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A. Exercices standards.

Exercice 7.1. Le but de cet exercice est de prouver que la différentielle de l’application déterminant
det : Mn(R) −→ R en A ∈ Mn(R) est l’application linéaire ddetA : Mn(R) → Mn(R) donnée par la
formule

ddetA(H) = Tr(Cof(A)>H),

où Cof(A) est la matrice des cofacteurs de A.

On procède en trois étapes:

(1) Dans un premier temps démontrer la formule pour le cas A = I;

(2) Supposer ensuite que A ∈ GLn(R), i.e. que A est inversible;

(3) Finalement, conclure en utilisant le fait que pour toute matrice A ∈Mn(R), la matrice A+ tI est
inversible pour t suffisamment petit.

Solution 7.1. (1) Supposons d’abord que A = I, nous devons analyser le développement de det(I+H)
pour une matrice H de norme assez-petite. Écrivons les matrices n×n comme des n-tuples de vecteurs
colonnes :

I = (E1, E2, . . . , En), H = (H1, H2, . . . ,Hn])

où Ej est le jème vecteur de la base canonique. On a alors avec les propriétés su déterminant:

det(I +H) = det(E1 +H1, E2 +H2, . . . , En +Hn)

= det(E1, E2, . . . , En) + det(H1, E2, . . . , En) + det(E1, H2, . . . , En)

· · ·+ det(E1, E2, . . . ,Hn) + ρ(H)

= det(I) + Trace(H) + ρ(H).

Ici ρ(H) contient tous les déterminants qui contiennent plus de deux colonnes Hj , par exemple
det(H1, H2, . . . , En). On a alors ρ(H) = o(‖H‖) et par conséquent det(I +H)− det(I) = Trace(H) +
o(‖H‖), et donc

ddetI(H) = Trace(H).

Autre raisonnement possible pour cette première étape (à partir de la formule du déterminant) :

det(I +H) =
∑
σ∈Sn

sign(σ)(δσ(1)1 + hσ(1)1) · · · (δσ(n)n + hσ(n)n)

= δ11 . . . δnn +
n∑
i=1

hii + termes de degré ≥ 2 en hij

= 1 + Tr(H) + o(‖H‖)
= det(I) + Trace(H) + o(‖H‖).

D’où ddetI(H) = Tr(H).
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(2) Supposons ensuite que A ∈ GLn(R). Alors par multiplicativité du déterminant et la formule
précédente on a

det(A+H) = det(A(I +A−1H))

= det(A) det(I +A−1H)

= det(A)(1 + Tr(A−1H) + o(‖A−1H‖))
= det(A) + Tr(det(A)A−1H) + o(‖H‖)
= det(A) + Tr(Cof(A)>H) + o(‖H‖).

Ainsi d detA(H) = Tr(Cof(A)>H).

(3) Finalement, si A ∈ Mn(R) est quelconque, alors pour t > 0 suffisamment petit, la matrice A + tI
est inversible (à méditer!). Or par continuité, on a évidemment

Cof(A+ tI)
t→0−−→ Cof(A),

donc Tr(Cof(A + tI)>H) −→ Tr(Cof(A)>H) et on a obtenu en toute généralité la différentielle du
déterminant:

ddetA(H) = Tr(Cof(A)>H).

Exercice 7.2. Soit γ : I → R2 une courbe régulière plane de classe C2 et r ≥ 0. On appelle courbe
parallèle à γ à distance r la courbe γr(t) = γ(t) + rNγ(t) (où Nγ = J(Tγ) est le champ de vecteurs
normal à γ).

(a) Calculer la courbure κr(t) de la courbe parallèle γr (en fonction de r et de t).

(b) Montrer que la fonction r 7→ κr satisfait l’équation différentielle de Ricatti :
∂κ

∂r
= κ2.

(c) Supposons que q = inf
t∈I

1

|κ(t)|
> 0. Montrer que l’application f : (−ε, ε) × I → R2 définie par

f(r, t) = γr(t) est une immersion pour tout ε ≤ q.

