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La géométrie différentielle peut trés briévement se résumer dans 1'idée d’appliquer des méthodes de calcul
différentiel et d’analyse & des problémes de géométrie, en particulier a 1’étude des courbes, des surfaces et d’objets
généralisant ces notions. Toutefois le géométrie différentielle ne se réduit pas au seul usage du calcul différentiel
mais fait intervenir d’autres techniques telles que celles de I’algébre linéaire, de la géométrie vectorielle, la théorie
des groupes, la topologie, ainsi que la géométrie euclidienne classique. Cette premiére série d’exercices propose
de revisiter le produit vectoriel d’'une part, et de construire une preuve de l'inégalité isopérimétrique dans le
plan d’autre part.

Exercice 1.1. On rappelle que le produit vectoriel de deux vecteurs de R® définis dans une base
orthonormeée directe (i.e. d’orientation positive) par x = x1e; +x2e2+x3€3 et y = y1€1 + y2e2+yses
est le vecteur
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Prouver que a x b € R? est uniquement déterminé par les conditions géométriques suivantes
(a) (axb)La et (axb)Lb.

(b) ||a x b|| = aire(P(a,b)) (ou P(a,b) est le parallélogramme construit sur les vecteurs a et
b).

(c) Siaetbsont linéairement indépendants, alors {a,b,axb} est une base d’orientation positive

de R3.

Solution 1.1. Une solution de cet exercice est donnée dans le polycopié, voir la preuve de la proposition
1.12.

Une autre solution consiste a exploiter le groupe SO(3) pour se ramener au cas trés simple ou les
vecteurs x et y sont combinaisons linéaires des deux premiers vecteurs de base eq, es.

Voici les détails : Soient x,y € R3. On note x x y le vecteur défini par la formule en coordonnées et
x *xy le vecteur défini par les propriétés (a), (b) et (c) (qui est bien défini par sa direction, son sens et
sa norme). On veut monter que X X y = X * y pour tous vecteurs x,y de R3.

D’abord, on remarque que si ¢ € SO3(R) alors

p(x*xy) = (%) * ¢(y). (1)

En effet si la famille {x,y} est liée, les deux cotés de cette inégalités sont nuls. Si elle est libre, alors
par définition
{x,y,x*y}

est une base d’orientation positive et donc

{6(x),0(y), p(x*y)}



est aussi une base d’orientation positive. Si on applique (c¢) & ¢(x) * ¢(y), cela signifie que ce vecteur
est positivement colinéaire a ¢(x *y). De plus:

[6(x) * d(y)|| = aire P(d(x), d(y)) = aire P(x,y) = [[x * y[| = [lo(x * y)|| .

L’égalité (1) est donc établie car les deux vecteurs ont méme direction, méme sens et méme norme.
Montrons de méme que

P(x X y) = d(x) x ¢(y). (2)
Par bilinéarité des deux termes en x,y, il suffit de le vérifier sur la base {ei, es,e3}. Par exemple:
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e1) X p(eg) = ’ ’ — ’ " leg + ’ “ e 3
d(e1) x 9(e2) 31 P32 $31 P32 | Ga1 o | 3
p(e1 x ex) = p(e3) = ¢13€1 + P2 32 + P33€3. (4)

L’égalité entre les deux précédents termes découlent du fait que ¢ € SOs:
dP=0¢T et detp =1
ce qui donne avec la formule de la comatrice:
comatrice ¢ = det(¢) - (gzﬁfl)T = ¢.

Nous pouvons faire méme pour tous les autres vecteurs de base et ainsi obtenir (2).
Les conditions (2) et (1) permettent de se ramener par rotation a I’étude des restrictions

x,* : Vect(er, e2) — Vect(es).

Si ces restrictions coincident, alors par action de SO3(R) on aura l'égalité x = x sur R® x R3. Mais
pour les restriction, il est clair que x,* : Vect(ey, ez2) — Vect(es) sont bilinéaires et antisymétriques :
c’est évident pour x en général (les déterminants sont bilinéaires et antisymétriques) et pour x, il s’agit
de remarquer que (b) et (c) donnent:
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es.

Comme elles sont bilinéaires, on vérifie 1’égalité sur la base {e;,es}. Le seul terme non-nul est:
€] X ey = e] xey = e3.

Les restrictions coincident et nous avons donc prouvé le résultat souhaité.

Les exercices qui suivent visent & démontrer 1'inégalité isopérimétrique dans le plan. Considérons un domaine
borné D contenu dans la plan R?. Son bord 9D est la réunion d’une ou plusieurs courbes et on appelle périmétre
de D la longueur totale de 9D (qui peut éventuellement étre infinie). Le quotient isopérimétrique de D est
défini par
(Longueur(dD))”

Aire(D)
L’inégalité isopérimétrique dans le plan affirme que le quotient isopérimétrique minimal parmi tous les domaines
du plan est atteint pour les disques, i.e. pour tout domaine borné D C R? on a

Isp(D) > Isp(B?),

Isp(D) =

ou B? = {x € R? | ||z]| < 1} est le disque unité du plan. De plus on a égalité si et seulement si D est un disque
(de rayon quelcongue).

