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MATH 213: Géomeétrie Différentielle Solution Exercices
Série 3 27.09.2024

Dans cette série on on avance avec la théorie des courbes (abscisse curviligne, paramétrage naturel).
Enfin on approfondit quelques points subtils liés & la notion de longueur.

Exercice 3.1. Exprimer la longueur de ’ellipse z—z + :Z—; = 1 sous forme d’une intégrale (ne pas essayer
de calculer cette intégrale, qui ressort de la théorie des fonctions elliptiques).

Solution 3.1. L’ellipse se paramétrise simplement par (x(t),y(t)) = (acos(t),bsin(t)). En supposant

0 < b < a, sa longueur est

2 27
L= VaZsin(t)2 + b2 cos(t)2dt = a V1 — k2 cos(t)2dt

0 0

ol k = 4/1— Z—z. Cette intégrale s’appelle une intégrale elliptique de deuziéme espéce (et k est le
module).

5 4 . . . 2
Remarquer qu’on peut également paramétrer la demi-ellipse comme un graphe y = f(z) = by/1 — %.
On peut donc aussi calculer la longueur de la demi-ellipse par 'intégrale suivante :

1 @ a  [42 _ k242
§L = \V 1 + f’(x)zdx = ﬁdl;
=—a —a a” =

En posant a = 1, on obtient ainsi ’égalité :

T 1 1 — k242
/ 1 — k2 cos(t)dt = / %dm,
0 -1 1—=x

valable pour tout k& € [0,1]. Ce sont les deux écritures habituelles pour les intégrales elliptiques de
deuxiéme espéce.

Exercice 3.2. (a) Calculer I’abscisse curviligne de la courbe
7(t) = (cosh(t), sinh(t), t),

depuis le points initial g = 0.

(b) Trouver ensuite le paramétrage naturel avec le méme point initial.

Solution 3.2. (a) Le vecteur vitesse de «y est 4(t) = (sinh(¢), cosh(t),1). La vitesse est donc

V,y(t) = \/1 + sinh?(t) 4 cosh?(t) = V2 cosh(t).

L’abscisse curviligne depuis le points initial £5 = 0 est donc

t —t

s(t) = /0 V. (u)du = v/2 /O cosh(u)du = v/2sinh(t) = %

(b) Pour trouver le paramétrage naturel on commence par calculer ¢ en fonction de s :

t = arsinh <\;§> — log (\2 + m> .
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puis on exprime les coordoonées x, ¥, z en fonction de s :

52 s s 52
x = cosh(t) = \/1 +sinh?(t) = /1 + =, = sinh(t) = —, z=t=log| —=+1/1+—|.
()= VL tsinb?() = /14 5. y=sinh(t) = 5> 5| 5 .

Ce qui nous donne

s2 s s 52

Exercice 3.3. L’astroide est la courbe plane d’équation
2 2
2l +Jyl = 1.
(a) Dessiner I’astroide.

(b) Trouver une paramétrisation de I’astroide

c¢) Calculer la longueur d’un cycle de ’astroide.

(
(d) Chercher tous les points singuliers.

)
)
)
)
(e) Calculer I’abscisse curviligne avec avec point initial en (1,0).
(f)

Trouver le paramétrage naturel avec le méme point initial.

Solution 3.3. (a) Observer que l'arc de I’astroide contenu dans le cadran {x > 0, y > 0} est le graphe
de la fonction f : [0,1] — [0,1] définie par y = f(z) = (1 — x2/3)3/2. Ce graphe se représente
sans difficulté. Les autres arcs de l'astroides s’obtiennent par symétries & travers les axes de
coordonnées.

(b) En posant § = {/x et n = &y, I'équation devient €2 +n? =1, qui est le cercle unité, que 1'on peut
paramétriser par £ = cos(u), n = sin(u). L’astroide admet donc la forme paramétrique suivante :

a(u) = (cos®(u),sin®(u)), (0 <u < 2m).
(c) Nous considérons la vitesse

3
Va(u) = ||a(u)|] = 3| cosusinu| = 5\ sin 2u,



et nous calculons la longueur d’un cycle de ’astroide :

2 2 4
3 3 dt

Or |sint| est périodique de période 7 et sint = |sint| pour ¢ € [0, 7], d’ou

4m i
/ \sint\dt:4/ sintdt =8 .
0 0

3 4m
L:/ |sint| dt =6 .
4 0

Au total,

(d) Les singularités de a sont les points ot Vo (u) = 0. Ils se situent en u = k% ot k € Z. Ainsi les
points singuliers sont {(1,0), (0,1),(—1,0), (0, —1)}.

