R3.

(iii) L’application de Gauss v : S — S? est un difféomorphisme de classe C*.

Théoréme 5.25. Toute surface compacte sans bord de R® admet au moins un point ou la cour-
bure de Gauss est strictement positive.

Par comparaison, nous avons le résultat suivant sur les surfaces complétes a courbure constante
négative :

Théoréme 5.26 (Théoréme de David Hilbert (1901).). Il n’existe pas de surface réguliére de
classe C® dans R® qui soit compléte, sans bord, et dont la courbure de Gauss est constante
négative.

Rappelons qu’une surface est dite compléte si toute suite de Cauchy dans cette surface converge.

Théoréme 5.27 (Théoréme de N. V. Efimov (1964)). Il n’existe pas de surface réguliére de
classe C? dans R qui soit compléte, sans bord, et dont la courbure de Gauss vérifie sup(K) < 0.



Annexe A

Notions de topologie et espaces
vectoriels normés

A.1 Rappels de topologie
La topologie étudie et formalise les notions de voisinage, de convergence et de continuité.

Définition A.1. Soit X un ensemble. On appelle topologie sur X une famille de sous-ensembles
O C P(X) telle que
i) 0,X € O,
ii.) siU,V € Q,alorsUNV € O,
iii.) si {Ua}aca C O est une famille quelconque d’éléments de O, alors |J,c4 Ua € O.
On dit que U C X est ouvert si U € O et que F' C X est fermé si F¢ = X \ F € O. L’ensemble

A C X est un wvoisinage du point p € X §’il existe un ouvert U € O tel que p € U C A. Un
espace topologique est un couple (X, Q) ot X est un ensemble et O est une topologie sur X.

Il est clair que 'intersection d’une famille quelconque de fermés d’un espace topologique (X, O)
est un fermé. Pour tout A € O, on note A l'intersection de tous les fermés qui contiennent A :

A= () F

FDA, F fermé

L’ensemble A est donc le plus petit ensemble fermé qui contient A. On lappelle 1'adhérence ou
la fermeture de A. On le note aussi C1(A) (“C1” pour closure = fermeture en anglais).

On définit aussi I'intérieur de A. C’est le plus grand ouvert qui est contenu dans A, on le note
A° ou Int(A), il est définit par

Int(A) = A° = U U.

UCA, U ouvert
Il est clair que Int(A) C CI(A); , la différence s’appelle la frontiére de A et se note
Fr(A) = C1(A) \ Int(A).
Une application f : (X,0x) — (Y,Oy) entre deux espaces topologiques est continue si I'image

inverse d'un ouvert de Y est un ouvert de X, i.e. f~1(Oy) C Ox. L’application est ouverte si
I'image directe d'un ouvert de X est un ouvert de Y, i.e. f(Ox) C Oy.

89
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L’application f est un homéomorphisme si elle est bijective, continue et ouverte (et donc f~* :
Y — X est aussi continue).

L’espace topologique (X, Q) est séparé (on dit aussi qu’il est de Hausdorff) si toute paire de points
distincts admet des voisinages disjoints, i.e. si pour tout p,q € X, p # ¢, il existe U,V € O tels
que UNV =0 et pe U, q € V. Lespace topologique (X, ) est connezxe si tout sous-ensemble
qui est a la fois ouvert et fermé est égal & X ou (). La réunion de tous les sous ensembles
connexes contenant un point x € X s’appelle la composante conneze de x. L’ensemble X est
réunion disjointe des ses composantes connexes, et chaque composante connexe est un sous-
ensemble connexe et maximal (i.e. qui n’est contenu dans aucun sous-ensemble connexe plus
grand). L’espace X est localement conneze si tout point admet un voisinage connexe. Lorsque X
est localement connexe, les composantes connexes de X sont les sous-ensembles qui sont ouverts,
fermés et connexes.

L’espace topologique (X, O) admet une base dénombrable d’ouverts (on dit aussi qu'il vérifie le
second aziome de dénombrabilité) s’il existe une suite dénombrable d’ouverts {U; }ien telle que
tout ouvert est réunion d’éléments de cette suite.

Exemples d’espaces topologiques.