Avant de commencer les exercices qui suivent, prenez un moment pour réfléchir a cette inégalité; vous
pouvez en discuter entre vous. Comprenez-vous ce qu’elle signifie? Quel genre de raisonnement faut-il
faire pour établir une preuve de cette inégalité ?




Exercice 1.2. (a) Prouver que le quotient isopérimétrique est invariant par similitude (une similitude
du plan ou de 'espace euclidien est une bijection qui préserve les rapport de distances; c’est donc la
composition d’une homothétie et d’une isométrie).

(b) Calculer le quotient isopérimétrique d’un carré, d’un triangle équilatéral et d’un disque.

Solution 1.2. (a) Si deux domaines D; et Dy du plan sont isométriques, alors ils ont clairement méme
aire et méme périmétre. Si Dy est un homothétique de Dy, de rapport A > 0, alors le périmétre de Do
est égal a \ fois le périmétre de Dy et I'aire Do est égale a A2 fois I'aire de D;. Les deux domaines ont
donc méme quotient isopérimétrique.

(b) Les quotients isopérimétriques d’un carré, d’un triangle équilatéral et d’un disque sont respective-
ment 16, 36/v/3 et 4.

Le but des exercices 1.3 a4 1.9 est de conduire & une preuve de 'inégalité isopérimétrique dans le plan.
On utilisera uniquement des résultats de géométrie euclidienne de base et des propriétés intuitives
élémentaires des notions de longueur et d’aire.

Exercice 1.3. Prouver la proposition 32 du livre 1 des Eléments d’Euclide. Cette proposition dit que
la somme des angles de tout triangle est égale & deux angles droits.
Indication. Il faut utiliser le postulat des paralléle!.

Solution 1.3. On considére un triangle ABC du plan dont on note les angles en A, B, C respectivement
par «, 3,7. Par le postulat des paralléles, on sait qu’il existe une unique droite (disons A’B’) passant
par C et paralléle a la droite AB. 1l reste a vérifier que <cAA" = a et <¢BB’' = 3. Pour cela on
applique une rotation de centre le milieu du segment [A, C| (respectivement du segment [B,C]) et
d’angle 7. On a montré que a + g + v = 7.

A 3 B’

Exercice 1.4. (a) Soit C' un point sur le cercle de diamétre [A, B] (supposé distinct de A et B).
Prouver que l'angle en O du triangle OCB est le double de I'angle en A du triangle ACB:

<oCB =2<4CB
(on écrit aussi BOC = 2@)
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Le postulat des paralléle, aussi appelé 5éme postulat d’Euclide énonce que dans un plan, par tout point extérieure
& une droite il passe une unique paralléle & cette droite.



(b) Prouver ensuite le théoréme du demi-cercle de Thales : Le triangle ABC' est un triangle rectangle
en C si et seulement le point C' est un point du cercle de diameétre [A, B] (rappelons que ABC est un
triangle rectangle en C si <¢cAB = 7/2).

Solution 1.4. (a) Posons les notations suivantes:
a=<uCB, B=<pCA, ~v=<oBC, =<0AC.
Les triangles OAC et OBC sont isocéles (car inscrits dans le cercle), on a donc aussi
a=<c0A, pB=<c0B, (a+p)=<cAB.

En appliquant ’exercice 1.5 aux triangles ABC et OBC on voit que 2a+ 28 = 7w et v+ 28 = 7. Par
conséquent v =1 — 28 = 2a.

(b) Pour prouver le théoréme de Thalés, on observe d’abord que si le point C' est sur cercle de diamétre
[A, B], alors, avec les notation précédentes, on a <¢AB = (a + ) = 7/2 puisque 2a + 25 = 7. Le
triangle ABC' est donc un triangle rectangle en C.

Pour prouver le sens inverse, on suppose que le point C' n’est pas situé sur le cercle de diamétre [A, B,
et on note C’ le point d’intersection de la droite OC' avec le cercle. On distingue deux cas: si le point C
est & lextérieur du cercle, alors C’ est a l'intérieur du triangle ABC' et on a <cAB < <¢#AB = 7/2.
Si par contre le point C est a I'intérieur du cercle, alors c¢’est le point C' qui est & l'intérieur du triangle
ABC" et on a <¢AB > < AB = m/2. Finalement, <c AB = 7/2 si et seulement si le point C est sur
le cercle de diamétre [A, BJ.
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Remarque. En raison de cette construction, on appelle cercle de Thalés du segment [A, B] le cercle
dont [A, B] est le diamétre.

Exercice 1.5. Prouver que parmi tous les triangles ABC' tels que z = d(A,C) et y = d(B, C), celui
qui maximise 'aire est le triangle rectangle en C'.

Solution 1.5. L’aire du triangle ABC est égale & %:Uy sin(y) ot 7 = <¢AB. Cette quantité atteint
son maximum lorsque sin(y) = 1, donc lorsque «y est un angle droit.