(e) Nous nous contentons de trouver 'abscisse curviligne entre deux singularités (en 'occurrence 0 et
% car le point initial est «(0)). Soit u € [0, §]. Alors,

s(u):/ Hd(t)]dt:?)/ ]sin27|dT:3/ sin27d72§(1—(:082u):ésin2(u)
) 2 /s 2 Jo 4 2

car |sin 27| = sin27 pour 0 < 7 < 7.

(f) Pour trouver la paramétrisation naturelle, on observe que la relation s(u) = 2 sin®(u) est équiva-

lente & sin®(u) = (%8)3/2. On a donc cos®(u) = (1 — %8)3/2 et donc

a(s) = a(u(s)) = (cos(u), sin®(u)), = ((1 - §5> v (§s> 3/2> .

Remarque. On peut définir I'abscisse curviligne pour toute l'astroide, elle sera définie par
morceaux et périodiquement; mais par contre, il n’existe pas de paramétrage naturel C' global de
I’astroide en raison des singularités.

Exercice 3.4. (a) Notons (z,y) les coordonnées cartésiennes de R%. Rappeler la définition précise des
cordonnées polaires (r,0), en précisant leur domaine de définition.

(b) Ecrire 1’équation générale d’une droite en cordonnées polaires, puis I’équation d’un cercle de rayon
a et de centre ¢ = (r¢, 6p).

(c) Soit y(t) = (r(t),0(t)) une courbe de classe C! écrite en coordonnées polaires. Trouver et prouver
une formule donnant sa longueur dans ces coordonnées.

(d) La spirale logarithmique est la courbe plane d’équation polaire r» = ¢?. Utiliser la formule précédente
pour calculer la longueur d’un cycle de cette spirale défini par 0 < # < 2w. Donner ensuite le
paramétrage naturel avec le point (1,0) comme point initial.

Solution 3.4. (a) Précisons d’abord qu'un systéme de coordonnées (de classe C*¥) dans un ouvert
U C R"” est la donnée de n fonctions yi, ...,y : U — R telles que 'application F' : U — R” définie par
F(z) = (y1(z), ..., yn(x)) est un diffeomorphisme de classe C* de U vers F(U). De fagon équivalente,
il suffit que F' soit injective, que les fonctions y; : U — R soient de classe C* et que le jacobien ne
s’annule pas:

oy’
oxJ

Jr(z) = det(DFy) = det ( (x)) #0, Vzxel.
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Le systéme de coordonnées polaires dans le plan R? correspond aux fonctions r = r(z,y), 0 = 6(z,y),
de classe C*°, définies sur le domaine

U=R*\{(z,y) € R? |z € (~00,0], y = 0}}

a valeurs dans (0, 00) X (—m, 7) définies par

arccos L siy>0
2 2 -
T:‘/$2+y2, 6 = V T4ty
— arccos L siy <O0.

C’est un difféeomorphisme dont I'inverse est donné par
x =rcos(f), y = rsin(d).

Remarques. e Il est fréquent de définir la fonction 6(z,y) par la formule § = arctan(y/x). Cette formule est
correcte, mais elle nous impose de ne définir les coordonnées polaires que dans le demi-plan U’ = {(z,y) € R? |
x > 0} et dans ce cas 'angle est restreint a l'intervalle —3 <6 < 7.

e Une autre approche, peut-étre la plus élégante, consiste a considérer la variable # modulo 27, i.e. comme
élément de R/27Z. Les coordonnées polaires définissent alors un diffeomorphisme entre R? \ {(0,0)} et le
cylindre R/27Z x (0, 00).

(b) L’équation générale d’une droite s’écrit alors en coordonnées polaires:
ax + by + ¢ = ar cos(f) + brsin(f) + ¢ = 0.

Noter que par exemple une droite verticale est d’équation 7 cos(6) + ¢ = 0 et une droite horizontale
admet 1’équation rsin(f) + ¢ = 0.

L’équation cartésienne générale d’un cercle est du type z2 + y? +ax + by + ¢ = 0, soumis a la condition
a® + b% > 4c (réfléchir pourquoi). Cela donne en cordonnées polaires :

% 4 ar cos(0) + brsin(6) + ¢ = 0.