1.) Pour tout ensemble X, I'ensemble O = P(X) de toutes les parties de X est une topologie
séparée appelée la topologie discréte.

2.) O = {0, X} est une topologie appelée la topologie grossiére. Elle est non séparée dés que X
contient au moins deux points.

3.) La collection des sous-ensembles de X qui sont vide ou de complémentaire fini est une topologie
sur X (en général non séparée). On Pappelle la topologie cofinie.

4.) Si (X, d) est un espace métrique, alors il existe une topologie séparée dont les ouverts sont
les parties U C X qui sont réunion de boules ouvertes, i.e. d’ensembles du type

B(p,e) ={q € X|d(p,q) <c}.

Un espace topologique (X, Q) est dit métrisable s’il existe une distance d sur X induisant la
topologie O.

5.) Si (X, Ox) est un espace topologique et Y C X alors
Oy ={V=UNnY|Uc€O,}

est une topologie sur Y. On 'appelle la topologie relative ou la topologie induite sur Y par Ox.
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Le théoréme d’invariance du domaine
Un théoréme fondamental sur la topologie de R™ est le suivant :

Théoréme A.2 (Théoréme d’invariance du domaine de Brouwer (1912)). Si U est un ouvert de
R™ et f: U — R™ est une application continue et injective, alors f est une application ouverte
(et c’est donc un homéomorphisme sur son image).

Ce théoreme a été démontré par le mathématicien néerlandais Luitzen E.J. Brouwer en 1912.
Il existe plusieurs preuves, dont certaines utilisent des techniques de topologie algébrique. Nous
admettons ce résultat sans démonstration.

Corollaire A.3 (Invariance de la dimension). Soient U un ouvert de R™ non wvide, et V' un
ouvert de R™. Si U et V' sont homéomorphes, alors m = n. Plus généralement, deux variétés
non vides qui sont homéomorphes ont méme dimension.

Rappelons que Cantor avait démontré qu’il existe une bijection entre R™ et R™ pour toute paire
d’entiers n,m > 1, le corollaire ci-dessus nous dit qu'une telle bijection ne peut pas étre un
homéomorphisme si n % m, ce qui est conforme & notre intuition de la notion de dimension.

Preuve. Supposons que n > m et que g : U — V est un homéomorphisme. Considérons

I’application f: U — R"™ définie par

f(-Tl,.Tg, cee axn) = (gl(x)792(x)’ cee ,gm(l‘),o, cee 70)'

n—m

Alors f est continue et injective, donc f(U) C R™ est ouvert par le théoréme précédent. Mais
c’est impossible car f(U) C {y € R" | yn = 0} qui ne contient aucun sous-ensemble ouvert non
vide. Donc il est impossible que n > m . De méme m % n.

O

A.2 Rappels sur la notion de norme
Soit E un espace vectoriel sur le corps de réels. Rappelons qu'un norme sur E est une fonction
II'll : E — R vérifiant les trois propriétés suivantes pour tous z,y € F et A € R :
i.) ||zl > 0 et ||z]| = 0 si et seulement si z = 0,
i) Azl = [Alll=ll,
i) o +yll < fl=ll + llyll-

A toute norme sur F on défini une distance d sur E définie par d(x,y) = ||y — x| ; en particulier
une norme définit une topologie sur F et on peut alors parler d’ouverts, de fermés, d’ensembles
compacts, de convergence, de continuité etc.

Deux normes || ||1 et || ||2 sur E sont dites équivalentes (ou topologiquement équivalentes) si elles
définissent la méme topologie.

Lemme A.4. a) Les normes || ||1 et || ||2 sur lespace vectoriel E sont équivalentes si et seulement
s’il existe une constante ¢ > 0 telle que pour tout x € E on a

1
“llzllz < llzfly < ellz2.

b) Deux normes sur un espace vectoriel de dimension finies sont toujours équivalentes.

La preuve est un simple exercice du cours d’analyse 2.
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Exemples de normes.

1.)

2.)

Si (, ) est un produit scalaire, alors ||z| = /(x,z) est une norme (lorsque c’est le cas, on
dit que la norme || || dérive d’un produit scalaire).

