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A. Exercices standards.

Exercice 9.1. (Courbe comme intersection de deux surfaces). Notons C ⊂ Ω l’ensemble des points
de Ω tels que

f(x, y, z) = g(x, y, z) = 0,

où Ω est un domaine de R3 et f, g ∈ Ck(Ω) avec k ≥ 1. Supposons que pour un point (x0, y0, z0) ∈ C
la matrice 

∂f

∂x

∂f

∂y

∂f

∂z

∂g

∂x

∂g

∂y

∂g

∂z


est de rang 2.

(a) Expliquer pourquoi on peut paramétriser l’ensemble C dans un voisinage de (x0, y0, z0) comme
courbe régulière γ : I → Ω de classe Ck.

(b) Que peut-on dire du vecteur tangent γ̇(t) ?

Solution 9.1. (a) Nous donnons deux preuve de l’existence d’une paramétrisation de C comme une
courbe de classe Ck.
La première preuve utilise le théorème 3.15 : notons F : Ω → R2 l’application définie par F = (f, g).
Par hypothèse, F est une application de classe Ck et de rang maximal = 2 en (x0, y0, z0). Par semi-
continuité inférieure du rang, on sait que F est de rang constant = 2 dans un voisinage de (x0, y0, z0).

On applique alors le théorème 3.15 pour en conclure que C est une sous-variété différentiable dans un
voisinage du point (x0, y0, z0). La codimension de cette sous-variété est 2 et donc la dimension de C
est 1 = 3 − 2. Par conséquent il existe un voisinage U ⊂ Rn de (x0, y0, z0) et une paramétrisation
régulière bijective γ : I → U ∩ C de classe Ck.

Pour la seconde preuve, on raisonne directement à partir du théorème du rang constant. Ce théorème
nous dit que dans notre situation, il existe

(i) Un voisinage U ⊂ Ω de (x0, y0, z0) ainsi qu’une application Φ : U → R3 telle que Φ(x0, y0, z0) =
(0, 0, 0) et Φ est un difféomorphisme sur son image.

(ii) Un voisinage V ⊂ R2 de F (x0, y0, z0) ainsi qu’une application Ψ : V → R2 telle que Ψ(F (x0, y0, z0)) =
(0, 0) et Ψ est un difféomorphisme sur son image.

(iii) Et une application linéaire L : R3 → R2 de rang 2 telle que L ◦ Φ = Ψ ◦ F .

Par conséquent un point (x, y, z) appartient à l’intersection C ∩ U si et seulement si L(Φ(x, y, z)) = 0,
c’est-à-dire Φ(x, y, z) ∈ ker(L).
Le noyau de L est de dimension 1, engendré par un vecteur non nul v ∈ R3. La courbe

γ(t) = Φ−1(tv),

est alors clairement une paramétrisation locale de C au voisinage de (x0, y0, z0).
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(b) Comme la courbe γ est tracée sur la surface d’équation f = 0, son vecteur vitesse γ̇ est orthogonal
au gradient

−→
∇f . Ce vecteur est aussi orthogonal au gradient

−→
∇g. On a donc

〈
−→
∇f(γ(t)), γ̇(t)〉 = 〈

−→
∇g(γ(t)), γ̇(t)〉 = 0.

(ce vecteur est en particulier tangents aux deux surfaces). On observe pour finir que la condition
précédente signifie aussi que γ̇(t) est colinéaire au produit vectoriel

−→
∇f(γ(t))×

−→
∇g(γ(t)).

Exercice 9.2. Rappelons que par définition une application f : M → N entre deux sous-variétés
différentiables est un difféomorphisme si elle est bijective et f ainsi que f−1 sont différentiables.

(a) Prouver que pour tout p ∈M , la différentielle dfp : TpM → Tf(p)N est un isomorphisme d’espaces
vectoriels.

(b) En déduire qu’il n’existe aucun difféomorphisme entre deux variétés non vides qui n’ont pas la
même dimension.

