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Exercice 2.1. Prouver les formules suivantes concernant le produit vectoriel :

Pour tous a,b, c,d ∈ R3 on a

(i) (a× b)× c = 〈a, c〉b− 〈b, c〉a (première dentité de Grassmann),

(ii) a× (b× c) = 〈a, c〉b− 〈a,b〉 c (seconde identité de Grassmann).

(iii) 〈a× b, c× d〉 = 〈a, c〉 〈b,d〉 − 〈a,d〉 〈b, c〉 (identité de Lagrange).

(iv) 〈a× b, c× d〉 = 〈(a× b)× c,d〉 .

Indication. En choisissant une base orthonormée directe bien adaptée au problème, on peut simplifier
les calculs.

Solution 2.1. Soit a,b, c,d ∈ R3 non nuls. Il est toujours possible de trouver une base orthonormée
directe {e1, e2, e3} telle que

a = a1e1
b = b1e1 + b2e2
c = c1e1 + c2e2 + c3e3
d = d1e1 + d2e2 + d3e3

par exemple en prenant e1 = a
||a|| , e2 =

b−〈b,e1〉e1
||b−〈b,e1〉e1|| si b− 〈b, e1〉e1 est non nul, sinon on peut prendre

pour e2 n’importe quel vecteur unitaire perpendiculaire à e1 et finalement e3 = e1 × e2.
On calcule alors :

(i)

(a× b)× c = (a1b2e3)× c = −a1b2c2e1 + a1b2c1e2
〈a, c〉b− 〈b, c〉a = a1c1b1e1 + a1c1b2e2 − (b1c1 + b2c2)a1e1

= a1b2c1e2 − a1b2c2e1

(ii)

a× (b× c) = a1e1 × (b2c3e1 − b1c3e2 + (b1c2 − b2c1))
= −a1(b1c2 − b2c1)e2 − a1b1c3e3

〈a, c〉b− 〈a,b〉c = a1c1b1e1 + a1c1b2e2 − a1b1c1e1 − a1b1c2e2 − a1b1c3e3
= a1b2c1e2 − a1b1c2e2 − a1b1c3e3

(iii)

〈a× b, c× d〉 = 〈a1b2e3, (c2d3 − c3d2)e1 + (c3d1 − c1d3)e2 + (c1d2 − c2d1)e3〉
= a1b2c1d2 − a1b2c2d1

〈a, c〉〈b,d〉 − 〈a,d〉〈b, c〉 = a1c1(b1d1 + b2d2)− a1d1(b1c1 + b2c2)

= a1b2c1d2 − a1b2c2d1
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(iv)

〈(a× b)× c,d〉 (i)=〈〈a, c〉b− 〈b, c〉a,d〉
=〈a, c〉〈b,d〉 − 〈a,d〉〈b, c〉

(iii)
= 〈a× b, c× d〉

Exercice 2.2. Montrer que pour tous a,b, c ∈ R3 on a

i) (a× b)× c+ (b× c)× a+ (c× a)× b = 0 (première identité de Jacobi)

ii) a× (b× c) + b× (c× a) + c× (a× b) = 0 (deuxième identité de Jacobi.)

Solution 2.2. On rappelle tout d’abord la première identité de Grassmann :

(a× b)× c = 〈a, c〉b− 〈b, c〉a.

On a donc (en utilisant la symétrie du produit scalaire) :

(a× b)× c+ (b× c)× a+ (c× a)× b = 〈a, c〉b− 〈b, c〉a+ 〈b,a〉c− 〈c,a〉b+ 〈c,b〉a− 〈a,b〉c
= 〈a, c〉b− 〈b, c〉a+ 〈a,b〉c− 〈a, c〉b+ 〈b, c〉a− 〈a,b〉c
= 0.

La deuxième identité de Jacobi se prouve de la même manière en utilisant la seconde identités de
Grassmann. On peut aussi la déduire de la première identité de Jacobi et de l’antisymétrie du produit
vectoriel :

a× (b× c) + b× (c× a) + c× (a× b) = −((b× c)× a+ (c× a)× b+ (a× b)× c) = 0.

