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Dans cette série on on avance avec la théorie des courbes (abscisse curviligne, paramétrage naturel).
Enfin on approfondit quelques points subtils liés à la notion de longueur.

Exercice 3.1. Exprimer la longueur de l’ellipse x2

a2
+ y2

b2
= 1 sous forme d’une intégrale (ne pas essayer

de calculer cette intégrale, qui ressort de la théorie des fonctions elliptiques).

Solution 3.1. L’ellipse se paramétrise simplement par (x(t), y(t)) = (a cos(t), b sin(t)). En supposant
0 < b ≤ a, sa longueur est

L =

∫ 2π

0

√
a2 sin(t)2 + b2 cos(t)2dt = a

∫ 2π

0

√
1− k2 cos(t)2dt

où k =
√

1− b2

a2
. Cette intégrale s’appelle une intégrale elliptique de deuxième espèce (et k est le

module).

Remarquer qu’on peut également paramétrer la demi-ellipse comme un graphe y = f(x) = b
√
1− x2

a2
.

On peut donc aussi calculer la longueur de la demi-ellipse par l’intégrale suivante :

1

2
L =

∫ a

x=−a

√
1 + f ′(x)2dx =

∫ a

−a

√
a2 − k2x2
a2 − x2

dx

En posant a = 1, on obtient ainsi l’égalité :∫ π

0

√
1− k2 cos(t)dt =

∫ 1

−1

√
1− k2x2
1− x2

dx,

valable pour tout k ∈ [0, 1]. Ce sont les deux écritures habituelles pour les intégrales elliptiques de
deuxième espèce.

Exercice 3.2. (a) Calculer l’abscisse curviligne de la courbe

γ(t) = (cosh(t), sinh(t), t),

depuis le points initial t0 = 0.
(b) Trouver ensuite le paramétrage naturel avec le même point initial.

Solution 3.2. (a) Le vecteur vitesse de γ est γ̇(t) = (sinh(t), cosh(t), 1). La vitesse est donc

Vγ(t) =

√
1 + sinh2(t) + cosh2(t) =

√
2 cosh(t).

L’abscisse curviligne depuis le points initial t0 = 0 est donc

s(t) =

∫ t

0
Vγ(u)du =

√
2

∫ t

0
cosh(u)du =

√
2 sinh(t) =

et − e−t√
2

.

(b) Pour trouver le paramétrage naturel on commence par calculer t en fonction de s :

t = arsinh

(
s√
2

)
= log

(
s√
2
+

√
1 +

s2

2

)
.
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puis on exprime les coordoonées x, y, z en fonction de s :

x = cosh(t) =

√
1 + sinh2(t) =

√
1 +

s2

2
, y = sinh(t) =

s√
2
, z = t = log

(
s√
2
+

√
1 +

s2

2

)
.

Ce qui nous donne

γ̃(s) =

(√
1 +

s2

2
,
s√
2
, log

(
s√
2
+

√
1 +

s2

2

))
.

Exercice 3.3. L’astroïde est la courbe plane d’équation

|x|
2
3 + |y|

2
3 = 1.

(a) Dessiner l’astroïde.

(b) Trouver une paramétrisation de l’astroïde

(c) Calculer la longueur d’un cycle de l’astroïde.

(d) Chercher tous les points singuliers.

(e) Calculer l’abscisse curviligne avec avec point initial en (1, 0).

(f) Trouver le paramétrage naturel avec le même point initial.

Solution 3.3. (a) Observer que l’arc de l’astroïde contenu dans le cadran {x ≥ 0, y ≥ 0} est le graphe
de la fonction f : [0, 1] → [0, 1] définie par y = f(x) =

(
1− x2/3

)3/2. Ce graphe se représente
sans difficulté. Les autres arcs de l’astroïdes s’obtiennent par symétries à travers les axes de
coordonnées.

y =
(
1− x2/3

)3/2 |x|
2
3 + |y|

2
3 = 1

(b) En posant ξ = 3
√
x et η = 3

√
y, l’équation devient ξ2 + η2 = 1, qui est le cercle unité, que l’on peut

paramétriser par ξ = cos(u), η = sin(u). L’astroïde admet donc la forme paramétrique suivante :

α(u) = (cos3(u), sin3(u)), (0 ≤ u ≤ 2π).

