EPFL - Automne 2024 M. Troyanov “PEL
MATH 213: Géomeétrie Différentielle Solution Exercices
Série 4 12.12.2024

A. Exercices standards.

Exercice 4.1. Si a et b sont des vecteurs de R3 et a # 0, on dit que le vecteur ¢ € R3 est la composante
normale de b € R3 selon a € R3 si ¢ L a et il existe A € R tel que b = A\a + c. Montrer que cette
composante normal peut s’écrire

(axb)xa
C=TaE
[[all
Solution 4.1. Définissons le vecteur ¢ par la formule ¢ = %. Il est clair par les propriétés

connues du produit vectoriel que ¢ L a, Il reste donc simplement a montrer que ¢ — b est un multiple
de a.

Par la premiére identité de Grassmann on a

(axb)xa (a,a)b (a,b)a
c = = — =b — )a
a]]? la]l? lal?

(a,b)
lal|?

avec A =

Exercice 4.2. Démontrer que le vecteur (unitaire) tangent et le vecteur de courbure d’une courbe
réguliére de classe C? sont des notions géométriques, i.e. ces champs de vecteurs sont invariants par
reparamétrisation directe.

Solution 4.2. (a) Il est intuitivement évident que T, est une quantité géométrique puisque c’est
vecteur unitaire indiquant la direction de la courbe. Voyons tout de méme une preuve formelle : Soit
a(t) (t € I) une paramétrage de a et B(u) (u € J) un reparamétrage de «. Il existe alors une fonction
h:I— J telle que '(t) > 0 et a(t) = B(h(t)). On a donc u = h(t).
On sait que Vo (t) = Vg(u)h'(t), par conséquent

1 da 1 dB(h(t))  A(t) dB(u) 1 dB(u)

T =V @~ @~ Valt) du Vi) du vl = Talhlt).

(b) Montrons maintenant que le vecteur de courbure K, (t) est aussi une quantité géométrique : En
utilisant les relations V,(t) = Va(u)h/(t) et Tq(t) = Ts(t) avec u = h(t) on obtient

1 d 1 d 1 d

Vo O = Vmm e = vy a0 = K = Kalhlo)

Ko (1) =

Exercice 4.3. Nous avons défini le vecteur normal principal N, et le vecteur de courbure K, d’une
courbe biréguliére o de classe C? par

S 6 TOT 1
N, = a <057 a> = et K, =+—T,.
[t = (&, Tq) Ta|l ]
Prouver que K, = koN, ol £, = [|[Kq| est la courbure de a.



Solution 4.3. On part de la formule de laccélération & = VT 4+ VZK. On a donc
(@ T)=V(T,T) + V*(K,T) =V,
car (T, T) =1 et (K, T) = 0. Par conséquent
& — (&, T)T = (VT + V2K> _ VT = VK.

Ainsi ||& — (&, T)T|| = V2k, et on a finalement

N — a—(a, T)T
I — (&, T)T|  »
Exercice 4.4. Prouver que la courbe 7(t) = (cosh(t),sinh(t),t) est biréguliére, puis calculer son

vecteur de courbure et sa courbure (la courbure est la norme du vecteur de courbure).

Solution 4.4. La courbe « est biréguliére car les vecteurs
4(t) = (sinh(t),cosh(t),1), et #(t) = (cosh(t),sinh(t),0),

sont linéairement indépendants pour tout t. La vitesse de v est V;(t) = v/2 cosh(t) et le vecteur unitaire

tangent est donc ®
A(t 1 1
0= i = v (0 i )

1 .
KW’(t) - V,y(t) T’Y<t)
on a donc
) 1 1 — sinh(t) R S _sin
0= 75 (g O i) 0 = ™0 = g (00,
et la courbure est 1
Fiy () = 1K (0] = Ycosh2 (1)’

Exercice 4.5. Prouver la formule suivante qui donne la courbure d’une courbe réguliére v : I — R3

de classe C? dans R3:

o) = DA,

Solution 4.5. En utilisant 7 = V,, - T et la formule de 'accélération 4 = Vf K+ ny -'T, on obtient
Yxq =V T)x (VZ-K+V,-T)=V> TxK.
On sait en outre que T 1 K, donc

1 (u) > A(u)ll = V- |T > K[| = VT K] = V5 5y (u).