Pour 1 < p < oo, on définit la norme || ||, sur R" par

n 1/17
]l = (Z \wilp> -
i=1

Toujours sur R”, on définit la norme || || par
||| 0o = max |z;].

Sur I'espace C(]0, 1]) des fonctions continues sur I'intervalle [0, 1], on définit aussi des normes

I lp

1 1/p
IIpr:(/ !f(t)lpdt> et [floe = sup |F(2)
0 te€(0,1]

Si (Vi, ]| |l1) et (Va,]| ||2) sont deux espaces normés de dimensions finies, on définit la norme
d’opérateurs sur 1'espace vectoriel L(V1, Va) des homomorphismes linéaires de V; dans V3 par

1®llop = sup{[|@(z)[l2 | l|z[[r <1}.

La norme de Hilbert-Schmidt sur 'espace My, (R) des matrices carrées de taille n a coefficients

réels est définie par
|All s = Trace(ATA) =Y /A2,
.3

Proposition A.5. Toute application linéaire entre deux espaces vectoriels réels normés de di-
mension finie est continue.

Preuve. Soit ® : V; — V5 une application linéaire entre deux espaces normés de dimensions finies
(Vi |l 1) et (Va, || |l2), et soit {e1,..., ey} une base de V; et notons C' = maxi<i<p ||®(e;)||2-
Siz=>" xe; et y=>" e, alors

1@(y) — (2)]l2 = |2(y — 2)ll2 =

® (Z(yz - xi)ez')

=1

2
n

> (yi — @) @(er)

=1

n
<>y - willl@(e)
=1

n
<CY lyi—ail.
i=1

2

Par conséquent, si y — x alors ®(y) — P(x).



Annexe B

Sur les notations classiques de la
géométrie différentielle des surfaces

Parmi les textes historiquement importants traitant de la la géométrie différentielle des surfaces,
on doit citer Recherches sur la courbure des surfaces. par Leonhard Euler en 1760, Application
de Uanalyse a la géométrie, & l'usage de I’Ecole impériale polytechnique par Gaspard Monge en
1807 et les Legons sur la théorie générale des surfaces et les applications géométriques du calcul
infinitésimal en 4 volumes par Gaston Darboux publiés entre 1887 et 1896. Ces développements
historiques ont conduit & un systéme de notations assez différent de celui que nous avons exposés
dans ces notes de cours, mais qui reste fréquemment utilisé car il est efficace dans les calculs.

On se donne d’abord un systéme d’axes orthonormés Oxyz dans l'espace euclidien R3, en sorte
qu’un ;)oint p peut étre représenté par son vecteur position (ou rayon vecteur), qui est noté

r = Op = (x,y, z). On obtient une courbe r(t) = (z(t),y(t), z(t)) lorsque le point dépend d’un
paramétre ¢t. L’abscisse curviligne le long de cette courbe est donnée par 'intégrale

y 1 |E 2 dy\ 2 2
5 = / |r||dt, ou |r| = \/(C(g) + (7?) + (%) '
La différentielle ds = ||r||dt s’appelle I’élément linéaire, et il est commode d’écrire

ds? = dr - dr = dz? + dy® + d2>.

Lorsque le point dépend de deux paramétre u, v, on obtient une surface

r=r(u,v) = (x(u,v),y(u,v), z(u,v)).
On demandera & cette surface d’étre réguliére, ce qu’on exprimera par la condition

N 0 dx Oy 0 o 9z Oy 0
r, X r, estnon nul, ol r“:?Z:(%’%’?i’)’rv:a%:<a%,a%a£>

Cette condition nous dit que l'application (u,v) — r(u,v) est une immersion d’un ouvert de
R? dans R? et les vecteurs r,,r, forment la base adaptée du plan tangent a la surface au point

r(u,v). Une co-orientation de la surface est donnée en tout point p = r(u,v) par
ry X Ty

V= — .
[y X 1|

[’élément linéaire peut donc se réécrire en fonction des différentielles du et dv :

or or or or
2 g .
ds® =dr - dr = <8udu+ (%dv> <6udu—|—(%dv>

= E(u,v)du® + 2F (u,v)dudv + G (u, v)dv?,
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avec

Or Or ox\? y 2 92\ 2
E=_—-—={o) +{5 ] t|57) -
ou Ou ou ou ou
O ov _dwor  oydy  0:0:
ou v Oudv Oudv  Oudv’

Jr Or oz\? oy 2 92\ ?
G=_ =] +{5) +|5) -
ov Ov ov ov ov
L’élément d’aire s’écrit alors
dA = ||ry X ry]| dudv = \/ EG — F? dudv.

