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Objectifs pour cette série :

Dans cette série on étudie la courbure des courbures planes et sa signification géométrique.
On commence aussi une révision du calcul différentiel.

A. Exercices standards.

Exercice 6.1. (a) Soit γ une courbe plane dont la courbure k est une fonction monotone de l’abscisse
curviligne. Cette courbe peut-elle être une courbe C2 fermée ?

(b) Considérons les courbes planes suivantes : un cercle, une ellipse, une parabole, que l’on paramétrise
naturellement. Pour chacune de ces courbes, représenter qualitativement le graphe de la fonction
s→ k(s) (ce graphe s’appelle le diagramme de courbure de la courbe considérée).

Solution 6.1. (a) La réponse est négative, sauf dans le cas d’un cercle. En effet, si γ : [0, `]→ R2 est
une courbe C2 fermée, alors on a k(`) = k(0). La courbure ne peut donc pas être monotone, sauf si
elle est constante, auquel cas il s’agit d’un cercle.

(b) Rappelons que le diagramme de courbure d’une courbe plane γ : [a, b] → R2 de classe C2 est la
courbe t → (s(t), k(t)) où s(t) est l’abscisse curviligne depuis le point initial en s0 = a et k(t) est la
courbure orientée (lorsque γ est paramétrée naturellement, il s’agit donc simplement du graphe de la
fonction k = k(s)).
Pour un cercle de rayon r parcouru dans le sens positif, on a k = 1/r, le diagramme de courbure est
représenté par la fonction constante k = 1/r.

Une parabole et son diagramme de courbure
Une ellipse et son diagramme de courbure

Exercice 6.2. Que vaut l’intégrale
∫
γ
κ ds pour la courbe suivante ?

Solution 6.2. Rappelons que
∫
γ κ ds représente la variation totale de la fonction angulaire ϕ (car

dϕ = κ(s)ds). Pour résoudre l’exercice il faut choisir un sens de parcours sur la courbe, et compter le
nombre de tour effectués par le vecteur tangent T lorsqu’un point représentatif parcoure la courbe.
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Cela peut aider de repérer les points d’inflexions et les arcs où la courbe est concave ou convexe.
En orientant la courbe de façon qu’en son point le plus élevé elle de dirige vers la gauche, on trouve
alors que 1

2π

∫
γ κ ds = 3 (avec l’autre orientation on a 1

2π

∫
γ κ ds = −3).

Exercice 6.3. Le tracé d’une route ou d’une voie de chemin de fer est habituellement constitué de
segments de droites, d’arcs de cercles et d’arcs de chlotoïdes.
Voir https://fr.wikipedia.org/wiki/Trac%C3%A9_en_plan_(route).

(a) Rappeler ce qu’est une chlotoïde.

(b) Pour quelle raison, à votre avis, on utilise des arcs de chlotoïdes dans les tracés ferroviaires ?

Solution 6.3. (a) Une chlotoïde est une courbe plane dont la courbure orientée est une fonction
linéaire ou affine de l’abscisse curviligne : k(s) = as+ b.

(b) Un véhicule qui se déplace à vitesse constante sur une route subit une force de frottement et une
force proportionnelle à la courbure de sa trajectoire (et au carré de la vitesse); voir la formule de
l’accélération. Des arcs de chlotoïdes permettentainsi de tracer des virages dans lesquels cette force
croît de façon linéaire et est ainsi progressive et prévisible... et donc plus sûre.
https://couleur-science.eu/?d=d42313--la-spirale-deuler-ou-le-trace-des-routes

Exercice 6.4. Un peu de calcul différentiel :
(a) Calculer la différentielle (au sens de Frechet) dϕA(H) de l’application ϕ : Mn(R)→Mn(R) définie
par ϕ(A) = A3, pour A,H ∈ Mn(R) quelconques. Que peut-on dire du cas particulier où A et H
commutent ?
(b) On considère deux applications différentiables φ, ψ : Mn(R)→Mn(R). Montrer la version suivante
de la règle de Leibniz :

d(φ · ψ)A(H) = dφA(H)ψ(A) + φ(A)dψA(H),

où (φ · ψ)(A) = φ(A) · ψ(A) (produit matriciel).

(c) En utilisant le résultat précédent, montrer que si φ : GLn(R)→ GLn(R) est définie par φ(A) = A−1,
alors

dφA(H) = −A−1HA−1.

Solution 6.4. Il y a deux méthodes pour calculer la différentielle d’une application. On peut appliquer
la définition de la différentielle de Frechet (ce qui revient à faire un développement limité de l’application
à l’ordre 1), ou alors on peut calculer la dérivée directionnelle. Selon la situation, l’une ou l’autre de
ces méthodes est plus simple, parfois elle sont de difficultés équivalentes.

