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Exercice 2.1. Prouver les formules suivantes concernant le produit vectoriel :

Pour tous a,b,c,d € R? on a

(i) (axb)xc={(a,c)b—(b,c)a (premiére dentité de Grassmann),
(it) ax (b xc)=(a,c)b—(a,b)c (seconde identité de Grassmann).
(#ii) (ax b,cxd) = (a,c)(b,d) — (a,d) (b,c) (identité de Lagrange).

(iv) (ax b,c xd) =((axb)xc,d).

Indication. En choisissant une base orthonormée directe bien adaptée au probleme, on peut simplifier
les calculs.

Solution 2.1. Soit a, b, c,d € R3 non nuls. Il est toujours possible de trouver une base orthonormée
directe {e1, ez, e3} telle que

a=aje;]
b = bie1 + bses

C = c1€e] + Ccg€es + C3es
d =die| + does + dses

b—(b : :
par exemple en prenant e; = ﬁ, ey = % si b— (b, e;)e; est non nul, sinon on peut prendre

pour ey n’importe quel vecteur unitaire perpendiculaire & e et finalement e3 = e1 X es.
On calcule alors :

(i)
(a X b) X Cc= (a1b2e3) X ¢ = —a1bycger + aijbacies

(a, C>b — <b, c)a = a101b1e1 + alclbgeg — (b101 + bgCg)alel

= aibacres — ajbacae;

a X (b X C) =ajey X (bQCgel — bicges + (b102 — bQCl))
= —ay(bica — baci)eg — arbiczes

<a, C>b — <a, b>C aic1bier; + ajciboes — ajbicier — ajbicaes — aibicses

= ajbacies — arbicoes — arbicses

(iii)
(ax b,c x d) = (a1bses, (cads — c3da)er + (cadi — cids)es + (c1da — cadr)es)
= a1b201d2 — a1b202d1
(a,c)(b,d) — (a,d)(b,c) = ajci(b1dy + bada) — ardyi(brcy + bace)
= aleCldQ — a1b202d1



((axb)xc,d) 2((a,c)b— (b,c)a,d)
=(a,c)(b,d) — (a,d)(b, c)

(@<a x b,c x d)

Exercice 2.2. Montrer que pour tous a,b,c € R3 on a
i) (axb)xc+(bxc)xa+(cxa)xb=0 (premiére identité de Jacobi)
ii) ax(bxc)+bx(cxa)+cx(axb)=0 (deuxiéme identité de Jacobi.)
Solution 2.2. On rappelle tout d’abord la premieére identité de Grassmann :
(axb)xc=(a,c)b— (b,c)a.
On a donc (en utilisant la symétrie du produit scalaire) :

(axb)xc+(bxc)xa+(cxa)xb= (ac)b—(b,cla+ (b,a
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=0.

La deuxiéme identité de Jacobi se prouve de la méme maniére en utilisant la seconde identités de
Grassmann. On peut aussi la déduire de la premiére identité de Jacobi et de I'antisymétrie du produit
vectoriel :

ax(bxc)+bx(cxa)+cx(axb)=—((bxc)xa+(cxa)xb+(axb)xc)=0.

Voici un autre raisonnement pour prouver (par exemple la premiere) identité de Jacobi basé sur un
argument de trilinéarité. Il s’agit de prouver que I’application f : R? x R3 x R3 — R? définie par

£(x,y,2) = (x x y) x 2+ (y X 2) XX + (2 x %) Xy,

est identiquement nulle. Il est clair que f est trilinéaire, il suffit donc de vérifier que f s’annule sur
une base orthonormée directe {ej, ez, es}. De plus f est invariante au signe prés lorsqu’on permute les
variables, ce qui réduit le nombre de calculs a effectuer.

On remarque d’abord que

f(e1,e2,e3) = (e; xey) xesz+ (e xez) xe+(e3 xep) X ey
= ez Xez+e Xe+eyXer
= 0.

Par permutation, on a donc plus généralement f(e;,e;,e;) = 0 si les trois indices i, j, k sont deux-a-
deux distincts. Lorsque les indices ne sont pas distincts, cette expression s’annule aussi car

f(ei,ei,ej) = (ei X ei) X €; + (el- X ej) X e; + (ej X ei) X €;
= (eixej)xei—(eixej)xei
= 0.




Exercice 2.3. Le produit vectoriel dans E3 est-il associatif ?

Solution 2.3. Non, le produit vectoriel n’est pas associatif. L’identité de Jacobi peut s’écrire
ax(bxc)=(axb)xc+(cxa)xb=(axb)xc+bx(axc)

on utilise l’antisymétrie du pI'Odllit vectoriel ] cetet identité mesure donc la “non associativité” du
produit vectoriel.