(d) Expliciter le cas du cercle de rayon a centré en 0.

(e) Expliquer pourquoi l’affirmation du point (c) n’est pas correcte pour ε > q.

Remarque. Cet exercice montre en particulier que localement, dans un voisinage de la courbe, on peut construire
un système de coordonnées curviligne dont l’une des coordonnées est l’abscisse curviligne de la courbe et l’autre
est la distance orientée à la courbe. Ces coordonnées s’appellent des coordonnées de Fermi.

Solution 7.2. (a) Supposons γ paramétrée normalement, alors on a (en utilisant les équations de
Serret-Frenet pour les courbes planes):

γ̇r(s) = γ̇(s) + rṄ(s) = (1− rκ(s))T(s).

Donc
γ̈r(s) = (1− rκ(s))Ṫ(s)− rκ̇(s)T(s) = (1− rκ(s))κ(s)N(s)− rκ̇(s)T(s),

La courbure κr de γr est donc donnée par

κr(s) =
γ̇r(s) ∧ γ̈r(s)
‖γ̇r(s)‖3

=
κ(s)

1− rκ(s)
.
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(b) C’est un calcul élémentaire : ∂
∂r

(
κ(s)

1−rκ(s)

)
=
(

κ(s)
1−rκ(s)

)2
(le point important est que cette remarque

illustre l’importance de l’équation de Ricatti en lien avec la courbure en géométrie différentielle).

(c) Les dérivées partielles de l’applications f(r, s) = γ(s) + rNγ(s) sont

∂f

∂r
= Nγ(s),

∂f

∂s
= (1− rκ(s))Tγ(s).

Ces deux vecteurs sont linéairement indépendants en tout point tel que (1−rκ(s)) 6= 0, cette condition
est garantie par les hypothèses (|r| < 1/|κ(s)).

(d) Le cercle de rayon a est de courbure 1/a. L’application f est donc définie pour (r, θ) ∈ (−a, a)×
[0, 2π] par

f(r, θ) = ((a− r) cos(θ), (a− r) sin(θ)).

On remarque que f peut être définie sur le domaine (−∞, a)× [0, 2π], et que cette application est une
simple variante des coordonnées polaires du plan.

(e) Le calcul en (c) montre que ∂f
∂s (r, s) = 0 si rκ(s) = 1. Donc si le domaine de f contient un tel

point, alors f n’est pas une immersion.
Rappelons que le point f( 1

κ(s) , s) = γ(s) + 1
κ(s)Nγ(s) est le centre du cercle osculateur de γ en s, et

la courbe s 7→ f( 1
κ(s) , s) est la développée de γ. La développée de γ, qui est aussi l’enveloppe de ses

normales, représente une frontière du domaine de régularité des coordonnées de Fermi.

Exercice 7.3. (a) Le cône C = {(x, y, z) ∈ R3 | x2 + y2 = (az)2} est-il une sous-variété de R3 (on
suppose a 6= 0) ?

(b) Prouver qu’il existe une sous-variété différentiable de R6 qui est homéomorphe à S2×S2 (le produit
cartésien de deux sphères).

(c) Prouver que le groupe linéaire spécial

SLn(R) = {A ∈Mn(R) | det(A) = 1}

est une sous-variété différentiable de Mn(R) = Rn×n. Quelle est sa dimension ?

(d) (*) Prouver que le groupe orthogonal O(n) est une sous-variété différentiable de Mn(R) = Rn×n.
Quelle est sa dimension ?

Remarque : Les sous-ensembles de GLn(R) qui sont à la fois des sous-groupes et des sous-variétés s’appellent les
groupes classiques. Ce sont des exemples de groupes de Lie (en fait les plus importants). Des exemples de groupes
classiques sont GLn(R), SLn(R), On(R), SOn(R), Un(C), SUn(C), et SP2n(R) (le groupe symplectique).

