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A. Exercices standards.

Exercice 7.1. Le but de cet exercice est de prouver que la différentielle de 'application déterminant
det : M,(R) — R en A € M,(R) est 'application linéaire ddety : M,(R) — M,(R) donnée par la
formule

ddet4(H) = Tr(Cof (A) " H),
ot Cof(A) est la matrice des cofacteurs de A.

On procéde en trois étapes:
(1) Dans un premier temps démontrer la formule pour le cas A = I;
(2) Supposer ensuite que A € GL,(R), i.e. que A est inversible;

(3) Finalement, conclure en utilisant le fait que pour toute matrice A € M,,(R), la matrice A + ¢I est
inversible pour ¢ suffisamment petit.

Solution 7.1. (1) Supposons d’abord que A = I, nous devons analyser le développement de det(I+ H)
pour une matrice H de norme assez-petite. Ecrivons les matrices n x n comme des n-tuples de vecteurs
colonnes :

I =(E,E,,....E), H = (Hy,Hs,...,H,))

o Ej est le "¢ vecteur de la base canonique. On a alors avec les propriétés su déterminant:

det(I + H) =det(E1 + H1, B2 + Ha, ..., E, + Hy,)
— det(E1, Ba, ..., Ey) + det(Hy, Ba, ..., Ey) + det(Ey, Ho, ..., Ey)
-+ det(Ey, Ea,...,Hy) + p(H)
= det(I) + Trace(H) + p(H).

Ici p(H) contient tous les déterminants qui contiennent plus de deux colonnes Hj, par exemple
det(Hy, Ho, ..., Ey,). On a alors p(H) = o(||H||) et par conséquent det(] + H) — det(I) = Trace(H) +
o(|HJ|), et donc

ddet;(H) = Trace(H).

Autre raisonnement possible pour cette premiére étape (a partir de la formule du déterminant) :

det(I + H) = Z Sign(a>(5o(l)1 + ho‘(l)l) e (50(n)n + ho(n)n)
oeG,

=011...0pn + Z hii + termes de degré > 2 en h;;
i=1

=1+ Tre(H)+ o(||H||)

= det(I) + Trace(H) + o(||H]|).

D’ou ddet;(H) = Tr(H).



(2) Supposons ensuite que A € GL,(R). Alors par multiplicativité du déterminant et la formule
précédente on a

det(A+ H) = det(A(I + A~ H))
= det(A)det(I + A1 H)
= det(A)(1 + Tr(A™"H) + o(| A HI]))
= det(A) + Tr(det(A)A™ H) + o(|| H||)
= det(A) + Tr(Cof (A) " H) + o | H||).

Ainsi ddet4(H) = Tr(Cof (A)TH).

(3) Finalement, si A € M, (R) est quelconque, alors pour ¢ > 0 suffisamment petit, la matrice A + ¢t/
est inversible (& méditer!). Or par continuité, on a évidemment

Cof(A + tT) =% Cof(A),
donc Tr(Cof(A + tI)TH) — Tr(Cof(A)TH) et on a obtenu en toute généralité la différentielle du
déterminant:

ddet4(H) = Tr(Cof (A) " H).

Exercice 7.2. Soit v : I — R? une courbe réguliére plane de classe C? et r > 0. On appelle courbe
paralléle & v a distance r la courbe ~,(t) = v(t) + rN4(¢) (ou N, = J(T,) est le champ de vecteurs
normal a ).

(a) Calculer la courbure k,(t) de la courbe paralléle 7, (en fonction de r et de t).

. e Co , . Ok
(b) Montrer que la fonction 7 + k,. satisfait 'équation différentielle de Ricatti : — = x2.

or

(c) Supposons que ¢ = 1n > 0. Montrer que I'application f : (—¢,e) x I — R? définie par

1
f =
arol
f(r,t) = v-(t) est une immersion pour tout € < q.
(d) Expliciter le cas du cercle de rayon a centré en 0.
(e) Expliquer pourquoi 'affirmation du point (c) n’est pas correcte pour € > g.
Remarque. Cet exercice montre en particulier que localement, dans un voisinage de la courbe, on peut construire

un systéme de coordonnées curviligne dont 'une des coordonnées est ’abscisse curviligne de la courbe et 'autre
est la distance orientée a la courbe. Ces coordonnées s’appellent des coordonnées de Fermi.