On peut aussi le voir sur un exemple : si {e}, s, e3} est une base orthonormée directe de E3, alors
(e1 xe) xex=0 mais e; X (e; X e3) = —es.

On fera donc attention de ne jamais écrire une expression ambigiie du type a x b x c..

Exercice 2.4. (a) Rappeler ce qu’est une similitude d’un espace vectoriel euclidien.

Prouver que les similitudes d’un espace vectoriel euclidien E" forment un groupe.

)

(c) Prouver que les isométries forment un sous-groupe normal du groupe des similitudes.
) Expliquer pourquoi une similitude qui fixe 'origine 0 € E™ est une application linéaire.
)

Démontrer que les propriétés suivantes sont équivalentes pour application linéaire inversible f :
E" — E™ :

(i) f est une similitude.

(ii) f préserve les angles, i.e. si a,b € E™ sont non nuls, alors 'angle entre f(a) et f(b) est égal
a l'angle entre a et b.

(iii) f préserve l'orthogonalité, i.e. si a L b alors f(a) L f(b).

(f) On peut identifier C au plan euclidien orienté R2. Montrer que f : C — C est une similitude
linéaire directe si et seulement si f est la multiplication par un nombre complexe non nul (i.e. on
a f(z) = az avec a € C¥).

Solution 2.4. (a) Une similitude d’un espace vectoriel euclidien est une application f : E" — E" qui
vérifie d(f(z), f(y)) = Ad(z,y), avec XA > 0 indépendant de x et y (c’est le rapport de similitude).

Remarques : (1) On a vu au cours qu’une similitude est une transformation affine : plus précisément une similitude
de R™ peut s’écrire f(z) = AAz + b ol A est une matrice orthogonale.

(2) Le mot “figure” en géomeétrie euclidienne signifie simplement un ensemble de points, donc un sous-ensemble de E™.
Deux figures sont semblables si une similitude transforme la premiére figure en la seconde (c’est la raison pour laquelle
on appelle ces transformations des similitudes). Deux figures sont ainsi semblables lorsque toutes les distances sont

multipliées par une méme constante.

(b) Si f1,f2 : E® — E" sont deux similitudes de rapports A\; et Ao, alors fy o fi vérifie pour tous
z,y € E":

d(f2 0 fi(z), f20 f1(y)) = d(f2(f1(2)), (f1(y))) = Aed(f1(2), f1(y)) = Ao Ad(z, ),

c’est donc une similitude de rapport A;Ao. On vérifie de méme que si f est une similitude de rapport A,
alors f~! est une similitude de rapport 1/A. On a montré que les similitudes forment un sous-groupe
du groupe des bijections de ’espace E™ dans lui-méme.

(On peut aussi démontrer que les similitudes forment un groupe a partir de la caractérisation affine
f(z) = Az 4+ b avec A € O(n)).



(c) Les isométries sont les similitudes de rapport 1, par ce qui précéde la composition de deux isométries
est une isométrie et I'inverse d’une isométrie est une isométrie, donc les isométries forment un sous-
groupe. Ce sous-groupe est normal car si f est une similitude de rapport A et g est une isométrie, alors
fogo f~! est une similitude de rapport A - % =1, c’est donc une isométrie.

(d) Au cours on a démontré que les similitudes sont des transformations affines (voir le théoréme 1.6),
or une transformation affine d’un espace vectoriel qui préserve ’origine est une transformation linéaire.

(e) Pour la question (e), les preuves de (i) = (ii) et (ii) = (iii) suivent trés facilement des définitions.
La preuve de (iii) = (i) se fait de la fagon suivante : soit {ej,...,e,} une base orthonormée de E",
et notons v; = f(e); Alors {v1,...,v,} est une base de E" (car on suppose f inversible) et v; L v; si
i # j par I'hypothése (iii). On utilise maintenant aussi que (e; + €;) L (e; — €j), et par conséquent
(vi +v;) L (v; —v;). On a donc

0 = (v; +vj,v; = v3) = (vi, v3) + (Vi V&) = (Vs V) — (Vs v) = [J0il|* = [y |-

On a ainsi montré que ||v;|| = ||v;|| pour tous i,j = 1,...,n. Nous pouvons maintenant prouver f est
une similitude de rapport A = ||v;|| de la fagon suivante : Soit x un élément quelconque de E™. On
peut écrire

T = zn::riei, et donc f(x) = zn::cif(ei) = Zn:xm
i=1 i=1 i=1

On détermine maintenant la norme de f(z) en calculant

1f (@)I* = (f(z), f(2)) = (Z Vi, Z%’%‘)

n n n
= wimi(vvy) = > @il =AY af = 22 a|?,
=1 =1

ij=1
(on a utilise dans ce calcul que (v;,v;) = 0sii# j et (v, v;) = ||[vi]|? = N)).

