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A. Exercices standards.

Exercice 4.1. Si a et b sont des vecteurs de R3 et a 6= 0, on dit que le vecteur c ∈ R3 est la composante
normale de b ∈ R3 selon a ∈ R3 si c ⊥ a et il existe λ ∈ R tel que b = λa + c. Montrer que cette
composante normal peut s’écrire

c =
(a× b)× a

‖a‖2
.

Solution 4.1. Définissons le vecteur c par la formule c = (a×b)×a
‖a‖2 . Il est clair par les propriétés

connues du produit vectoriel que c ⊥ a, Il reste donc simplement à montrer que c− b est un multiple
de a.

Par la première identité de Grassmann on a

c =
(a× b)× a

‖a‖2
=
〈a,a〉b
‖a‖2

− 〈a,b〉a
‖a‖2

= b− λa

avec λ =
〈a,b〉
‖a‖2

.

Exercice 4.2. Démontrer que le vecteur (unitaire) tangent et le vecteur de courbure d’une courbe
régulière de classe C2 sont des notions géométriques, i.e. ces champs de vecteurs sont invariants par
reparamétrisation directe.

Solution 4.2. (a) Il est intuitivement évident que Tα est une quantité géométrique puisque c’est
vecteur unitaire indiquant la direction de la courbe. Voyons tout de même une preuve formelle : Soit
α(t) (t ∈ I) une paramétrage de α et β(u) (u ∈ J) un reparamétrage de α. Il existe alors une fonction
h : I → J telle que h′(t) > 0 et α(t) = β(h(t)). On a donc u = h(t).
On sait que Vα(t) = Vβ(u)h′(t), par conséquent

Tα(t) =
1

Vα(t)

dα

dt
=

1

Vα(t)

dβ(h(t))

dt
=

h′(t)

Vα(t)

dβ(u)

du
=

1

Vβ(u)

dβ(u)

du
= Tβ(u) = Tβ(h(t)).

(b) Montrons maintenant que le vecteur de courbure Kα(t) est aussi une quantité géométrique : En
utilisant les relations Vα(t) = Vβ(u)h′(t) et Tα(t) = Tβ(t) avec u = h(t) on obtient

Kα(t) =
1

Vα(t)

d

dt
Tα(t) =

1

Vβ(u)h′(t)

d

dt
Tα(t) =

1

Vβ(u)

d

du
Tβ(u) = Kβ(u) = Kβ(h(t)).

Exercice 4.3. Nous avons défini le vecteur normal principal Nα et le vecteur de courbure Kα d’une
courbe birégulière α de classe C2 par

Nα =
α̈− 〈α̈,Tα〉Tα

‖α̈− 〈α̈,Tα〉Tα‖
et Kα =

1

‖α̇‖
Ṫα.

Prouver que Kα = καNα, où κα = ‖Kα‖ est la courbure de α.
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Solution 4.3. On part de la formule de l’accélération α̈ = V̇T + V 2K. On a donc

〈α̈,T〉 = V̇ 〈T,T〉+ V 2〈K,T〉 = V̇ ,

car 〈T,T〉 = 1 et 〈K,T〉 = 0. Par conséquent

α̈− 〈α̈,T〉T =
(
V̇T + V 2K

)
− V̇T = V 2K.

Ainsi ‖α̈− 〈α̈,T〉T‖ = V 2κ, et on a finalement

N =
α̈− 〈α̈,T〉T
‖α̈− 〈α̈,T〉T‖

=
K

κ
.

Exercice 4.4. Prouver que la courbe γ(t) = (cosh(t), sinh(t), t) est birégulière, puis calculer son
vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Solution 4.4. La courbe γ est birégulière car les vecteurs

γ̇(t) = (sinh(t), cosh(t), 1), et γ̈(t) = (cosh(t), sinh(t), 0),

sont linéairement indépendants pour tout t. La vitesse de γ est Vγ(t) =
√

2 cosh(t) et le vecteur unitaire
tangent est donc

Tγ(t) =
γ̇(t)

Vγ(t)
=

1√
2

(
tanh(t), 1,

1

cosh(t)

)
.

