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A. Exercices standards.

Exercice 8.1. On considére les fonctions suivantes : f: R? — R et g : R® — R définies par
flz,y) =2’y +222 —2xy —dz+y et g(x,y,2)=2zy— 3yz.

(a) Pour quelles valeurs de ¢ € R la courbe de niveau f~!(c) est-elle une sous-variété de R? ?

(b) Pour quelles valeurs de ¢ € R la surface de niveau g~'(c) est-elle une sous-variété de R3 ?

Solution 8.1. On utilise le résultat suivant: si f : U C R” — R est de classe C* et si dfy # 0 en
tout point p tel que f(p) = ¢, alors f~!(c) est une sous-variété de classe C! (on peut remplacer la
différentielle par le gradient). Donc les valeurs de ¢ pour lesquelles f~!(c) n’est pas une sous variété
sont celles pour lesquelles il existe au moins une solution au systéme d’équations :

e Wy 9y
flx) =c, a—xl(x = axn(:c)_o.

(a) On calcule le gradient de f:

ef(m,y): < 2zy + 4w — 2y — 4 > _ < 2($—1)(y+2)>

r? —2x+1 (x —1)2

Ce gradient est nul si et seulement si x = 1 et dans ce cas on calcule que f(z,y) = f(1,y) = —2. Par
conséquent f~1(c) est une sous-variété de R? si ¢ # —2.

En revanche, f~!(—2) n’est pas une sous-variété de R?, en effet on a

(z,y) € f7H(=2) & flz,y)=a"y+22" -2y —daz+y=—2
& (z-1)*(y—-2)=0
& =1 ou y=2.

Cet ensemble est la réunion de deux droites orthogonale et n’est donc pas une sous-variété (aucun
voisinage du point (1,2) n’est homéomorphe & un intervalle).

(b) On calcule le gradient de g:
2y
?g(m, y,z)=| 2z -3z
—3y
Ce gradient s’annule exactement sur l’ensemble des multiples de (3,0,2), i.e. sur la droite D =
R-(3,0,2), et on remarque que sur cette droite on a aussi g(x,y, z) = 0. Par conséquent si ¢ # 0 alors
g~ 1(0) est une sous-varié¢té de R? (car alors ?g #0).

Par contre, g_l(O) n’est pas une sous-variété car
(2,9,2) €971(0) & glz,y,2) =y(2x —32) =0
& y=0 ou 2x—-3z=0.

Cet ensemble est la réunion de deux plans transverses et n’est donc pas une sous-variété Sur cette
droite g est identiquement nulle. En particulier, g~!(0) n’est pas une sous-variété.

Remarque. Dans ces raisonnements on aurait pu remplacer le gradient par la différentielle.



Exercice 8.2. (a) Soit p = (z0,¥0,20) € R3 un point régulier de la surface S surface définie par
I'équation f(x,y,z) = 0. Prouver que le plan vectoriel tangent 7},S est le plan orthogonal au gradient

V(D).

(b) Le plan affine tangent & une surface S en un point régulier p est I'ensemble des points de R? tels
que le vecteur m € T,S. Montrer que le plan affine tangent est donné par

A8 ={q € B | (g —p,V f(p)) = 0}

(c) En appliquant le résultat précédent, obtenir la formule donnant I'approximation du premier ordre
d’une fonction différentiable de deux variables z = ¢(x,y) au voininage d’un point (xg,yo) (série de
Taylor a l'ordre 1).

Solution 8.2. (a) Rappelons que T),S est I'ensemble des vecteurs tangents au point p & toutes les
courbes tracées sur la surface, i.e. v € T),S si et seulement si il existe une courbe v : (—¢,e) = S telle
que v(0) = p et 4(0) = v. Si on note y(t) = (x(t),y(t), 2(t)), alors on a

_Ofdx  Ofdy  Ofdz

fa),y(t),z(t) =0 = 0= %f(:c(t),y(t),z(t)) = Sedi t oy T 9 d

et donc, si v = 4(0) = (v1, va,v3), alors

1)) =05 0) + 5l () + v ) =0,

Cela démontre que 7,5 C (?f(p))l = ker(df(p)). Il s’agit en fait d’une égalité car d’une part on
sait que 7,5 est un sous-espace vectoriel de dimension 2 (par le théoréme des fonctions implicites), et
d’autre part que ker(df(p)) est aussi un sous-espace vectoriel de dimension 2 puisqu’on a supposé que
p est un point régulier.

(b) Evident & partir des définitions.