(f) Supposons que l'application f s’écrit f(z) = az en notation complexe avec a # 0. En posant
z = +iy (avec x,y € R) et a = re’® = r(cos(#) + isin(d)), on calcule directement que

f(z) =r(cos(f) + isin(0)) - (z + iy) = r ((cos(0)x — sin(0)y) + (sin(f)x + cos(f)y)i) ,

que ’on peut représenter matriciellement par

f T\ _, cos(f) —sin(6) x
y ) sin(f)  cos(0) y )"
qui est bien une similitude (comparer avec le théoréme 1.6 du polycopié).
Pour prouver l'implication inverse, on suppose que f : R?> — R? est une similitude linéaire, alors

on peut écrire f < :; ) = < Z 2 ) ( ;j ) Les vecteurs <Z> et <2> sont les images de la base

canonique. Ils doivent donc étre orthogonaux et de méme norme, de plus le déterminant de cette
matrice doit étre positif puisque la similitude f est supposée directe (i.e. elle préserve I'orientation du
plan). On a donc les relations suivantes :

ac+bd =0, a?+ b2 =2+ &, ad — be > 0.

Ces relations entrainent que ¢ = —b et d = a et donc f(z,y) = (ax — by, bx + ay), ou si on préfére en
notation complexe : f(z) = (a + ib)z.



Exercice 2.5. Donner un exemple de courbe fermée simple qui est de classe C', mais pas de classe
C?.

Solution 2.5. Un exemple classique de courbe qui est de classe C!, mais pas de classe C? est le
“stade”. C’est la courbe qu’on obtient en complétant deux segments paralléles de longueur a, séparés
d’une distance d = 2r par deux demi-cercles de rayon r reliant les extrémités de ces segments.

xd

Le stade est une courbe fermée simple du plan, on peut par exemple la paramétrer a vitesse constante (il
faut écrire plusieurs formules). La courbe est de classe C! (car on a une tangente variant continument),
mais aux 4 points de raccordement l'accélération présente une discontinuité : elle est nulle sur les
segments mais de norme constante sur les arcs de cercle. La courbe n’est donc pas de classe C?.

Exercice 2.6. A quelle condition le graphe d’une fonction f représente-t-il une courbe biréguliére ?

Solution 2.6. La réponse est que le graphe d’une fonction f représente-t-il une courbe biréguliére si
et seulement si la fonction f est de classe C? et se seconde dérivée f” ne s’annule pas.

Explication: Rappelons qu'une courbe « est dite biréguliére si elle est de classe C2 et si ¢ (t) et é (¢) sont
linéairement indépendants pour tout ¢ € I. Dans le cas du graphe ¢ (z) = (, f (x)) d’une fonction
f, cela veut dire que f est de classe C? et f”(z) # 0 pour tout = € I. En effet 47 () = (1, f' (x)) et
¥ (x) = (0, f” (x)) sont linéairement indépendants si et seulement si f”(z) # 0.

Exercice 2.7. Par définition, la longueur d’'un arc de courbe « : [a,b] — R™ est l'intégrale ¢(a) =
JPVa(u)du ont Vo (u) = [|é(u)]| est la vitesse de a.

Calculer la longueur des courbes suivantes :

(a) a(u) = (cos(u),sin(u),u). —-rm<u<m (la courbe « est une hélice circulaire droite).
(b) B(u) = (e*, e™*, V2u). 0<u<t.

(c¢) y(u) = (ucos(u),usin(u)). 0<wu<d4r (la courbe 7 est une spirale d’Archiméde).

Solution 2.7. (a) La longueur de « est

fa) = /7r () |t = _ﬂ V3 du = 2V/3r.

—T

Pour les deux questions suivantes, et en général pour ce cours, il est important d’étre familier avec les fonctions
hyperboliques. Sur Moodle vous trouverez un "Formulaire et Table d’Intégration" trés utile. Voir pages 72-75
pour les définitions et propriétés des fonctions hyperboliques.

(b) La vitesse de la courbe 3 est

Vs(u) = [IB(w)] = Ve 420 42 = ¢+ e = 2cosh(u),



la longueur de cette courbe est donc
t
LB) = / Va(z)du = 2sinh(t).
0
(c) On a
o 4
t() = / F)lldu = | Va2 51 du
0 0

= ux/ u? + 1 +log(u + Vu? + 1))
=2m\/1672 +1+ = log (4m + /1672 +

A

Remarque Dans ce dernier exemple, pour trouver une primitive de v/1 + u? on peut consulter une
table d’intégration. On peut aussi raisonner ainsi : On pose u = sinh(¢), alors V1 + u? = cosh(t) et

du = cosh(t)dt, donc
/\/l—i-u du/cosh (t)2dt.