(a) (Par développement limité). On calcule ϕ(A+H) :

ϕ(A+H) = (A+H)(A2 +AH +HA+H2)

= (A+H)3 = A3 +A2H +AHA+AH2 +HA2 +HAH +H2A+H3

= A3 +A2H +AHA+HA2 + o(‖H‖).

Ainsi
ϕ(A+H)− ϕ(A) = A2H +AHA+HA2 + o(‖H‖),

et donc
dϕA(H) = A2H +AHA+HA2.
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Dans le cas où A etH commutent, i.e. AH = HA, on obtient l’expression plus simple dϕA(H) = 3A2H.

Voyons comment obtenir ce résultat en calculant la dérivée directionnelle :

dϕA(H) =
d

dt

∣∣∣∣
t=0

ϕ(A+ tH) =
d

dt

∣∣∣∣
t=0

(A+ tH)3

=
d

dt

∣∣∣∣
t=0

[
A3 + t(A2H +AHA+HA2) + t2(AH2 +HAH +H2A) + t3H3

]
= A2H +AHA+HA2.

(b) On raisonne selon le développement limité :

(φ · ψ)(A+H)− (φ · ψ)(A) = φ(A+H) · ψ(A+H)− φ(A) · ψ(A)

= (φ(A) + dφA(H) + o(‖H‖)) · (ψ(A) + dψA(H) + o(‖H‖))− φ(A)ψ(A)

= dφA(H)ψ(A) + φ(A)dψA(H) + o(‖H‖).

On a utilisé le fait que dφA(H) ·dψA(H) = o(‖H‖), puisque dφA et dψA sont des applications linéaires
et donc leur produit est une application quadratique. Nous concluons que

d(φ · ψ)A(H) = dφA(H)ψ(A) + φ(A)dψA(H).

(c) On applique la formule en (b) aux applications φ(A) = A−1 et ψ(A) = A. On a clairement
(φ · ψ)(A) = I pour tout A, donc d(φ · ψ)A = 0. Il est également clair que dψA(H) = H. On a donc

0 = d(φ · ψ)A(H) = dφA(H) · ψ(A) + φ(A) · dψA(H) = dφA(H) ·A+A−1 ·H.

Donc dφA(H) ·A = −A−1 ·H et par conséquent

dφA(H) = −A−1 ·HA−1.

Remarque. Lorsque H commute avec A, i.e. AH = HA, alors on a dφA(H) = −A−2 ·H, qu’on peut comparer
avec la formule du calcul différentiel classique qui dit que la dérivée de 1/x est −1/x2.

Exercice 6.5. Prouver que l’application : f : R2 → R2 données par

(y1, y2) = f(x1, x2) = (x1 cos(x2), x2 − x1x2)

est un difféomorphisme au voisinage de (0, 0).

Solution 6.5. On calcule la matrice Jacobienne de f en un point (x1, x2) :

Df(x1,x2) =


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

 =

 cos(x2) −x1 sin(x2)

−x2 (1− x1)

 .

La jacobien de f , c’est-à-dire le déterminant de Df est donc

Jf (x1, x2) = det
(
Df(x1,x2)

)
= (1− x1) cos(x2)− x1x2 sin(x2).

En (0, 0), on a Jf (x1, x2) = 1 qui est non nul, donc Df(0,0) est inversible et par le théorème d’inversion
locale, on sait qu’il existe un voisinage U ⊂ R2 de (0, 0) tel que la restriction de f à U est un
difféomorphisme sur son image.
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Exercice 6.6. a.) Rappeler la définition de la notion de système de coordonnées curviligne.

b.) Prouver l’affirmation suivante ou donner un contre-exemple : Si {x1, x2} et {y1, y2} sont deux
systèmes de coordonnées curvilignes sur un ouvert U de R2 et si y2 = x2, alors ∂

∂y2
= ∂

∂x2
.

Solution 6.6. a.) La définition est dans le polycopié : Un système de coordonnées curviligne de classe
Ck sur un ouvert U ⊂ Rn est la donnée de n fonctions y1, y2, . . . , yn : U → R telles que

φ : (x1, x2, . . . , xn) 7→ (y1, y2, . . . , yn)

est un difféomorphisme de classe Ck de U vers un ouvert V = φ(U) ⊂ Rn.
Il est important de connaître et de comprendre cette définition.

b.) C’est peut-être contre-intuitif, mais il n’y a aucune raison que y2 = x2 implique
∂

∂y2
=

∂

∂x2
.