(c) Nous considérons la vitesse

Vα(u) = ||α̇(u)|| = 3| cosu sinu| = 3

2
| sin 2u|,
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et nous calculons la longueur d’un cycle de l’astroïde :

L =

∫ 2π

0
Vα(u)du =

3

2

∫ 2π

0
| sin 2u| du =

3

2

∫ 4π

0
| sin t| dt

2
.

Or | sin t| est périodique de période π et sin t = | sin t| pour t ∈ [0, π], d’où∫ 4π

0
| sin t| dt = 4

∫ π

0
sin t dt = 8 .

Au total,

L =
3

4

∫ 4π

0
| sin t| dt = 6 .

(d) Les singularités de α sont les points où Vα(u) = 0. Ils se situent en u = k π2 où k ∈ Z. Ainsi les
points singuliers sont {(1, 0), (0, 1), (−1, 0), (0,−1)}.

(e) Nous nous contentons de trouver l’abscisse curviligne entre deux singularités (en l’occurrence 0 et
π
2 car le point initial est α(0)). Soit u ∈ [0, π2 ]. Alors,

s(u) =

∫ u

0
||α̇(t)|| dt = 3

2

∫ u

0
| sin 2τ | dτ =

3

2

∫ u

0
sin 2τ dτ =

3

4
(1− cos 2u) =

3

2
sin2(u)

car | sin 2τ | = sin 2τ pour 0 ≤ τ ≤ π
2 .

(f) Pour trouver la paramétrisation naturelle, on observe que la relation s(u) = 3
2 sin

2(u) est équiva-
lente à sin3(u) =

(
2
3s
)3/2. On a donc cos3(u) =

(
1− 2

3s
)3/2 et donc

α̃(s) = α(u(s)) = (cos3(u), sin3(u)),=

((
1− 2

3
s

)3/2

,

(
2

3
s

)3/2
)
.

Remarque. On peut définir l’abscisse curviligne pour toute l’astroïde, elle sera définie par
morceaux et périodiquement; mais par contre, il n’existe pas de paramétrage naturel C1 global de
l’astroïde en raison des singularités.

Exercice 3.4. (a) Notons (x, y) les coordonnées cartésiennes de R2. Rappeler la définition précise des
cordonnées polaires (r, θ), en précisant leur domaine de définition.
(b) Écrire l’équation générale d’une droite en cordonnées polaires, puis l’équation d’un cercle de rayon
a et de centre c = (r0, θ0).
(c) Soit γ(t) = (r(t), θ(t)) une courbe de classe C1 écrite en coordonnées polaires. Trouver et prouver
une formule donnant sa longueur dans ces coordonnées.
(d) La spirale logarithmique est la courbe plane d’équation polaire r = eθ. Utiliser la formule précédente
pour calculer la longueur d’un cycle de cette spirale défini par 0 ≤ θ ≤ 2π. Donner ensuite le
paramétrage naturel avec le point (1, 0) comme point initial.

Solution 3.4. (a) Précisons d’abord qu’un système de coordonnées (de classe Ck) dans un ouvert
U ⊂ Rn est la donnée de n fonctions y1, . . . , yn : U → R telles que l’application F : U → Rn définie par
F (x) = (y1(x), . . . , yn(x)) est un difféomorphisme de classe Ck de U vers F (U). De façon équivalente,
il suffit que F soit injective, que les fonctions yj : U → R soient de classe Ck et que le jacobien ne
s’annule pas:

JF (x) = det(DFx) = det

(
∂yi

∂xj
(x)

)
6= 0, ∀x ∈ U.
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Le système de coordonnées polaires dans le plan R2 correspond aux fonctions r = r(x, y), θ = θ(x, y),
de classe C∞, définies sur le domaine

U = R2 \ {(x, y) ∈ R2 | x ∈ (−∞, 0], y = 0}}

à valeurs dans (0,∞)× (−π, π) définies par

r =
√
x2 + y2, θ =


arccos

(
x√
x2+y2

)
si y ≥ 0

− arccos

(
x√
x2+y2

)
si y < 0.

