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Les objectifs pour cette série sont les suivants :

- Développer une intuition de la torsion et de la courbure et leur signification géométrique.

- Développer une certaine pratique et des bonnes stratégies pour les calculs géométriques liés aux
courbes, en particulier se familiariser avec le repère de Frenet, savoir utiliser les équations de
Serret-Frenet et comprendre les conséquences du théorème fondamental.

A. Exercices standards.

Exercice 5.1. Prouver que la courbe γ(t) = (cosh(t), sinh(t), t) est birégulière, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Solution 5.1. La courbe γ est birégulière car les vecteurs

γ̇(t) = (sinh(t), cosh(t), 1), et γ̈(t) = (cosh(t), sinh(t), 0),

sont linéairement indépendants pour tout t. La vitesse de γ est Vγ(t) =
√
2 cosh(t) et le vecteur unitaire

tangent est donc

Tγ(t) =
γ̇(t)

Vγ(t)
=

1√
2

(
tanh(t), 1,

1

cosh(t)

)
.

In rappelle que le vecteur de courbure est défini par

Kγ(t) =
1

Vγ(t)
Ṫγ(t).

on a donc

Ṫγ(t) =
1√
2

(
1

cosh2(t)
, 0,
− sinh(t)

cosh2(t)

)
, Kγ(t) =

1

Vγ(t)
Ṫγ(t) =

1

2 cosh3(t)
(1, 0,− sinh(t)) ,

et la courbure est
κγ(t) = ‖Kγ(t)‖ =

1

2 cosh2(t)
.

Exercice 5.2. Considérons la courbe

γ(t) = (cos(t) + t sin(t), sin(t)− t cos(t), t2), (t ∈ R).

(a) Trouver le ou les points singuliers de cette courbe.

(b) Calculer l’abscisse curviligne s = s(t) de cette courbe depuis le point initial γ(0).

Pour les questions qui suivent on se restreint à t > 0.

(c) Calculer le vecteur tangent Tγ(t) et le vecteur de courbure Kγ(t).

(d) Quels sont les points biréguliers de γ ?
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(e) Calculer la courbure κγ(t) de cette courbe et le vecteur normal principal Nγ(t).

(f) Donner le vecteur binormal Bγ(t) (aux points biréguliers).

(g) Trouver la torsion de γ.

Solution 5.2. (a) On a γ̇(t) = t(cos(t), sin(t), 2), donc Vγ(t) = |t|
√
5. Le seul point singulier en en

t = 0.

(b) L’abscisse curviligne est

s(t) =

∫ t

u=0
‖γ̇(u)‖ du =

√
5

∫ t

u=0
|u|du = sgn(t)

√
5

2
t2

(c) Le vecteur tangent en t > 0 est Tγ(t) =
γ̇(t)

‖γ̇(t)‖ =
√
5
5 · (cos t, sin t, 2). On a donc

Ṫγ(t) =

√
5

5
· (− sin t, cos t, 0) et Kγ(t) =

1

Vγ(t)
Ṫγ(t) =

1

5t
· (− sin t, cos t, 0).

(d) La courbe est birégulière pour tout t > 0 car le vecteur de courbure est non nul (on peu aussi
observer que γ̇(t) et γ̈(t) sont linéairement indépendants pour tout t > 0).

(e) La courbure de γ est κγ(t) = ‖Kγ(t)‖ = 1
5t . (d’après l’exercice 4.3, on peut aussi calculer la

courbure avec la formule κα = 1
V 3
γ
‖γ̇ × γ̈‖.)

Le vecteur normal principal est donc :

Nγ(t) =
Ṫγ(t)

‖Ṫγ(t)‖
=

Kγ(t)

κγ(t)
= (− sin t, cos t, 0).

(f) Le vecteur bi-normal est :

Bγ(t) = Tγ(t)×Nγ(t) =

√
5

5
(−2 cos t,−2 sin t, 1).

(g) On calcule la dérivée du vecteur normal:

Ṅγ(t) = −(cos t, sin t, 0).,

et la torsion est donc
τγ(t) =

1

Vγ(t)

〈
B(t), Ṅ(t)

〉
=

2

5t
.