Solution 7.2. (a) Supposons 7 paramétrée normalement, alors on a (en utilisant les équations de
Serret-Frenet pour les courbes planes):

i1(s) = (s) + rN(s) = (1 - rr(s))T(s).

Donc
Ar(s) = (1 — Tﬁ(s))T(s) —1i(s)T(s) = (1 — rr(s))k(s)N(s) — ri(s)T(s),

La courbure &, de -, est donc donnée par

(s = AT ()
RGP T T ()
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1—rk(s) 1—rk(s)
illustre I'importance de I’équation de Ricatti en lien avec la courbure en géométrie différentielle).
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(b) C’est un calcul élémentaire : % ( ~(s) ) = ( ~(s) ) (le point important est que cette remarque

(c) Les dérivées partielles de I'applications f(r,s) = v(s) + rIN,(s) sont

of of
S N(s), o= (L (s T (9)

Ces deux vecteurs sont linéairement indépendants en tout point tel que (1 —7x(s)) # 0, cette condition
est garantie par les hypothéses (|r| < 1/|k(s)).

(d) Le cercle de rayon a est de courbure 1/a. L’application f est donc définie pour (r,60) € (—a,a) X
[0, 27] par
f(r,0) = ((a—r)cos(d), (a —r)sin(h)).

On remarque que f peut étre définie sur le domaine (—oo, a) x [0, 27], et que cette application est une

simple variante des coordonnées polaires du plan.
(e) Le calcul en (c) montre que %(7’, s) = 0 si rk(s) = 1. Donc si le domaine de f contient un tel

point, alors f n’est pas une immersion.
Rappelons que le point f(ﬁ, s) =7(s) + %Nv(s) est le centre du cercle osculateur de v en s, et

la courbe s — f (ﬁ, s) est la développée de 7. La développée de ~y, qui est aussi 'enveloppe de ses
normales, représente une frontiére du domaine de régularité des coordonnées de Fermi.

Exercice 7.3. (a) Le cone C = {(z,y,2) € R? | 22 + 32 = (a2)?} est-il une sous-variété de R3 (on
suppose a # 0) ?

(b) Prouver qu'il existe une sous-variété différentiable de R qui est homéomorphe & 52 x S? (le produit
cartésien de deux sphéres).

(¢) Prouver que le groupe linéaire spécial
SL,(R) ={A € M,(R) | det(A) =1}
est une sous-variété différentiable de M, (R) = R™*". Quelle est sa dimension ?

(d) (*) Prouver que le groupe orthogonal O(n) est une sous-variété différentiable de M, (R) = R™*".
Quelle est sa dimension ?

Remarque : Les sous-ensembles de GL,,(R) qui sont & la fois des sous-groupes et des sous-variétés s’appellent les
groupes classiques. Ce sont des exemples de groupes de Lie (en fait les plus importants). Des exemples de groupes
classiques sont GL,(R), SL,(R), O,(R), SO, (R), U,(C), SU,(C), et SP5,(R) (le groupe symplectique).

Solution 7.3. (a) Le cone C est 'ensemble f~1(0) ou f(z,y, 2z) = 22 +y*—(az)?. La différentielle de f
au point (x,v, 2) est df = 2zdx + 2ydy — 2a%2dz. Cette différentielle est non nulle si (x,y, z) # (0,0,0)
donc le céne C'\ {0} privé de I'origine est une sous-variété de R3.

Par contre la différentielle de f en 0 est nulle, cela suggére que peut-étre le cone n’est pas une variété.
Pour le voir, on considére un voisinage quelconque U C C de 0. 1l est facile de vérifier que U\ {(0,0,0)})
n’est pas connexe, or tout point d’une variété admet des voisinages connexes. Nous concluons que C'
n’est pas une variété.

(b) On considére 'application f : R® — R? définie par

f(@1, 22,23, 74, 75, 76) = (f1(21, T2, 73, ), fo(a, 75, 76)) = (2] + 25 + 25 — 1,27 + 23 + 25 — 1).