C’est un difféomorphisme dont l’inverse est donné par

x = r cos(θ), y = r sin(θ).

Remarques. • Il est fréquent de définir la fonction θ(x, y) par la formule θ = arctan(y/x). Cette formule est
correcte, mais elle nous impose de ne définir les coordonnées polaires que dans le demi-plan U ′ = {(x, y) ∈ R2 |
x > 0} et dans ce cas l’angle est restreint à l’intervalle −π

2 < θ < π
2 .

• Une autre approche, peut-être la plus élégante, consiste a considérer la variable θ modulo 2π, i.e. comme
élément de R/2πZ. Les coordonnées polaires définissent alors un difféomorphisme entre R2 \ {(0, 0)} et le
cylindre R/2πZ× (0,∞).

(b) L’équation générale d’une droite s’écrit alors en coordonnées polaires:

ax+ by + c = ar cos(θ) + br sin(θ) + c = 0.

Noter que par exemple une droite verticale est d’équation r cos(θ) + c = 0 et une droite horizontale
admet l’équation r sin(θ) + c = 0.
L’équation cartésienne générale d’un cercle est du type x2+y2+ax+ by+ c = 0, soumis à la condition
a2 + b2 ≥ 4c (réfléchir pourquoi). Cela donne en cordonnées polaires :

r2 + ar cos(θ) + br sin(θ) + c = 0.

(c) Si une courbe paramétrée est données en coordonnées polaires par α : t → (r(t), θ(t))), alors sa
vitesse est

Vα(t) =
√
ẋ2 + ẏ2 =

√(
d

dt
(r(t) cos(θ(t)))

)2

+

(
d

dt
(r(t) sin(θ(t)))

)2

=

√
ṙ2 + (rθ̇)2

La longueur d’un arc de la courbe α est donc en corrodonnées polaire par

` =

∫ t1

t0

√
ṙ2 + (rθ̇)2dt.

Remarque Une courbe en coordonnées polaires est souvent données par une relation du type r =
f(θ). Dans ce cas on peut utiliser θ comme paramètre, on a donc θ̇ = 1 et la longueur s’écrit

` =
∫ θ1
θ0

√(
dr
dθ

)2
+ r2 dθ.

(d) Pour la spirale logarithmique r = eθ, on a dr
dθ = r = eθ, donc la longueur cherchée est

L =

∫ 2π

0

√(
dr

dθ

)2

+ r2 dθ =

∫ 2π

0

√
2e2θdt =

√
2
(
e2π − 1

)
.
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Pour trouver la paramétrisation naturelle depuis le point initial (1, 0) (qui correspond à θ0 = 0, on
calcule d’abord l’abscisse curviligne

s(θ) =

∫ θ

0

√(
dr

dθ

)2

+ r2 dθ =
√
2
(
eθ − 1

)
.

Puis on inverse cette relation pour exprimer θ en fonction de s:

θ(s) = log

(
1 +

s√
2

)
.

Finalement on a la paramétrisation naturelle (en coordonnées polaires)

α̃(s) = (r(s), θ(s)) =

((
1 +

s√
2

)
, log

(
1 +

s√
2

)
.

)
.

En coordonnées cartésiennes, on a

(x(s), y(s)) =

(
(1 +

s√
2
) · cos(log(1 + s√

2
)), (1 +

s√
2
) · sin(log(1 + s√

2
))

)
.

On peut vérifier directement que dans cette paramétrisation on a ẋ2 + ẏ2 = 1.

Exercice 3.5. La conchoïde de Nicomède est la courbe C dans le plan euclidien qui est définie de la
façon suivante:
On considère un point O dans le plan et une droite D qui ne passe pas par O. Pour tout point p du
plan tel que p 6∈ D et p 6= O on note f(p) = d(p, q) où q est l’intersection de D avec la droite passant
par O et p (i.e. q = (O + R

−→
Op) ∩D) :

C = {p ∈ E2 | f(p) = b}.