Solution 7.3. (a) Le cône C est l’ensemble f−1(0) où f(x, y, z) = x2+y2−(az)2. La différentielle de f
au point (x, y, z) est df = 2xdx+ 2ydy− 2a2zdz. Cette différentielle est non nulle si (x, y, z) 6= (0, 0, 0)
donc le cône C \ {0} privé de l’origine est une sous-variété de R3.
Par contre la différentielle de f en 0 est nulle, cela suggère que peut-être le cône n’est pas une variété.
Pour le voir, on considère un voisinage quelconque U ⊂ C de 0. Il est facile de vérifier que U \{(0, 0, 0)})
n’est pas connexe, or tout point d’une variété admet des voisinages connexes. Nous concluons que C
n’est pas une variété.

(b) On considère l’application f : R6 → R2 définie par

f(x1, x2, x3, x4, x5, x6) = (f1(x1, x2, x3, ), f2(x4, x5, x6)) =
(
x21 + x22 + x23 − 1, x24 + x25 + x26 − 1

)
.
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Il est facile de vérifier que M = f−1(0, 0) ⊂ R6 = R3 × R3 est homéomorphe à un produit de deux
sphères. Nous devons vérifier que c’est une sous-variété différentiable. La matrice jacobienne de f est
la matrice 2× 6 suivante :

Df =

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

0 0 0

0 0 0 ∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 =

2x1 2x2 2x3 0 0 0

0 0 0 2x4 2x5 2x6


Cette matrice est de rang 2 sur le complémentaire de l’ensemble

S = {x ∈ R6 | x1 = x2 = x3 = 0} ∪ {x ∈ R6 | x4 = x5 = x6 = 0}

(sur l’ensemble S le rang de Df est 1 sauf à l’origine où ce rang est nul). En particulier le rang de f est
constant égale à 2 au voisinage de M , donc M ⊂ R6 est une sous-variété différentiable de codimension
2 (et de dimension 6-2 = 4).

Il est clair que cette application est une forme linéaire non-nulle si det(A) = 1 car dans ce cas on
a d(det)A(H) = Trace

(
A−1H

)
, et 1 est donc une valeur régulière de la fonction déterminant. Ainsi

l’équation det(A) = 1 définit une sous variété de codimension 1 = dim(R), et donc de dimension n2−1.

(c) Le groupe linéaire spécial SLn(R) est le groupe des n× n matrices réelles de déterminant 1 :

SLn(R) = {A ∈Mn(R) | det(A) = 1}.

L’application déterminant est C∞ et on a vu à l’exercice 7.1 que sa différentielle en A est la forme
linéaire

H 7→ d(det)A(H) = Trace
(

Cof(A)>H
)
.

Pour une matrice inversible, on a toujours Cof(A) 6= 0 (à cause de l’identité A ·Cof(A)> = In). Donc
ddetA défini une forme linéaire non nulle sur Mn(R) et en particulier l’application

det : Mn(R)→ R

est de rang constant r = 1 au voisinage de SLn(R). En appliquant le théorème 3.15 (A) on déduit que
SLn(R) ⊂Mn(R) est une sous-variété différentiable de codimension 1 et donc de dimension n2 − 1.

(d) Le groupe orthogonal O(n) est le sous-ensemble O(n) = f−1(0) où f : Mn(R) → Mn(R) est
l’application

f(A) = A>A− In.

Cette application est de classe C∞. Nous allons montrer que f est de rang constant au voisinage de
O(n). Calculons d’abord la différentielle de f en A ∈Mn(R). On a

f(A+H) = (A+H)>(A+H)− In = A>A+A>H +H>A+H>H − In

= f(A) +
(
A>H +H>A

)
+ o(‖H‖)

Par conséquent la différentielle de f est

dfA = A>H +H>A.

Pour trouver le rang de dfA, nous pouvons calculer son noyau :

Ker (dfA) = {H ∈Mn(R) | A>H = −H>A} = {H ∈Mn(R) | A>H est antisymétrique}.
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L’ensemble des matrices antisymétrique est un sous-espace vectoriel de dimension 1
2n(n−1) deMn(R).