(c) Le graphe de ¢ admet ’équation f(x,y,z) = z — ¢(z,y). On a donc ?f(p) = <—%, — B 1) et

I’équation du plan affine tangent en un point p = (zo, yo, 20) est donc
dp dp
—(z—20)5— — (Y —yo)=5— +(2—20) =0,
(& —20) 5> = (4 = o) By (z = 20)
qu’on peut écrire comme approximation d’ordre 1 de la fonction ¢ au voisinage de (zg, yo)

0 0
z = ¢(x0,y0) + yi(mo,yo) (x —x0) + 87;0(%0’3/0) (¥ — wo)

car zo = ¢(Zo,%0)-

2
Exercice 8.3. Montrer que ’ellipsoide i—; + g—Q + i—; = 1 est une surface réguliére (i.e. une sous-variété
de dimension 2) et calculer son plan affine tangent en un point p = (o, yo, 20)-

Solution 8.3. L’équation de l’ellipsoide est

22 g2 22
S:f(x,y,z)zﬁ-i-bﬁ%—cﬁ—lzo.



On a Vf(x,y,z) = (i—g, 2—3, i%), il n’y a donc qu’un seul point critique en (0,0,0), ce point n’est pas
sur ’ellipsoide qui est donc une surface réguliére.
Le plan affine tangent au point p est

ApS={qeR’ : (Vf(p),q—p) =0},
En posant p = (z0, y0, 20) et ¢ = (x,¥, z), on obtient

2x9 2y 2z
(VI0).a—0) = (T3 33 ) (@ =20,y — 30,2 — 20)) =

2z0 (x —x0) | 2y0 (¥ —yo) , 220 (2 — 20)
—t +
a b2 c?

On peut simplifier par 2, et on obtient I’équation

x 2
A,S = {(z,y,2) € R? | ;g(x—$0)+%(y—yo)+;g(2_20):0}-

Exercice 8.4. On dit que deux sous-variétés différentiables M7 et My de R™ s’intersectent transver-
salement en un point p si p € MMM et en ce point les espaces tangents vérifient T, M + 1, Mo = R".

(a) Donner un exemple d’une surface et d'une courbes réguliéres R? qui s’intersectent en un point
unique, mais de fagon non transverse.

(b) Montrer que si S est une surface et C' une courbe de R? (toutes deux réguliéres), qui s’intersectent
transversalement en 0 € R3, alors on peut construire un systéme de coordonnées locales (u,v,t)
au voisinage de 0 telles que (u,v) sont des paramétres locaux de la surface S et ¢t un paramétre
local de la courbe C.

(c) Dans la méme situation que en (b), prouver que 0 est un point isolé de I'intersection SN C' (i.e. il
existe un ouvert V C R3 tel que VN SNC = {0}).

Remarque : Dire quune courbe ou une surface est réguli¢re signifie qu'elle est une sous-variété de classe C*,
avec k > 1.

Solution 8.4. (a) On peut prendre par exemple une sphére et une droite tangent & cette sphére.
Disons S = {(x,y,2) € R3 |22 +y? + 22 =1} et L ={(2,9,2) ER3 | z=0cet y = 1}.

(b) La surface S et la courbe C' sont supposées réguliéres (ce sont des sous-variétés). Elles passent par
le point p = 0 et ont peut donc localement paramétriser ces variétés par des applications de classe C*
(ou k est la classe de régularité des sous-variétés):

v:I—-CCR® et 9:Q—85cCR?

ot d’'une part I C R est un intervalle contenant 0 et on a y(0) = 0 et 4(0) # 0, et d’autre part Q C R?
est un ouvert contenant (0,0) et on a 1¥(0,0) = 0 et digo injectif (de facon équivalente les vecteurs
b A

dérivées partielles by = - et by = 5= en (0,0) sont linéairement indépendants).

Considérons maintenant I’application
d:Qx I—)RB, (I)(ul,UQ,t) :w(ul,uQ)—l—’y(t).

On observe que Q x I est un ouvert de R? qui contient l'origine et que sa différentielle en (0,0,0) est
non nulle car les vecteurs
0P 0P 0P

—(0,0,0) = by1(0,0), (0,0,0) = by(0,0), ——(0,0,0)=+(0)
8’&1 8u3

8UQ



sont linéairement indépendants par 'hypothése de transversalité. Le théoréme d’inversion locale, nous
dit alors qu’il existe un voisinage ouvert U C Q x I de (0,0,0) tel que ® : U — ®(U) C R3 est
un difféomorphisme. Quitte & restreindre les domaine de paramétrisation €2 et I, on peut supposer
que U = Q x I. On a construit le systéme de coordonnées locales (u1,u9,t) demandé sur l'ouvert
V=oU)=o(Qx1I).

(c) Avec les notations précédentes, on a clairement
SNV = ({(ur,ue,t) €U |[t=0}) et CNV = {(ur,u2,t) €U | up =uz=0}).

Donc
SNCNV =3 ({(ur,ue,t) €U |t =u; =uy =0}) ={(0,0,0)}.

Exercice 8.5. La fenétre de Viviani est la courbe d’intersection d’une sphére avec un cylindre circulaire
droit qui passe par le centre de la sphére et dont le diamétre est le rayon de la sphére. Si le rayon de
la sphére est 1, on peut donc admettre (quitte & appliquer une isométrie) que la fenétre de Viviani est
définie par les équations:

2., .2, .2 1’ 2 1
Ty +2=1 et T — = —i—y:Z.

