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La géométrie différentielle peut très brièvement se résumer dans l’idée d’appliquer des méthodes de calcul
différentiel et d’analyse à des problèmes de géométrie, en particulier à l’étude des courbes, des surfaces et d’objets
généralisant ces notions. Toutefois le géométrie différentielle ne se réduit pas au seul usage du calcul différentiel
mais fait intervenir d’autres techniques telles que celles de l’algèbre linéaire, de la géométrie vectorielle, la théorie
des groupes, la topologie, ainsi que la géométrie euclidienne classique. Cette première série d’exercices propose
de revisiter le produit vectoriel d’une part, et de construire une preuve de l’inégalité isopérimétrique dans le
plan d’autre part.

Exercice 1.1. On rappelle que le produit vectoriel de deux vecteurs de R3 définis dans une base
orthonormée directe (i.e. d’orientation positive) par x = x1e1 +x2e2 +x3e3 et y = y1e1 +y2e2 +y3e3
est le vecteur

x× y =
3∑

i=1

3∑
j=1

xiyj ei × ej

= (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3

=

∣∣∣∣ x2 y2
x3 y3

∣∣∣∣ e1 − ∣∣∣∣ x1 y1
x3 y3

∣∣∣∣ e2 +

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ e3.
Prouver que a× b ∈ R3 est uniquement déterminé par les conditions géométriques suivantes :

(a) (a× b) ⊥ a et (a× b) ⊥ b.

(b) ‖a× b‖ = aire(P(a,b)) (où P(a,b) est le parallélogramme construit sur les vecteurs a et
b).

(c) Si a et b sont linéairement indépendants, alors {a,b,a×b} est une base d’orientation positive
de R3.

Solution 1.1. Une solution de cet exercice est donnée dans le polycopié, voir la preuve de la proposition
1.12.

Une autre solution consiste à exploiter le groupe SO(3) pour se ramener au cas très simple où les
vecteurs x et y sont combinaisons linéaires des deux premiers vecteurs de base e1, e2.
Voici les détails : Soient x,y ∈ R3. On note x × y le vecteur défini par la formule en coordonnées et
x ∗ y le vecteur défini par les propriétés (a), (b) et (c) (qui est bien défini par sa direction, son sens et
sa norme). On veut monter que x× y = x ∗ y pour tous vecteurs x,y de R3.
D’abord, on remarque que si φ ∈ SO3(R) alors

φ(x ∗ y) = φ(x) ∗ φ(y). (1)

En effet si la famille {x,y} est liée, les deux côtés de cette inégalités sont nuls. Si elle est libre, alors
par définition

{x,y,x ∗ y}

est une base d’orientation positive et donc

{φ(x), φ(y), φ(x ∗ y)}

1



est aussi une base d’orientation positive. Si on applique (c) à φ(x) ∗ φ(y), cela signifie que ce vecteur
est positivement colinéaire à φ(x ∗ y). De plus:

‖φ(x) ∗ φ(y)‖ = aireP(φ(x), φ(y)) = aireP(x,y) = ‖x ∗ y‖ = ‖φ(x ∗ y)‖ .

L’égalité (1) est donc établie car les deux vecteurs ont même direction, même sens et même norme.
Montrons de même que

φ(x× y) = φ(x)× φ(y). (2)

Par bilinéarité des deux termes en x,y, il suffit de le vérifier sur la base {e1, e2, e3}. Par exemple:

φ(e1)× φ(e2) =

∣∣∣∣ φ2,1 φ2,2
φ3,1 φ3,2

∣∣∣∣ e1 − ∣∣∣∣ φ1,1 φ1,2
φ3,1 φ3,2

∣∣∣∣ e2 +

∣∣∣∣ φ1,1 φ1,2
φ2,1 φ2,2

∣∣∣∣ e3 (3)

φ(e1 × e2) = φ(e3) = φ1,3e1 + φ2,3e2 + φ3,3e3. (4)

L’égalité entre les deux précédents termes découlent du fait que φ ∈ SO3:

φ−1 = φT et detφ = 1

ce qui donne avec la formule de la comatrice:

comatriceφ = det(φ) ·
(
φ−1

)T
= φ.