In rappelle que le vecteur de courbure est défini par

Kγ(t) =
1

Vγ(t)
Ṫγ(t).

on a donc

Ṫγ(t) =
1√
2

(
1

cosh2(t)
, 0,
− sinh(t)

cosh2(t)

)
, Kγ(t) =

1

Vγ(t)
Ṫγ(t) =

1

2 cosh3(t)
(1, 0,− sinh(t)) ,

et la courbure est
κγ(t) = ‖Kγ(t)‖ =

1

2 cosh2(t)
.

Exercice 4.5. Prouver la formule suivante qui donne la courbure d’une courbe régulière γ : I → R3

de classe C2 dans R3:
κγ(u) =

‖γ̇(u)× γ̈(u)‖
V 3
γ

.

Solution 4.5. En utilisant γ̇ = Vγ ·T et la formule de l’accélération γ̈ = V 2
γ ·K + V̇γ ·T, on obtient

γ̇ × γ̈ = (Vγ ·T)× (V 2
γ ·K + V̇γ ·T) = V 3

γ ·T×K.

On sait en outre que T ⊥ K, donc

‖γ̇(u)× γ̈(u)‖ = V 3
γ · ‖T×K‖ = V 3

γ ‖T‖‖K‖ = V 3
γ · κγ(u).
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Exercice 4.6. La développée d’une courbe birégulière α : I → Rn est la courbe β : I → Rn définie par

β(u) = α(u) +
1

κα(u)
Nαu

où ρα(u) = 1
κα(u)

est le rayon de courbure et Nαu est le vecteur normal principal. La développée d’une
courbe est donc le lieu géométrique de ses centres de courbure (= centre du cercle osculateur).

Calculer les développées des courbes suivantes:

(a) Un cercle dans Rn.

(b) Une droite dans Rn.

(c) L’hélice circulaire droite α(u) = (a cos(u), a sin(u), b u) dans R3 (on suppose a, b > 0).

(d) La cycloïde γ(t) = (r(t− sin t), r(1− cos t)) dans R2.

Prouver que la développée de l’hélice est de nouveau une hélice et que la développée de la cycloïde est
aussi une cycloïde.

Solution 4.6. (a) La développée d’un cercle dégénère en une courbe constante (c’est le centre du
cercle).

(b) La développée de la droite n’est pas définie car cette courbe n’est pas birégulière (cette question
était donc un piège, vous n’êtes bien sûr pas tombé dedans).

(c) l’hélice. Pour l’hélice α(u) = (a cos(u), a sin(u), bu) on a

α̇(u) = (−a sin(u), a cos(u), b) et α̈(u) = −a(cos(u), sin(u), 0)

Ces vecteurs sont linéairement indépendants et l’hélice est donc birégulière. Notons c = Vα =
√
a2 + b2

pour la vitesse de α (qui est constante). On a alors

T(α, u) =
1

c
(−a sin(u), a cos(u), b), K(α, u) =

1

c
Ṫ(α, u) = − a

c2
(cos(u), sin(u), 0).

La courbure est donc κ(α, u) = ‖K(α, u)‖ = a
c2
.

Le vecteur normal principal est N = 1
κK = −(cos(u), sin(u), 0), et on trouve après quelque calculs que

la développée de l’hélice est

β(u) = α(u) +
1

κ(α, u)
N =

(
−b

2

a
cos(u),−b

2

a
sin(u), bu

)
.

Il s’agit clairement d’une nouvelle hélice (de même axe que α).

(d) La cycloïde Pour la cycloïde γ(t) = (r(t− sin t), r(1− cos t)), on a γ̇(t) = (r(1− cos t), r sin t) et
γ̈(t) = (r sin t, r cos t). La vitesse est Vγ(t) = r

√
2(1− cos t) et son vecteur tangent

T(γ, t) =
1√
2

(√
1− cos t,

sin t√
1− cos t

)
Dans l’intervalle [0, π], la fonction sin t est positive, on simplifie la deuxième coordonnée en utilisant
la formule cos2 t+ sin2 t = 1

sin t√
1− cos t

=

√
1− cos2 t√
1− cos t

=

√
(1− cos t)(1 + cos t)√

1− cos t
=
√

1 + cos t
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Donc
T(γ, t) =

1√
2

(√
1− cos t,

√
1 + cos t

)
Nous avons besoin du vecteur courbure et de la courbure pour calculer le centre du cercle osculateur.
La courbure est définie par