Voici un autre raisonnement pour prouver (par exemple la première) identité de Jacobi basé sur un
argument de trilinéarité. Il s’agit de prouver que l’application f : R3 × R3 × R3 → R3 définie par

f(x,y, z) = (x× y)× z+ (y × z)× x+ (z× x)× y,

est identiquement nulle. Il est clair que f est trilinéaire, il suffit donc de vérifier que f s’annule sur
une base orthonormée directe {e1, e2, e3}. De plus f est invariante au signe près lorsqu’on permute les
variables, ce qui réduit le nombre de calculs à effectuer.
On remarque d’abord que

f(e1, e2, e3) = (e1 × e2)× e3 + (e2 × e3)× e1 + (e3 × e1)× e2

= e3 × e3 + e1 × e1 + e2 × e2

= 0.

Par permutation, on a donc plus généralement f(ei, ej , ek) = 0 si les trois indices i, j, k sont deux-à-
deux distincts. Lorsque les indices ne sont pas distincts, cette expression s’annule aussi car

f(ei, ei, ej) = (ei × ei)× ej + (ei × ej)× ei + (ej × ei)× ei

= (ei × ej)× ei − (ei × ej)× ei

= 0.
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Exercice 2.3. Le produit vectoriel dans E3 est-il associatif ?

Solution 2.3. Non, le produit vectoriel n’est pas associatif. L’identité de Jacobi peut s’écrire

a× (b× c) = (a× b)× c+ (c× a)× b = (a× b)× c+ b× (a× c)

(on utilise l’antisymétrie du produit vectoriel); cetet identité mesure donc la “non associativité” du
produit vectoriel.

On peut aussi le voir sur un exemple : si {e1, e2, e3} est une base orthonormée directe de E3, alors

(e1 × e1)× e2 = 0 mais e1 × (e1 × e2) = −e2.

On fera donc attention de ne jamais écrire une expression ambigüe du type a× b× c..

Exercice 2.4. (a) Rappeler ce qu’est une similitude d’un espace vectoriel euclidien.

(b) Prouver que les similitudes d’un espace vectoriel euclidien En forment un groupe.

(c) Prouver que les isométries forment un sous-groupe normal du groupe des similitudes.

(d) Expliquer pourquoi une similitude qui fixe l’origine 0 ∈ En est une application linéaire.

(e) Démontrer que les propriétés suivantes sont équivalentes pour application linéaire inversible f :
En → En :

(i) f est une similitude.

(ii) f préserve les angles, i.e. si a,b ∈ En sont non nuls, alors l’angle entre f(a) et f(b) est égal
à l’angle entre a et b.

(iii) f préserve l’orthogonalité, i.e. si a ⊥ b alors f(a) ⊥ f(b).

(f) On peut identifier C au plan euclidien orienté R2. Montrer que f : C → C est une similitude
linéaire directe si et seulement si f est la multiplication par un nombre complexe non nul (i.e. on
a f(z) = az avec a ∈ C∗).

Solution 2.4. (a) Une similitude d’un espace vectoriel euclidien est une application f : En → En qui
vérifie d(f(x), f(y)) = λd(x, y), avec λ > 0 indépendant de x et y (c’est le rapport de similitude).

Remarques : (1) On a vu au cours qu’une similitude est une transformation affine : plus précisément une similitude
de Rn peut s’écrire f(x) = λAx+ b où A est une matrice orthogonale.
(2) Le mot “figure” en géométrie euclidienne signifie simplement un ensemble de points, donc un sous-ensemble de En.
Deux figures sont semblables si une similitude transforme la première figure en la seconde (c’est la raison pour laquelle
on appelle ces transformations des similitudes). Deux figures sont ainsi semblables lorsque toutes les distances sont
multipliées par une même constante.