(c) Si une courbe paramétrée est données en coordonnées polaires par a : t — (r(t),0(t))), alors sa
vitesse est

2

2
Valt) = Va2 + 92 = \/<jt(r(t) cos(e(t)))> + (jt(r(t) sin(@(t)))) = \/72 + (rf)?

La longueur d’'un arc de la courbe « est donc en corrodonnées polaire par
t1 N
(= / \/ 72 + (rf)2dt.
to

Remarque Une courbe en coordonnées polaires est souvent données par une relation du type r =

f(0). Dans ce cas on peut utiliser # comme paramétre, on a donc 6 = 1 et la longueur s’écrit
_ dr)?
{= 901 \/ (d—g) +7r2df.

(d) Pour la spirale logarithmique r = ¢, on a % =r = ¢€’, donc la longueur cherchée est

27 2 27
L:/ <2g> —|—7“2dl9:/ V2€20dt:\/§(€2w—1).
o\ 0



Pour trouver la paramétrisation naturelle depuis le point initial (1,0) (qui correspond a 6§y = 0, on
calcule d’abord l'abscisse curviligne

8(9):/06“ <32>2+T2d9:\/§<60—1).

Puis on inverse cette relation pour exprimer 6 en fonction de s:

6(s) = log (1 + %) .

Finalement on a la paramétrisation naturelle (en coordonnées polaires)

a(s) = (r(s), (s)) = ((1 + \%) ,log (1 + é) > .

En coordonnées cartésiennes, on a

(x(s),y(s)) = ((1 + ﬁ) - cos(log(1 + ﬁ))’ (1+ ﬁ) -sin(log(1 + \/5))> .

On peut vérifier directement que dans cette paramétrisation on a 2 4 ¢ = 1.

Exercice 3.5. La conchoide de Nicoméde est la courbe C dans le plan euclidien qui est définie de la
facon suivante:

On considére un point O dans le plan et une droite D qui ne passe pas par O. Pour tout point p du
plan tel que p ¢ D et p # O on note f(p) = d(p,q) ou g est 'intersection de D avec la droite passant

par O et p (i.e. ¢ = (O+R(7]>)) ND):
C={peE|f(p) =0}
(a) Dessiner la courbe C. Est-elle connexe ?

(b) Donner une équation polaire de cette courbe (on supposera que la droite D est verticale et que le
point O est l'origine).

Solution 3.5. Cette courbe posséde deux composantes connexes (& condition de rajouter le point O
lorsque b > dist(O, D)).

En coordonnées polaires, I’équation de la droite D (supposée verticale) est rcos(f) = a. Si g est un
point sur cette droite (d’angle polaire 6) et p, ¢, 0 sont alignés, alors p est également d’angle polaire 0
et la distance de p a q est |r(p) —r(q)| = |r(p) — m| L’équation cherchée est donc

a

~ cos() 0

On peut voir une animation sur https://fr.wikipedia.org/wiki/Nicom},C3%A8de_(math¥C3%A9maticien)


https://fr.wikipedia.org/wiki/Nicom%C3%A8de_(math%C3%A9maticien)

Exercice 3.6. Soit I : [ — SO(n) C M,(R) = R™ " une courbe de classe C' & valeurs dans le groupe
orthogonal. Prouver que F(t)"1F(t) et F'(t)F(t)~! sont des matrices antisymétriques pour tout ¢ € I.

Solution 3.6. En dérivant F'- FT =1, (la matrice identité), on trouve F'- FT + F - (F)T =0. On a
donc en tenant compte du fait que F'~ - =FT.

F-Fl=F.Fl=—(F-FY=—F -F)T =—(F.-F 1T
Ce qui signifie que F' - F~! est antisymétrique. Le raisonnement est semblable pour F~1 - F-

Autre méthode : On dérive la relation F~! = FT. Cela donne F~'FF~1=—FT et donc

Flp—_pTp—_ (FTF) — (F‘1F> .

Remarque. Ce résultat est important en cinématique du solide. On appelle parfois ces matrices le
mouvement instantané mobile et le mouvement instantané fixe, respectivement de F. Les concepts
d’axe instantané de rotation et de vitesse instantanée de rotation d’un corps solide en mouvement se
lisent facilement sur ces matrices.

Plus généralement, si F(t) est une courbe C' a valeurs dans un sous-groupe fermé G de G L, (R), alors
F(t)"YE(t) et F(t)F(t)~" sont a valeurs dans Ualgebre de Lie de G.