Il est facile de vérifier que M = f~1(0,0) C RS = R3 x R? est homéomorphe & un produit de deux
sphéres. Nous devons vérifier que c¢’est une sous-variété différentiable. La matrice jacobienne de f est
la matrice 2 x 6 suivante :

% % % O 0 0 2:61 21‘2 21‘3 0 0 0
Df = _
0o o0 o0 92 9 9of 0 0 0 2x4 275 216

o1 0z oxs

Cette matrice est de rang 2 sur le complémentaire de ’ensemble
S={zeR® |z =29 =23 =0} U{z €R® | 24 = 25 = 25 = 0}

(sur ’ensemble S le rang de D f est 1 sauf a I'origine ou ce rang est nul). En particulier le rang de f est
constant égale & 2 au voisinage de M, donc M C RS est une sous-variété différentiable de codimension
2 (et de dimension 6-2 = 4).

Il est clair que cette application est une forme linéaire non-nulle si det(A) = 1 car dans ce cas on
a d(det)4(H) = Trace (A"*H), et 1 est donc une valeur réguliére de la fonction déterminant. Ainsi
I’équation det(A) = 1 définit une sous variété de codimension 1 = dim(R), et donc de dimension n?— 1.

(c) Le groupe linéaire spécial SL,(R) est le groupe des n x n matrices réelles de déterminant 1 :
SL,(R) ={A € M,(R) | det(4) =1}.

L’application déterminant est C'°° et on a vu a l'exercice 7.1 que sa différentielle en A est la forme

linéaire

H +— d(det)s(H) = Trace <Cof(A)TH) .

Pour une matrice inversible, on a toujours Cof(A) # 0 (a cause de I'identité A - Cof(A)" = I,). Donc
ddet 4 défini une forme linéaire non nulle sur M, (R) et en particulier 'application

det : M,(R) - R

est de rang constant r = 1 au voisinage de SL,(R). En appliquant le théoréme 3.15 (A) on déduit que
SL,(R) C M,(R) est une sous-variété différentiable de codimension 1 et donc de dimension n? — 1.

(d) Le groupe orthogonal O(n) est le sous-ensemble O(n) = f~1(0) ot f : M,(R) — M, (R) est
I’application
f(A)=ATA-T1,.

Cette application est de classe C°°. Nous allons montrer que f est de rang constant au voisinage de
O(n). Calculons d’abord la différentielle de f en A € M, (R). On a

fA+H)=(A+H)"(A+H)-I,=A"TA+ ATH+H'"A+H"H - I,
= F(A)+ (ATH + BT A) + o(|1H])
Par conséquent la différentielle de f est
dfa=A"H+HTA.
Pour trouver le rang de df 4, nous pouvons calculer son noyau :

Ker (dfa) = {H € M,(R) | ATH = —H" A} = {H € M,(R) | AT H est antisymétrique}.



L’ensemble des matrices antisymétrique est un sous-espace vectoriel de dimension %n(n —1) de M, (R).
Donc si A est inversible, alors 'ensemble des matrices H telles que AT H est antisymétrique est aussi

un sous-espace vectoriel de dimension %n(n —1). On a donc

rang(df4) = n* — dim Ker (df4) = n® — %n(n —-1)= %n(n +1).

Comme toute matrice de O(n) est inversible, on conclut que le rang de f au voisinage de O(n) est
constant égale & n(n + 1). Cela prouve que O(n) C M,(R) est une sous variété de codimension
sn(n + 1) et donc de dimension

. 1 1
dim(O(n)) = n? — in(n +1) = gn(n —1).

Par exemple dimO(2) =1, dimO(3) =3, dimO(4) = 6.

Exercice 7.4. (Exercice sur les variétés de type quadrique)

(a) Rappeler ce qu’est une forme quadratique sur un espace vectoriel.

(b) Soit @ : R™ — R une forme quadratique sur R"™. Prouver que @ est différentiable. Que vaut sa
différentielle en un point z € R™ ?

(¢) Que dit le théoréeme de Sylvester de l'algébre linéaire 7 Qu’est-ce que la signature d’une forme
quadratique 7 Que signifie la condition @) est non dégénéré pour une forme quadratique ?

(d) Prouver que si Q : R” — R une forme quadratique non dégénérée, alors I’hypersurface Q' (c) est
une sous-variété de R™ pour tout ¢ # 0. Quelle est sa dimension ?