Exercice 4.6. La développée d’'une courbe biréguliére o : I — R"™ est la courbe 3 : I — R"™ définie par

ol po(u) = Kal(u)

courbe est donc le lieu géométrique de ses centres de courbure (= centre du cercle osculateur).

est le rayon de courbure et N, est le vecteur normal principal. La développée d’une

Calculer les développées des courbes suivantes:

a) Un cercle dans R™.

(a)

(b) Une droite dans R™.

(c) L’hélice circulaire droite a(u) = (acos(u),asin(u),bu) dans R3 (on suppose a,b > 0).
(d) La cycloide (t) = (r(t — sint), (1 — cost)) dans R2.

Prouver que la développée de I’hélice est de nouveau une hélice et que la développée de la cycloide est
aussi une cycloide.

Solution 4.6. (a) La développée d'un cercle dégénére en une courbe constante (c’est le centre du
cercle).

(b) La développée de la droite n’est pas définie car cette courbe n’est pas biréguliére (cette question
était donc un piége, vous n’étes bien stir pas tombé dedans).

(c) I’hélice. Pour 'hélice a(u) = (acos(u),asin(u),bu) on a
a(u) = (—asin(u),acos(u),b) et &(u) = —a(cos(u),sin(u),0)

Ces vecteurs sont linéairement indépendants et I’hélice est donc biréguliére. Notons ¢ = V, = Va? + b2
pour la vitesse de « (qui est constante). On a alors

1 1.
T(a,u) = = (—asin(u), acos(u),b), K(a,u) = -T(a,u) = —%(cos(u),sin(u),O).

c c c
La courbure est donc (o, u) = [|[K(a,u)|| = %.
Le vecteur normal principal est N = %K = —(cos(u),sin(u),0), et on trouve aprés quelque calculs que
la développée de I'hélice est

8 = au) + ———N = (~Z cos(w). - sin(u).b
u) = a(u) + —N = [ —— cos(u), —— sin(u), bu | .
k(o u) a " a ’

Il s’agit clairement d’une nouvelle hélice (de méme axe que «).

(d) La cycloide Pour la cycloide ~(t) = (r(t — sint),r(1 — cost)), on a ¥(t) = (r(1 — cost), rsint) et
4(t) = (rsint,rcost). La vitesse est V,(t) = ry/2(1 — cost) et son vecteur tangent

1 sint
T(’Y,t) :ﬁ 1—COSt,\/ﬁ

Dans l'intervalle [0, 7], la fonction sint¢ est positive, on simplifie la deuxiéme coordonnée en utilisant
la formule cos?t + sin®t = 1

sint V1—cos?t /(1 —cost)(l + cost)
= = =+ 1+ cost
V1 —cost +/1—cost V1 —cost




Donc

T(vy,t) = 1 (V1 —cost,v1+ cost)

V2

Nous avons besoin du vecteur courbure et de la courbure pour calculer le centre du cercle osculateur.

La courbure est définie par
1

RN AT

d
Syt
o (7,1)

On calcule donc

dT( P = 1 < sint —sint >
at ©2v2 \WV1 —cost v/1+cost

On obtient un vecteur courbure

K(v,t) = (sint,cost — 1)

4r(1 — cost)
ot I'on a substitué sint = /1 — cos? t dans la deuxiéme composante. Ainsi la courbure est déterminée

par
1

2 2
vt) = ||K(v, )| = =————
(1) = K ) 8r2(1 — cost)

Finalement la développée est

F(t) = y(t) + -K(v,t) = (r(t +sint),r(cost — 1))

K2(7, 1)

Qui est une nouvelle cycloide (translatée).

Exercice 4.7. Sans faire aucun calcul, dessiner (approximativement) une ellipse et sa développée.
Expliquer votre raisonnement.

Solution 4.7. Par symétrie, on peut se restreindre & décrire la développée d'un quart d’ellipse. A
I'intersection de ’ellipse avec ses axes se trouvent les points de courbures minimales et maximales. Ces
points sont des points de rebroussement de la développée.

Figure 1: Ellipse et sa développée

On appelle triangle sphérique la donnée de trois points A, B,C sur une sphére S, avec les arcs de
grand-cercles a (reliant B et C), b (qui relie A et C) et ¢ (qui relie A et B). Ces arcs de grand-cercles
sont les cotés du triangle sphérique. On note « 'angle formé par les arcs b et ¢ au point A, de méme
on note [ 'angle en B et v 'angle en C.



Rappelons qu’on appelle grand-cercle sur une spheére, un cercle formé par 'intersection de cette sphére avec
un plan passant par le centre de la sphére. Les autres cercles tracés sur la sphére sont les petit-cercles. Deux
points sur une sphére sont toujours reliés par deux arcs de grand-cercles; dans la détermination d’un triangle
sphérique, on ne considére que le plus petit de ces deux arcs.