(c) Montrer par un exemple qu’une application différentiable bijective f : M → N entre deux sous-
variétés différentiables n’est pas toujours un difféomorphisme (ont peut supposer dim(M) = 1).

Solution 9.2. (a) Notons pour simplifier q = f(p) ∈ N et g = f−1 : N → M le difféomorphisme
inverse de f . Alors g ◦ f : M →M est l’application identité et en particulier la différentielle d(g ◦ f)p :
TpM → TpM est aussi l’application identité. La règle de dérivation en chaîne implique alors que

dgq ◦ dfp = d(g ◦ f)p : TpM → TpM est l’application identité.

Le même raisonnement appliqué à l’application f ◦ g : N → N entraîne que dfp ◦ dgq : TqN → TqN
est l’application identité. Par conséquent l’application linéaire dfp : TpM → TqN est un isomorphisme
d’espaces vectoriels (d’inverse dgq).

(b) Supposons qu’il existe un difféomorphisme f : M → N , alors par le point (a), pour tout p ∈ M
on a que dfp : TpM → Tf(p)N est un isomorphisme d’espaces vectoriels, en particulier ces espaces
vectoriels ont la même dimension et donc

dim(M) = dim(TpM) = dim(Tf(p)N) = dim(N).

(c) Par le point (a), il suffit de se donner une application différentiable bijective f : M → N pour
laquelle il existe au moins un point où la différentielle dfp : TpM → Tf(p)N n’est pas un isomorphisme.
Un exemple simple est la fonction f : R→ R donée par f(x) = x3.

Remarque sur le point (b). En fait il n’existe pas non plus d’homéomorphisme entre des variétés de dimension
différentes. Cela semble intuitivement évident, mais la preuve demande beaucoup plus de travail car on ne peut
pas se ramener (via la différentielle) à la notion de dimension de l’algèbre linéaire. Ce résultat topologique
est connu sous le nom de théorème de l’invariance de la dimension et a été démontré par le mathématicien
néerlandais Luitzens Brouwer vers 1910. Rappelons toutefois qu’on sait depuis les travaux de Cantor que pour
toute paire d’entiers m,n ≥ 1. il existe une bijection entre Rm et Rn (plus généralement, il existe toujours une
bijection entre deux variétés non vides de dimension > 1.)

Exercice 9.3. (a) On a vu à précédemment que O(n) est une sous-variété de Mn(R). Décrire l’espace
tangent TIO(n) de cette variété au point I (= la matrice identité).
(b) Prouver que SLn(R) est une sous-variété de Mn(R). Quelle est sa dimension ?
(c) Décrire l’espace tangent TISLn(R).
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Solution 9.3. (a) On rappelle qu’au voisinage de O(n), l’application

Φ : A 7→ AAT

est de rang constant. Sa différentielle en A = I = l’identité est donné par

dΦI(H) = H +HT.

Le groupe O(n) est défini par l’équation Φ(A) = I, donc son espace tangent à l’identité est donné
par

TIO(n) = Ker dIΦ = {H ∈Mn(R) | H +HT = 0},

c’est l’ensemble des matrices anti-symétriques (on le note souvent o(n) dans le contexte des groupes
de Lie).

(b) On rappelle que SLn(R) est le groupe des n× n matrices réelles de déterminant 1 :

SLn(R) = {A ∈Mn(R) | det(A) = 1}.

On a vu à la série 7 que la différentielle de l’application déterminant est donnée par

d(det)A(H) = Trace
(

Cof(A)>H
)
.

Il est clair que cette application est une forme linéaire non-nulle si det(A) = 1 car dans ce cas on a
d(det)A(H) = Trace

(
A−1H

)
, et 1 est donc une valeur régulière de la fonction déterminant. Ainsi

l’équation det(A) = 1 définit une sous variété de codimension 1 = dim(R), et donc de dimension
n2 − 1.