(e) Est-ce que l'ensemble Sp(Q) = {x € R™ | Q(z) = 0} C R™ est une sous-variété ? L’ensemble
So(Q) s’appelle le cone isotrope de la forme quadratique Q

(f) Les hypersurfaces

S:(Q) = {z €R"[Qz) = +1} ot S_(Q) ={recR"|Qx) =1}

s’appellent les indicatrices positives et négatives de la forme quadratique ). Montrer que @ est
entiérement déterminé par les deux indicatrices et le cone isotrope, i.e. si Q1 et Q2 sont deux
formes quadratiques sur R™ telles que

S0(Q1) = So(Q2), S5+(Q1) = 54(Q2), S-(Q1) = 5-(Q2),
alors @1 = Q2.
Solution 7.4. (a) Une forme quadratique est une application @ : R” — R de la forme
Q(z) = B(z,x),
ou B est une forme bilinéaire symétrique de R™.

(b) On calcule le développement limité de @ en x € R™:

Q(x+h)=B(x+h,z+h)=Q(z)+2B(x,h) + Q(h).



Clairement Q(h) = B(h,h) = o(||h||), donc:
dQz(h) = 2B(x, h).

Remarque. Par définition, la forme bilinéaire B détermine la forme quadratique (). La for-
mule que nous venons d’établir montre que réciproquement, la forme bilinéaire symétrique B est
déterminée par la forme quadratique Q.

Rappelons qu’on peut aussi retrouver B par la formule de polarisation:

Bla,y) = ~(Q +y) — Qz — v).
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Le théoréme de Sylvester assure pour toute forme bilinéaire symétrique B 'existence d’une base
B telle que la matrice de B dans cette base est de la forme diagonale par blocs

I, 0
_ Iq
0 0

ol p et g sont des entiers. Dans cette base, la forme quadratique s’écrit

Q(x):$%++xg_wg+l__x§+q
Le couple (p, q) s’appelle la signature de Q et r = p + ¢ est le rang. La forme quadratique @ est
dite non-dégénérée si r = n. Si (p,q) = (n,0) on dit que @ est définie positive et si (p,q) = (0,n)
on dit que @) est définie négative.

Si @ est non-dégénérée et a est un vecteur non-nul alors
dQq = 2B(a, )

est une forme linéaire non-nulle. C’est donc une application linéaire de rang » = 1. Ceci prouve
que la fonction @ est de rang constant r = 1 sur l'ouvert U = R™ \ {0} et par le théoréme 3.15,
on en déduit que Q~!(c) est une hypersurface de R™ (i.e. une sous-variété de codimension 1) pour
tout ¢ € R non nul.

Le vecteur nul 0 € R™ est un point critique de . En général le cone isotrope Q~1(0) n’est pas
une variété (sauf le cas trivial ou @ est définie positive ou définie négative et Q~1(0) = {0} est un
point). Par exemple, si Q(z,y) = 2% — y2, alors le cone isotrope est Q~1(0) est la réunion de deux
droites perpendiculaires, ce n’est pas une sous-variété.

Soient @1, Q2 vérifiant les hypothéses en (b) et soit x € R™, on doit prouver que Q1(z) = Q2(x).
On distingue trois cas.

(i) Sia=Q1(x) >0, on pose 2’ = x/\/a. Alors 2’ € S4(Q1) = S+(Q2). Donc Qa(z') =1 et on
a Q2(x) = aQa(2) = a = Q1(x).
(i) Si a = Q1(z) <0, on pose ¥’ = x/v/—a. Alors 2/ € S_(Q1) = S_(Q2). Donc Q2(2') = —1
et on a Q2(x) = (—a)Q2(2') = a = Q1(x).
(iii) Sia=Q1(z) =0, alors x € Sp(Q1) = So(Q2) et donc Q2(z) = 0.

On a démontré que dans tous les cas Q2(z) = Q1(z).

B. Exercices supplémentaires



Exercice 7.5. Cet exercice est a faire en groupe: Les images ci-dessous sont des créations des artistes
Maurits Cornelis Escher en 1953 (a gauche) et Victor Vasarely en 1968 (& droite).

Expliquer & votre fagon en quoi on peut interpréter ces images comme représentant des systémes de
coordonnées curvilignes dans un domaine du plan (discutez entre vous et rédigez un petit essai).

]

o

[ | |
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Solution 7.5. (Une rédaction possible...)