Exercice 3.7. On rappelle que I'exponentielle exp(A4) d’une matrice carrée A € M, (R) est définie par
la série :

exp(A Zk'Ak—IJrAJr a2y

On admet que cette série converge. On admet aussi que si AB = BA, alors exp(A+B) = exp(A) exp(B)
(la preuve est la méme que pour le cas de 'exponentielle d’'une somme de deux nombres réels).

(a) Montrer que si A € M, (R) est une matrice antisymétrique, alors exp(A) € SO(n).

(b) Calculer la matrice exp(tJ) ou J = < (1] _(1) >

Solution 3.7. (a) Une matrice A € M, (R) est antisymétrique si AT = —A. On a donc
I, = exp(0,) = exp(A — A) = exp(A) exp(—A) = exp(A) exp(A").

Mais il est facile de vérifier que exp(AT) = exp(A)T. On a donc montré que exp(A) - exp(A)" = I,
par conséquent exp(A4) € O(n).

Pour montrer que exp(A4) € SO(n), il suffit donc de montrer que det(exp(A4)) > 0. Or le raisonnement
précédent montre en fait que exp(tA) € O(n) pour tout t € R. Donc en particulier det(exp(tA4)) = +1.
pour tout t € R. Mais la fonction ¢ +— det(exp(tA) est continue et vaut +1 lorsque ¢ = 0. Donc
det(exp(tA)) = 1 pour tout .

Autre argument : Un résultat du cours d’algebre linéaire dit que pour toute matrice A € M, (R) on a
det(exp(A)) = exp (Trace(4)), (*)

donc det(exp(A)) > 0. n fait, de fagon plus précise, puisque A est antisymétrique, on a Trace(A4) = 0
et donc det(exp(A)) = e” = +1.



Rappelons comment on montre 'identité (*). La matrice A peut étre vue comme un élément de M,,(C).
Supposons d’abord que A posséde n valeur propres complexes deux-a-deux distinctes A1, ...\, € C, on

a
n

det(A) =) "X,  Tr(A) = zn:)\
=1

i=1
Soit v; un vecteur propre de A avec valeur propre \;, alors {v1,...,v,} est une base de C™ formée de
vecteurs propres pour A (en particulier A est diagonalisable). En utilisant que Aky; = )\fvi on voit

que
- 1 SRR by
eAvi = Idn + Z EAk V; = U5 + Z g)\Z Vv, = e ’L'Ui,
k=1 k=1

ce qui montre que v; est aussi un vecteur propre de e?, avec valeur propre e*. On a donc
n
. n .
det(eXp(A)) = H e)\l = @4{vi=1 i — e’I‘r(A)
=1

On a ainsi démontré la formule (*) dans le cas particulier des matrices A € M, (R) qui ont n valeurs
propres complexes deux-a-deux distinctes. Or cet ensemble est dense dans l'espace vectoriel M, (R),
on peut donc conclure par un argument de continuité que l'identité (*) est vérifiée pour toute matrice
de M, (R) (et en fait toute matrice de M,(C)).

Un autre argument possible se base sur les formes normales de Jordan.

(b) On voit facilement que

J2:I:((1) (1)> J=—J, et Jt=1I.

Ensuite les puissances de J se répétent modulo 4. On a donc

t2 ¢3 ¢t
exp(tJ):J0+tJ+§J2+§J3+aJ4+---
2 3 #
:I+tJ—§I—§J+II+---
t2 t4 t6 t3 t5 t7
= <1_2!+4!_6!+'“>'I+<x_3!+5!_7!+“'>'(]
= cos(t)] + sin(t)J
B < cos(t) —sin(t) )

sin(t)  cos(t)

qui n’est autre que la matrice de rotation Ry.

Remarque : Le méme argument prouve la formule d’Euler :

' = cos(t) + isin(t).

Exercice 3.8. Prouver l'affirmation suivante ou trouver un contre-exemple : Si 7y, : [a,b] — R" est
une suite de courbes convergeant uniformément vers la courbe 7 : [a,b] — R™ (supposée de classe C1),
alors les longueurs convergent, i.e. £(y) = limy, 00 £(Vn).