On intégre par parties:

/ cosh(t)?dt = / cosh(t) sinh/(t)dt

= cosh(t) sinh(¢t) — /cosh'(t) sinh(t)dt
= cosh(t) sinh(t) — /sinh(t)2dt
= cosh(t) sinh(¢t) — / (cosh(t)2 —1)dt.

Par conséquent

(t + sinh(t)/1 + sinh(t)2> +C,

l\IJ\*i

1
/cosh(t)2dt =3 (t 4+ sinh(t) cosh(t)) + C =
ou C' est une constante d’intégration. Finalement,
/\/1+u2du—/cosh t)2dt

= % (t + sinh(t)y/1 + sinh(t)2) +C

= % (log <u—|— u2—|—1> +um> +C,
car t = sinh~}(¢) = Arcsinh(u) = log (u + \/m) .

Exercice 2.8. La cycloide est la courbe décrite par un point sur le bord d’une roue qui roule, sans
glisser, en ligne droite.

(a) Dessiner une cycloide



(b) Donner un paramétrage de la cycloide (préciser d’abord le choix de la situation et du systéme de
coordonnées).

(c) Calculer la longueur d’une arche de la cycloide (en supposant que la roue engendrant la cycloide
est de longueur r)

Solution 2.8. (a)

A 4

(b) Soit P un point du bord de la roue de rayon r et de centre C. Nous ferons rouler la roue sur 'axe
Oz1. Au temps t = 0, nous plagons la roue de maniére a ce que le point P coincide avec l'origine.
Aprés un temps ¢, le rayon passant par P formera un angle ¢ avec le rayon vertical. La roue aura
parcouru une distance rt.

Nous désirons calculer les coordonnées du point P en fonction de t. Nous avons

OP = OA + AC +CP = <gt> n (S) N <—Tsint>

—rcost

ol A est le point de l'intersection (le point mouvant) de la roue avec 'axe Ox;. D’ou une paramétri-
sation de la cycloide
~v(t) = (r(t —sint),r(1 — cost)) .

(c) Le vecteur vitesse vaut 4(t) = (r(1 — cost),rsint) et la vitesse vaut ||¥(¢)|| = r/2(1 — cost). La
longueur d’un arche de cycloide est donc

2T 2 o
L=/ y(t dt:rx/i/ \/mdt:r\/ﬁ/ 2sin(4)2 dt
; @)l ; i m
2T

= 2r/ sin (%) dt =2r- [_2 COS(%)]ZO =8r
0

Notons qu’il est légitime de remplacer 4/sin(%)? par sin(%) car sin(4) > 0 pour t € [0, 27].

Exercice 2.9. Discuter le paradoze de la roue d’Aristote.

On considére deux roues attachées solidairement ensemble et centrées sur un méme axe, I'une de rayon
2 et 'autre de rayon 1. On fait rouler ces roues (solidairement) sur une route pendant un tour de roue.
Le centre de la grande roue s’est alors déplacé d’une distance de 47 et celui de la petite roue d’une
distance de 2w. Conclusion 47 = 2.

Solution 2.9. L’affirmation selon laquelle le centre de la grande roue se déplace d’une distance de 27
suppose que la roue roule sans glisser. Si c’est le cas, alors la petite roue ne roule pas, ou du moins
pas sans glisser. Il est donc inexact d’affirmer que le centre de la petite roue se déplace d’une distance
de 4.

Si on fabrique ce mécanisme en utilisant deux roues dentées solidairement fixées en leur centre et qu’on
les place sur deux crémailléres paralléeles, alors on obtient un mécanisme rigide, qui ne peut pas tourner.

Voir aussi la vidéo (13 minutes) https://www.youtube.com/watch?v=mrVg9GM5h7Q


https://www.youtube.com/watch?v=mrVg9GM5h7Q

Remarque. Le probléme du roulement sans glissement se pose aussi en mécanique automobile (lorsqu’une
voiture prend un virage, I'une des roues doit rouler plus vite que 'autre, comment gérer ce probléme avec les
roues motrices 7 Ce probléme se résout par un différentiel.

Voir les explications sur Wikipedia https://fr.wikipedia.org/wiki/Diff},C3%A9rentiel_(mJ,C3%A9canique)
et la vidéo https://youtu.be/yYAu79386WI


https://fr.wikipedia.org/wiki/Diff%C3%A9rentiel_(m%C3%A9canique)
https://youtu.be/yYAw79386WI

