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A. Exercices standards.

Exercice 8.1. On considère les fonctions suivantes : f : R2 → R et g : R3 → R définies par

f(x, y) = x2y + 2x2 − 2xy − 4x+ y et g(x, y, z) = 2xy − 3yz.

(a) Pour quelles valeurs de c ∈ R la courbe de niveau f−1(c) est-elle une sous-variété de R2 ?

(b) Pour quelles valeurs de c ∈ R la surface de niveau g−1(c) est-elle une sous-variété de R3 ?

Solution 8.1. On utilise le résultat suivant: si f : U ⊂ Rn → R est de classe Ck et si dfp 6= 0 en
tout point p tel que f(p) = c, alors f−1(c) est une sous-variété de classe C1 (on peut remplacer la
différentielle par le gradient). Donc les valeurs de c pour lesquelles f−1(c) n’est pas une sous variété
sont celles pour lesquelles il existe au moins une solution au système d’équations :

f(x) = c,
∂f

∂x1
(x) = · · · ∂f

∂xn
(x) = 0.

(a) On calcule le gradient de f :

−→
∇f(x, y) =

(
2xy + 4x− 2y − 4

x2 − 2x+ 1

)
=

(
2(x− 1)(y + 2)

(x− 1)2

)
Ce gradient est nul si et seulement si x = 1 et dans ce cas on calcule que f(x, y) = f(1, y) = −2. Par
conséquent f−1(c) est une sous-variété de R2 si c 6= −2.

En revanche, f−1(−2) n’est pas une sous-variété de R2, en effet on a

(x, y) ∈ f−1(−2) ⇔ f(x, y) = x2y + 2x2 − 2xy − 4x+ y = −2

⇔ (x− 1)2(y − 2) = 0

⇔ x = 1 ou y = 2.

Cet ensemble est la réunion de deux droites orthogonale et n’est donc pas une sous-variété (aucun
voisinage du point (1, 2) n’est homéomorphe à un intervalle).

(b) On calcule le gradient de g:

−→
∇g(x, y, z) =

 2y
2x− 3z
−3y


Ce gradient s’annule exactement sur l’ensemble des multiples de (3, 0, 2), i.e. sur la droite D =
R · (3, 0, 2), et on remarque que sur cette droite on a aussi g(x, y, z) = 0. Par conséquent si c 6= 0 alors
g−1(0) est une sous-variété de R3 (car alors

−→
∇g 6= 0).

Par contre, g−1(0) n’est pas une sous-variété car

(x, y, z) ∈ g−1(0) ⇔ g(x, y, z) = y(2x− 3z) = 0

⇔ y = 0 ou 2x− 3z = 0.

Cet ensemble est la réunion de deux plans transverses et n’est donc pas une sous-variété Sur cette
droite g est identiquement nulle. En particulier, g−1(0) n’est pas une sous-variété.

Remarque. Dans ces raisonnements on aurait pu remplacer le gradient par la différentielle.
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Exercice 8.2. (a) Soit p = (x0, y0, z0) ∈ R3 un point régulier de la surface S surface définie par
l’équation f(x, y, z) = 0. Prouver que le plan vectoriel tangent TpS est le plan orthogonal au gradient
−→
∇f(p).
(b) Le plan affine tangent à une surface S en un point régulier p est l’ensemble des points de R3 tels
que le vecteur −→pq ∈ TpS. Montrer que le plan affine tangent est donné par

ApS = {q ∈ R3 | 〈q − p,
−→
∇f(p)〉 = 0}.

(c) En appliquant le résultat précédent, obtenir la formule donnant l’approximation du premier ordre
d’une fonction différentiable de deux variables z = ϕ(x, y) au voininage d’un point (x0, y0) (série de
Taylor à l’ordre 1).