Exercice 5.3. Soit γ : I → R3 une courbe birégulière de classe C3. On appelle vecteur de Darboux
de γ le champ de vecteurs Dγ défini le long de γ par

Dγ(u) := τγ(u)Tγ(u) + κγ(u)Bγ(u)

Montrer que pour tout champ de vecteurs A le long de γ s’écrivant A(u) = a1(u)T(u) + a2(u)N(u) +
a3(u)B(u), on a

1

V

d

du
A =

1

V
(ȧ1 T + ȧ2 N + ȧ3 B) +D×A.

(C’est la Formule de Darboux ).
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Solution 5.3. On calcule en utilisant les formules de Serret-Frenet. On a d’une part

1

V

d

du
A =

1

V

d

du
(a1T+ a2N+ a3B)

=
1

V
(ȧ1 T + ȧ2 N ++a3B(u)) +

1

V

(
a1Ṫ+ a2Ṅ+ a3Ḃ

)
,

et d’autre part

D×A = (τT+ κB)× (a1T+ a2N+ a3B)

= a2τB− a3τN+ a1κN− a2κT

=
1

V

(
a2Ṅ+ a3Ḃ+ a1Ṫ

)
,

où on a utilisé les formules de Serret-Frenet. La formule à démontrer suit de ces deux calculs.

Remarque. Il s’agit d’une formule importante et intéressante. Imaginons un observateur se déplaçant le
long d’une courbe γ et qui utilise le repère de Frenet comme référentiel. Si il observe la trajectoire d’un
point mobile P , il est naturel pour cet observateur de considérer le vecteur position A(t) reliant γ(t) à P (t).
La dérivée naturelle de ce vecteur est alors la somme d’une dérivée relative au repère mobile (c’est le terme
1
V (ȧ1 T + ȧ2 N + ȧ3 B)) et d’une dérivée d’entraînement qui correspond à la rotation instantanée du repère
de Frenet (c’est le terme D×A).

Exemple. Si on applique cette formule à la dérivée seconde de γ, on retrouve la formule de l’accélération :

γ̈ =
d

du
(VT) = V

(
1

V

d

du
VT

)
= V

(
1

V
V̇T+D× VT

)
= V̇T+ V 2D×T = V̇T+ V 2κN.

Exercice 5.4. Calculer le vecteur de Darboux de l’hélice circulaire droite γ(u) = (a cos(u), a sin(u), bu).

Solution 5.4. On a vu que pour l’hélice circulaire γ on a

T =
1

c
(−a sinu, a cosu, b), B =

1

c
(b sinu,−b cosu, a), κ =

a

c2
, τ =

b

c2
.

où c =
√
a2 + b2. Le vecteur de Darboux de γ est donc donné par

D = τ ·T+ κ ·B =

(
0, 0,

b2 + a2

c3

)
.

Remarque. On voit que le vecteur de Darboux dans ce cas est constant. De plus l’angle ϑ entre D et le
vecteur tangent T est déterminé par cosϑ = 〈D,T〉

‖D‖‖T‖ = b√
a2+b2

. Cet angle est constant ce qui confirme que
l’hélice circulaire droite est une courbe de pente constante.

Exercice 5.5. Considérons la courbe γ : R→ R3 définie par

γ(t) = (t, t2 + |t|3, 0).

Montrer que cette courbe est régulière au sens de Frenet mais elle n’est pas de classe C3 (la définition
de la régularité de Frenet se trouve en page 32 du polycopié, édition 2024).
Calculer ensuite le repère de Frenet.
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Solution 5.5. Il est facile de vérifier que γ est de classe C2 mais pas de classe C3- On a

γ̇(t) = (1, 2t+ 3t|t|, 0), γ̈(t) = (0, 2 + 6|t|, 0).

Ces champs de vecteurs sont continus et linéairement indépendants pour tout t donc la courbe est
birégulière.
On trouve facilement le vecteur normal principal (par exemple en appliquant Gram-Schmidt à {γ̇(t), γ̈(t)}),
ce champ vecteur est donné par

N(t) =
1

V (t)
(−2t− 3t|t|, 1, 0), où V (t) = ‖γ̇(t)‖.