Donc si A est inversible, alors l’ensemble des matrices H telles que A>H est antisymétrique est aussi
un sous-espace vectoriel de dimension 1

2n(n− 1). On a donc

rang(dfA) = n2 − dim Ker (dfA) = n2 − 1

2
n(n− 1) =

1

2
n(n+ 1).

Comme toute matrice de O(n) est inversible, on conclut que le rang de f au voisinage de O(n) est
constant égale à 1

2n(n + 1). Cela prouve que O(n) ⊂ Mn(R) est une sous variété de codimension
1
2n(n+ 1) et donc de dimension

dim(O(n)) = n2 − 1

2
n(n+ 1) =

1

2
n(n− 1).

Par exemple dimO(2) = 1, dimO(3) = 3, dimO(4) = 6.

Exercice 7.4. (Exercice sur les variétés de type quadrique)

(a) Rappeler ce qu’est une forme quadratique sur un espace vectoriel.

(b) Soit Q : Rn → R une forme quadratique sur Rn. Prouver que Q est différentiable. Que vaut sa
différentielle en un point x ∈ Rn ?

(c) Que dit le théorème de Sylvester de l’algèbre linéaire ? Qu’est-ce que la signature d’une forme
quadratique ? Que signifie la condition Q est non dégénéré pour une forme quadratique ?

(d) Prouver que si Q : Rn → R une forme quadratique non dégénérée, alors l’hypersurface Q−1(c) est
une sous-variété de Rn pour tout c 6= 0. Quelle est sa dimension ?

(e) Est-ce que l’ensemble S0(Q) = {x ∈ Rn | Q(x) = 0} ⊂ Rn est une sous-variété ? L’ensemble
S0(Q) s’appelle le cône isotrope de la forme quadratique Q

(f) Les hypersurfaces

S+(Q) = {x ∈ Rn | Q(x) = +1} et S−(Q) = {x ∈ Rn | Q(x) = −1}

s’appellent les indicatrices positives et négatives de la forme quadratique Q. Montrer que Q est
entièrement déterminé par les deux indicatrices et le cône isotrope, i.e. si Q1 et Q2 sont deux
formes quadratiques sur Rn telles que

S0(Q1) = S0(Q2), S+(Q1) = S+(Q2), S−(Q1) = S−(Q2),

alors Q1 = Q2.

Solution 7.4. (a) Une forme quadratique est une application Q : Rn → R de la forme

Q(x) = B(x, x),

où B est une forme bilinéaire symétrique de Rn.

(b) On calcule le développement limité de Q en x ∈ Rn:

Q(x+ h) = B(x+ h, x+ h) = Q(x) + 2B(x, h) +Q(h).
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Clairement Q(h) = B(h, h) = o(‖h‖), donc:

dQx(h) = 2B(x, h).

Remarque. Par définition, la forme bilinéaire B détermine la forme quadratique Q. La for-
mule que nous venons d’établir montre que réciproquement, la forme bilinéaire symétrique B est
déterminée par la forme quadratique Q.

Rappelons qu’on peut aussi retrouver B par la formule de polarisation:

B(x, y) =
1

4
(Q(x+ y)−Q(x− y)).

(c) Le théorème de Sylvester assure pour toute forme bilinéaire symétrique B l’existence d’une base
B telle que la matrice de B dans cette base est de la forme diagonale par blocsIp 0

−Iq
0 0


où p et q sont des entiers. Dans cette base, la forme quadratique s’écrit

Q(x) = x21 + · · ·+ x2p − x2p+1 − · · · − x2p+q.

Le couple (p, q) s’appelle la signature de Q et r = p + q est le rang. La forme quadratique Q est
dite non-dégénérée si r = n. Si (p, q) = (n, 0) on dit que Q est définie positive et si (p, q) = (0, n)
on dit que Q est définie négative.