(a) Dessiner la courbe C. Est-elle connexe ?

(b) Donner une équation polaire de cette courbe (on supposera que la droite D est verticale et que le
point O est l’origine).

Solution 3.5. Cette courbe possède deux composantes connexes (à condition de rajouter le point O
lorsque b ≥ dist(O,D)).

En coordonnées polaires, l’équation de la droite D (supposée verticale) est r cos(θ) = a. Si q est un
point sur cette droite (d’angle polaire θ) et p, q, 0 sont alignés, alors p est également d’angle polaire θ
et la distance de p à q est |r(p)− r(q)| = |r(p)− a

cos(θ) |. L’équation cherchée est donc

r =
a

cos(θ)
± b

On peut voir une animation sur https://fr.wikipedia.org/wiki/Nicom%C3%A8de_(math%C3%A9maticien)
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Exercice 3.6. Soit F : I → SO(n) ⊂Mn(R) = Rn×n une courbe de classe C1 à valeurs dans le groupe
orthogonal. Prouver que F (t)−1Ḟ (t) et Ḟ (t)F (t)−1 sont des matrices antisymétriques pour tout t ∈ I.

Solution 3.6. En dérivant F · F> = In (la matrice identité), on trouve Ḟ · F> + F · (Ḟ )> = 0. On a
donc en tenant compte du fait que F−1 = F>:

Ḟ · F−1 = Ḟ · F> = −(F · Ḟ>) = −(Ḟ · F>)> = −(Ḟ · F−1)>

Ce qui signifie que Ḟ · F−1 est antisymétrique. Le raisonnement est semblable pour F−1 · Ḟ -

Autre méthode : On dérive la relation F−1 = F>. Cela donne F−1ḞF−1 = −Ḟ>, et donc

F−1Ḟ = −Ḟ>F = −
(
F>Ḟ

)
= −

(
F−1Ḟ

)
.

Remarque. Ce résultat est important en cinématique du solide. On appelle parfois ces matrices le
mouvement instantané mobile et le mouvement instantané fixe, respectivement de F . Les concepts
d’axe instantané de rotation et de vitesse instantanée de rotation d’un corps solide en mouvement se
lisent facilement sur ces matrices.
Plus généralement, si F (t) est une courbe C1 à valeurs dans un sous-groupe fermé G de GLn(R), alors
F (t)−1Ḟ (t) et Ḟ (t)F (t)−1 sont à valeurs dans l’algèbre de Lie de G.

Exercice 3.7. On rappelle que l’exponentielle exp(A) d’une matrice carrée A ∈Mn(R) est définie par
la série :

exp(A) =
∞∑
k=0

1

k!
Ak = I +A+

1

2!
A2 + · · ·

On admet que cette série converge. On admet aussi que si AB = BA, alors exp(A+B) = exp(A) exp(B)
(la preuve est la même que pour le cas de l’exponentielle d’une somme de deux nombres réels).

(a) Montrer que si A ∈Mn(R) est une matrice antisymétrique, alors exp(A) ∈ SO(n).

(b) Calculer la matrice exp(tJ) où J =

(
0 −1
1 0

)
.

Solution 3.7. (a) Une matrice A ∈Mn(R) est antisymétrique si A> = −A. On a donc

In = exp(0n) = exp(A−A) = exp(A) exp(−A) = exp(A) exp(A>).

Mais il est facile de vérifier que exp(A>) = exp(A)>. On a donc montré que exp(A) · exp(A)> = In,
par conséquent exp(A) ∈ O(n).
Pour montrer que exp(A) ∈ SO(n), il suffit donc de montrer que det(exp(A)) > 0. Or le raisonnement
précédent montre en fait que exp(tA) ∈ O(n) pour tout t ∈ R. Donc en particulier det(exp(tA)) = ±1.
pour tout t ∈ R. Mais la fonction t 7→ det(exp(tA) est continue et vaut +1 lorsque t = 0. Donc
det(exp(tA)) = 1 pour tout t.
Autre argument : Un résultat du cours d’algèbre linéaire dit que pour toute matrice A ∈Mn(R) on a