K(γ, t) =
1

Vγ(t)

d

dt
T(γ, t)

On calcule donc
d

dt
T(γ, t) =

1

2
√

2

(
sin t√

1− cos t
,
− sin t√
1 + cos t

)
On obtient un vecteur courbure

K(γ, t) =
1

4r(1− cos t)
(sin t, cos t− 1)

où l’on a substitué sin t =
√

1− cos2 t dans la deuxième composante. Ainsi la courbure est déterminée
par

κ2(γ, t) = ‖K(γ, t)‖2 =
1

8r2(1− cos t)

Finalement la développée est

γ̃(t) = γ(t) +
1

κ2(γ, t)
·K(γ, t) = (r(t+ sin t), r(cos t− 1))

Qui est une nouvelle cycloïde (translatée).

Exercice 4.7. Sans faire aucun calcul, dessiner (approximativement) une ellipse et sa développée.
Expliquer votre raisonnement.

Solution 4.7. Par symétrie, on peut se restreindre à décrire la développée d’un quart d’ellipse. A
l’intersection de l’ellipse avec ses axes se trouvent les points de courbures minimales et maximales. Ces
points sont des points de rebroussement de la développée.

Figure 1: Ellipse et sa développée

On appelle triangle sphérique la donnée de trois points A,B,C sur une sphère S, avec les arcs de
grand-cercles a (reliant B et C), b (qui relie A et C) et c (qui relie A et B). Ces arcs de grand-cercles
sont les côtés du triangle sphérique. On note α l’angle formé par les arcs b et c au point A, de même
on note β l’angle en B et γ l’angle en C.
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Rappelons qu’on appelle grand-cercle sur une sphère, un cercle formé par l’intersection de cette sphère avec
un plan passant par le centre de la sphère. Les autres cercles tracés sur la sphère sont les petit-cercles. Deux
points sur une sphère sont toujours reliés par deux arcs de grand-cercles; dans la détermination d’un triangle
sphérique, on ne considère que le plus petit de ces deux arcs.

Exercice 4.8. Par abus de notations, nous notons aussi par a, b, et c les longueurs des côtés du
triangle sphérique. Démontrer la formule de trigonométrie sphérique suivante:

cos
( c
r

)
= cos

(a
r

)
cos

(
b

r

)
+ sin

(a
r

)
sin

(
b

r

)
cos(γ),

où r est le rayon de la sphère.

Solution 4.8. Nous présentons deux solutions de cet exercice. La première méthode utilise le produit
vectoriel et en particulier l’identité de Lagrange, qui dit que pour quatre vecteurs a,b, c,d ∈ R3 on a
〈a× b, c× d〉 = 〈a, c〉 〈b,d〉 − 〈a,d〉 〈b, c〉 (voir exercice 2.1)

On suppose d’abord que la sphère est centrée en l’origine de R3 et de rayon r = 1. Les points A, B
et C sont alors des vecteurs unitaires de R3. L’angle γ entre les côtés a et b du triangle sphérique est
aussi l’angle entre les plans OAC et OBC (voir la figure). Mais l’angle entre deux plans de R3 est
aussi l’angle entre les vecteurs normaux à ces plans, par conséquent on a

γ = l’angle entre C ×A et C ×B.

Donc
cos(γ) =

〈C ×A,C ×B〉
‖C ×A‖‖C ×B‖

.

On utilise maintenant l’identité de Lagrange, qui entraîne que

〈C ×A,C ×B〉 = 〈C,C〉〈A,B〉 − 〈C,B〉〈C,A〉 = cos(c)− cos(a) cos(b),

et d’autre part on a ‖C ×A‖ = sin(b) et ‖C ×A‖ = sin(a). Nous concluons donc que

cos(γ) =
cos(c)− cos(a) cos(b)

sin(b) sin(a)

qui est l’égalité voulue dans le cas où r = 1. Dans le cas général, il suffit de faire une homothétie de
la sphère de rapport 1/r.

