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Les objectifs pour cette série sont les suivants :

- Développer une intuition de la torsion et de la courbure et leur signification géométrique.

- Développer une certaine pratique et des bonnes stratégies pour les calculs géométriques liés aux
courbes, en particulier se familiariser avec le repére de Frenet, savoir utiliser les équations de
Serret-Frenet et comprendre les conséquences du théoréme fondamental.

A. Exercices standards.

Exercice 5.1. Prouver que la courbe ~(t) = (cosh(t),sinh(t),t) est biréguliére, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Solution 5.1. La courbe ~ est biréguliére car les vecteurs
4(t) = (sinh(t),cosh(t),1), et #(t) = (cosh(t),sinh(¢),0),

sont lindairement indépendants pour tout ¢. La vitesse de 7 est V;(t) = v/2 cosh(t) et le vecteur unitaire
tangent est donc

1 1
T,(t) = V(0 = 7 (tanh(t), 1, cosh(t)) .

K, (t) = Vq,l(t) T, (t)
on a donc
o1 1 — sinh(#) N I
() = V2 <Cosh2(t)’0’ coshQ(t) > ’ Kqlh) = Vi (t) T () = 2C0$h3(t) L0, b
et la courbure est 1
Ky (t) = K5 ()] = 2cosh2( )

Exercice 5.2. Considérons la courbe
v(t) = (cos(t) + tsin(t),sin(t) — t cos(t), t?), (t € R).
(a) Trouver le ou les points singuliers de cette courbe.

(b) Calculer I’abscisse curviligne s = s(t) de cette courbe depuis le point initial v(0).

Pour les questions qui sutvent on se restreint a t > 0.
(c) Calculer le vecteur tangent T (t) et le vecteur de courbure K (t).

(d) Quels sont les points biréguliers de ~ 7



(e) Calculer la courbure £, (t) de cette courbe et le vecteur normal principal N (¢).
(f) Donner le vecteur binormal B, (¢) (aux points biréguliers).

(g) Trouver la torsion de ~.

Solution 5.2. (a) On a ¥(t) = t(cos(t),sin(t),2), donc V,(¢) = [¢|v/5. Le seul point singulier en en
t=0.

(b) L’abscisse curviligne est
t t \/5
s(t) = / Gl du= V5 / Juldu = sen(t) ¢

(c) Le vecteur tangent en ¢t > 0 est T(¢) Hzgg\\ % - (cost,sint,2). On a donc

. 5 1
T, (t) = \5f - (—sint,cost,0) et K,(t)=

. 1
T, (t) = i (—sint,cost,0).

(d) La courbe est biréguliére pour tout ¢ > 0 car le vecteur de courbure est non nul (on peu aussi
observer que ¥(t) et 4(t) sont linéairement indépendants pour tout ¢ > 0).

(e) La courbure de v est ry(t) = |Ky(t)| = 4. (d’apres Uezercice 4.3, on peut aussi calculer la
courbure avec la formule ko, = % 15 =< 4.)
il

Le vecteur normal principal est donc :

= Tﬂ’(t) _ K0 —sint, cos
T (U mEeest o)

N, ()
(f) Le vecteur bi-normal est :
B, (t) = T, (t) x Ny(t) = *f(—zcost, —2sint, 1).

(g) On calcule la dérivée du vecteur normal:
N, (t) = —(cost,sint,0).,

et la torsion est donc

Exercice 5.3. Soit v : I — R? une courbe biréguliére de classe C3. On appelle vecteur de Darboux
de 7y le champ de vecteurs D, défini le long de « par

D, (u) := 7 (w) Ty (1) + ki (1) By (u)

Montrer que pour tout champ de vecteurs A le long de v s’écrivant A(u) = a3 (u)T(u) + ag(u)N(u) +

az(u)B(u), on a
1d —i('T—I—'N+'B)+D><A
V du —Va1 a as .

(C’est la Formule de Darboux).



Solution 5.3. On calcule en utilisant les formules de Serret-Frenet. On a d’une part

1 d 1 d
2 PA= -2 (T +asN + a3B
Ve = yag @T+aN+aB)
1 1 . . .
= V (al T +do N + +CL3B(U)) + V (CLlT + asN + CLSB) s

et d’autre part

D x A= (TT+ kB) x (a1T + aaN + a3B)
= ao7B — agTN + a1kN — aoxT

1 ) ) )
= v (agN + a3B + alT) ,

ou on a utilisé les formules de Serret-Frenet. La formule & démontrer suit de ces deux calculs.