Solution 8.2. (a) Rappelons que TpS est l’ensemble des vecteurs tangents au point p à toutes les
courbes tracées sur la surface, i.e. v ∈ TpS si et seulement si il existe une courbe γ : (−ε, ε)→ S telle
que γ(0) = p et γ̇(0) = v. Si on note γ(t) = (x(t), y(t), z(t)), alors on a

f(x(t), y(t), z(t)) ≡ 0 ⇒ 0 =
d

dt
f(x(t), y(t), z(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
,

et donc, si v = γ̇(0) = (v1, v2, v3), alors

〈
−→
∇f(p),v〉 = v1

∂f

∂x
(p) + v2

∂f

∂y
(p) + v3

∂f

∂z
(p) = 0.

Cela démontre que TpS ⊂ (
−→
∇f(p))⊥ = ker(df(p)). Il s’agit en fait d’une égalité car d’une part on

sait que TpS est un sous-espace vectoriel de dimension 2 (par le théorème des fonctions implicites), et
d’autre part que ker(df(p)) est aussi un sous-espace vectoriel de dimension 2 puisqu’on a supposé que
p est un point régulier.

(b) Évident à partir des définitions.

(c) Le graphe de ϕ admet l’équation f(x, y, z) = z − ϕ(x, y). On a donc
−→
∇f(p) =

(
−∂ϕ
∂x ,−

∂ϕ
∂y , 1

)
et

l’équation du plan affine tangent en un point p = (x0, y0, z0) est donc

−(x− x0)
∂ϕ

∂x
− (y − y0)

∂ϕ

∂y
+ (z − z0) = 0,

qu’on peut écrire comme approximation d’ordre 1 de la fonction ϕ au voisinage de (x0, y0)

z = ϕ(x0, y0) +
∂ϕ

∂x
(x0, y0) · (x− x0) +

∂ϕ

∂y
(x0, y0) · (y − y0)

car z0 = ϕ(x0, y0).

Exercice 8.3. Montrer que l’ellipsoïde x2

a2
+ y2

b2
+ z2

c2
= 1 est une surface régulière (i.e. une sous-variété

de dimension 2) et calculer son plan affine tangent en un point p = (x0, y0, z0).

Solution 8.3. L’équation de l’ellipsoïde est

S : f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1 = 0.
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On a ∇f(x, y, z) = (2x
a2
, 2y
b2
, 2z
c2

), il n’y a donc qu’un seul point critique en (0, 0, 0), ce point n’est pas
sur l’ellipsoïde qui est donc une surface régulière.
Le plan affine tangent au point p est

ApS = {q ∈ R3 : 〈∇f(p), q − p〉 = 0},

En posant p = (x0, y0, z0) et q = (x, y, z), on obtient

〈∇f(p), q− p〉 = 〈(2x0
a2

,
2y0
b2
,
2z0
c2

), (x−x0, y− y0, z− z0)〉 =
2x0 (x− x0)

a2
+

2y0 (y − y0)
b2

+
2z0 (z − z0)

c2

On peut simplifier par 2, et on obtient l’équation

ApS := {(x, y, z) ∈ R3 | x0
a2

(x− x0) +
y0
b2

(y − y0) +
z0
c2

(z − z0) = 0}.

Exercice 8.4. On dit que deux sous-variétés différentiables M1 et M2 de Rn s’intersectent transver-
salement en un point p si p ∈M1∩M2 et en ce point les espaces tangents vérifient TpM1 +TpM2 = Rn.

(a) Donner un exemple d’une surface et d’une courbes régulières R3 qui s’intersectent en un point
unique, mais de façon non transverse.

(b) Montrer que si S est une surface et C une courbe de R3 (toutes deux régulières), qui s’intersectent
transversalement en 0 ∈ R3, alors on peut construire un système de coordonnées locales (u, v, t)
au voisinage de 0 telles que (u, v) sont des paramètres locaux de la surface S et t un paramètre
local de la courbe C.

(c) Dans la même situation que en (b), prouver que 0 est un point isolé de l’intersection S ∩C (i.e. il
existe un ouvert V ⊂ R3 tel que V ∩ S ∩ C = {0}).

Remarque : Dire qu’une courbe ou une surface est régulière signifie qu’elle est une sous-variété de classe Ck,
avec k ≥ 1.