On notera cet ensemble V.

(a) Montrer par un argument géométrique qu’il existe un point ¢ € V' tel que le complémentaire V'\ {¢}
est une sous-variété différentiable de R®. Quel sont les coordonnées de ¢ (on admettra un argument
heuristique) 7

(b) Prouver rigoureusement & partir des équations de V que V' \ {q} C R? est une sous-variété dif-
férentiable.

(c) Trouver une paramétrisation réguliére de cette courbe.

Solution 8.5. (a) En tout point du cylindre, le plan tangent est un plan vertical. Pour la sphére, les
seuls plans tangents verticaux sont les plans tangents aux points de I’équateur {z = 0}. Il y un seul
point de la fenétre de Viviani qui est sur I’équateur, c’est le point ¢ = (1,0,0). On conclut que les deux
surfaces s’intersectent transversalement en tout point de V' \ {¢}, et donc V' \ {q} est une sous-variété
différentiable de dimension 1 de R3.

(b) Notons f(z,y, 2) = 22 +y>+22—1et g(x,y,2) = (:U — %)2—1—342—%, alors p € V s.si f(p) = g(p) = 0.
Calculons les gradients (ou les différentielles si on préfére) :

Vf:2(l',y,2!), ngQ((CC—%),y70),



on voit que Vf et Vg sont linéairement dépendants si et seulement si z = y = 0, en ajoutant les
conditions f = g = 0 on doit avoir = +1. Cela montre que en tout point de V'\ {(1,0,0)}, la matrice

jacobienne
of of of
or Jy 0z
99 99 9y
Jr Jy 0z

est de rang constant = 2, et donc V'\{(1,0,0)} est une sous-variété différentiable de R? (de codimension
2, et donc de dimension 1 = 3-2).

(c) Pour paramétriser la fenétre de Viviani, il faut réfléchir un peu a sa géométrie. On constate qu’il
s’agit d’une courbe fermée dont la projection sur le plan Oxy va parcourir deux fois le cercle de rayon
1/2 et de centre (3,0). Il semble donc raisonnable de tenter une paramétrisation

oL
~y(t) = <;(cos(2t) + 1),;sin(2t),z(t)> , avec t € [0, 2],

ol z(z) est une fonction a déterminer. On remarque que pour n’importe quelle fonction z(t) la courbe
7y est tracée sur le cylindre, en particulier g((t)) = 0 (on a écrit cos(2t) et sin(2t) car la projection de
~ parcoure deux fois le cercle de rayon 1/2 et de centre (1,0)).

Pour déterminer z(t) il faut utiliser que y(¢) appartient a la sphére unité, ¢’est-dire f(y(¢)) = 0 et donc
22(t) =1 — 2%(t) — y?(t). On calcule donc

2(t)? =1-2%(t) - y*(1)
=1—=(cos(2t) +1)* — isin2(2t)

(cos?(2t) + 2cos(2t) + 1) — %sin2(2t)

NN

On peut donc paramétriser la courbe V par
1 1. .
~(t) = (2(008(275) +1), 3 sin(2t), sm(t)) , avec t € 0,27,

on remarque que z(t) > 0 lorsque 0 <t < 7 et 2(t) < 0 lorsque 7 < t < 27.

Finalement, le vecteur vitesse de v est §(t) = (—sin(2t),cos(2t),cos(t)) et la vitesse est ||¥]] =
\/1+ cos?(t) > 1 pour tout ¢, la paramétrisation est réguliére y compris au point double ¢ = v(0) =
().

B. Exercices supplémentaires.

Exercice 8.6. On a vu a lexercice 7.3 que O(n) et SL,(r) sont des sous-variété de M, (R).

a) Décrire l'espace tangent T7SL,(R) a la sous-variété SL,(r) C M,(R) au point I (= la matrice
identité).

b) Décrire I'espace tangent 77O(n) a la sous-variété O(n) C M, (R) au point I.



Solution 8.6. (a) En se référant a l’exercice 7.3(c) et appliquant le théoréme 3.17 au cas de la fonction

déterminant, on voit que l'espace tangent 775 L, (R) est le noyau de la forme linéaire
H — d(det);(H) = Trace(H).

Donc l'espace tangent en I & SL,(R) est I’ensemble des matrices de trace nulle. (on le note aussi
s, dans le cadre de la théorie des groupes classiques ou des groupes de Lie).

On rappelle qu’au voisinage de O(n), 'application
A AAT
est de rang constant. Sa différentielle en A = I est donné par

dd;(H)=H+ H'.

Le groupe O(n) est défini par I'équation ®(A) = I. Par la proposition 3.17, son espace tangent a
I’identité est donc donné par

T;O(n) = Kerd;® = {H € M,(R) | H+ H" =0},

c’est 'ensemble des matrices anti-symétriques (on le note aussi o(n) dans le contexte des groupes

de Lie).