(c) Son espace tangent à l’identité est le noyau de dI(det) = Trace. Donc l’espace tangent en I à
SLn(R) est l’ensemble des matrices de trace nulle. (on le note aussi sln dans le cadre de la théorie
des groupes classiques ou des groupes de Lie).

Exercice 9.4. Une surface est dite réglée si c’est une réunion de droites. De façon plus précise, soit
γ : I → R3 une courbe C1 et b : I → R3 un champ de vecteurs de classe C1 le long de γ. La surface
réglée associée est définie par la paramétrisation:

ψ(u, v) = γ(u) + vb(u).

(a) Donner les conditions nécessaires et suffisantes pour qu’une surface réglée ainsi définie soit en effet
une surface régulière localement (c’est-à-dire pour que l’application ψ soit une immersion).

(b) Soit C une courbe de R3. On appelle cône de sommet q ∈ R3 et de base C la réunion des droites
passant par q et un point de C. Donner des conditions nécessaires et suffisantes pour qu’un cône soit
une surface régulière au voisinage de sa base. Puis expliciter une paramétrisation de ce cône.

(c) Expliquer ce qu’est un ruban de Möbius et donner une paramétrisation de cette surface comme
surface réglée dans R3.

Solution 9.4. Une brève présentation des surfaces réglées se trouve ici : https://fr.wikipedia.
org/wiki/Surface_r%C3%A9gl%C3%A9e

(a) L’application ψ(u, v) = γ(u) + vb(u) est clairement de classe C1 car on suppose que la courbe γ
et le champ b sont de classe C1. Cette application est une immersion si et seulement si

∂ψ

∂u
× ∂ψ

∂v
= γ̇(u)× b(u) + v ḃ(u)× b(u) 6= 0.
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Noter qu’en particulier on doit avoir γ̇(u) × b(u) 6= 0, c’est-à-dire γ̇(u) et b(u) sont linéairement
indépendants (poser v = 0 pour le voir). Pour v assez petit cette condition est suffisante.

(b) Le cône de cet exercice est un cas particulier de surface réglée où le champ de vecteur est le champ
b(u) = q − γ(u). La condition de régularité dit dans ce cas que le vecteur tangent à la courbe n’est
jamais dirigé vers q (i.e. γ̇(u) n’est pas un multiple de q − γ(u)). Une paramétrisation est

ψ(u, v) = γ(u) + v(q − γ(u)) = vq + (1− v)γ(u).

(c) Un ruban de Möbius s’obtient en prenant un rectangle (disons en papier) et en recollant deux des
côtés opposés après une rotation d’un demi-tour. Topologiquement c’est donc le quotient de

Q = {(u, v) ∈ R2 | 0 ≤ u ≤ `, −ε < v < ε}

par la relation d’équivalence qui identifie les points (0, v) et (`,−v).
Nous vous conseillons de construire un tel ruban (suggestion prendre `/ε assez grand, disons ≥ 6).
Nous vous suggérons aussi de dessiner un ruban de Möbius, cela vous donnera une intuition pour la
suite.

L’exercice demande une paramétrisation concrète du ruban de Möbius comme surface dans R3. L’observation
de votre ruban de Möbius en papier vous convaincra qu’il s’agit d’une réalisation comme surface réglée
(les droites horizontales du rectangle Q sont envoyées sur des courbes fermées de R3, mais les droites
verticales sont envoyées sur des droites; c’est nécessaire en raison des propriétés mécaniques du papier).
La courbe centrale (v = 0) du rectangle Q est envoyée sur une courbe fermée et on peut supposer que
c’est le cercle unité du plan R2 ⊂ R3. On va donc poser ` = 2π et construire le ruban de Möbius
comme surface réglée de base

γ : [0, 2π]→ R3, γ(u) = (cos(u), sin(u), 0).