(b) Si f1, f2 : En → En sont deux similitudes de rapports λ1 et λ2, alors f2 ◦ f1 vérifie pour tous
x, y ∈ En :

d(f2 ◦ f1(x), f2 ◦ f1(y)) = d(f2(f1(x)), (f1(y))) = λ2d(f1(x), f1(y)) = λ2λ1d(x, y),

c’est donc une similitude de rapport λ1λ2. On vérifie de même que si f est une similitude de rapport λ,
alors f−1 est une similitude de rapport 1/λ. On a montré que les similitudes forment un sous-groupe
du groupe des bijections de l’espace En dans lui-même.
(On peut aussi démontrer que les similitudes forment un groupe à partir de la caractérisation affine
f(x) = λAx+ b avec A ∈ O(n)).
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(c) Les isométries sont les similitudes de rapport 1, par ce qui précède la composition de deux isométries
est une isométrie et l’inverse d’une isométrie est une isométrie, donc les isométries forment un sous-
groupe. Ce sous-groupe est normal car si f est une similitude de rapport λ et g est une isométrie, alors
f ◦ g ◦ f−1 est une similitude de rapport λ · 1λ = 1, c’est donc une isométrie.

(d) Au cours on a démontré que les similitudes sont des transformations affines (voir le théorème 1.6),
or une transformation affine d’un espace vectoriel qui préserve l’origine est une transformation linéaire.

(e) Pour la question (e), les preuves de (i) ⇒ (ii) et (ii) ⇒ (iii) suivent très facilement des définitions.
La preuve de (iii) ⇒ (i) se fait de la façon suivante : soit {e1, . . . , en} une base orthonormée de En,
et notons vi = f(e)i Alors {v1, . . . , vn} est une base de En (car on suppose f inversible) et vi ⊥ vj si
i 6= j par l’hypothèse (iii). On utilise maintenant aussi que (ei + ej) ⊥ (ei − ej), et par conséquent
(vi + vj) ⊥ (vi − vj). On a donc

0 = 〈vi + vj , vi − vj〉 = 〈vi, vi〉+ 〈vi, vk〉 − 〈vk, vi〉 − 〈vk, vk〉 = ‖vi‖2 − ‖vj‖2.

On a ainsi montré que ‖vi‖ = ‖vj‖ pour tous i, j = 1, . . . , n. Nous pouvons maintenant prouver f est
une similitude de rapport λ = ‖vi‖ de la façon suivante : Soit x un élément quelconque de En. On
peut écrire

x =

n∑
i=1

xiei, et donc f(x) =

n∑
i=1

xif(ei) =

n∑
i=1

xivi.

On détermine maintenant la norme de f(x) en calculant

‖f(x)‖2 = 〈f(x), f(x)〉 = 〈
n∑
i=1

xivi,
n∑
j=1

xjvj〉

=
n∑

i,j=1

xixj〈vi, vj〉 =
n∑
i=1

x2i ‖vi‖2 = λ2
n∑
i=1

x2i = λ2‖x‖2,

(on a utilise dans ce calcul que 〈vi, vj〉 = 0 si i 6= j et 〈vi, vi〉 = ‖vi‖2 = λ)).

(f) Supposons que l’application f s’écrit f(z) = az en notation complexe avec a 6= 0. En posant
z = x+ iy (avec x, y ∈ R) et a = reiθ = r(cos(θ) + i sin(θ)), on calcule directement que

f(z) = r(cos(θ) + i sin(θ)) · (x+ iy) = r ((cos(θ)x− sin(θ)y) + (sin(θ)x+ cos(θ)y)i) ,

que l’on peut représenter matriciellement par

f

(
x
y

)
= r ·

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.,

qui est bien une similitude (comparer avec le théorème 1.6 du polycopié).

Pour prouver l’implication inverse, on suppose que f : R2 → R2 est une similitude linéaire, alors

on peut écrire f
(
x
y

)
=

(
a c
b d

)(
x
y

)
. Les vecteurs

(
a
b

)
et
(
c
d

)
sont les images de la base

canonique. Ils doivent donc être orthogonaux et de même norme, de plus le déterminant de cette
matrice doit être positif puisque la similitude f est supposée directe (i.e. elle préserve l’orientation du
plan). On a donc les relations suivantes :

ac+ bd = 0, a2 + b2 = c2 + d2, ad− bc > 0.

Ces relations entraînent que c = −b et d = a et donc f(x, y) = (ax− by, bx+ ay), ou si on préfère en
notation complexe : f(z) = (a+ ib)z.
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Exercice 2.5. Donner un exemple de courbe fermée simple qui est de classe C1, mais pas de classe
C2.