(d) Si Q est non-dégénérée et a est un vecteur non-nul alors

dQa = 2B(a, ·)

est une forme linéaire non-nulle. C’est donc une application linéaire de rang r = 1. Ceci prouve
que la fonction Q est de rang constant r = 1 sur l’ouvert U = Rn \ {0} et par le théorème 3.15,
on en déduit que Q−1(c) est une hypersurface de Rn (i.e. une sous-variété de codimension 1) pour
tout c ∈ R non nul.

(e) Le vecteur nul 0 ∈ Rn est un point critique de Q. En général le cône isotrope Q−1(0) n’est pas
une variété (sauf le cas trivial ou Q est définie positive ou définie négative et Q−1(0) = {0} est un
point). Par exemple, si Q(x, y) = x2− y2, alors le cône isotrope est Q−1(0) est la réunion de deux
droites perpendiculaires, ce n’est pas une sous-variété.

(f) Soient Q1, Q2 vérifiant les hypothèses en (b) et soit x ∈ Rn, on doit prouver que Q1(x) = Q2(x).
On distingue trois cas.

(i) Si α = Q1(x) > 0, on pose x′ = x/
√
α. Alors x′ ∈ S+(Q1) = S+(Q2). Donc Q2(x

′) = 1 et on
a Q2(x) = αQ2(x

′) = α = Q1(x).
(ii) Si α = Q1(x) < 0, on pose x′ = x/

√
−α. Alors x′ ∈ S−(Q1) = S−(Q2). Donc Q2(x

′) = −1
et on a Q2(x) = (−α)Q2(x

′) = α = Q1(x).
(iii) Si α = Q1(x) = 0, alors x ∈ S0(Q1) = S0(Q2) et donc Q2(x) = 0.

On a démontré que dans tous les cas Q2(x) = Q1(x).

B. Exercices supplémentaires
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Exercice 7.5. Cet exercice est à faire en groupe: Les images ci-dessous sont des créations des artistes
Maurits Cornelis Escher en 1953 (à gauche) et Victor Vasarely en 1968 (à droite).
Expliquer à votre façon en quoi on peut interpréter ces images comme représentant des systèmes de
coordonnées curvilignes dans un domaine du plan (discutez entre vous et rédigez un petit essai).

Solution 7.5. (Une rédaction possible...)
Un système de coordonnées curviligne est essentiellement la même chose qu’un difféomorphisme d’un
domaine Ω1 ⊂ Rn vers un autre domaine Ω2 ⊂ Rn; cependant on interprète pas ce difféomorphisme
comme agissant en déplaçant les points de U , mais plutôt comme définissant des nouvelles coordonnées
(en général non linéaires) sur le domaine Ω1.

Rappelons la définissions précise du cours dans le cas d’un ouvert du plan : un système de coordonnées
curviligne de classe Ck sur l’ouvert Ω1 ⊂ R2 est la donnée de 2 fonctions u, v : Ω1 → R telles que
l’application

φ : (x, y) 7→ (u, v)

décrit un difféomorphisme de classe Ck de Ω1 vers un ouvert Ω2 = φ(Ω1) ⊂ R2.

Le système de coordonnées permet de définir deux familles de courbes dans Ω1. Pour chaque (u0, v0) ∈
Ω2 on peut définir deux courbes :

{(x, y) ∈ Ω1 | v(x, y) = v0}, {(x, y) ∈ Ω1 | u(x, y) = u0}.

Ces deux familles de courbes forment le réseau de coordonnées curviligne dans le domaine Ω1. Chaque
point p0 ∈ Ω1 peut être représenté par ses coordonnées cartésiennes (x0, y0) ou par ses coordonnées
curvilignes (u0, v0). Dans ces représentations concrètes, on peut localiser le point p0 à partir de ses
coordonnées curvilignes (dans les limites de la précisions donnée par la taille de la grille).

Ces deux images utilisent des grilles déformées pour créer des illusions de profondeur et de mouvement
dans le plan, ce qui est précisément l’objectif d’un système de coordonnées curvilignes. Elles transfor-
ment la perception d’un espace rectiligne en un espace courbe, où chaque point est décrit selon une
géométrie locale influencée par la déformation imposée par l’artiste.