Comme t 7→ N(t) est de classe C1 et γ est birégulière, la courbe est Frenet-régulière.

La courbe γ est contenue dans le plan Oxy, donc son vecteur binormal constant, égal à B = (0, 0, 1),
Le repère de Frenet est donc donné par

B(t) =
1

V (t)
(1, 2t+ 3t|t|, 0), N(t) =

1

V (t)
(−2t− 3t|t|, 1, 0), B(t) = (0, 0, 1).

Remarques 1.) Si on veut appliquer Gram-Schmidt pour trouver le vecteur normal principal, on peut simplifier
les calculs en écrivant γ̇(t) = (1, a(t), 0) et γ̈(t) = (0, b(t), 0), avec a(t) = 2t + 3t|t| et b(t) = d

dta(t). On écrit
ensuite V (t) = ‖γ(t)‖ =

√
1 + a(t)2 et on calcule T = 1

V (1, a, 0), donc 〈γ̈,T〉 = ab
V . Par conséquent

γ̈ − 〈γ̈,T〉T = (0, b, 0)− ab

V 2
(1, a, 0) =

(
− ab
V 2

, b− a2b

V 2
, 0

)
=

b

V 2
(−a, V 2 − a2, 0) = b

V 2
(−a, 1, 0).

Donc
N =

γ̈ − 〈γ̈,T〉T
‖γ̈ − 〈γ̈,T〉T‖

=
1

V
(−1, a, 0) = 1

V
(−2t− 3t|t|, 1, 0).

2.) Cet exemple se généralise : toute courbe birégulière qui est contenue dans un plan est régulière au sens de
Frenet.

Exercice 5.6. Que peut-on dire d’une courbe (régulière au sens de Frenet) dont la courbure et la
torsion sont constantes ?

Solution 5.6. On sait que deux courbes (paramétrées naturellement) qui ont même courbure et même
torsion sont égales à un déplacement près). On sait aussi que l’hélice circulaire droite est de courbure
et torsion constantes. Par conséquent Toute courbe (régulière au sens de Frenet) dont la courbure et
la torsion sont constante est une hélice circulaire droite.

Observons que les cas limites sont intéressants. Si la torsion est nulle, alors nous avons une courbe plane et
c’est un cercle dont le rayon est l’inverse de la courbure, c’est bien un cas limite de l’hélice. Un autre cas limite
de l’hélice est la droite. Dans ce cas la courbure est nulle, mais la torsion n’est pas définie (la droite n’est pas
une courbe birégulière).

Exercice 5.7. Montrer que la torsion d’une courbe γ : I → R3 birégulière de classe C3 peut se calculer
par la formule suivante:

τ(u) =
[γ̇(u), γ̈(u),

...
γ (u)]

‖γ̇(u)× γ̈(u)‖2
=

[γ̇, γ̈,
...
γ ]

κ2(u)V 6
γ (u)

où [x,y, z] = 〈x,y × z〉 représente le produit mixte de trois vecteurs de R3.
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Solution 5.7. Si on dérive la formule de l’accélération

γ̈ = V̇T+ V 2K = V̇T+
(
V 2κ

)
N,

et on fait le produit scalaire du résultat avec le vecteur binormal B on obtient en tenant compte des
équations de Serre-Frenet

〈
...
γ ,B〉 =

(
V 3κ

)
τ.

On rappelle que
(
V 3κ

)
= ‖γ̇ × γ̈‖ (voir exercice 3.5), on a donc

〈γ̇ × γ̈,
...
γ 〉

‖γ̇ × γ̈‖2
=
〈
...
γ ,B〉
‖γ̇ × γ̈‖

= τ.

Remarque. On peut aussi obtenir la formule en calculant la troisième dérivée γ̈. On trouve que
...
γ = aT+ bN+ τ

(
V 3κ

)
B.

avec
a = (V̈ − V 3κ2), b = (

d

dt
(V 2κ) + V̇ V κ) = (3V V̇ κ+ V 3κ̇).

(Ce calcul peut se faire en utilisant la formule de Darboux ou en utilisant les formules de Serret-Frenet).

Exercice 5.8. Montrer qu’une courbe γ : I → R3 (C3 et birégulière) est une hélice circulaire droite si
et seulement si son vecteur de Darboux est constant.