Autre solution On peut aussi raisonner de la façon suivante. On suppose toujours que r = 1 et on note
U le vecteur unitaire dans le plan OAC, orthogonal à C et tel que

A = cos(b)C + sin(b)U.
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On note aussi V le vecteur unitaire dans le plan OBC, orthogonal à C et tel que

B = cos(a)C + sin(a)V.

Alors γ est l’angle entre U et V et on a donc cos(γ) = 〈U, V 〉. En utilisant que 〈C,U〉 = 〈C, V 〉 = 0,
on a alors

cos(c) = 〈A,B〉
= 〈(cos(b)C + sin(b)U), (cos(a)C + sin(a)V )〉
= cos(b) cos(a)〈C,C〉+ sin(b) sin(a)〈U, V 〉
= cos(a) cos(b) + sin(a) sin(b) cos(γ)

Exercice 4.9. La distance sphérique dS(A,B) entre deux points A et B sur une sphère S est par
définition la longueur de l’arc de grand cercle reliant ces deux points.

Montrer à partir de la trigonométrie sphérique que dS vérifie bien toutes les propriétés d’une distance.

Solution 4.9. La seule condition non banale à vérifier est l’inégalité du triangle

dS(A,B) ≤ dS(A,C) + dS(C,B).

Avec les notation de l’exercice 1.8, on doit montrer que c ≤ a + b. On suppose pour simplifier que S
est une sphère de rayon 1, alors on a a ∈ [0, π], donc sin(a) ≥ 0. De même sin(b) ≥ 0; par conséquent

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ)

≥ cos(a) cos(b)− sin(a) sin(b)

= cos(a+ b).

Mais le cosinus est une fonction décroissante sur l’intervalle [0, π], donc le calcul précédent nous dit
que c ≤ a+ b.

Remarque. Le raisonnement montre aussi que l’inégalité du triangle est une égalité si et seulement si
cos(γ) = −1, c’est-à-dire lorsque γ = π. C’est le cas lorsque le point C est situé sur l’arc de grand
cercle reliant A à B (et donc le triangle sphérique est dégénéré en un segment).

B. Exercice complémentaire (ne fera pas partie du champ de l’examen).

Exercice 4.10. Le but de cet exercice est de montrer qu’on peut (re)définir la longueur d’une courbe
de classe C1 par un processus d’“approximations polygonales”.
Soit γ : [a, b]→ Rn une courbe de classe C1, et soit σ = [t0 = a < t1 < · · · < tm = b] une subdivision
de l’intervalle [a, b]. On note

L(γ) = sup
σ

m−1∑
i=0

d(γ(ti), γ(ti+1)),

où le suprémum est pris sur toutes les subdivisions de [a, b] et d(p, q) = ‖q − p‖.

(a) Faire un dessin et expliquer brièvement la signification de cette formule.

(b) Montrer que pour tout courbe C1 on a L(γ) ≤ `(γ), où `(γ) est la longueur de γ telle que définie
dans le cours.
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(c) Prouver l’inégalité inverse `(γ) ≤ L(γ).
(Indication : Utiliser que γ̇ est uniformément continue et montrer que pour tout ε > 0 on peut
trouver une subdivision suffisamment fine de [a, b] telle que `(γ) ≤

∑m−1
i=1 d(γ(ti), γ(ti+1)) + 2ε(b−

a)).

Solution 4.10. (a) L’idée de cette formule est de (re)définir la longueur d’une courbe par approxima-
tion polygonale. On admet que la longueur d’une courbe polygonale est la somme des distances de ces
sommets et on approxime une courbe qulconque par une courbe polygonale.

•

•

•

•

•

•

•

•

•

•

•

(b) On a vu au cours que la longueur d’une courbe C1 reliant deux points de Rn est plus grande ou
égale à la distance euclidienne entre ces deux points. En particulier on a pour tous a ≤ t0 < t1 ≤ b:

d(γ(t′), γ(t′′)) ≤
∫ t′′

t′
Vγ(t)dt

Donc si σ = [t0 = a < t1 < · · · < tm = b] est une une subdivision de l’intervalle [a, b], on a

m−1∑
i=0

d(γ(ti), γ(ti+1)) ≤
m−1∑
i=0

∫ ti+1

ti

Vγ(t)dt =

∫ b

a
Vγ(t)dt = `(γ).