Exercice 7.6. (*) On note R̂n l’ensemble Rn ∪ {∞}, où {∞} est un point supplémentaire qui
n’appartient pas à Rn. On définit sur cet ensemble une topologie pour laquelle Rn est un ouvert
de R̂n et la topologie induite est la topologie usuelle et les voisinages ouverts du point ∞ sont les
ensembles du type Rn \K où K est un compact de Rn.
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On considère ensuite l’application f := R̂n → R̂n définie par

f(x) =


∞ si x = p,

p si x =∞,
p+ k

x− p
‖x− p‖2

si x /∈ {p,∞}.

où p est un point de Rn et k est un réel strictement positif. Cette application s’appelle l’ inversion de
centre p ∈ Rn et de module k > 0, c’est une application qui joue un rôle important en géométrie et en
analyse.

Répondre aux questions suivantes :

(a) Décrire toutes les suites convergentes de R̂n (on ne demande pas de donner une preuve rigoureuse
mais seulement d’expliquer quelles sont les suites convergentes).

(b) Décrire l’ensemble des points fixes de f , c’est-à-dire l’ensemble {x ∈ R̂n | f(x) = x}.

(c) Prouver que f est un homéomorphisme de R̂n. Quel est son inverse ?
Prouver aussi que f définit par restriction un difféomorphisme de Rn \ {p} dans lui-même.

(d) Prouver que si n = 2, f définit une application anti-holomorphe sur C \ {p}.

(e) Calculer la différentielle dfx(h) en un point x ∈ Rn \ {p}.

(f) Prouver que f est une application conforme sur Rn \ {p} (une application est dite conforme si elle
préserve les angles, concrètement il s’agit de prouver que dfx est une similitude de Rn).

(g) Quel est le rapport de similitude de dfx(h) ?

Cet exercice est important d’une part parce que l’inversion est une application importante en géométrie,
et d’autre part parce qu’il donne l’occasion de s’entraîner au calcul différentiel.

Solution 7.6. (a) Une suite {xj} de R̂n est convergente si et seulement si elle est de l’un des deux
types suivants :

(i) ou bien xj 6=∞ pour j assez grand et la suite converge dans le sens usuel vers un point de Rn,

(ii) ou bien elle s’échappe de tout compact, i.e. pour tout R > 0, il existe N ∈ N tel que si j ≤ N ,
alors ou bien xj =∞ ou bien ‖xj‖ ≥ R; et dans ce cas la suite converge vers le point ∞.

(b) Les points fixes sont les solutions de l’équation f(x) = x. Cette équation peut s’écrire

x− p = k
x− p
‖x− p‖2

,

c’est-à-dire k
‖x−p‖2 = 1 : c’est la sphère centrée en p de rayon r = 1/

√
k.

Remarque : Géométriquement, l’inversion f fixe la sphère de centre p et de rayon r = 1/
√
k. De plus

elle envoie les points à l’intérieur de cette sphère sur son extérieur et les points à l’extérieur dans son
intérieur. L’inversion échange donc l’intérieur et l’extérieur de la sphère. Elle échange aussi le centre
de la sphère avec le point à l’infini.

(d) Commençons par chercher l’inverse de f , cela nous confirmera que f est bijective. On vérifiera
ensuite que f est un homéomorphisme (i.e. que f et son inverse sont continues).
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Pour chercher l’inverse de f on doit résoudre l’équation f(x) = y en x. Il est clair que si y =∞ alors
x = p et si y = p alors x =∞. Considérons le cas (général) y 6∈ {p,∞}. On a

y = f(x) ⇔ (y − p) = k
x− p
‖x− p‖2

= λ · (x− p), avec λ =
k

‖x− p‖2
.

En particulier on voit que (y − p) et (x − p) sont proportionnels. De plus, puisque k > 0 on peut
prendre les normes dans l’identité ci-dessus et écrire

‖y − p‖‖x− p‖ = k.