Les paramétres u et v sont vus comme des coordonnées curvilignes sur la surface et les différen-
tielles du, dv sont des coordonnées linéaires sur I'espace tangent a la surface eu point p = r(u,v).
Le ds? s’appelle aussi la premiére forme fondamentale et se note I = dr - dr. En comparant avec
les notations du §4.2, on remarque que

g1 =L, gu="F, go =G.

Comme premier exemple, considérons ’hélicoide r(u,v) = (v cos(u),vsin(u),u). On a
dr = (—wsin(u), v cos(u), 1) du + (cos(u), sin(u), 0) dv,
donc I’élément linéaire est donné par
ds* = dr - dr = (1 +v?)du? + dv?.
Le tenseur métrique est donc E = g1; = (1 +v2), F = g1 =0 et G = goo = 1. On a aussi
ry X r, = (—sin(u), cos(u), —v),

et

dA = ||y X ry||dudv = mdudv =1+ v2dudv.

Comme second exemple, on considére maintenant la surface de révolution autour de 'axe Oz paramétrée
par
r(u,v) = (p(v) cos(u), p(v) sin(u), z(v)).

Alors
dr = (—p(v) sin(u), p(v) cos(u), 0) du + (p'(v) cos(u), p’ (v) sin(u), 2’ (v)), dv,

I’élément linéaire est donné par
ds® = dr - dr = p(v)?du® + (p'(v)* + 2/ (v)?) dv*.

On peut écrire le tenseur métrique matriciellement :
E F\ _[p)? 0
F G) 0 (P () + 2 (v)?))"
vy x 1, = (p(0)2 (v) cos(u), p(v) (v) sin(u), —p(v)p (1)),

dA = ||r, X 1y dudv =V EG — F? dudv = p(v)+/p'(v)? + 2/ (v)? dudv.

On a aussi

et
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La deuxiéme forme fondamentale s’obtient en dérivant une seconde fois le vecteurs position
r(u,v). On pose

L=ry, v=—ry, vy,
M =1y -V =—Ty Vy,
N =r,, V=—r, U,.

Alors la seconde forme fondamentale est donnée par
Il = Ldu® + 2Mdudv + Ndv*.

Les notations (e, f,g) sont parfois utilisées pour les coefficients (L, M, N). Bien évidemment
nous avons L = hi1, M = his et N = hos. Avec ces notations, la courbure normale d’une courbe
~v(t) = r(u(t),v(t)) est donnée par
ko (t) = 11(%,%)  Li? 4+ 2Miuio + No?

"UI(R,y) Bu? + 2F00 + Go?

La courbure de Gauss est
_det(Il) LN — M?

" det()  EG-F?’

Revenons aux exemples : Pour I’hélicoide, nous avons

r, = (—vsin(u),vcos(u),1), r, = (cos(u),sin(u),0), v = ry Xy _ (= sin(u), cos(u), _U),

[ X 1| B V1402

et les coefficients de la seconde forme fondamentale sont donc

L=ry  v=0,

M = ry, I/—#,
V1+0?

N =ry, -v=0.

La courbure de Gauss de I’hélicoide est alors
LN — M? 1

T EG-F? (1+2)?2

K

Pour la surface de révolution, on a

ry = (—p(v)sin(u), p(v) cos(u),0), 1y = (p'(v)cos(u), p'(v) sin(u), #'(v)),

et
ry X Ty (' (v) cos(u), 2/ (v) sin(u), —p'(v))
vV = pry
[Ty X 1y | P (v)? + 2/ (v)?
Les coefficients de la seconde forme fondamentale sont alors
!
P () E(0

AOETIOH
M =ry,-v=20,

N=r,, v=

La courbure de Gauss est alors

Ko DN =M @) (0)2 () = (0)2" (v)
EG — F? p(v)




Annexe C

Symboles de Christoflel et preuve du
Théoréme Egregium

C.1 Les symboles de Christoffel

La seconde forme fondamentale d’une surface paramétrée controle les composantes normales des
dérivées des vecteurs de bases {b;, ba} adaptés. Les composantes tangentielles de ces dérivées
s’expriment & partir des symboles de Christoffel®, que nous introduisons ci-dessous. Ces quantités
interviennent dans I’équation intrinséque des géodésiques et jouent un roéle central dans la preuve
du théoréme egregium.