Le réglage (i.e. la famille de droites) est alors déterminé par un champ de vecteur b : [0, 2π] → R3.
On peut le choisir unitaire et la construction physique du ruban de Möbius nous montre que ce chanp
de vecteur est orthogonal à la direction de la courbe :

b(u) ⊥ γ̇(u) = (− sin(u), cos(u), 0).

On a donc
b(u) = cos(λ(u))(cos(u), sin(u), 0) + sin(λ(u))(0, 0, 1),

où λ : [0, π] → R est une fonction à déterminer (car {(cos(u), sin(u), 0), (0, 0, 1)} est une base or-
thonormée de γ̇(u)⊥ ). Or la construction du ruban de Möbius exige que lorsqu’un tour a été effectué
le long de la base γ, le vecteur b(u) effectue un demi-tour. On a donc les contraintes

b(2π) = −b(0) i.e. cos(λ(2π)) = − cos(λ(0)), sin(λ(2π)) = − sin(λ(0)).

La fonction la plus simple ayant cette propriété est λ(u) = u/2 et on peut donc choisir le champ de
vecteur

b(u) = cos
(
u
2

)
· (cos(u), sin(u), 0) + sin

(
u
2

)
· (0, 0, 1).

Finalement le ruban de Möbius peut de paramétriser par

ψ : Q = [0, 2π]× [−ε, ε]→ R3, ψ(u, v) = γ(u) + v b(u),

c’est-à-dire 
x(u, v) = cos(u) + v cos

(
u
2

)
cos(u)

y(u, v) = sin(u) + v cos
(
u
2

)
sin(u)

z(u, v) = v sin
(
u
2

)
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Exercice 9.5. Montrer que l’hyperboloïde H à une nappe x2 +y2−z2 = 1 est une surface doublement
réglée (i.e. réglée de deux manières différentes), puis donner une paramétrisation régulière de cette
surface basée sur l’un de ces réglages.

Indication : Ecrire l’équation sous la forme x2−1 = z2−y2 et factoriser. En déduire algébriquement l’équation
d’une droite contenue dans H, puis la paramétrer et la faire tourner autour de l’axe Oz.

Solution 9.5. En factorisant x2 + y2 − z2 = 1, on obtient l’équation

(x+ 1)(x− 1) = −(y − z)(y + z)

qui est vérifiée, par exemple, pour la droite x = 1, y = z = v. La rotation d’angle u de cette droite
autour de l’axe Oz donne cosu − sinu 0

sinu cosu 0
0 0 1

1
v
v

 =

cosu− v sinu
sinu+ v cosu

v


et on vérifie que le résultat appartient encore à H. On en déduit la paramétrisation suivante

ψ(u, v) = α(u)+vb(u) = (cos(u), sin(u), 0)+v(− sin(u), cos(u), 1) = (cos(u)−v sin(u), sin(u)+v cos(u), v)

(on vérifie aisément que cette paramétrisation recouvre tous les points de H).

Si on avait choisi la solution x = 1, y = −z = v, on aurait obtenu la paramétrisation

ψ(u, v) = α(u) + vb(u) = (cos(u)− v sin(u), sin(u) + v cos(u),−v).

Remarquons que l’hyperboloïde est évidemment aussi une surface de révolution. On peut donc le voir
de deux façons comme une famille de droites et aussi comme une famille de cercles.
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B. Exercice supplémentaire.

Exercice 9.6. Dans cet exercice nous construisons un exemple d’immersion injective qui n’est pas un
plongement.
La lemniscate de Gerono est la courbe plane définie par l’équation 4x2 − 4y2 − x4 = 0, c’est-à-dire
l’ensemble

C = {(x, y) ∈ R2 | 4x2 − 4y2 − x4 = 0}.

(a) Montrer que C n’est pas une sous-variété différentiable de R2.

(b) La restriction de cette courbe à R2 \ {(0, 0)} est-elle une sous-variété différentiable ?

(c) Vérifier que γ :
(
−π

2 ,
3π
2

)
→ R2 définie par γ(t) = (2 cos(t), sin(2t)) est une paramétrisation régulière

de C.