Solution 5.8. On a vu dans l’exercice 5.4 que le vecteur de Darboux de l’hélice circulaire droite est
constant.
Pour prouver réciproquement que toute courbe (C3 et birégulière) dont le vecteur de Darboux est
constant est une hélice circulaire droite, il suffit d’après l’exercice 5.4 de montrer que la courbure et la
torsion sont constantes. Nous donnons quatre preuves de ce fait :
1.) Rappelons que D = τ ·T+ κ ·B, donc la torsion est donnée par τ = 〈T,D〉 et sa dérivée est

1

V

dτ

du
=

1

V

d

du
〈T,D〉 = 1

V
〈 d
du

T,D〉+ 1

V
〈T, d

du
D〉 = 1

V
〈 d
du

T,D〉

car D est constant. Or la première formule de Serre-Frenet dit que 1
V

d
duT = κN, donc

1

V

dτ

du
= κ〈N,D〉 = κ〈N, τ ·T+ κ ·B〉 = 0,

ce qui prouve que τ est constante. On prouve d’une manière semblable que la courbure est constante.

2.) Autre argument : on peut aussi prouver le résultat directement, supposons que la courbe
γ(s) = (x(s), y(s), z(s)) est paramétrée naturellement, que γ̇(0) = (0, a, b) et que le vecteur de Darboux
est égale à D = e3 pour tout s. On a alors T = γ̇ et

γ̈ = Ṫ = e3 ×T = e3 × γ̇ = (−ẏ, ẋ, 0).

On a donc z̈ = 0 ce qui implique z(s) = bs+ z0, on a aussi

ẍ = −ẏ, ÿ = ẋ

et comme ẋ(0) = 0 et ẏ(0) = a, ce système d’équations différentielles admet la solution

ẋ(s) = a sin(s), ẏ(s) = a cos(s).
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En intégrant on a x(s) = a cos(s) + x0, y(s) = a sin(s) + y0, et donc finalement

γ(s) = (a cos(s) + x0, a sin(s) + y0, bs+ z0).

3.) Et voici encore un autre argument qui a été proposé par un·e étudiant·e : En utilisant les formules
de Frenet on a :

Ḋ = =
d

dt
(τṪ+ κḂ)

= τṪ+ τ̇T+ κḂ+ κ̇B

= τV κN+ τ̇T− κV τN+ κ̇B

= τ̇T+ κ̇B

Donc Ḋ = 0 si et seulement si τ̇ ≡ κ̇ = 0.

4.) Finalement, l’argument le plus court est probablement le suivant : On applique la formule de
l’exercice 5.3 (formule de Darboux) au vecteur de Darboux lui-même :

1

V

d

du
D = τ̇T+ κ̇B+D×D = τ̇T+ κ̇B.

En utilisant que T et B sont toujours linéairement indépendants on voit que D est constant si et
seulement si τ̇ = κ̇ ≡ 0.

B. Exercice complémentaire

Exercice 5.9. On sait qu’à un déplacement près, la géométrie d’une courbe est déterminée par sa courbure
et sa torsion. Ceci implique que toute propriété géométrique se traduit en une ou plusieurs équations sur τ et
κ. Le but de cet exercice est d’illustrer ceci dans le cas des courbes sphériques (i.e. les courbes tracées sur une
sphère).

(a) Soit γ : I → R3 une courbe de classe C3 birégulière, de torsion non nulle et paramétrée normalement.
Supposons que ‖γ(s)‖ = r = constante. Montrer que pour tout s on a

γ(s) + ρ(s)N(s) +
ρ̇(s)

τ(s)
B(s) = 0,

où τ est la courbure de γ et ρ(s) = 1
κ(s) est le rayon de courbure.

En déduire que la fonction

s 7→ ρ(s)2 +

(
1

τ(s)
ρ̇(s)

)2

est constante.