Rappelons la formule
∂

∂x2
=
∂y1
∂x2

∂

∂y1
+
∂y2
∂x2

∂

∂y2
,

donc pour que ∂
∂x2

= ∂
∂y2

, il faut que y2 = x2 et que y1 soit indépendant de x2 (i.e. ∂y1
∂x2

= 0).
De là il est facile de construire un contre exemple (il n’y a même pas besoin de prendre des coordonnées
curvilignes, on peut prendre des coordonnées linéaires). Par exemple si y1 = ax1 + bx2 et y2 = x2,
alors ∂

∂x2
= b ∂

∂y1
+ ∂

∂y2
.

Exercice 6.7. Soient p = (p1, p2) et q = (q1, q2) deux points distincts de R2. Prouver que les fonctions
u(x, y) = d((x, y), (p1, p2)) et v(x, y) = d((x, y), (q1, q2)) (où d(·, ·) est la distance euclidienne dans R2)
définissent un système de coordonnées curvilignes de classe C∞ dans chacun des demi-plans limités
par la droite passant par p et q. Décrire les lignes de coordonnées.

Solution 6.7. Les lignes de coordonnées sont les cercles concentriques centrés en p et en q.
Notons L la droite passant par p et q et H1 et H2 les deux demi-plans limités par L. L’application
(x, y)→ (u, v) est clairement une bijection de H1 (ou H2) vers l’ensemble

Ω = {(u, v) ∈ R2 | u+ v > δ, u > v − δ, v > u− δ}

où δ = d(p, q) car dans dans chaque demi-plan il y a un et un seul point à distance u de p et à distance
v de q, à condition que u et v soient positifs et que les trois inégalités du triangles soient vérifiées (on
peut facilement vérifier que ces trois inégalités impliquent que u > 0 et v > 0.).

u

v

Ω
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Les fonctions u et v sont données algébriquement par

u(x, y) =
√

(x− p1)2 + (y − p2)2, v(x, y) =
√

(x− q1)2 + (y − q2)2,

en particulier elles sont de classe C∞ sur l’ensemble R2 \ {0}. Pour prouver que (x, y)→ (u, v) est un
difféomorphisme de Hi vers Ω il ne reste qu’à vérifier que le jacobien de cette application est partout
non nul. Or nous avons 

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

 =


x− p1
u(x, y)

y − p2
u(x, y)

x− q1
v(x, y)

y − q2
v(x, y)


le jacobien est donc

J =
∂(u, v)

∂(x, y)
=

1

u(x, y)v(x, y)
det

(
x− p1 x− q1
y − p2 y − q2

)

Si (x, y) n’appartient pas à L, alors u(x, y)v(x, y) > 0 et det

(
x− p1 x− q1
y − p2 y − q2

)
6= 0 car les trois

points p, q et (x, y) ne sont pas alignés. On a montrés que le Jacobien ne s’annule pas sur le demi-plan
Hi et donc (u, v) définit un système de coordoonées curvilignes.

B. Exercices complémentaires

Exercice 6.8. (a) Rappeler à quelle condition on peut définir le cercle osculateur d’une courbe
α : I → Rn en un point donné.

(b) Rappeler la définition du cercle osculateur.

(c) Comment trouve-t-on le centre et le rayon du cercle osculateur en un point donné de la courbe?
Préciser dans quel plan ce cercle est contenu.

(d) Prouver le résultat suivant : Soit α : I → R2 une courbe plane C3 dont la courbure est positive et
strictement croissante. Alors les cercles osculateurs C(s) à α sont emboîtés dans le sens suivant :
Si s1 < s2, alors C(s2) est contenu dans le disque bordé par C(s1).

Indications pour la question (d): Montrer d’abord que le rayon ρ(s) de C(s) est une fonction décroissante de s.
Puis montrer que la distance entre le centre de C(s1) et C(s2) est inférieure à la différence des rayons (pourquoi
cela répond-il à la question?). Pour justifier cette dernière affirmation il est utile de supposer la courbe α
paramétrée naturellement et de calculer la vitesse de s 7→ c(s) (la dérivée du centre c(s) de C(s) se calcule
facilement dans le repère de Frenet).
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Solution 6.8. a) Le cercle osculateur est défini pour tous les points biréguliers d’une courbe de classe
C2.

b) Le cercle osculateur à la courbe α en t est contenu dans le plan osculateur et c’est l’unique cercle
de ce plan qui est tangent à α en t et qui a la même courbure que α en t.
On peut aussi dire que le cercle osculateur est l’unique cercle qui a un contact d’ordre 2 avec α en t.

c) Son rayon est ρ(t) = 1/|κ(t)| et son centre est le point c(t) = α(t) + ρ(t)Nα(t), où Nα(t) est le
vecteur normal principal à α en t. Ce cercle se paramétrise par

θ 7→ α(t) + ρ(t) ((1− cos(θ))Nα(t) + sin(θ)Tα(t)) .

d) On suppose que la courbe est paramétrée naturellement et on note s le paramètre. On remarque que
si la courbure κ(s) est une fonction positive et monotone croissante, alors ρ(s) = 1/κ(s) est positive
décroissante. Pour tout s on note c(s) = α(s) + ρ(s)Nα(s) le centre du cercle osculateur, alors

ċ(s) = α̇+ ρ̇(s)Nα(s) + ρ(s)Ṅα(s) = T(s) + ρ̇(s)N− ρ(s)κ(s)T = ρ̇(s)N.