Nous pouvons faire même pour tous les autres vecteurs de base et ainsi obtenir (2).
Les conditions (2) et (1) permettent de se ramener par rotation à l’étude des restrictions

×, ∗ : Vect(e1, e2)→ Vect(e3).

Si ces restrictions coïncident, alors par action de SO3(R) on aura l’égalité × = ∗ sur R3 × R3. Mais
pour les restriction, il est clair que ×, ∗ : Vect(e1, e2)→ Vect(e3) sont bilinéaires et antisymétriques :
c’est évident pour × en général (les déterminants sont bilinéaires et antisymétriques) et pour ∗, il s’agit
de remarquer que (b) et (c) donnent:

(x1e1 + x2e2) ∗ (y1e1 + y2e2) =

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ e3.
Comme elles sont bilinéaires, on vérifie l’égalité sur la base {e1, e2}. Le seul terme non-nul est:

e1 × e2 = e1 ∗ e2 = e3.

Les restrictions coïncident et nous avons donc prouvé le résultat souhaité.

Les exercices qui suivent visent à démontrer l’inégalité isopérimétrique dans le plan. Considérons un domaine
borné D contenu dans la plan R2. Son bord ∂D est la réunion d’une ou plusieurs courbes et on appelle périmètre
de D la longueur totale de ∂D (qui peut éventuellement être infinie). Le quotient isopérimétrique de D est
défini par

Isp(D) =
(Longueur(∂D))

2

Aire(D)
.

L’inégalité isopérimétrique dans le plan affirme que le quotient isopérimétrique minimal parmi tous les domaines
du plan est atteint pour les disques, i.e. pour tout domaine borné D ⊂ R2 on a

Isp(D) ≥ Isp(B2),

où B2 = {x ∈ R2 | ‖x‖ < 1} est le disque unité du plan. De plus on a égalité si et seulement si D est un disque
(de rayon quelconque).

Avant de commencer les exercices qui suivent, prenez un moment pour réfléchir à cette inégalité; vous
pouvez en discuter entre vous. Comprenez-vous ce qu’elle signifie? Quel genre de raisonnement faut-il
faire pour établir une preuve de cette inégalité ?
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Exercice 1.2. (a) Prouver que le quotient isopérimétrique est invariant par similitude (une similitude
du plan ou de l’espace euclidien est une bijection qui préserve les rapport de distances; c’est donc la
composition d’une homothétie et d’une isométrie).
(b) Calculer le quotient isopérimétrique d’un carré, d’un triangle équilatéral et d’un disque.

Solution 1.2. (a) Si deux domaines D1 et D2 du plan sont isométriques, alors ils ont clairement même
aire et même périmètre. Si D2 est un homothétique de D1, de rapport λ > 0, alors le périmètre de D2

est égal à λ fois le périmètre de D1 et l’aire D2 est égale à λ2 fois l’aire de D1. Les deux domaines ont
donc même quotient isopérimétrique.
(b) Les quotients isopérimétriques d’un carré, d’un triangle équilatéral et d’un disque sont respective-
ment 16, 36/

√
3 et 4π.

Le but des exercices 1.3 à 1.9 est de conduire à une preuve de l’inégalité isopérimétrique dans le plan.
On utilisera uniquement des résultats de géométrie euclidienne de base et des propriétés intuitives
élémentaires des notions de longueur et d’aire.

Exercice 1.3. Prouver la proposition 32 du livre 1 des Éléments d’Euclide. Cette proposition dit que
la somme des angles de tout triangle est égale à deux angles droits.
Indication. Il faut utiliser le postulat des parallèle1.

Solution 1.3. On considère un triangle ABC du plan dont on note les angles en A,B,C respectivement
par α, β, γ. Par le postulat des parallèles, on sait qu’il existe une unique droite (disons A′B′) passant
par C et parallèle à la droite AB. Il reste à vérifier que ^CAA

′ = α et ^CBB
′ = β. Pour cela on

applique une rotation de centre le milieu du segment [A,C] (respectivement du segment [B,C]) et
d’angle π. On a montré que α+ β + γ = π.