det(exp(A)) = exp (Trace(A)) , (*)

donc det(exp(A)) > 0. En fait, de façon plus précise, puisque A est antisymétrique, on a Trace(A) = 0
et donc det(exp(A)) = e0 = +1.
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Rappelons comment on montre l’identité (*). La matrice A peut être vue comme un élément deMn(C).
Supposons d’abord que A possède n valeur propres complexes deux-à-deux distinctes λ1, ...λn ∈ C, on
a

det(A) =

n∑
i=1

λi, Tr(A) =
n∑
i=1

λi.

Soit vi un vecteur propre de A avec valeur propre λi, alors {v1, . . . , vn} est une base de Cn formée de
vecteurs propres pour A (en particulier A est diagonalisable). En utilisant que Akvi = λki vi on voit
que

eAvi =

(
Idn +

∞∑
k=1

1

k!
Ak

)
vi = vi +

∞∑
k=1

1

k!
λki vi = eλivi,

ce qui montre que vi est aussi un vecteur propre de eA, avec valeur propre eλi . On a donc

det(exp(A)) =
n∏
i=1

eλi = e
∑n

i=1 λi = eTr(A).

On a ainsi démontré la formule (*) dans le cas particulier des matrices A ∈ Mn(R) qui ont n valeurs
propres complexes deux-à-deux distinctes. Or cet ensemble est dense dans l’espace vectoriel Mn(R),
on peut donc conclure par un argument de continuité que l’identité (*) est vérifiée pour toute matrice
de Mn(R) (et en fait toute matrice de Mn(C)).
Un autre argument possible se base sur les formes normales de Jordan.

(b) On voit facilement que

J2 = −I = −
(

1 0
0 1

)
, J3 = −J, et J4 = I.

Ensuite les puissances de J se répètent modulo 4. On a donc

exp(tJ) = J0 + tJ +
t2

2!
J2 +

t3

3!
J3 +

t4

4!
J4 + · · ·

= I + tJ − t2

2!
I − t3

3!
J +

t4

4!
I + · · ·

=

(
1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

)
· I +

(
x− t3

3!
+
t5

5!
− t7

7!
+ · · ·

)
· J

= cos(t)I + sin(t)J

=

(
cos(t) − sin(t)
sin(t) cos(t)

)
,

qui n’est autre que la matrice de rotation Rt.

Remarque : Le même argument prouve la formule d’Euler :

eit = cos(t) + i sin(t).

Exercice 3.8. Prouver l’affirmation suivante ou trouver un contre-exemple : Si γn : [a, b] → Rn est
une suite de courbes convergeant uniformément vers la courbe γ : [a, b]→ Rn (supposée de classe C1),
alors les longueurs convergent, i.e. `(γ) = limn→∞ `(γn).
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Solution 3.8. L’affirmation est fausse, une suite de courbes peut converger uniformément vers une
courbes C1 en formant de rapides oscillations, qui peuvent entraîner une non-convergence de la
longueur. Par exemple la suite de courbes γn(x) = (x, 1n sin(nx)) sur l’intervalle 0 ≤ x ≤ 2π con-
verge uniformément vers le segment de droite reliant (0, 0) à (0, 2π). Pourtant la longueur de γn ne
converge pas vers 2π, car

`(γn) =

∫ 2π

0

√
1 + cos(nx)2dx =

1

n

∫ n2π

0

√
1 + cos(t)2dt =

∫ 2π

0

√
1 + cos(t)2dt = `(γ1) ∼= 7.64 > 2π,

qui est indépendante de n (on a posé t = nx).

Exercice 3.9 (Distance intrinsèque dans un domaine.). Le but est de cet exercice est de définir la
notion de distance intrinsèque dans un domaine de Rn (par définition, un domaine de Rn est un
sous-ensemble ouvert et connexe).
Soit donc U ⊂ Rn et p, q ∈ U . On note Cpq l’ensemble des courbes γ : [a, b]→ U qui sont continues, de
classe C1 par morceaux et qui relient p à q. On défini alors la distance intrinsèque dans U de p à q par

δU (p, q) = inf{`(γ) | γ ∈ Cpq}.