Un systéme de coordonnées curviligne est essentiellement la méme chose qu'un difféomorphisme d’un
domaine 1 C R” vers un autre domaine 29 C R"™; cependant on interpréte pas ce difféomorphisme
comme agissant en déplagant les points de U, mais plutét comme définissant des nouvelles coordonnées
(en général non linéaires) sur le domaine ;.

Rappelons la définissions précise du cours dans le cas d’un ouvert du plan : un systéme de coordonnées
curviligne de classe C* sur Uowvert Q; C R2 est la donnée de 2 fonctions u,v : Q1 — R telles que
Uapplication

¢ (w,y) = (u,v)
décrit un difféomorphisme de classe C* de O vers un ouvert Qy = o() C R2.

Le systéme de coordonnées permet de définir deux familles de courbes dans ;. Pour chaque (ug, vg) €
Q5 on peut définir deux courbes :

{(z,y) € U [u(z,y) =vo},  {(,y) € D | ulz,y) = uo}.

Ces deux familles de courbes forment le réseau de coordonnées curviligne dans le domaine 2. Chaque
point py € {21 peut étre représenté par ses coordonnées cartésiennes (g, o) ou par ses coordonnées
curvilignes (ug,vg). Dans ces représentations concrétes, on peut localiser le point pg a partir de ses
coordonnées curvilignes (dans les limites de la précisions donnée par la taille de la grille).

Ces deux images utilisent des grilles déformées pour créer des illusions de profondeur et de mouvement
dans le plan, ce qui est précisément I’objectif d’un systéme de coordonnées curvilignes. Elles transfor-
ment la perception d’un espace rectiligne en un espace courbe, ol chaque point est décrit selon une
géométrie locale influencée par la déformation imposée par artiste.

Exercice 7.6. (*) On note R” I'ensemble R U {oo}, olt {oc} est un point supplémentaire qui
n’appartient pas & R™. On définit sur cet ensemble une topologie pour laquelle R™ est un ouvert
de R" et la topologie induite est la topologie usuelle et les voisinages ouverts du point oo sont les
ensembles du type R™ \ K ou K est un compact de R".



On considére ensuite 'application f := R" — R définie par

o'9) si x = p,
f(z)={P si x = 00,
i six ¢ {p, o0}
p T2 ) :
lz = pll?

ol p est un point de R™ et k est un réel strictement positif. Cette application s’appelle I inversion de
centre p € R™ et de module k > 0, c’est une application qui joue un role important en géométrie et en
analyse.

Répondre aux questions suivantes :

(a) Décrire toutes les suites convergentes de R™ (on ne demande pas de donner une preuve rigoureuse
mais seulement d’expliquer quelles sont les suites convergentes).

(b) Décrire I'ensemble des points fixes de f, c’est-a-dire Pensemble {2 € R" | f(z) = z}.

(¢) Prouver que f est un homéomorphisme de R™, Quel est son inverse 7
Prouver aussi que f définit par restriction un difféeomorphisme de R™ \ {p} dans lui-méme.

(d) Prouver que si n =2, f définit une application anti-holomorphe sur C\ {p}.
(e) Calculer la différentielle df,(h) en un point x € R™\ {p}.

(f) Prouver que f est une application conforme sur R™\ {p} (une application est dite conforme si elle
préserve les angles, concrétement il s’agit de prouver que df, est une similitude de R™).

(g) Quel est le rapport de similitude de df,(h) ?
Cet exercice est important d’une part parce que l'inversion est une application importante en géométrie,
et d’autre part parce qu’il donne l'occasion de s’entrainer au calcul différentiel.

Solution 7.6. (a) Une suite {z;} de R" est convergente si et seulement si elle est de 'un des deux
types suivants :

(i) ou bien x; # oo pour j assez grand et la suite converge dans le sens usuel vers un point de R,

(ii) ou bien elle s’échappe de tout compact, i.e. pour tout R > 0, il existe N € N tel que si j < N,
alors ou bien z; = 0o ou bien ||z;|| > R; et dans ce cas la suite converge vers le point co.

(b) Les points fixes sont les solutions de ’équation f(z) = x. Cette équation peut s’écrire

r—p
T—p=ki——s,
lz = pl|?
) NI B k 1. N 4 _
c’est-a-dire To—pZ = 1: c’est la sphére centrée en p de rayon r = 1/\/%

Remarque : Géométriquement, l'inversion f fize la sphére de centre p et de rayon r = 1/\/% De plus
elle envoie les points a l'intérieur de cette sphére sur son extérieur et les points 4 l'extérieur dans son
intérieur. Linversion échange donc lintérieur et l'extérieur de la sphere. Elle échange aussi le centre
de la sphére avec le point a l'infini.