En particulier la vitesse de c(s) est

‖ċ(s)‖ = |ρ̇(s)| = −ρ̇(s).

Pour s1 < s2, on a alors

d (c(s1), c(s2)) ≤
∫ s2

s1

‖ċ(σ)‖dσ = −
∫ s2

s1

ρ̇(s)dσ = ρ(s1)− ρ(s2).

Cela implique que le cercle de centre c(s2) et rayon ρ(s2) est emboîté dans le cercle de centre c(s1) et
rayon ρ(s1). En effet, si x est un point du second cercle alors

d(x, c(s1)) ≤ d(x, c(s2)) + d(c(s2), c(s1)) = ρ(s2) + (ρ(s1)− ρ(s2)) = ρ(s1),

donc x appartient au disque de centre c(s1) et rayon ρ(s1).

Exercice 6.9. (a) Soit γ : [0,∞) → R2 une courbe plane de classe C3 de longueur infinie dont la
courbure est une fonction positive et strictement croissante. Prouver que la trace de cette courbe est
bornée.
Pouvez vous donner une borne explicite (i.e. une constante C qui dépend du minimum de la courbure
et telle que ‖γ(s)− γ(0)‖ ≤ C pour tout s ?)

(b) Montrer par un exemple que l’hypothèse de monotonie de la courbure est nécessaire. Plus précisé-
ment, montrer qu’il existe une courbe dont la courbure vérifie k(s) ≥ a > 0 pour tout s et qui n’est
pas bornée. (Il n’est pas nécessaire de produire une formule explicite, l’exemple peut simplement se
dessiner).
Indication pour la question (a) : penser à l’exercice 6.7(d).

Solution 6.9. (a) D’après l’exercice 6.3(d), une telle courbe est entièrement contenue dans le cercle
osculateur C en γ(0). Par conséquent la trace γ(R+) de la courbe est un sous-ensemble borné et son
diamètre est plus petit ou égal au diamètre de C, c’est-à-dire à 2ργ(0).

(b) La courbe ci-dessous est de courbure minorée par une constante positive. Elle peut se prolonger à
l’infini et elle n’est donc pas bornée.
Une expression analytique possible est γ(t) = (t− 2 sin(t), 2 cos(t)).
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Exercice 6.10. Notons par γ(s) = (x(x), y(s)) ∈ R2 la chlotoïde paramétrée naturellement.
Pensez-vous que la limite

lim
s→∞

γ(s) ∈ R2

existe ?

(Il s’agit de proposer un argument géométrique et non de calculer ou analyser les limites des intégrales
de Fresnel; la question 6.7(d) est utile pour cet exercice).

Solution 6.10. L’idée de l’argument est que la courbure de la chlotoïde est monotone croissante et
tend vers ∞. La chlotoïde est une spirale et elle ne peut pas s’accumuler sur un cercle limite car le
rayon du cercle osculateur tend vers 0. Donc γ(s) doit s’accumuler vers un point limite.

On peut supposer pour simplifier que l’équation intrinsèque de γ est k(s) = s. L’exercice 6.7 (d)
implique alors que pour tout a > 0, on a

diam{γ(s) | s ≥ a} ≤ 2

a
( = diamètre du cercle osculateur à γ en γ(a)) .

Cette inégalité est encore vraie avec l’adhérence :

diam
(
{γ(s) | s ≥ a}

)
≤ 2

a
.

On peut donc conclure avec le résultat suivant sur la topologie des espaces métriques (appelé le principe
des sous-ensembles emboîtés de Cantor) :
Si (X, d) un espace métrique complet et (Fn) est une suite décroissante de sous-ensembles fermés non
vides de X tels que Fn+1 ⊆ Fn pour tout n ∈ N et telle que leur diamètre tend vers zéro, c’est-à-dire :

lim
n→∞

diam(Fn) = 0,

alors l’intersection de tous ces sous-ensembles contient exactement un point :

∩∞n=1Fn = {x0}

pour un certain x0 dans X.

Remarque En utilisant des techniques d’analyse complexe, on peut prouver que∫ ∞
0

cos
(
s2

2

)
ds =

∫ ∞
0

sin
(
s2

2

)
ds =

√
π

2
,

ce qui démontre l’existence de la limite lim
s→∞

γ(s) par un autre moyen.
Voir https://fr.wikipedia.org/wiki/Int%C3%A9grale_de_Fresnel
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