De façon précise, démontrer que

(i) γ est une immersion de l’intervalle ouvert
(
−π

2 ,
3π
2

)
dans le plan.

(ii) γ est injective.

(iii) γ défini une bijection entre l’intervalle ouvert
(
−π

2 ,
3π
2

)
et la courbe C.

(iv) Expliquer ce qu’il se passe sur γ lorsque t→ −π
2 et t→ +3π

2 .

(v) Prouver que γ n’est pas un plongement de l’intervalle
(
−π

2 ,
3π
2

)
dans le plan. (c’est-à-dire que

ça n’est pas un homéomorphisme sur son image).

Solution 9.6. A titre préliminaire, étudions la fonction définie sur le plan par f(x, y) = 4x2−4y2−x4.
Le gradient de f est ∇f(x, y) = (8x− 4x3,−8y), il n’y a donc qu’un seul point critique qui est (0, 0)
et 0 = f(0, 0) est la seule valeur critique.

(a) La lemniscate est la courbe C = f−1(0), comme 0 est une valeur critique on ne peut pas appliquer
le théorème de submersion et on peut soupçonner que C n’est pas une variété, ce qui est d’ailleurs
visible sur la figure. Nous donnons deux preuves rigoureuses que C n’est pas une variété. Le
premier argument est purement topologique et le second fait intervenir la notion d’espace tangent.

Voyons le premier argument, fixons 0 < ε < 2 arbitrairement petit et notons

Cε = {(x, y) ∈ C | |x| < ε, |y| < ε}.

On observe que Cε est un voisinage arbitrairement petit de (0, 0) et que

Cε \ {(0, 0)} = C++
ε ∪ C+−ε ∪ C−+ε ∪ C−−ε
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est la réunion de quatre arcs disjoints, tous homéomorphes à un intervalle ouvert. Ici on a définit

C++
ε = {(x, y) ∈ Cε | x > 0, y > 0} = {(x, y) | y = x ·

√
1− x4

4 , 0 < x < ε}

l’intersection de Cε avec le quadrant ouvert principal (et de même pour les autres quadrants).

Le complémentaire d’un point dans un voisinage connexe assez petit d’une variété possède une ou
deux composantes connexes. Ceci prouve que C n’est pas une variété.

Deuxième argument. On raisonne par l’absurde. Si C était une sous-variété de R2, elle serait une
sous-variété de dimension 1 (voir question (b)). Nous pouvons maintenant considérer les deux
courbes suivantes contenues dans C et passant par (0, 0) :

α1(t) = (t, t ·
√

1− t4

4 ) et α2(t) = (t,−t ·
√

1− t4

4 ).

Il est facile de vérifier que α1(t) ∈ C pour −2 < t < 2 et de même pour α2(t). Or nous avons

α̇1(0) = (1, 1) et α̇2(0) = (1,−1).

Cela signifie que l’espace tangent T(0,0)C contient deux vecteurs linéairement indépendants, ce qui
est impossible puisque pour une variété différentiable M on a toujours dim(TpM) = dim(M) (= 1
dans le cas de C). Nous concluons que C n’est pas une sous-variété différentiable du plan.

(b) La fonction f(x, y) = 4x2 − 4y2 − x4 définit une submersion de R2 \ {(0, 0)} vers R (car (0, 0) est
le seul point critique de f). Donc f−1(C) \ {(0, 0)} est une sous-variété (elle est de codimension 1
et donc de dimension = 2-1 = 1).

(c) (i) Vérifions que γ est une immersion. Sa dérivée est

γ̇(t) = (−2 sin(t), 2 cos(2t)).

Cette quantité s’annule si on a simultanément t ∈ πZ et t ∈ π
4 + π

2Z, ce qui est impossible.
Donc γ est une courbe régulière, c’est une immersion de l’intervalle

(
−π

2 ,
3π
2

)
dans le plan.