Remarque. II s’agit d’une formule importante et intéressante. Imaginons un observateur se déplacant le
long d’une courbe ~ et qui utilise le repére de Frenet comme référentiel. Si il observe la trajectoire d’un
point mobile P, il est naturel pour cet observateur de considérer le vecteur position A(t) reliant v(t) a P(t).
La dérivée naturelle de ce vecteur est alors la somme d’une dérivée relative au repére mobile (c’est le terme
# (@1 T 4+ dy N +d3 B)) et d’'une dérivée d’entrainement qui correspond & la rotation instantanée du repére
de Frenet (c’est le terme D x A).

Exemple. Si on applique cette formule & la dérivée seconde de ~y, on retrouve la formule de ’accélération :

d 1d 1. . .
y=—{VT)=V|=—VT )=V |[{=VT+DxVT =VT+V2DxT=VT+ V?N.
du V du |4

Exercice 5.4. Calculer le vecteur de Darboux de I’hélice circulaire droite y(u) = (a cos(u), asin(u), bu).

Solution 5.4. On a vu que pour I'hélice circulaire v on a

1 . 1, . a
T = —(—asinu,acosu,b), B=—(bsinu,—bcosu,a), k= —, 7= —.
c c c? c?

ol ¢ = va? + b%. Le vecteur de Darboux de ~ est donc donné par

b2 2
D=7 T+k-B= (0,0,2“).
C

Remarque. On voit que le vecteur de Darboux dans ce cas est constant. De plus 'angle 9 entre D et le
(D, T) _ b
o i i IDINTI ™ Va2+b2"
I’hélice circulaire droite est une courbe de pente constante.

vecteur tangent T est déterminé par cosv = Cet angle est constant ce qui confirme que

Exercice 5.5. Considérons la courbe 7 : R — R? définie par
A(t) = (&, + [t 0).

Montrer que cette courbe est réguliére au sens de Frenet mais elle n’est pas de classe C® (la définition
de la régularité de Frenet se trouve en page 32 du polycopié, édition 2024).

Calculer ensuite le repére de Frenet.



Solution 5.5. Il est facile de vérifier que 7 est de classe C? mais pas de classe C3- On a

Y(t) = (1,2t + 3¢)t[,0),  5(¢) = (0,2 +6[¢],0).
Ces champs de vecteurs sont continus et linéairement indépendants pour tout ¢t donc la courbe est
biréguliére.
On trouve facilement le vecteur normal principal (par exemple en appliquant Gram-Schmidt a {§(¢),5(t)}),
ce champ vecteur est donné par

N(t) = (<20 3L L) o Vi) = [5(0)]

Comme t > N(t) est de classe C! et 7 est biréguliére, la courbe est Frenet-réguliére.

La courbe 7 est contenue dans le plan Ozy, donc son vecteur binormal constant, égal & B = (0,0, 1),
Le repére de Frenet est donc donné par

B(t) = Vtt)(l,% F3te],0), Nt = Vtt)(_% _3t),1,0),  B() = (0,0,1).

Remarques 1.) Sion veut appliquer Gram-Schmidt pour trouver le vecteur normal principal, on peut simplifier
les calculs en écrivant §(t) = (1,a(t),0) et 5(t) = (0,b(t),0), avec a(t) = 2t + 3t|t| et b(t) = SLa(t). On écrit

ensuite V(t) = [|[y(t)|| = /1 + a(t)? et on calcule T = £(1,4,0), donc (¥, T) = 2. Par conséquent
. ab ab a’b
Y- <77T>T = (Oab70) - W(Lavo) = <_Vv27b_ ‘/—270)
b
= W(—a,v2 —a?,0) = W(—a,l,()).
Donc

§— (3, T)T 1 1
== —(—1,a,0) = = (-2t — 3¢t|, 1,0).

15 =&TT| vV 4
2.) Cet exemple se généralise : toute courbe biréguliére qui est contenue dans un plan est réguliére au sens de
Frenet.