C

BA
α β

γ
α β B′A′

Exercice 1.4. (a) Soit C un point sur le cercle de diamètre [A,B] (supposé distinct de A et B).
Prouver que l’angle en O du triangle OCB est le double de l’angle en A du triangle ACB:

^OCB = 2^ACB

(on écrit aussi B̂OC = 2B̂AC).

O
BA

C

2αα

1Le postulat des parallèle, aussi appelé 5ème postulat d’Euclide énonce que dans un plan, par tout point extérieure
à une droite il passe une unique parallèle à cette droite.
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(b) Prouver ensuite le théorème du demi-cercle de Thales : Le triangle ABC est un triangle rectangle
en C si et seulement le point C est un point du cercle de diamètre [A,B] (rappelons que ABC est un
triangle rectangle en C si ^CAB = π/2).

Solution 1.4. (a) Posons les notations suivantes:

α = ^ACB, β = ^BCA, γ = ^OBC, δ = ^OAC.

Les triangles OAC et OBC sont isocèles (car inscrits dans le cercle), on a donc aussi

α = ^COA, β = ^COB, (α+ β) = ^CAB.

En appliquant l’exercice 1.5 aux triangles ABC et OBC on voit que 2α+ 2β = π et γ + 2β = π. Par
conséquent γ = π − 2β = 2α.

(b) Pour prouver le théorème de Thalès, on observe d’abord que si le point C est sur cercle de diamètre
[A,B], alors, avec les notation précédentes, on a ^CAB = (α + β) = π/2 puisque 2α + 2β = π. Le
triangle ABC est donc un triangle rectangle en C.
Pour prouver le sens inverse, on suppose que le point C n’est pas situé sur le cercle de diamètre [A,B],
et on note C ′ le point d’intersection de la droite OC avec le cercle. On distingue deux cas: si le point C
est à l’extérieur du cercle, alors C ′ est à l’intérieur du triangle ABC et on a ^CAB < ^C′AB = π/2.
Si par contre le point C est à l’intérieur du cercle, alors c’est le point C qui est à l’intérieur du triangle
ABC ′ et on a ^CAB > ^C′AB = π/2. Finalement, ^CAB = π/2 si et seulement si le point C est sur
le cercle de diamètre [A,B].

O
BA

C ′
C

•
O

BA

C ′

C

•

Remarque. En raison de cette construction, on appelle cercle de Thalès du segment [A,B] le cercle
dont [A,B] est le diamètre.

Exercice 1.5. Prouver que parmi tous les triangles ABC tels que x = d(A,C) et y = d(B,C), celui
qui maximise l’aire est le triangle rectangle en C.

Solution 1.5. L’aire du triangle ABC est égale à 1
2xy sin(γ) où γ = ^CAB. Cette quantité atteint

son maximum lorsque sin(γ) = 1, donc lorsque γ est un angle droit.

Exercice 1.6. Rappelons qu’un domaine D ⊂ Rn est convexe, si pour toute paire de points A,B ∈ D,
le segment [A,B] est contenu dans D. Prouver que si D ⊂ R2 n’est pas convexe, alors ce domaine
ne minimise pas le quotient isopérimétrique (i.e. on peut construire un autre domaine D′ tel que
Isp(D′) < Isp(D)).

Solution 1.6. Si le domaine D n’est pas convexe, alors il existe un arc de courbe σ contenu dans
le bord ∂D, limité par deux points p, q ∈ ∂D tels que le sous-ensemble ouvert G dont le bord est la
réunion de σ et du segment [p, q] est disjoint de D. Alors le domaine D′ = D ∪ G ∪ σ est clairement
d’aire plus grande que l’aire de D et sont périmètre est plus petit car la longueur de σ est plus grande
que la longueur du segment [p, q] (le segment de droite est le plus court chemin entre deux points).
Il est donc clair que Isp(D′) < Isp(D).
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p

q

D
G

σ

Exercice 1.7. Supposons que D ⊂ R2 est un domaine isopérimétrique optimal (en particulier D est
convexe), notons Γ = ∂D son bord. Soient A,B ∈ Γ deux points du bord de D qui partagent la courbe
Γ en deux parties d’égales longueurs. Montrer alors que la corde [A,B] partage D en deux régions
d’aires égales.