(b) Dans le sens réciproque : Soit γ : I → R3 une courbe de classe C3 birégulière paramétrée nor-
malement. On suppose que la courbure de γ est strictement croissante et la torsion est non nulle.
Démontrer que γ est une courbe sphérique (i.e. elle est tracée sur une sphère) si et seulement si

ρ(s)2 +

(
1

τ(s)
ρ̇(s)

)2

est constante.
Déterminer ensuite le centre et le rayon de la sphère .
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Solution 5.9. (a) La condition ‖γ(s)‖ = constante implique que γ ⊥ γ̇ = T(s). En particulier γ(s)
est combinaison linéaire de N(s) et B(s) pour tout s. On a donc

γ(s) = a(s)N(s) + b(s)B(s), a2(s) + b2(s) = r2.

Dérivons cette relation, on trouve :

T = γ̇ = ȧN+ aṄ+ ḃB+ bḂ = −aκT+ (ȧ− bτ)N+ (ḃ− τa)B,

d’où l’on déduit que

a =
1

κ
= −ρ, (ȧ− bτ) = 0 et (ḃ− τa) = 0.

Ainsi a = −ρ et b = ȧ
τ = − ρ̇

τ et donc

γ = aN+ bB = −ρN− ρ̇

τ
B

ce qui prouve la première affirmation. D’autre part

r2 = ‖γ(s)‖2 = ‖ρN+
ρ̇

τ
B‖2 = ρ2 +

(
ρ̇

τ

)2

est constant par hypothèse, ce qui prouve la seconde affirmation.

(b) On doit prouver que γ est une courbe sphérique si et seulement si ρ(s)2+
(

1
τ(s) ρ̇(s)

)2
est constante.

Supposons que γ(s) appartient à la sphère de centre c et rayon r. Alors la courbe translatée (γ(s)− c)
vérifie ‖(γ(s)− c)‖ = r = constante. Par le point (a) on déduit que ρ(s)2 +

(
1
τ(s) ρ̇(s)

)2
est constante

car les courbes γ et (γ − c) ont même courbure et même torsion.

La preuve de l’affirmation réciproque demande plus de travail. On suppose donc que ρ(s)2+
(

1
τ(s) ρ̇(s)

)2
est constante et, en s’inspirant de la question (a), on pose

c(s) = γ(s) + ρ(s)N(s) +
ρ̇(s)

τ(s)
B(s).

Un calcul montre alors que
d

ds
c(s) = 0,

admettons ce résultat et concluons notre argument. On note c = c(s) ∈ R3. Ce point est constant et
on a

‖γ(s)− c‖ = ‖ρ(s)N(s) +
ρ̇(s)

τ(s)
B‖ = ρ(s)2 +

(
ρ̇(s)

τ(s)

)2

.

La courbe est donc tracée sur la sphère de centre c et rayon r =
√
ρ(s)2 +

(
ρ̇(s)
τ(s)

)2
.

Il reste à prouver que
d

ds
c(s) = 0. On commence par calculer

0 =
1

2

d

ds

(
ρ(s)2 +

(
ρ̇(s)

τ(s)

)2
)

= ρ(s)ρ̇(s) +
ρ̇(s)

τ(s)

d

ds

ρ̇(s)

τ(s)
.

On a supposer que la courbure de γ est strictement croissante, donc κ̇(s) > 0 pour tout s et donc
ρ̇ 6= 0. On peut diviser la relation précédente par ρ̇, ce qui nous donne :

d

ds

ρ̇(s)

τ(s)
= −ρ(s)τ(s).
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La dérivée de c(s) se calcule maintenant directement (en utilisant les équations de Serret-Frenet)

d

ds
c(s) =

d

ds

(
γ(s) + ρ(s)N(s) +

ρ̇(s)

τ(s)
B(s)

)
= γ̇(s) + ρṄ(s) + ρ̇(s)N(s) +

(
d

ds

ρ̇(s)

τ(s)

)
B(s) +

ρ̇(s)

τ(s)
Ḃ(s)

= T(s) + ρ(s) (−κ(s)T(s) + τ(s)B(s)) + ρ̇(s)N(s) +

(
d

ds

ρ̇(s)

τ(s)

)
B(s) +

ρ̇(s)

τ(s)
(−τ(s)N(s))

=

(
τ(s)ρ(s) +

(
d

ds

ρ̇(s)

τ(s)

))
B(s)

= 0.
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