Solution 8.4. (a) On peut prendre par exemple une sphère et une droite tangent à cette sphère.
Disons S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} et L = {(x, y, z) ∈ R3 | z = 0 et y = 1}.

(b) La surface S et la courbe C sont supposées régulières (ce sont des sous-variétés). Elles passent par
le point p = 0 et ont peut donc localement paramétriser ces variétés par des applications de classe Ck

(où k est la classe de régularité des sous-variétés):

γ : I → C ⊂ R3 et ψ : Ω→ S ⊂ R3,

où d’une part I ⊂ R est un intervalle contenant 0 et on a γ(0) = 0 et γ̇(0) 6= 0, et d’autre part Ω ⊂ R2

est un ouvert contenant (0, 0) et on a ψ(0, 0) = 0 et dψ0,0 injectif (de façon équivalente les vecteurs
dérivées partielles b1 = ∂ψ

∂u1
et b2 = ∂ψ

∂u2
en (0, 0) sont linéairement indépendants).

Considérons maintenant l’application

Φ : Ω× I → R3, Φ(u1, u2, t) = ψ(u1, u2) + γ(t).

On observe que Ω× I est un ouvert de R3 qui contient l’origine et que sa différentielle en (0, 0, 0) est
non nulle car les vecteurs

∂Φ

∂u1
(0, 0, 0) = b1(0, 0),

∂Φ

∂u2
(0, 0, 0) = b2(0, 0),

∂Φ

∂u3
(0, 0, 0) = γ̇(0)
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sont linéairement indépendants par l’hypothèse de transversalité. Le théorème d’inversion locale, nous
dit alors qu’il existe un voisinage ouvert U ⊂ Ω × I de (0, 0, 0) tel que Φ : U → Φ(U) ⊂ R3 est
un difféomorphisme. Quitte à restreindre les domaine de paramétrisation Ω et I, on peut supposer
que U = Ω × I. On a construit le système de coordonnées locales (u1, u2, t) demandé sur l’ouvert
V = Φ(U) = Φ(Ω× I).

(c) Avec les notations précédentes, on a clairement

S ∩ V = Φ ({(u1, u2, t) ∈ U | t = 0}) et C ∩ V = Φ ({(u1, u2, t) ∈ U | u1 = u2 = 0}) .

Donc
S ∩ C ∩ V = Φ ({(u1, u2, t) ∈ U | t = u1 = u2 = 0}) = {(0, 0, 0)}.

Exercice 8.5. La fenêtre de Viviani est la courbe d’intersection d’une sphère avec un cylindre circulaire
droit qui passe par le centre de la sphère et dont le diamètre est le rayon de la sphère. Si le rayon de
la sphère est 1, on peut donc admettre (quitte à appliquer une isométrie) que la fenêtre de Viviani est
définie par les équations:

x2 + y2 + z2 = 1 et
(
x− 1

2

)2

+ y2 =
1

4
.

On notera cet ensemble V .

(a) Montrer par un argument géométrique qu’il existe un point q ∈ V tel que le complémentaire V \{q}
est une sous-variété différentiable de R3. Quel sont les coordonnées de q (on admettra un argument
heuristique) ?

(b) Prouver rigoureusement à partir des équations de V que V \ {q} ⊂ R3 est une sous-variété dif-
férentiable.

(c) Trouver une paramétrisation régulière de cette courbe.

Solution 8.5. (a) En tout point du cylindre, le plan tangent est un plan vertical. Pour la sphère, les
seuls plans tangents verticaux sont les plans tangents aux points de l’équateur {z = 0}. Il y un seul
point de la fenêtre de Viviani qui est sur l’équateur, c’est le point q = (1, 0, 0). On conclut que les deux
surfaces s’intersectent transversalement en tout point de V \ {q}, et donc V \ {q} est une sous-variété
différentiable de dimension 1 de R3.