Rappelons que le repére mobile adapté & une paramétrisation ¥ : Q — S se définit de la fagon
suivante :

8¢ aw b1 X bQ

T 2T du VT by x|

Nous noterons b;; les dérivées de by et by :

b

_ 0b; 0?1
- 8’&]' N Oulﬁuj

ol ¢,j prennent les valeurs 1 ou 2. Nous pouvons développer les vecteurs b;; dans la base
{bl,bg,ll} .

bij =Tj;b1 +T7 by + hijv. (C.1)

Observer que les h;; sont les coefficients de la deuxiéme forme fondamentale.

Définition C.1. (i) Les coefficients Ffj s’appellent les symboles de Christoffel de deuxiéme
espéce de la surface paramétrée.

(ii) Les symboles de Christoffel de premiére espéce sont les produits scalaires de bj; avec by,.
On les notes

I'ijk = (bij, by). (C.2)

1. Elwin Bruno Christoffel, mathématicien allemand 1829-1900.
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Remarques.
1. Les symboles de Christoffel sont des fonctions des parameétres (uq,uz2) € 2.

2. Les symboles de Christoffel de premiére et deuxiéme espéces s’expriment linéairement les uns
en fonctions des autres. On a en effet

Liji = (bij, bi) = (I} b1 + T by + hij v, b)) = Tlige + L g2k,
de facon spécifique :
I gnl“}j + glgffj et I'jjo= gglf}j + QQQF%. (C.3)

On peut inverser cette relation :

rlo— 922151 — g12l'sj2

911152 — g12l'ij1
L i i g1, (C.4)
911922 — g9

* g11922 — 9%2

3. Les symboles de Christoffel sont symétriques en leur deux premiers indices :
Fijk = Fjik: et F?j = Ffz

Cela découle de I’égalité bo; = byo, qui provient de la symétrie des dérivées partielles d’ordre 2
pour une fonction de classe C? :

0% 0%

6u28u1 - 8u18u2'

Le lemme suivant jouera un réle fondamental dans la suite. Il nous dit que les symboles de
Christoffel ne dépendent que de la géométrie intrinséque de la surface.

Lemme C.2 (Levi-Civita). Les symboles de Christoffel d’une surface paramétrée v : Q@ — S C
R3 de classe C? ne dépendent que des coefficients gij du tenseur métrique et de leur dérivées du
premier ordre.

Preuve. En dérivant le coefficient g;, du tenseur métrique, on voit que

Wk 2 b y) = (g bu) + (b
C’est-a-dire D95
D Lijie + ik
De méme on a
0gik 691‘]’

du; Ujik + Ujra et

On a donc, en tenant compte de la symétrie I';; 1, = I'j; ,

Dy Urij + Trji-

Ag;k n 9gik 0gij
ou; Ou; Oouy,

= (Lijr + Lirg) + (Tjie + Tjri) — (Craj + Trji) = 20550

Les symboles de Christoffel de premiére espéce sont donc donnés par la somme suivante de
dérivées des coefficients du tenseur métrique :

1 (Ogjr | Ogi.  0Ogij
Toi — = J _ Y9 .
ik 2 ( 8uz + 8Uj 8uk (C 5)

En appliquant (C.4), on voit que les symboles de Christoffel de deuxiéme espéce ne dépendent
également que des coefficients du tenseur métrique et de leur dérivées.
O
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C.2 Accélération des courbes tracées sur une surface

Les courbes sur les surfaces possédent la propriété remarquable suivante.