(a) Prouver que Cpq 6= ∅ pour tous p, q ∈ U .

(b) Prouver que δU (p, q) ≥ ‖q − p‖ pour tous p, q ∈ U .

(c) Prouver que (U, δU ) est un espace métrique.

(d) A quelle condition sur le domaine U a-t-on δU (p, q) = ‖q − p‖ pour tous p, q ∈ U? (donner une
condition suffisante).

(e) Considérons le cas du domaine U = {(x, y) ∈ R2 | x < −1 ou y 6= 0}. Quelle est la distance
intrinsèque entre les points p = (0, 1) et q = (0,−1) ?
Est-ce qu’il existe une courbe de longueur minimale reliant p à q?

(On dit que δU (p, q) est la distance intrinsèque de p à q dans le domaine U et que d(p, q) = ‖q − p‖
est la distance euclidienne extrinsèque).

Solution 3.9. (a) Pour montrer que Cp,q est non-vide, il suffit de montrer que U est connexe par
arcs C1 par morceaux. Soit U0 la composante connexe par arcs C1 par morceaux de p. Montrons
qu’elle est à la fois ouverte et fermée dans U .
Elle est ouverte car si l’on prend x ∈ U0 et ρ > 0 suffisamment petit, alors B(x, ρ) ⊆ U0. En effet il
existe ρ > 0 tel B(x, ρ) ⊆ U car U est ouvert. Tout point y ∈ B(x, ρ) est relié à p par le chemin C1

par morceaux qui est la concaténation des deux chemins suivants : le chemin qui relie p à x et la ligne
droite qui relie x à y.
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L’ensemble U \ U0 est l’union des autre composantes connexes par arcs C1 par morceaux de U , qui
sont ouvertes dans U pour la même raison. U \ U0 est donc ouvert dans U . Par conséquent U0 est
fermé dans U pour la topologie relative. On a montré que U0 est à la fois ouvert, fermé et non-vide,
dans l’ensemble connexe U . Ainsi U = U0 est connexe par arcs.

(b) On a vu au cours que pour tout chemin γ ∈ Cp,q on a `(γ) ≥ ‖q − p‖. On a donc

δU (p, q) = inf{`(γ) | γ ∈ Cpq} ≥ ‖q − p‖.

(c) On vérifie que δU est une métrique sur U .

(i) Clairement δU (p, q) ≥ 0 pour tous p, q ∈ U et δU (p, p) = 0.

(ii) On a δU (p, q) = δU (q, p) car on a une bijection naturelle entre Cp,q et Cq,p (l’inversion de chemin),
qui préserve les longueurs.

(iii) Pour l’inégalité du triangle, soient p, q, r ∈ U . Soient α ∈ Cp,q et β ∈ Cq,r, on note γ la concaté-
nation de α et β. On a :

δU (p, r) 6 `(γ) = `(α) + `(β).

Si on prend l’infimum sur α et β on a bien :

δU (p, r) 6 δU (p, q) + δU (q, r).

(iv) δU sépare les points car δU (p, q) ≥ ‖q − p‖ > 0 si p 6= q.

(d) Si U est convexe, alors δU (p, q) = ‖q − p‖ pour tous p, q ∈ U .

(e) Le domaine U est le plan R2 privé de la demi droite définie par y = 0 et x ≥ −1. Pour tout
u < −1, on peut considérer la réunion des segments de droites de p à m = (u, 0) et de m à q. Cette
courbe est de longueur 2

√
1 + u2 et donc on a

δU (p, q) ≤ inf
u<−1

2
√
1 + u2 = 2

√
2.

En fait on a égalité car toute courbe continue γ reliant p à q doit passer par un point m = (u, 0) avec
u < −1. On a donc

`(γ) ≥ δU (p,m) + δU (m, q) ≥ ‖p−m‖+ ‖q −m‖ = 2
√

1 + u2,

et donc
δU (p, q) ≥ inf

u<−1
2
√

1 + u2 = 2
√
2.
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