(b) Notons f(x, y, z) = x2+y2+z2−1 et g(x, y, z) =
(
x− 1

2

)2
+y2− 1

4 , alors p ∈ V s.si f(p) = g(p) = 0.
Calculons les gradients (ou les différentielles si on préfère) :

∇f = 2(x, y, z), ∇g = 2(
(
x− 1

2

)
, y, 0);
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on voit que ∇f et ∇g sont linéairement dépendants si et seulement si z = y = 0, en ajoutant les
conditions f = g = 0 on doit avoir x = +1. Cela montre que en tout point de V \{(1, 0, 0)}, la matrice
jacobienne 

∂f

∂x

∂f

∂y

∂f

∂z

∂g

∂x

∂g

∂y

∂g

∂z


est de rang constant = 2, et donc V \{(1, 0, 0)} est une sous-variété différentiable de R3 (de codimension
2, et donc de dimension 1 = 3-2).

(c) Pour paramétriser la fenêtre de Viviani, il faut réfléchir un peu à sa géométrie. On constate qu’il
s’agit d’une courbe fermée dont la projection sur le plan Oxy va parcourir deux fois le cercle de rayon
1/2 et de centre (12 , 0). Il semble donc raisonnable de tenter une paramétrisation

γ(t) =

(
1

2
(cos(2t) + 1),

1

2
sin(2t), z(t)

)
, avec t ∈ [0, 2π],

où z(z) est une fonction à déterminer. On remarque que pour n’importe quelle fonction z(t) la courbe
γ est tracée sur le cylindre, en particulier g(γ(t)) = 0 (on a écrit cos(2t) et sin(2t) car la projection de
γ parcoure deux fois le cercle de rayon 1/2 et de centre (12 , 0)).
Pour déterminer z(t) il faut utiliser que γ(t) appartient à la sphère unité, c’est-dire f(γ(t)) = 0 et donc
z2(t) = 1− x2(t)− y2(t). On calcule donc

z(t)2 = 1− x2(t)− y2(t)

= 1− 1

4
(cos(2t) + 1)2 − 1

4
sin2(2t)

= 1− 1

4

(
cos2(2t) + 2 cos(2t) + 1

)
− 1

4
sin2(2t)

=
1

2
(1− cos(2t))

= sin2(t).

On peut donc paramétriser la courbe V par

γ(t) =

(
1

2
(cos(2t) + 1),

1

2
sin(2t), sin(t)

)
, avec t ∈ [0, 2π],

on remarque que z(t) ≥ 0 lorsque 0 ≤ t ≤ π et z(t) ≤ 0 lorsque π ≤ t ≤ 2π.

Finalement, le vecteur vitesse de γ est γ̇(t) = (− sin(2t), cos(2t), cos(t)) et la vitesse est ‖γ̇‖ =√
1 + cos2(t) ≥ 1 pour tout t, la paramétrisation est régulière y compris au point double q = γ(0) =

γ(π).

B. Exercices supplémentaires.

Exercice 8.6. On a vu à l’exercice 7.3 que O(n) et SLn(r) sont des sous-variété de Mn(R).

a) Décrire l’espace tangent TISLn(R) à la sous-variété SLn(r) ⊂ Mn(R) au point I (= la matrice
identité).

b) Décrire l’espace tangent TIO(n) à la sous-variété O(n) ⊂Mn(R) au point I.
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Solution 8.6. (a) En se référant à l’exercice 7.3(c) et appliquant le théorème 3.17 au cas de la fonction
déterminant, on voit que l’espace tangent TISLn(R) est le noyau de la forme linéaire

H 7→ d(det)I(H) = Trace(H).

Donc l’espace tangent en I à SLn(R) est l’ensemble des matrices de trace nulle. (on le note aussi
sln dans le cadre de la théorie des groupes classiques ou des groupes de Lie).

(b) On rappelle qu’au voisinage de O(n), l’application

Φ : A 7→ AAT

est de rang constant. Sa différentielle en A = I est donné par

dΦI(H) = H +HT.

Le groupe O(n) est défini par l’équation Φ(A) = I. Par la proposition 3.17, son espace tangent à
l’identité est donc donné par

TIO(n) = Ker dIΦ = {H ∈Mn(R) | H +HT = 0},

c’est l’ensemble des matrices anti-symétriques (on le note aussi o(n) dans le contexte des groupes
de Lie).
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