Théoréme C.1 Soit v : I — S une courbe de classe C? tracée sur la surface S supposée
également de classe C?. Alors son accélération normale en un point est donnée par

(v.5) = h(3,4), (C.6)

ot h est la seconde forme fondamentale. En particulier, ’accélération normale en un point ne
dépend que du vecteur vitesse en ce point.

Ce théoréme nous dit que si deux courbes sur S passent par un méme point p, et ont le méme
vecteur vitesse en ce point, alors elles ont aussi la méme accélération normale.

Preuve. Nous présentons deux preuves de ce résultat. La premiére preuve est trés courte : on
sait que (v(y(t)),¥(t)) = 0 pour tout ¢t € S, on a donc

W), 500) = = (GO0 ) = ~{dw0).5(0) =i, 5).

La seconde preuve donne plus de détails sur le vecteur accélération : On peut représenter la
courbe « dans la paramétrisation de la surface par v(t) = ¥ (u;(t), ua(t)), et donc

F(t) = t1b1 + tgba.
Alinsi,
() = dyby 4 tigby + 11 by + tsbo

= d1by + tigbg + w1 (w1 b11 + Uebi2) + da(t1bor + Uabag)
= iiyby + digbg + (41)?b11 + 201Ugbya + (12)*bag.

Les vecteurs by et by sont orthogonaux a v, et comme h;; = (b;j,v) on a
(1), v) = hi1(01)? + 2h12ty ts + hao(ti2)® = H(¥,7).
O

A Taide des symboles de Christoffel, nous pouvons développer plus complétement le calcul de
I’accélération. Nous avons vu lors de la démonstration précédente que

4(t) = diyby + tigbg + (11)?b11 + 201dobra + (12)*boa.
En développant les vecteurs b;; dans la base by, b, v via I’équation (C.2), nous trouvons
H(t) = (iig +Tjad + 2T iy te + Dti3) by

+  (fig + 5,95 + 2Tt + T3,u3) bo

+ h(y,9)v.
L’équation des géodésiques peut en particulier se récrire sous la forme suivante :

iy + T u? + 2Tkt e + Tiqud = 0
(C.7)

iio + 302 + 203501 1g + T'3903 = 0.

Ces équations, avec le lemme (C.2), montrent en particulier que la notion de géodésique ne
dépend que de la géométrie intrinséque de la surface.
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C.3 Preuve du Théoréme Egregium

Nous reformulons le théoréme Egregium de la fagon suivante :

Théoréme C.3. La courbure de Gauss d’une surface paramétrée 1 : Q — S C R? de classe C3
ne dépend que des coefficients g;; du tenseur métrique et de leur dérivées jusqu’a ’ordre 2.

Le démonstration utilise les deux lemmes suivants qui sont de nature calculatoire. Leur preuve
ne présentent pas de difficulté particuliére autre qu'une attention soutenue aux indices. L’effort
se justifie par I'importance du théoréme egregium.

Lemme C.4. On a
(bij, brm) = T Tijt + Do Lije + himhij.
Preuve. Rappelons que by, = F,lﬁm b; + F%ﬂm by + hgmv, donc
(bij, bm) = (bij , Tip b1 + Ty o + hyg /)
=T}, (bij, b1) + T3, (bij, b2) + hgm (byj, V)
= DDt + Do Lij2 + hamhij

O
Lemme C.5. On a 9 5
bi1,bag) — ||bia||? = =—T99; — =—T
(b11, baa) — [[b12| 9u, 221 9y 121
Preuve. Calculons
0 0 8b22 abl 8b22
Dy 221 8u1< 22, b1) <6u1 ; 1>+< 22, 8u1> <8u1 ; 1> + (ba2, b11)
On a donc ob 5
22
by ) = —T'991 — (bog,b
<8u1’ 1> Jus 221 — (b22,b11)
De méme b 5
12
—=.by ) = —T'191 — (b12, b12).
<8u2’ 1> 9y 121 — (b12,b12)
La différence de ces deux identités prouve le lemme car 2
Obyy  Obip PP _ O —0
8U1 OUQ N 8U18U28u2 au28u26ul -
O

Démonstration du Théoréme Egregium. En appliquant les deux lemmes précédents, on voit
que

0 0
—T991 — =—T'191 = (b1, bag) — [|b1a?