(ii) Pour montrer que est injective, on suppose que γ(t) = γ(u) avec t, u ∈
(
−π

2 ,
3π
2

)
. On a

alors cos(t) = cos(u) et sin(2t) = sin(2u). Ceci implique que sin(t) = sin(u) car sin(2t) =
2 sin(t) cos(t) et de même pour sin(2u). Nous avons donc u = t mod(2π) et comme t et u
sont contenus dans l’intervalle

(
−π

2 ,
3π
2

)
(qui est de longueur 2π) on doit avoir u = t. Or

nous avons les équivalences{
cos(t) = cos(u)

sin(2t) = sin(2u)
⇔

{
t− u ∈ 2πZ ou t+ u ∈ 2πZ
t− u ∈ πZ ou t+ u ∈ π

2 + πZ

Sur l’intervalle (−π
2 ,

3π
2 ), on voit que les conditions à la fin de l’équivalence ne sont réalisées

que si t = u, d’où l’injectivité.
(iii) Pour montrer que γ :

(
−π

2 ,
3π
2

)
→ C est bijective, il suffit maintenant de montrer que cette

application est surjective, i.e. que γ((−π
2 ,

3π
2 )) = C.

Pour vérifier que γ((−π
2 ,

3π
2 )) ⊂ C, il suffit de vérifier que f(γ(t)) = 0 pour tout t. C’est un

calcul direct :

f(γ(t)) = 4(2 cos(t))2 − 4(sin(2t))2 − (2 cos(t)4)

= 16(cos2(t)− sin2(t) cos2(t)− cos2(t))

= 16 cos2(t)(1− sin2(t)− cos2(t))

= 0.
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Pour l’autre inclusion, on commence par dire que si (x, y) ∈ C, alors −2 6 x 6 2. On peut
donc écrire

x = 2 cos(t), t ∈
(
−π

2
,
3π

2

)
.

On a alors
y2 =

1

4
(16 cos2(t)− 16 cos4(t)) = sin(2t)2.

Le tracé des courbes de t 7→ 2 cos(t) et t 7→ sin(2t) montre que l’on peut choisir t de façon
à avoir x = 2 cos(t) et y du même signe que sin(2t). Finalement, ce choix de t ∈ (−π

2 ,
3π
2 )

donne
(x, y) = (2 cos(t), sin(2t)) = γ(t).

(iv) On vérifie facilement que
lim
t→−π

2

γ(t) = lim
t→ 3π

2

γ(t) = (0, 0).

Les extrémités de la courbe γ se rejoignent en (0, 0), qui est aussi un point de la courbe.
Noter que si on considère le prolongement par continuité γ̄ :

[
−π

2 ,
3π
2

]
→ R2 de la courbe γ

jusqu’au bord de l’intervalle de définition, alors (0, 0) est l’unique point de γ̄ qui n’est pas un
point simple, c’est un point triple.

(v) Notons tk = 3π
2 −

1
k . Alors la suite {tk} ⊂

(
−π

2 ,
3π
2

)
ne converge pas. Mais on vient de voir

que la suite {γ(tk)} ⊂ C converge. On en conclut que la bijection inverse γ−1 : C →
(
−π

2 ,
3π
2

)
n’est pas continue (l’image d’une suite convergente pas une application continue est toujours
une suite convergente).

On peut de façon plus générale prouver qu’il n’existe aucun homéomorphisme entre C et un intervalle
ouvert (non vide) I. En effet toute suite de points de C contient une sous-suite convergente par le
théorème de Bolzano-Weierstrass et le fait que C est une partie fermée et bornée de R2 (on dit que
C est compact). Par contre un intervalle ouvert (non vide) I contient des suites sans sous-suites
convergentes. Ces deux ensembles ne peuvent pas être homéomorphes. Autre argument topologique,
l’ensemble C privé d’un point est connexe et l’intervalle I privé d’un point possède deux composantes
connexes.
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