Solution 3.8. L’affirmation est fausse, une suite de courbes peut converger uniformément vers une
courbes C' en formant de rapides oscillations, qui peuvent entrainer une non-convergence de la
longueur. Par exemple la suite de courbes v,(z) = (z, 2 sin(nz)) sur intervalle 0 < z < 27 con-
verge uniformément vers le segment de droite reliant (0,0) & (0,27). Pourtant la longueur de 7, ne
converge pas vers 27, car

2m 1 n2mw 2m
Uyn) = /0 V14 cos(nz)?de = — /0 V' 1+ cos(t)?dt = /0 V' 1+ cos(t)?dt = £(y1) = 7.64 > 2T,

n

qui est indépendante de n (on a posé t = nx).
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Exercice 3.9 (Distance intrinséque dans un domaine.). Le but est de cet exercice est de définir la
notion de distance intrinséque dans un domaine de R™ (par définition, un domaine de R™ est un
sous-ensemble ouvert et connexe).

Soit donc U C R™ et p,q € U. On note Cp, I'ensemble des courbes v : [a,b] — U qui sont continues, de
classe C'! par morceaux et qui relient p a ¢. On défini alors la distance intrinséque dans U de p & g par

6u(p,q) = inf{l(7) [ v € Cpqg}-

a) Prouver que Cpq # () pour tous p,q € U.

(a)

(b) Prouver que 0y (p,q) > ||g — p|| pour tous p,q € U.

(c) Prouver que (U, dyy) est un espace métrique.
)

(d) A quelle condition sur le domaine U a-t-on dy(p,q) = ||g — p|| pour tous p,q € U? (donner une

condition suffisante).

(e) Considérons le cas du domaine U = {(z,y) € R? | < —1ouy # 0}. Quelle est la distance
intrinséque entre les points p = (0,1) et ¢ = (0,—1) ?
Est-ce qu’il existe une courbe de longueur minimale reliant p & g7

(On dit que 6y (p, q) est la distance intrinséque de p & g dans le domaine U et que d(p,q) = ||g — p|
est la distance euclidienne extrinséque).

Solution 3.9. (a) Pour montrer que C,, est non-vide, il suffit de montrer que U est connexe par
arcs C' par morceaux. Soit UY la composante connexe par arcs C'' par morceaux de p. Montrons
qu’elle est & la fois ouverte et fermée dans U.

Elle est ouverte car si I'on prend z € U? et p > 0 suffisamment petit, alors B(z, p) C U". En effet il
existe p > 0 tel B(x,p) C U car U est ouvert. Tout point y € B(z, p) est relié & p par le chemin C!
par morceaux qui est la concaténation des deux chemins suivants : le chemin qui relie p & x et la ligne
droite qui relie x a y.



L’ensemble U \ U est 1'union des autre composantes connexes par arcs C'' par morceaux de U, qui
sont ouvertes dans U pour la méme raison. U \ U est donc ouvert dans U. Par conséquent U est
fermé dans U pour la topologie relative. On a montré que U est a la fois ouvert, fermé et non-vide,
dans I'ensemble connexe U. Ainsi U = U est connexe par arcs.

(b) On a vu au cours que pour tout chemin v € C, 4 on a £(y) > ||¢ — p||. On a donc

ou(p,q) = inf{l(y) | v € Cpg} = llg —pll-

(c) On vérifie que dy est une métrique sur U.
(i) Clairement 0y (p,q) > 0 pour tous p,q € U et dy(p,p) = 0.

(ii) On a6y (p,q) = du(g,p) car on a une bijection naturelle entre C, 4 et C,,, (I'inversion de chemin),
qui préserve les longueurs.

(iii) Pour 'inégalité du triangle, soient p,q,r € U. Soient a € Cp4 et 5 € C,,, on note 7 la concaté-

nation de e et 5. On a :
ou(p,r) < (v) =Lla) + L(B).

Si on prend I'infimum sur « et 5 on a bien :

Su(p,r) < ou(p,q) + dul(q,r).

(iv) oy sépare les points car oy (p,q) > |lg — p|| > 0sip # q.

(d) SiU est convexe, alors dy7(p,q) = ||¢ — p|| pour tous p,q € U.

(e) Le domaine U est le plan R? privé de la demi droite définie par y = 0 et > —1. Pour tout
u < —1, on peut considérer la réunion des segments de droites de p & m = (u,0) et de m a q. Cette
courbe est de longueur 2v/1 + u2 et donc on a

du(p,q) < i<nf1 21+ u? = 2V2.

En fait on a égalité car toute courbe continue v reliant p a ¢ doit passer par un point m = (u,0) avec
u < —1. On a donc

() 2 du(p,m) +du(m,q) = [lp — m| + [lg = m| = 2V 1 + w?,

et donc

du(pq) > inf 2v/1+u? = 2V/2.