8u1 8u2
= (T'}1T221 + I P90 + hi1hao) — (T1sT121 + T2 + hishis)
= (h11has — hy) + (T3 Ta21 + T1T920 — Tyl 101 — [fol02) -

2. (’est & cet endroit qu’on doit supposer que ¢ est de classe C°.
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On a donc
0 0
hithas — hiy = =——T991 — =191 — ['11T01 — T To00 + T}oT1o1 + 5T 100,
871,1 6uQ
. _ det (H) N
Par conséquent la courbure de Gauss K = 3 ) peut s’écrire
v (o 9 pip, 2 1 2
K = 5 [221 191 — [q1l991 — I{T290 + Tol91 +T'5lM22 ). (C.8)
911922 — 975 \ Ou1 Ouy

Il suit alors du lemme (C.2) que la courbure de Gauss est fonction des coefficients g;; et de leur
dérivées premiéres et secondes.

O

Exemple. Supposons que le tenseur métrique est donné par ds? = du? + a?du3, ot a est une
fonction positive de (u1,u2). On a donc g11 = 1, g12 = go1 = 0 et goo = a?. Les symboles de
Christoffel de premiére espéce se calculent a partir de (C.5). On trouve que

da da da
oo = —a5—, oo =To12=0a_—, Pogo = a7—,
8u1 871,1 871,2
et tous les autres I';;, sont nuls. Pour les coefficients de seconde espéces, nous avons I’l-lj =T

et F%j = 5 Tyj2. Donc la formule (C.8) se réduit a

1[0 1 (0 1 19%
K==(-—T rZ,r =— (=T —(T122)? ) = -~ =. C.9
22 <8u1 221 + 179 122) 22 <8u1 221 + a2( 122) > 00w (C.9)
C.4 Les équations de Codazzi-Mainardi
Jb Jb
Le théoréme C.3 est une conséquence de l'identité 1 3 12 provenant de la symétrie des
u9g (75}
dérivées partielles. On a plus généralement
= C.10

et cette identité nous permet de trouver de nouvelles relations. On vérifie par un calcul direct
que

=T hy; + T ho; , 11
<I/, Bul > zkhl + zkh2 + ou; (C )

. ob oh
N = TLhy +T2h C.12
<V7 auk > ik + Liihop + aUk ( )

En utilisant (C.10), on obtient alors

— =Ih T hor —Iiihy; — Lo ho;. C.13
aui 8Uk whik + Liihog ikl ik!b2 ( )

C’est I'équation de Codazzi-Mainards.
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Un théoréme démontré par P. Bonnet en 1867 nous dit que si l’on se donne deux matrices (g;;)
et (hij) de taille 2 x 2 qui dépendent de deux paramétres u,v et qui vérifient les relations données
dans les équations de Gaufl et de Codazzi-Mainardi, alors il existe un morceau de surface dans
R3 pour laguelle (g;j) est la premiere forme fondamentale et (h;;) la deuzieme. Cette surface est
unique & un déplacement prés.3

Le théoréme de Bonnet entraine en particulier que toutes les relations qui existent entre la pre-
miére et la deuxiéme forme fondamentales (et leur dérivées) sont des conséquences des équations
de Gauf et de Codazzi-Mainardi.

3. C’est le théoréeme fondamental de la théorie des surfaces.



Annexe D

Formulaire

e Produit scalaire Un espace vectoriel euclidien est un espace vectoriel réel de dimension
finie muni d’un produit scalaire (i.e. une forme bilinéaire symétrique définie positive) qu’on note
(', ). Dans une base orthornormée il est donné par (a,b) = """ | a;b;. A partir de la norme le
produit scalaire s’exprime

_ 1 2 o 2
(a,b) = 7 (la+bl” —[la—b|?).
On a aussi

(a,a) = |l (@, b)| < Jla] b}

] a,b

(2.b) = lal o] cos (9(a, ) proja(b) = )

1 1

(a,b) = - (lla+ b = flall* = [b?) | (a,b) = (lal* + [b]* - la - b|]?)

e Produits vectoriel et mixte dans R3.