Dans cette relation x et y jouent un rôle symétrique, on a donc

y = f(x) ⇔ (y − p) = k
x− p
‖x− p‖2

⇔ (x− p) = k
y − p
‖y − p‖2

⇔ x = f(y).

L’application f est donc bijective et c’est son propre inverse (on dit parfois que f est une involution).

La fonction x 7→ k

‖x− p‖2
est est différentiable sur Rn \ {p}, c’est donc aussi le cas de l’application

f(x) = p+ k
x− p
‖x− p‖2

. Par conséquent f = f−1 est un difféomorphisme de l’ouvert U = Rn \ {p} dans

lui-même.

Il faut encore montrer que f est un homéomorphisme de R̂n l’image inverse d’un voisinage de p est un
voisinage de ∞ et . Il est clair par ce qui précède que f est continue en tout point de R̂n \ {p,∞}, il
reste donc à montrer que l’image inverse d’un voisinage de p est un voisinage de ∞ et l’image inverse
d’un voisinage de ∞ est un voisinage de p.
Soit donc W ⊂ R̂n un voisinage du point p; alors il existe t > 0 tel que

W ⊃ B(p, t) = {x ∈ Rn | ‖x− p‖ < t}.

On vérifie facilement que

f−1(W ) = f(W ) ⊃ {y ∈ Rn ∪ {∞} | ‖y − p‖ > 1
t } ∪ {∞},

qui est bien un voisinage du point ∞ par définition de la topologie sur R̂n.
On montre de façon semblable que l’image inverse d’un voisinage de ∞ est un voisinage de p.

On peut aussi raisonner avec les suites convergentes car on vérifie facilement que si {xj} ⊂ R̂n est une suite qui
converge vers p, alors yj = f(xj) converge vers ∞ et si {xj} ⊂ R̂n converge vers ∞, alors yj = f(xj) converge
vers p.

On a prouvé que l’application f est bijective, continue et son inverse f−1 = f est également continue.
Par conséquent f est un homéomorphisme de R̂n dans lui-même.

(d) Si on identifie R2 à C et (x1, x2) à z = x1 + ix2, l’inversion s’écrit

f(z) = p+
z − p
|z − p|2

= p+
1

(z − p)
,

qui est la conjuguée complexe de l’application holomorphe h(z) = p+ 1
(z−p) .

(e) Il y a plusieurs façons de calculer une différentielle. L’une de ces méthodes est de partir de

dfx(h) =
d

dt

∣∣∣∣
t=0

f(x+ th).
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Nous allons utiliser cette méthode. Commençons par remarquer qu’il devrait être clair que

d

dt

∣∣∣∣
t=0

‖x+ th− p‖2 =
d

dt

∣∣∣∣
t=0

〈x+ th− p, x+ th− p〉 = 2〈h, x− p〉,

et donc
d

dt

∣∣∣∣
t=0

(
1

‖x+ th− p‖2

)
= −2

〈h, x− p〉
‖x− p‖4

.

Il est maintenant facile de calculer la différentielle de f :

dfx(h) =
d

dt

∣∣∣∣
t=0

k

(
x+ th− p
‖x+ th− p‖2

)
= k

h

‖x− p‖2
− 2k

〈h, x− p〉
‖x− p‖4

(x− p),

que l’on peut écrire

dfx(h) = k · ‖x− p‖
2 · h− 2〈h, x− p〉 · (x− p)

‖x− p‖4

(ici on a écrit en gras les quantités vectorielles pour les mettre en évidence).

(f) On remarque que si h ⊥ (x − p), alors dfx(h) = k
‖x−p‖2h et si h est un multiple de (x − p), alors

dfx(h) = − k
‖x−p‖2h.

On en conclut que dfx est la composition de la symétrie orthogonale à travers l’hyperplan (x − p)⊥
avec l’homothétie de rapport λ = k

‖x−p‖2 .

(g) Par le point précédent, on constate que dfx(h) est une similitude de rapport λ.
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