Exercice 5.6. Que peut-on dire d’une courbe (réguliére au sens de Frenet) dont la courbure et la
torsion sont constantes 7

Solution 5.6. On sait que deux courbes (paramétrées naturellement) qui ont méme courbure et méme
torsion sont égales & un déplacement prés). On sait aussi que I'hélice circulaire droite est de courbure
et torsion constantes. Par conséquent Toute courbe (réguliére au sens de Frenet) dont la courbure et
la torsion sont constante est une hélice circulaire droite.

Observons que les cas limites sont intéressants. Si la torsion est nulle, alors nous avons une courbe plane et
c’est un cercle dont le rayon est 'inverse de la courbure, c’est bien un cas limite de I’hélice. Un autre cas limite
de I’hélice est la droite. Dans ce cas la courbure est nulle, mais la torsion n’est pas définie (la droite n’est pas
une courbe biréguliére).

Exercice 5.7. Montrer que la torsion d’une courbe v : I — R3 biréguliére de classe C® peut se calculer
par la formule suivante:

(B30 T@] 5, 7]
() < A@[? ~ R@Vi)

oil [x,y,2] = (x,y X z) représente le produit mixte de trois vecteurs de R3,




Solution 5.7. Si on dérive la formule de 'accélération
F=VT+V’K=VT+ (V2f<a) N,

et on fait le produit scalaire du résultat avec le vecteur binormal B on obtient en tenant compte des
équations de Serre-Frenet

(V,B) = (V3k) 7.
On rappelle que (V3k) = ||§ x ¥|| (voir exercice 3.5), on a donc

(x4.7) _ (7,B)

" = = T 7 — T
Iy <412 15 <Al

Remarque. On peut aussi obtenir la formule en calculant la troisiéme dérivée 4. On trouve que
Y =aT +bN+ 7 (V3/@) B.

avec

. d . .
a= V-V, b= (5 (V?K)+VVh) = @VVi+ V).

(Ce calcul peut se faire en utilisant la formule de Darboux ou en utilisant les formules de Serret-Frenet).

Exercice 5.8. Montrer qu'une courbe v : I — R3 (C? et biréguliére) est une hélice circulaire droite si
et seulement si son vecteur de Darboux est constant.

Solution 5.8. On a vu dans 'exercice 5.4 que le vecteur de Darboux de I’hélice circulaire droite est
constant.

Pour prouver réciproquement que toute courbe (C? et biréguliére) dont le vecteur de Darboux est
constant est une hélice circulaire droite, il suffit d’aprés 'exercice 5.4 de montrer que la courbure et la
torsion sont constantes. Nous donnons quatre preuves de ce fait :

1.) Rappelons que D = 7T + & - B, donc la torsion est donnée par 7 = (T, D) et sa dérivée est

ldr 14d 1,d 1 d 1, d

—a_ 24 - (D) + (T, Dy = (LT, D
V du Valu< D) V<du ’ >dI—V< " du ) V<du D)

car D est constant. Or la premiére formule de Serre-Frenet dit que %%T = kNN, donc
1d
Vﬁ = #(N,D) = x(N,7-T +k-B) =0,

ce qui prouve que 7 est constante. On prouve d’une maniére semblable que la courbure est constante.

2.) Autre argument : on peut aussi prouver le résultat directement, supposons que la courbe
v(s) = (z(s),y(s), z(s)) est paramétrée naturellement, que 4(0) = (0, a, b) et que le vecteur de Darboux
est égale & D = eg pour tout s. On a alors T = et

5=T=egxT=esgx%=(—0).

On a donc Z = 0 ce qui implique z(s) = bs + zg, on a aussi

et comme £(0) = 0 et y(0) = a, ce systéme d’équations différentielles admet la solution

z(s) = asin(s), y(s) = acos(s).



En intégrant on a x(s) = acos(s) + xo, y(s) = asin(s) + yo, et donc finalement

v(s) = (acos(s) + xg, asin(s) + yo, bs + 20).

3.) Et voici encore un autre argument qui a été proposé par un-e étudiant-e : En utilisant les formules
de Frenet on a :

. d . .
D = —@(TT"‘K/B)

= 7T++T+«B+iB
= 7VEN+7T — skV7TN + B
— +T+£iB

Donc D = 0 si et seulement si 7 = # = 0.