Solution 2.5. Un exemple classique de courbe qui est de classe C1, mais pas de classe C2 est le
“stade”. C’est la courbe qu’on obtient en complétant deux segments parallèles de longueur a, séparés
d’une distance d = 2r par deux demi-cercles de rayon r reliant les extrêmités de ces segments.

r
d

a

Le stade est une courbe fermée simple du plan, on peut par exemple la paramètrer à vitesse constante (il
faut écrire plusieurs formules). La courbe est de classe C1 (car on a une tangente variant continument),
mais aux 4 points de raccordement l’accélération présente une discontinuité : elle est nulle sur les
segments mais de norme constante sur les arcs de cercle. La courbe n’est donc pas de classe C2.

Exercice 2.6. A quelle condition le graphe d’une fonction f représente-t-il une courbe birégulière ?

Solution 2.6. La réponse est que le graphe d’une fonction f représente-t-il une courbe birégulière si
et seulement si la fonction f est de classe C2 et se seconde dérivée f ′′ ne s’annule pas.

Explication: Rappelons qu’une courbe α est dite birégulière si elle est de classe C2 et si α̇ (t) et α̈ (t) sont
linéairement indépendants pour tout t ∈ I. Dans le cas du graphe γf (x) = (x, f (x)) d’une fonction
f , cela veut dire que f est de classe C2 et f ′′(x) 6= 0 pour tout x ∈ I. En effet γ̇f (x) = (1, f ′ (x)) et
γ̈f (x) = (0, f ′′ (x)) sont linéairement indépendants si et seulement si f ′′(x) 6= 0.

Exercice 2.7. Par définition, la longueur d’un arc de courbe α : [a, b] → Rn est l’intégrale `(α) =∫ b
a Vα(u)du où Vα(u) = ‖α̇(u)‖ est la vitesse de α.

Calculer la longueur des courbes suivantes :

(a) α(u) = (cos(u), sin(u), u). −π ≤ u ≤ π (la courbe α est une hélice circulaire droite).

(b) β(u) = (eu , e−u ,
√
2u). 0 ≤ u ≤ t.

(c) γ(u) = (u cos(u), u sin(u)). 0 ≤ u ≤ 4π (la courbe γ est une spirale d’Archimède).

Solution 2.7. (a) La longueur de α est

`(α) =

∫ π

−π
‖α̇(u)‖du =

∫ π

−π

√
2 du = 2

√
2π.

Pour les deux questions suivantes, et en général pour ce cours, il est important d’être familier avec les fonctions
hyperboliques. Sur Moodle vous trouverez un "Formulaire et Table d’Intégration" très utile. Voir pages 72–75
pour les définitions et propriétés des fonctions hyperboliques.

(b) La vitesse de la courbe β est

Vβ(u) = ‖β̇(u)‖ =
√
e2u + e−2u + 2 = eu + e−u = 2 cosh(u),
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la longueur de cette courbe est donc

`(β) =

∫ t

0
Vβ(z)du = 2 sinh(t).

(c) On a

`(γ) =

∫ 4π

0
‖γ̇(u)‖du =

∫ 4π

0

√
u2 + 1 du

=
1

2
(u
√
u2 + 1 + log(u+

√
u2 + 1))

∣∣∣∣4π
0

= 2π
√

16π2 + 1 +
1

2
log(4π +

√
16π2 + 1).

Remarque Dans ce dernier exemple, pour trouver une primitive de
√
1 + u2 on peut consulter une

table d’intégration. On peut aussi raisonner ainsi : On pose u = sinh(t), alors
√
1 + u2 = cosh(t) et

du = cosh(t)dt, donc ∫ √
1 + u2du =

∫
cosh(t)2dt.

On intègre par parties: ∫
cosh(t)2dt =

∫
cosh(t) sinh′(t)dt

= cosh(t) sinh(t)−
∫

cosh′(t) sinh(t)dt

= cosh(t) sinh(t)−
∫

sinh(t)2dt

= cosh(t) sinh(t)−
∫ (

cosh(t)2 − 1
)
dt.