Exercice 1.6. Rappelons qu'un domaine D C R"™ est convexe, si pour toute paire de points A, B € D,
le segment [A, B] est contenu dans D. Prouver que si D C R? n’est pas convexe, alors ce domaine
ne minimise pas le quotient isopérimétrique (i.e. on peut construire un autre domaine D’ tel que
Isp(D’) < Isp(D)).

Solution 1.6. Si le domaine D n’est pas convexe, alors il existe un arc de courbe o contenu dans
le bord 9D, limité par deux points p,q € 9D tels que le sous-ensemble ouvert G dont le bord est la
réunion de o et du segment [p, q] est disjoint de D. Alors le domaine D' = D U G U ¢ est clairement
d’aire plus grande que 'aire de D et sont périmétre est plus petit car la longueur de o est plus grande
que la longueur du segment [p, ¢] (le segment de droite est le plus court chemin entre deux points).

Il est donc clair que Isp(D’) < Isp(D).



Exercice 1.7. Supposons que D C R? est un domaine isopérimétrique optimal (en particulier D est
convexe), notons I' = 9D son bord. Soient A, B € I" deux points du bord de D qui partagent la courbe
I' en deux parties d’égales longueurs. Montrer alors que la corde [A, B] partage D en deux régions
d’aires égales.

Solution 1.7. On raisonne par I’absurde. Supposons que la corde [A, B] partage D en deux régions
D, et Dy d’aires inégales, par exemple Aire(D;) > Aire(Ds2). Notons D] la région du plan symétrique
de Dy par rapport a la droite AB et D' = Dy U D). Alors il est clair par construction que D et D" ont
le méme périmétre et

Aire(D") = Aire(Dy) + Aire(D;) > Aire(D;) + Aire(D3) = Aire(D).

Par conséquent Isp(D’) < Isp(D), contredisant I’hypothése que D est un domaine isopérimétrique.

Exercice 1.8. Soit D C R? est un domaine isopérimétrique optimal et I, A, B comme dans I’exercice
précédent. Montrer alors que pour tout point P de T', différents de A et B, on a <pAB = 7/2.

Indication. Supposant par ’absurde que ¢a n’est pas le cas pour un certain point P, utiliser ’exercice
1.6 pour construire un domaine D’ dont le périmeétre est égal a celui de D mais Aire(D’) > Aire(D).

Solution 1.8. On raisonne de nouveau par ’absurde. Nous allons prouver que s’il existe un point
P eT =0D tel que P # A, B et le triangle ABP n’est pas rectangle en P, alors on peut construire
un domaine D’ tel que Isp(D’) < Isp(D).

Premiére étape : Notons o1 'arc de I' de A & P et o9 'arc de I" de P a B. Notons ensuite G le
domaine du plan limité par arc o1 et la corde [A, P] et G5 le domaine du plan limité par arc oy et
la corde [P, B].

Deuxiéme étape : On construit un triangle A’B’P’ rectangle en P’ et tel que d(A’, P') = d(A, P) et
d(B',P") = d(B, P). Par l'exercice 1.6 on sait que l'aire de A’B’P’ est strictement plus grande que
l'aire de ABP. (Noter que d(A’, B") # d(A, B)).

Troisiéme étape : On ajoute au triangle A’ B’P’" une région G isométrique a G, dont le bord contient
l'arc A’, P" et dont I'intérieur est disjoint du triangle A’B’P’. Ensuite on ajoute de méme une région G5
isométrique a G, dont le bord contient 'arc B’, P’ et dont l'intérieur est disjoint du triangle A’B’P’.
On note D] le domaine obtenu.

Quatriéme étape : On note maintenant D/, le domaine symétrique de D] par rapport a la droite A'B’,
puis on pose D' = Dy U Ds. Par construction, le périmétre de ce domaine est le double de la somme
des longueurs de o1 et oo, donc D’ et D ont le méme périmétre. D’autre part, la deuxiéme étape de
la construction entraine que Aire(D’) > Aire(D’). On a donc Isp(D’) < Isp(D).

Exercice 1.9. A partir des exercices précédents, prouver 'inégalité isopérimétrique dans le plan :
pour tout domaine du plan on a Isp(D) > 4, avec égalité si et seulement si D est un disque (on admet
I'existence d’un domaine isopérimétrique optimal, il s’agit ici de prouver 'unicité)



Solution 1.9. Les exercices 1.7, 1.9 et 1.5b entrainent que si D est un domaine isopérimétrique du
plan, alors D est un domaine convexe dont le bord est un cercle.

Remarque. Il existe plusieurs preuves de l'inégalité isopérimétrique, assez différentes les unes des autres. La
preuve étudiée ici est due & Ernst Steinitz (mathématicien allemand, 1871-1928). Notons aussi qu’il existe une
généralisation de l'inégalité isopérimétrique pour les domaines dans R™, mais le preuve ci-dessus est spécifique
au domaines plan. Quand a l'existence d’'un domaine isopérimétrique (que nous avons supposée dans cette
dérie d’exercices), elle peut se démontrer a partir d’un résultat de Wilhelm Blaschke (mathématicien autrichien
1885-1962): le théoréme de sélection de Blaschke, qui affirme que toute suite bornée de domaines convexes

contient une sous-suite qui converge “au sens de Hausdorf”.