1.) Dans une base orthonormée d’orientation positive on a

a1 bl
az bo

ar by
a3 b3

a9 bg

axb= as by

e — e + es

) (axb)xc=(a,c)b—(b,c)a

) ax(bxc)=(a,c)b—(ab)c

) {axb,cxd)=(a,c)(b,d) — (ad)(b,c)
)

)

(axb,cxd)=((axb)xc,d).
Le produit mizte de trois vecteurs a, b, c € V3 est défini par [a,b,c] = (a x b,¢) = (a,b x c)
il est trilinéaire et est donné par le déterminant 3 x 3 formé par la matrice dont les colonnes sont les

S Ot e W N

coefficients des 3 vecteurs.

7.) ona (axb)x (cxd)=]a,b,d]c—[a,b,c|d.

e Produits extérieur dans le plan. Dans le plan orienté R?, le produit extérieur de deux
vecteurs est

aAb=(J(a),b)

ou J est l'opérateur de rotation d’angle 7/2 dans le sens positif.
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e Courbes. Le vecteur vitesse d'une courbe v de R™ se note 4 La vitesse est V = V,(u) =
I7(w)|| et 'abscisse curviligne depuis le point initial y(ug) est

La formule de 1’accélération est '
F(u) = VT 4+ V2K

ouT = %W et K = %T est le vecteur de courbure. La courbure de « est la fonction scalaire
k(u) = [[K(u)|.-

e Repére de Frenet. Si y(u) € R? est C3 et biréguliére, le repére mobile de Frenet est le
repére repére orthonormé direct d’origine v(u) et de base

T 1 . .
T=14 N=—-=-K, B=_1"7_
(1 I— 1 > 4l

La torsion est 7 = (B, N) et on a les équations de Serret-Frenet
%T = kN, %N = —-rT + 7B, %B =—-7N

On a aussi

_ I Al B e Phed N o % P9l
K= T

) = . 2
Ve 15 % 4| K2VO

Le vecteur de Darboux est le champ de vecteurs le long de v défini par

D=7T+«B

e Surfaces paramétrée. Si v : Q) — R3 est une surface paramétrée, le repére mobile adapté

est . .

3¢ 8¢ b1 X bg
b = b = - —_—
1™ oy (ur,u2), by Duig (ur,u2), v by x by|

b1, by engendrent le plan tangent a la surface au point p = ¥ (u1,uz) et v est le vecteur normal.
Si f(z,y,z) = 0 est une équation pour la surface alors on a aussi

v== V—>f
IV

Le tenseur métrique G = (g;,) est la matrice de Gram de {by, b2}, i.e. gi; = (b;, bj).
L’élément d’aire infinitésimale est

dA = \/g11922 — g3, - durdug = ||by X bo||durduy

et 'élément de longueur infinitésimale est

ds = \/911 du% + 2 g12 duy dus + goo du%
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e Repére de Darboux, courbures normales et géodésiques. Siy est tracée sur la surface
S, on note p = v x T. Le repére de Darboux est {v, T, pu}. La courbure normale, la courbure
géodésique et la torsion géodésique de v sont définis par

kn(u) = (Ky(uw),v(w),  kg(u) = (Ky(u),pu(w) et 19(u) = 55 (D), plu)).

Les équations de Darboux sont :

ST =kop+kyv,  t0=-kT+7p, & p=—kT-10.

e Application de Weingarten et deuxiéme forme fondamentale. L’application de Wein-
garten L, en un point d’une surface S est I’endomorphisme de 7,5 défini par L, = dv,,.

La deuxiéme forme fondamentale est la forme bilinéaire sur 7},S définie par h,(&,n) = —(Lp (&), ).
Les coefficients de h, dans la base adaptée {b1, b} se calculent par :

hij = h(b;, bj) = (v, bjj),

ou
b — ob; 0%
v aul N Ouzﬁu]
Les coefficients de la matrice de I’application de Weingarten dans la méme base sont définis par
ov
L(bz) = aiul == glibl + gQibQ.
Pour calculer cette matrice il est commode d’utiliser la relation H = —GL, qui implique
L=-G'H.

Les courbures principales, de Gauss et moyenne de S en p sont les valeurs propres, le déterminant
et la demi trace de —L,. Le point p est ombilique si les deux courbures principales coincident en
ce point.
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