4.) Finalement, 'argument le plus court est probablement le suivant : On applique la formule de
I'exercice 5.3 (formule de Darboux) au vecteur de Darboux lui-méme :

1
L4y T iB+DxD=+T+iB.
V du

En utilisant que T et B sont toujours linéairement indépendants on voit que D est constant si et
seulement si 7 = £ = 0.

B. Exercice complémentaire

Exercice 5.9. On sait qu’a un déplacement pres, la géométrie d’une courbe est déterminée par sa courbure
et sa torsion. Ceci implique que toute propriété géométrique se traduit en une ou plusieurs équations sur T et
k. Le but de cet exercice est d’illustrer ceci dans le cas des courbes sphériques (i.e. les courbes tracées sur une

sphere).
(a) Soit v : I — R3 une courbe de classe C? biréguliére, de torsion non nulle et paramétrée normalement.
Supposons que ||7y(s)|| = r = constante. Montrer que pour tout s on a

p(s)

V() + p(s)N(s) + @B(é‘) =0,

ou 7T est la courbure de 7 et p(s) = % est le rayon de courbure.
En déduire que la fonction

1 2
2 .
— -
s p(s)? + (T(S)p@))
est constante.

(b) Dans le sens réciproque : Soit v : I — R? une courbe de classe C? biréguliére paramétrée nor-
malement. On suppose que la courbure de « est strictement croissante et la torsion est non nulle.
Démontrer que 7 est une courbe sphérique (i.e. elle est tracée sur une sphére) si et seulement si

o(s)? + (T(ls)p<s>>2

est constante.

Déterminer ensuite le centre et le rayon de la sphére .



Solution 5.9. (a) La condition ||y(s)|| = constante implique que v L 4 = T(s). En particulier v(s)
est combinaison linéaire de N(s) et B(s) pour tout s. On a donc

v(s) = a(s)N(s) + b(s)B(s), a?(s)+b*(s) = 2.
Dérivons cette relation, on trouve :
T =4 =aN+aN + B + bB = —axT + (& — br)N + (b — 7a)B,
d’ou I'on déduit que
a= ! =—p, (a—br)=0 et (b—r7a)=0.

K
Ainsia= —pet b= % = —£ et donc
T T

ce qui prouve la premiére affirmation. D’autre part

. .\ 2
p p
= ()P = 0N + 2Bl = 2+ (£)

est constant par hypothése, ce qui prouve la seconde affirmation.

2
(b) On doit prouver que v est une courbe sphérique si et seulement si p(s)? + (T(ls) /')(5)) est constante.
Supposons que 7y(s) appartient a la sphére de centre ¢ et rayon r. Alors la courbe translatée (y(s) — ¢)

2
vérifie ||(y(s) — ¢)|| = r = constante. Par le point (a) on déduit que p(s)? + (T(ls)/)(s)) est constante

car les courbes 7y et (v — ¢) ont méme courbure et méme torsion.

2
La preuve de I'affirmation réciproque demande plus de travail. On suppose donc que p(s)%+ (T(ls) p(s))

est constante et, en s’inspirant de la question (a), on pose

cls) = 1(s) + pls)N(s) + 2T B(s).

Un calcul montre alors que
d
ﬁc(s) =0,

admettons ce résultat et concluons notre argument. On note ¢ = ¢(s) € R3. Ce point est constant et

o —c|| = s s @ = p(s)? @ 2
Ih(e) = el = Io(INGs) + 0B = p(o+ (24 )

N 2
La courbe est donc tracée sur la sphére de centre c et rayon r = \/ p(s)? + (f 8) .

d
Il reste a prouver que d—c(s) = 0. On commence par calculer
S

1d 2 ()’ o A(s) d p(s)
0=—-— — = ——t
2 ds (p(s) M <T(s) PP ) Ts 7 (s)
On a supposer que la courbure de v est strictement croissante, donc £(s) > 0 pour tout s et donc
p # 0. On peut diviser la relation précédente par p, ce qui nous donne :

4 is)

oy = ().



La dérivée de c(s) se calcule maintenant directement (en utilisant les équations de Serret-Frenet)

d . d p(s)
%C(S) = <’7(8) + p(s)N(s) + 7_(8)]3(5)>

= 3(6) 4 () pNGS) + (20 ) B+ £ B)
= T(6) + pls) (~(s)T() + (BN + NG+ ( 120 ) Bls) + £ (< (9IN()