Exercice 4.8. Par abus de notations, nous notons aussi par a, b, et ¢ les longueurs des cotés du
triangle sphérique. Démontrer la formule de trigonométrie sphérique suivante:

cos (£) = cos () cos (2 sin (£ sin () osto).

ou r est le rayon de la sphére.

Solution 4.8. Nous présentons deux solutions de cet exercice. La premiére méthode utilise le produit
vectoriel et en particulier l’identité de Lagrange, qui dit que pour quatre vecteurs a,b,c,d € R3 on a
(axb,cxd)=(a,c)(b,d) — (a,d) (b,c) (voir exercice 2.1)

On suppose d’abord que la sphére est centrée en l'origine de R? et de rayon r = 1. Les points A, B
et C sont alors des vecteurs unitaires de R3. L’angle v entre les cotés a et b du triangle sphérique est
aussi 'angle entre les plans OAC et OBC (voir la figure). Mais I'angle entre deux plans de R? est
aussi l’angle entre les vecteurs normaux & ces plans, par conséquent on a

~v = l'angle entre C' x A et C x B.

Donc
(C x A, C x B)

e < AJlle x BII

On utilise maintenant I'identité de Lagrange, qui entraine que

cos(7)

(Cx A,Cx B)=(C,C)(A,B) — (C,B)(C, A) = cos(c) — cos(a) cos(b),
et d’autre part on a |[|C x A|| =sin(b) et ||C x A|| = sin(a). Nous concluons donc que

cos(c) — cos(a) cos(b)

sin(b) sin(a)

cos(7) =

qui est ’égalité voulue dans le cas ou r = 1. Dans le cas général, il suffit de faire une homothétie de
la sphére de rapport 1/r.

Autre solution On peut aussi raisonner de la facon suivante. On suppose toujours que » = 1 et on note
U le vecteur unitaire dans le plan OAC, orthogonal & C' et tel que

A = cos(b)C +sin(b)U.



On note aussi V' le vecteur unitaire dans le plan OBC', orthogonal a C' et tel que
B = cos(a)C + sin(a)V.

Alors v est 'angle entre U et V et on a donc cos(y) = (U, V). En utilisant que (C,U) = (C,V) =
on a alors

cos(c) = (A, B)
— {(cos(b)C + sin(b)U), (cos(@)C +sin(a)V))
= cos(b) cos(a)(C, C) + sin(b) sin(a)(U, V)
) )

= cos(a) cos(b) + sin(a) sin(b) cos(7y)

Exercice 4.9. La distance sphérique dg(A, B) entre deux points A et B sur une sphére S est par
définition la longueur de I'arc de grand cercle reliant ces deux points.

Montrer & partir de la trigonométrie sphérique que dg vérifie bien toutes les propriétés d’une distance.

Solution 4.9. La seule condition non banale & vérifier est 'inégalité du triangle
dS(A7 B) < dS(A7 C) + dS(C7 B)

Avec les notation de I'exercice 1.8, on doit montrer que ¢ < a + b. On suppose pour simplifier que S
est une sphére de rayon 1, alors on a a € [0, 7], donc sin(a) > 0. De méme sin(b) > 0; par conséquent

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(7y)
> cos(a) cos(b) — sin(a) sin(b)
= cos(a + b).

Mais le cosinus est une fonction décroissante sur l'intervalle [0, 7], donc le calcul précédent nous dit
que c < a+b.

Remarque. Le raisonnement montre aussi que l'inégalité du triangle est une égalité si et seulement si
cos(y) = —1, c’est-a-dire lorsque v = 7. C’est le cas lorsque le point C' est situé sur l'arc de grand
cercle reliant A & B (et donc le triangle sphérique est dégénéré en un segment).

B. Exercice complémentaire (ne fera pas partie du champ de ’examen).

Exercice 4.10. Le but de cet exercice est de montrer qu’on peut (re)définir la longueur d’une courbe
de classe C! par un processus d*“approximations polygonales”.

Soit v : [a,b] — R™ une courbe de classe O, et soit 0 = [tg = a < t; < -+- < t,,, = b] une subdivision
de l'intervalle [a, b]. On note

m—1
L(y)=sup Y _ d(v(t:),1(ti41)),
7 =0
ot le suprémum est pris sur toutes les subdivisions de [a, b] et d(p, q) = ||qg — p||-

(a) Faire un dessin et expliquer briévement la signification de cette formule.