Solution 1.7. On raisonne par l’absurde. Supposons que la corde [A,B] partage D en deux régions
D1 et D2 d’aires inégales, par exemple Aire(D1) > Aire(D2). Notons D′1 la région du plan symétrique
de D1 par rapport à la droite AB et D′ = D1 ∪D′1. Alors il est clair par construction que D et D′ ont
le même périmètre et

Aire(D′) = Aire(D1) + Aire(D1) > Aire(D1) + Aire(D2) = Aire(D).

Par conséquent Isp(D′) < Isp(D), contredisant l’hypothèse que D est un domaine isopérimétrique.

Exercice 1.8. Soit D ⊂ R2 est un domaine isopérimétrique optimal et Γ, A,B comme dans l’exercice
précédent. Montrer alors que pour tout point P de Γ, différents de A et B, on a ^PAB = π/2.
Indication. Supposant par l’absurde que ça n’est pas le cas pour un certain point P , utiliser l’exercice
1.6 pour construire un domaine D′ dont le périmètre est égal à celui de D mais Aire(D′) > Aire(D).

Solution 1.8. On raisonne de nouveau par l’absurde. Nous allons prouver que s’il existe un point
P ∈ Γ = ∂D tel que P 6= A,B et le triangle ABP n’est pas rectangle en P , alors on peut construire
un domaine D′ tel que Isp(D′) < Isp(D).

Première étape : Notons σ1 l’arc de Γ de A à P et σ2 l’arc de Γ de P à B. Notons ensuite G1 le
domaine du plan limité par l’arc σ1 et la corde [A,P ] et G2 le domaine du plan limité par l’arc σ2 et
la corde [P,B].

Deuxième étape : On construit un triangle A′B′P ′ rectangle en P ′ et tel que d(A′, P ′) = d(A,P ) et
d(B′, P ′) = d(B,P ). Par l’exercice 1.6 on sait que l’aire de A′B′P ′ est strictement plus grande que
l’aire de ABP . (Noter que d(A′, B′) 6= d(A,B)).

Troisième étape : On ajoute au triangle A′B′P ′ une région G′1 isométrique à G1, dont le bord contient
l’arc A′, P ′ et dont l’intérieur est disjoint du triangle A′B′P ′. Ensuite on ajoute de même une région G′2
isométrique à G2, dont le bord contient l’arc B′, P ′ et dont l’intérieur est disjoint du triangle A′B′P ′.
On note D′1 le domaine obtenu.

Quatrième étape : On note maintenant D′2 le domaine symétrique de D′1 par rapport à la droite A′B′,
puis on pose D′ = D1 ∪D2. Par construction, le périmètre de ce domaine est le double de la somme
des longueurs de σ1 et σ2, donc D′ et D ont le même périmètre. D’autre part, la deuxième étape de
la construction entraîne que Aire(D′) > Aire(D′). On a donc Isp(D′) < Isp(D).

Exercice 1.9. A partir des exercices précédents, prouver l’inégalité isopérimétrique dans le plan :
pour tout domaine du plan on a Isp(D) ≥ 4π, avec égalité si et seulement si D est un disque (on admet
l’existence d’un domaine isopérimétrique optimal, il s’agit ici de prouver l’unicité)
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Solution 1.9. Les exercices 1.7, 1.9 et 1.5b entraînent que si D est un domaine isopérimétrique du
plan, alors D est un domaine convexe dont le bord est un cercle.

Remarque. Il existe plusieurs preuves de l’inégalité isopérimétrique, assez différentes les unes des autres. La
preuve étudiée ici est due à Ernst Steinitz (mathématicien allemand, 1871–1928). Notons aussi qu’il existe une
généralisation de l’inégalité isopérimétrique pour les domaines dans Rn, mais le preuve ci-dessus est spécifique
au domaines plan. Quand à l’existence d’un domaine isopérimétrique (que nous avons supposée dans cette
dérie d’exercices), elle peut se démontrer à partir d’un résultat de Wilhelm Blaschke (mathématicien autrichien
1885–1962): le théorème de sélection de Blaschke, qui affirme que toute suite bornée de domaines convexes
contient une sous-suite qui converge “au sens de Hausdorff”.
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