Par conséquent∫
cosh(t)2dt =

1

2
(t+ sinh(t) cosh(t)) + C =

1

2

(
t+ sinh(t)

√
1 + sinh(t)2

)
+ C,

où C est une constante d’intégration. Finalement,∫ √
1 + u2du =

∫
cosh(t)2dt

=
1

2

(
t+ sinh(t)

√
1 + sinh(t)2

)
+ C

=
1

2

(
log
(
u+

√
u2 + 1

)
+ u
√

1 + u2
)
+ C,

car t = sinh−1(t) = Arcsinh(u) = log
(
u+
√
u2 + 1

)
.

Exercice 2.8. La cycloïde est la courbe décrite par un point sur le bord d’une roue qui roule, sans
glisser, en ligne droite.

(a) Dessiner une cycloïde
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(b) Donner un paramétrage de la cycloïde (préciser d’abord le choix de la situation et du système de
coordonnées).

(c) Calculer la longueur d’une arche de la cycloïde (en supposant que la roue engendrant la cycloïde
est de longueur r)

Solution 2.8. (a)

(b) Soit P un point du bord de la roue de rayon r et de centre C. Nous ferons rouler la roue sur l’axe
Ox1. Au temps t = 0, nous plaçons la roue de manière à ce que le point P coïncide avec l’origine.
Après un temps t, le rayon passant par P formera un angle t avec le rayon vertical. La roue aura
parcouru une distance rt.
Nous désirons calculer les coordonnées du point P en fonction de t. Nous avons

−−→
OP =

−→
OA+

−→
AC +

−−→
CP =

(
rt
0

)
+

(
0
r

)
+

(
−r sin t
−r cos t

)
où A est le point de l’intersection (le point mouvant) de la roue avec l’axe Ox1. D’où une paramétri-
sation de la cycloïde

γ(t) = (r(t− sin t), r(1− cos t)) .

(c) Le vecteur vitesse vaut γ̇(t) = (r(1 − cos t), r sin t) et la vitesse vaut ||γ̇(t)|| = r
√

2(1− cos t). La
longueur d’un arche de cycloïde est donc

L =

∫ 2π

0
||γ̇(t)|| dt = r

√
2

∫ 2π

0

√
1− cos t dt = r

√
2

∫ 2π

0

√
2 sin( t2)

2 dt

= 2r

∫ 2π

0
sin
(
t
2

)
dt = 2r ·

[
−2 cos( t2)

]2π
t=0

= 8r

Notons qu’il est légitime de remplacer
√
sin( t2)

2 par sin( t2) car sin(
t
2) ≥ 0 pour t ∈ [0, 2π].

Exercice 2.9. Discuter le paradoxe de la roue d’Aristote.
On considère deux roues attachées solidairement ensemble et centrées sur un même axe, l’une de rayon
2 et l’autre de rayon 1. On fait rouler ces roues (solidairement) sur une route pendant un tour de roue.
Le centre de la grande roue s’est alors déplacé d’une distance de 4π et celui de la petite roue d’une
distance de 2π. Conclusion 4π = 2π.

Solution 2.9. L’affirmation selon laquelle le centre de la grande roue se déplace d’une distance de 2π
suppose que la roue roule sans glisser. Si c’est le cas, alors la petite roue ne roule pas, ou du moins
pas sans glisser. Il est donc inexact d’affirmer que le centre de la petite roue se déplace d’une distance
de 4π.
Si on fabrique ce mécanisme en utilisant deux roues dentées solidairement fixées en leur centre et qu’on
les place sur deux crémaillères parallèles, alors on obtient un mécanisme rigide, qui ne peut pas tourner.

Voir aussi la vidéo (13 minutes) https://www.youtube.com/watch?v=mrVg9GM5h7Q
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Remarque. Le problème du roulement sans glissement se pose aussi en mécanique automobile (lorsqu’une
voiture prend un virage, l’une des roues doit rouler plus vite que l’autre, comment gérer ce problème avec les
roues motrices ? Ce problème se résout par un différentiel.
Voir les explications sur Wikipedia https://fr.wikipedia.org/wiki/Diff%C3%A9rentiel_(m%C3%A9canique)
et la vidéo https://youtu.be/yYAw79386WI
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