(b) Montrer que pour tout courbe C* on a L(y) < £(v), ot £() est la longueur de « telle que définie
dans le cours.



(c) Prouver l'inégalité inverse ¢(7) < L(7).
(Indication : Utiliser que ¥ est uniformément continue et montrer que pour tout € > 0 on peut
trouver une subdivision suffisamment fine de [a, b] telle que £(y) < 377 Ld(y(ts), Y (tig1)) + 2e(b—

a)).

Solution 4.10. (a) L’idée de cette formule est de (re)définir la longueur d’une courbe par approxima-
tion polygonale. On admet que la longueur d’une courbe polygonale est la somme des distances de ces
sommets et on approxime une courbe qulconque par une courbe polygonale.

<N

(b) On a vu au cours que la longueur d'une courbe C' reliant deux points de R"™ est plus grande ou

egale a la distance euclidienne entre ces deux points. En particulier on a pour tous a <ty < t; < b:
t//

A < [ Vi

t/

Doncsi o = [tg =a < t1 < --- <ty = b] est une une subdivision de I'intervalle [a,b], on a

d(y(t:), (tis1)) Z/ZH /abVW(t)dt:E(fy).

En prenant le suprémum sur ’ensemble des subdivisions, on obtient L(7y) < £(7).

m—1

=0

Ay (#), (")) < / )ldt

Doncsio=[tgp =a <t <--- <ty = b| est une une subdivision de l'intervalle [a, b], alors

m—1 tit1 b
> et < [ = [Tl = o)

i=

En prenant le suprémum on a L(vy) < £(v).

(c) Comme % est supposée uniformément continue sur [a, b], on sait que pour tout £ > 0 il existe § > 0
tel que ||¥(s) —A(t)|| < € si |s —t] < 0. En particulier, si ¢ = [to, ..., t,] une subdivision de [a,b]
vérifiant At; = (ti+1 — t;) < d pour tout 4, alors on a ||¥(t)]| < ||[¥(t;)|| + € pour tout t;—1 < t < ¢;.
Par conséquent :

tit1
[ ol < 1 + <o
ti

tit1
= / ’y(tl)dtH +€‘Ati
t;

-1/ T mars / e =300 at +e-

tit1 Lit1

<| [ s« | [ G - a0 a] e an
t ti

<|v(ti) = v(tic) || +2- - Aty



En additionnant ces inégalités, on obtient pour tout € > 0

b m—1
() = / 5@t = [ly(t:) = y(ti0)ll + 2 - eAt; < L(y) + 22(b — a),
@ i=0

et donc £(vy) < L(7).

Remarque générale sur la longueur des courbes.

Les exercices précédents montrent que si v : [a,b] — R” est une courbe de classe C*, alors L(7y) = £(7),
c’est-a-dire

m b
up Y I ti) =20l = [ IOl
7 =0 a

Il est clair que cette formule est encore vraie pour une courbe de classe C'' par morceaux. Henri
Lebesgue s’était posé la question suivante dans sa thése dont le titre est Intégrale, Longueur, Aire
(soutenue en 1902) : Pour quelle classe de courbes

Y(t) = (x1(t), ..., zn(t)), (a <t<b)

la plus générale possible, a-t-on L(y) < oo et L(y) = £(y) ¢

Et il a formulé les réponses suivantes :

(i) La courbe v est rectifiable (i.e. L(7y) < c0) si et seulement si toutes les fonctions ¢ — x;(t) sont
& variation bornée.

(ii) On a l'égalité £(y) = L(7y) < oo si et seulement si toutes les fonctions ¢ — z;(t) sont absolument
continues.

Les notions de fonctions a variation bornée et absolument continues sont définies dans les bons livres
d’analyse réelle (par exemple l'excellent livre de Kolmogorov-Fomin). Faisons juste les remarques
suivantes :

a) Toute fonction & variation bornée admet une dérivée presque partout.

(a)
(b) Toute fonction absolument continue est & variation bornée.
(¢) Inversement il existe des fonctions & variation bornée qui ne sont pas absolument continues.
(d) Toute fonction lipschitzienne est absolument continue.

Soulignons pour finir qu’il existe des courbes rectifiables pour lesquelles ¢(y) < L(y). Un exemple est
donné par le graphe de la fonction de Cantor-Vitalli (parfois appelé escalier du diable).
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Figure 2: Une approximation de la fonction de Cantor-Vitalli