En prenant le suprémum sur l’ensemble des subdivisions, on obtient L(γ) ≤ `(γ).

d(γ(t′), γ(t′′)) ≤
∫ t′′

t′
‖γ̇(t)‖dt

Donc si σ = [t0 = a < t1 < · · · < tm = b] est une une subdivision de l’intervalle [a, b], alors

m−1∑
i=0

d(γ(ti), γ(ti+1)) ≤
∫ ti+1

ti

‖γ̇(t)‖dt =

∫ b

a
‖γ̇(t)‖dt = `(γ).

En prenant le suprémum on a L(γ) ≤ `(γ).
(c) Comme γ̇ est supposée uniformément continue sur [a, b], on sait que pour tout ε > 0 il existe δ > 0
tel que ‖γ̇(s) − γ̇(t)‖ < ε si |s − t| < δ. En particulier, si σ = [t0, ..., tn] une subdivision de [a, b]
vérifiant ∆ti = (ti+1 − ti) < δ pour tout i, alors on a ‖γ̇(t)‖ ≤ ‖γ̇(ti)‖ + ε pour tout ti−1 < t ≤ ti.
Par conséquent :∫ ti+1

ti

‖γ̇(t)‖ dt ≤ ‖γ̇(ti)‖∆ti + ε∆ti

=

∥∥∥∥∫ ti+1

ti

γ̇(ti) dt

∥∥∥∥+ ε ·∆ti

=

∥∥∥∥∫ ti+1

ti

γ̇(t) dt+

∫ ti+1

ti

(γ̇(ti)− γ̇(t)) dt

∥∥∥∥+ ε ·∆ti

≤
∥∥∥∥∫ ti+1

ti

γ̇(t) dt

∥∥∥∥+

∥∥∥∥∫ ti+1

ti

(γ̇(ti)− γ̇(t)) dt

∥∥∥∥+ ε ·∆ti

≤ ‖γ(ti)− γ(ti−1)‖+ 2 · ε ·∆ti
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En additionnant ces inégalités, on obtient pour tout ε > 0

`(γ) =

∫ b

a
‖γ̇(t)‖ dt =

m−1∑
i=0

‖γ(ti)− γ(ti−1)‖+ 2 · ε∆ti ≤ L(γ) + 2ε(b− a),

et donc `(γ) ≤ L(γ).

Remarque générale sur la longueur des courbes.

Les exercices précédents montrent que si γ : [a, b]→ Rn est une courbe de classe C1, alors L(γ) = `(γ),
c’est-à-dire

sup
σ

m∑
i=0

‖γ(ti+1)− γ(ti)‖ =

∫ b

a
‖γ̇(t)‖dt.

Il est clair que cette formule est encore vraie pour une courbe de classe C1 par morceaux. Henri
Lebesgue s’était posé la question suivante dans sa thèse dont le titre est Intégrale, Longueur, Aire
(soutenue en 1902) : Pour quelle classe de courbes

γ(t) = (x1(t), . . . , xn(t)), (a ≤ t ≤ b)

la plus générale possible, a-t-on L(γ) <∞ et L(γ) = `(γ) ?
Et il a formulé les réponses suivantes :

(i) La courbe γ est rectifiable (i.e. L(γ) < ∞) si et seulement si toutes les fonctions t 7→ xi(t) sont
à variation bornée.

(ii) On a l’égalité `(γ) = L(γ) <∞ si et seulement si toutes les fonctions t 7→ xi(t) sont absolument
continues.

Les notions de fonctions à variation bornée et absolument continues sont définies dans les bons livres
d’analyse réelle (par exemple l’excellent livre de Kolmogorov-Fomin). Faisons juste les remarques
suivantes :

(a) Toute fonction à variation bornée admet une dérivée presque partout.

(b) Toute fonction absolument continue est à variation bornée.

(c) Inversement il existe des fonctions à variation bornée qui ne sont pas absolument continues.

(d) Toute fonction lipschitzienne est absolument continue.

Soulignons pour finir qu’il existe des courbes rectifiables pour lesquelles `(γ) < L(γ). Un exemple est
donné par le graphe de la fonction de Cantor-Vitalli (parfois appelé escalier du diable).
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Figure 2: Une approximation de la fonction de Cantor-Vitalli
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