(d) Commengons par chercher 'inverse de f, cela nous confirmera que f est bijective. On vérifiera
ensuite que f est un homéomorphisme (i.e. que f et son inverse sont continues).



Pour chercher I'inverse de f on doit résoudre I'équation f(x) = y en z. Il est clair que si y = oo alors
x =p et siy=palors z = co. Considérons le cas (général) y &€ {p,c0}. On a

rT—p k

y=f(z) & Wy—-p) =ki——s=A-(z—p), avec A= -——:>.
(=) =P =hpp =P EErE

En particulier on voit que (y — p) et (z — p) sont proportionnels. De plus, puisque & > 0 on peut
prendre les normes dans l'identité ci-dessus et écrire

ly = pllllz — pll = k.
Dans cette relation x et y jouent un réle symétrique, on a donc

:kﬂ

gz © /W

y=f(z) & (y—p)zk,i & (r—p)

L’application f est donc bijective et ¢’est son propre inverse (on dit parfois que f est une involution).

k
La fonction x +— W est est différentiable sur R™ \ {p}, c’est donc aussi le cas de I'application
r—p
T —
f(z)=p+ k‘ﬁ Par conséquent f = f~1 est un diffSomorphisme de 'ouvert U = R™\ {p} dans
r—=p
lui-méme.

Il faut encore montrer que f est un homéomorphisme de R™ I'image inverse d’un voisinage de p est un
voisinage de oo et . Il est clair par ce qui précéde que f est continue en tout point de R™ \ {p, o0}, il
reste donc & montrer que 'image inverse d’un voisinage de p est un voisinage de oo et I'image inverse
d’un voisinage de oo est un voisinage de p.

Soit donc W C R” un voisinage du point p; alors il existe £ > 0 tel que

W 2 B(p,t)={z eR" | |z —p| < t}.
On vérifie facilement que
FHW) = f(W) > {y € R" U{oo} | [ly — pll > 1} U {oo},
qui est bien un voisinage du point oo par définition de la topologie sur R™,

On montre de fagon semblable que 'image inverse d’un voisinage de oo est un voisinage de p.

On peut aussi raisonner avec les suites convergentes car on vérifie facilement que si {z;} C R™ est une suite qui
converge vers p, alors y; = f(z;) converge vers oo et si {z;} C R™ converge vers oo, alors y; = f(z;) converge
vers p.

On a prouvé que I'application f est bijective, continue et son inverse f~! = f est également continue.
Par conséquent f est un homéomorphisme de R™ dans lui-méme.

(d) Si on identifie R? & C et (z1,22) & 2 = 1 + iz, 'inversion s’écrit
zZ—0p 1

|z — p|? (z —p)

)

f(z)=p+

qui est la conjuguée complexe de I’application holomorphe h(z) = p + (zi ik

(e) Il y a plusieurs fagons de calculer une différentielle. L'une de ces méthodes est de partir de
d
dfz(h) = — f(z +th).
dt|,_o
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Nous allons utiliser cette méthode. Commengons par remarquer qu’il devrait étre clair que

d
Sl Nz th—plP = 2

o (x +th —p,xz +th —p) =2(h,z — p),

t=0

<1> _ iz —p)
=0 \lz +th — p]|? |z —p|*"

Il est maintenant facile de calculer la différentielle de f:

t=0

et donc

4
dt

d T+ th — h h,x —
a0 = 3 _ (i) = e R e )
que l’on peut écrire
sy — . [T plP b= 20hs ) (x )
lz = pll*

(ici on a écrit en gras les quantités vectorielles pour les mettre en évidence).
(f) On remarque que si h L (z — p), alors dfz(h) = ﬁh et si h est un multiple de (x — p), alors
dfs(h) = —mh.

On en conclut que df, est la composition de la symétrie orthogonale & travers ’hyperplan (z — p)=+
avec I’homothétie de rapport A = ﬁ.

(g) Par le point précédent, on constate que df,(h) est une similitude de rapport A.
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